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Abstract. It has been demonstrated that the application of
time-varying hydrological-model parameters based on dy-
namic catchment behavior significantly improves the ac-
curacy and robustness of conventional models. However,
the fundamental problems for calibrating dynamic param-
eters still need to be addressed. In this study, five calibra-
tion schemes for dynamic parameters in hydrological models
were designed to investigate the underlying causes of poor
model performance. The five schemes were assessed with re-
spect to the model performance in different flow phases, the
transferability of the dynamic parameters to different time
periods, the state variables and fluxes time series, and the
response of the dynamic parameter set to the dynamic catch-
ment characteristics. Furthermore, the potential reasons for
the poor response of the dynamic parameter set to the catch-
ment dynamics were investigated. The results showed that
the underlying causes of poor model performance included
time-invariant parameters, “compensation” among parame-
ters, high dimensionality and abrupt shifts in the parameters.
The recommended calibration scheme exhibited good perfor-
mance and overcame these problems by characterizing the
dynamic behavior of the catchments. The main reason for
the poor response of the dynamic parameter set to the catch-
ment dynamics may be the poor convergence performance
of the parameters. In addition, the assessment results of the
state variables and fluxes and the convergence performance
of the parameters provided robust indications of the domi-
nant response modes of the hydrological models in differ-

ent sub-periods or catchments with distinguishing catchment
characteristics.

1 Introduction

Hydrological modeling is an essential tool for understand-
ing the hydrological processes of a catchment and forecast-
ing streamflow (Liu et al., 2015, 2018; Turner et al., 2017;
Delorit et al., 2017; Fenicia et al., 2014, 2018; Hublart et
al., 2016; Höge et al., 2018; Sarrazin et al., 2016; Wi et al.,
2015; Herman et al., 2013; Wagener et al., 2001, 2003; Mad-
sen, 2000; Osuch et al., 2019; Zhang et al., 2019). Unfortu-
nately, the paucity of progress in model development is partly
due to structural inadequacy. For example, dynamic com-
ponents in hydrological models are oversimplified due to a
poor understanding of their physical mechanisms (Xiong et
al., 2019; Deng et al., 2016, 2018; Dakhlaoui et al., 2017;
Sarhadi et al., 2016; Pathiraja et al., 2016; Ouyang et al.,
2016). Previous studies have demonstrated that the assump-
tion of time-invariant parameters is usually inappropriate.
The reasons are that a unique parameter set optimized by
hydrological models only represents the average hydrologi-
cal processes, which do not accurately represent the dynamic
response modes of the catchments processes (Pathiraja et
al., 2018; Fowler et al., 2018; Zhao et al., 2017; Kim and
Han, 2017; Golmohammadi et al., 2017; Delorit et al., 2017;
Chen et al., 2017). To investigate the problems caused by
time-invariant parameters, a control scheme, i.e., scheme 1,
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is designed and assessed in this study. In this regard, the dy-
namics of the hydrological-model parameters may be a type
of compensation for models that are missing key processes
such as climate- and land-surface-related changes (Xiong
et al., 2019; Deng et al., 2016, 2018; Wang et al., 2017b;
Dakhlaoui et al., 2017; Sarhadi et al., 2016; Pathiraja et al.,
2016; Ouyang et al., 2016; Todorovic and Plavsic, 2015).

However, a critical but often overlooked issue related to
dynamic parameters is that there are linear or nonlinear cor-
relations among hydrological-model parameters, also called
the “compensation” between parameters (Wagener and Kol-
lat, 2007). The compensation between parameters could even
result in the dynamics of the individual parameters may
not represent the time-varying properties of river catchments
(Höge et al., 2018; Cibin et al., 2010; Bárdossy and Singh,
2008; Bárdossy, 2007; Huang, 2005; Wagener and Kollat,
2007). Hence, it has been conclusively demonstrated that
the optimal parameters in hydrological models should not be
considered as individual parameters but instead as parameter
vector “teams” (Wagener and Kollat, 2007). In this research,
the effects of the compensation between the parameters on
the dynamics of hydrological-model parameters are investi-
gated using a control scheme i.e., scheme 2.

In view of the compensation between parameters, the
most common approach for assessing the dynamics of the
hydrological-model parameters is that the calibration period
is partitioned into different sub-periods based on the tempo-
ral dynamic catchment characteristics (Sarhadi et al., 2016;
Merz et al., 2011; Lan et al., 2018; Xiong et al., 2019; Mo-
tavita et al., 2019; Deng et al., 2016, 2018; Dakhlaoui et al.,
2017; Choi and Beven, 2007; Brigode et al., 2013; Kim et
al., 2015; Kim and Han, 2017; Zhao et al., 2017; Pfannerstill
et al., 2015; Me et al., 2015; Coron et al., 2014; Vormoor
et al., 2018; Luo et al., 2012; Guse et al., 2016; Zhang et
al., 2011, 2015; Ouyang et al., 2016). The parameter set in
each sub-period is optimized to obtain the dynamic parame-
ter team. Previous studies have demonstrated that sub-period
calibration based on the dynamic catchment behavior accu-
rately captures the temporal variations of the catchment char-
acteristics, thereby compensating for structural inadequacy
(Lan et al., 2018; Zhao et al., 2017; Kim and Han, 2017;
Zhang et al., 2011; de Vos et al., 2010; Gupta et al., 2009;
Choi and Beven, 2007; van Griensven et al., 2006; Freer et
al., 2003). In the study of Choi and Beven (2007), the sub-
periods were identified based on different hydrological char-
acteristics using a clustering technique. The results showed
that the model that considered the dynamic catchment char-
acteristics exhibited good performance at the global level
(i.e., overall calibration and validation periods). Merz et
al. (2011) demonstrated that the parameters of the catchment
model related to snow and soil moisture showed clear time
trends for the climate indicators. Zhang et al. (2011) pro-
posed a general multi-period calibration approach for im-
proving the performance of hydrological models based on
the fuzzy c-means clustering technique under time-varying

climatic conditions. The results indicated that model simula-
tions using parameters obtained from the multi-period cali-
bration approach exhibited considerable improvements over
those from the conventional single-period model. Brigode et
al. (2013) demonstrated the dependence of the optimal pa-
rameter set on the climate characteristics of the calibration
period. Lan et al. (2018) focused on the sub-period clustering
or partition based on the climate–land-surface variations and
relevant studies, such as the choice and pre-process of clus-
tering indices in the light of various catchment characteris-
tics and the clustering operation based on different clustering
index systems. The results showed that the sub-annual cali-
bration with the clustering preprocessing (CPP) framework
exhibited significant improvements in overall performance.

Even though the sub-period calibration performed well for
describing the dynamics of the hydrological-model parame-
ters, some fundamental problems still need to be addressed
because the analysis involves the hydrological model struc-
ture, global optimization, physical mechanisms of dynamic
catchment characteristics, as well as complex relationships
between the parameters, state variables and fluxes. For ex-
ample, multiple parameter sets are optimized simultaneously
in different sub-periods. Questions like which possible dis-
aster would be brought by parameter optimization in a high-
dimensional parameter space remain to be answered. This
study aims to investigate the underlying causes of poor model
performance in hydrological models with dynamic parame-
ters via designing five calibration schemes and exploring the
potential reasons for the poor response of the dynamic pa-
rameter set to the catchment dynamics are explored. In addi-
tion to schemes 1 and 2 described above, this study designed
and assessed a control scheme, i.e., scheme 3, to investigate
the problem of high dimensionality. Also, abrupt changes
in the parameter set between two sub-periods may result in
anomalous or incorrect values in the fluxes and state vari-
ables of the time series. Hence, control scheme 4 is designed
to investigate potential problems caused by abrupt changes
in the parameters. These control schemes are assessed as fol-
lows: (1) the model performance is assessed at very low, low,
medium, high and very high phases of flow, and the transfer-
ability of the dynamic parameter set to different time peri-
ods is determined; (2) the state variable and flux time series
and their changes between two consecutive sub-periods are
evaluated; and (3) the response of the dynamic parameter set
to the dynamic catchment characteristics is evaluated. The
underlying causes for poor model performance when sub-
period calibration is used are investigated, and an effective
calibration scheme for dynamic hydrological-model parame-
ters, scheme 5, is recommended as a solution. Furthermore,
the underlying mechanism of the lack of a response of the
dynamic parameter set to the dynamic catchment character-
istics is investigated.

The paper is structured as follows. Section 2 presents the
study cases and data, the partition methods, and the results of
the sub-periods based on the dynamic catchment characteris-
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Figure 1. Study cases and data. (a) Locations of the study region, the Han Jiang and its three major tributaries considered in this study,
i.e., the Hanzhong, Muma He and Xun He. (b) Flowchart of the sub-period partition using the CPP framework. (c) Heat map of sub-period
partition. Note that the sub-periods include the dry period, rainfall period I, rainfall period II and rainfall period III. In the dry period, both
the total amount and the variance values of all the precipitation series reach the minimum. In contrast, the total amount and the variance
values of the precipitation series in rainfall period II (wettest period) reach the maximum, and the frequency of heavy rain is highest. In the
two normal sub-annual periods (rainfall period I and rainfall period III), the climatic patterns are similar, but the streamflow volume is higher
in rainfall period III than in rainfall period I. The reason is that higher antecedent soil moisture content contributed to the higher runoff in
rainfall period III than in rainfall period I. More detailed descriptions of the clustering are described in Lan et al. (2018).

tics. Section 3 elaborates on the five calibration schemes for
the dynamic parameters of the hydrological model and the
assessment approaches. Section 4 presents the assessment
results of the different schemes, the potential problems and
the recommendation of an effective calibration scheme. Sec-
tion 5 summarizes the underlying causes of poor model per-
formance, followed by a discussion of the poor response of
the dynamic parameters to the catchment dynamics. Section
6 summarizes the key conclusions of the study and outlines
directions for future research.

2 Study cases and data

In this study, three sub-basins with different spatial scales in
the Han Jiang basin, i.e., Hanzhong basin, Muma He basin
and Xun He basin, were selected to demonstrate the pro-
posed approach (Fig. 1a). Climatically, the Han Jiang basin
is located in the monsoon region of the eastern Asia sub-
tropical zone. The area is cold and dry in winter and warm
and humid in summer (Lin et al., 2010), and there are sea-
sonal changes in vegetation density and types (Fang et al.,
2002). Subtropical vegetation affects temporal moisture con-

ditions. Significant intra-annual changes in the climate and
land surface conditions allow for exploring the seasonal dy-
namics of the hydrological processes. Therefore, the three
basins are ideal locations for investigating the dynamics of
hydrological-model parameters. Daily streamflow and cli-
matic data from 1980 to 1990 were used. Nearly 73 % of the
data samples (1980–1987) were used for calibration, and the
remainder (1988–1990) was utilized to verify the model.

The flowchart of the reasonable sub-period partition based
on the dynamic catchment characteristics is shown in Fig. 1b.
The data mining techniques were integrated to develop a CPP
framework for sub-period partition to simulate dynamic be-
havior. The hydrological model was calibrated in each sub-
period to achieve the dynamics of the parameter set, as illus-
trated in Fig. 1b. In the CPP, a set of climate–land-surface in-
dices was provided and pre-processed using the maximal in-
formation coefficient (MIC) and principal components anal-
ysis (PCA). The climatic indices included total precipita-
tion, maximum 1 d precipitation, maximum 5 d precipitation,
moderate precipitation days, heavy precipitation days, total
pan evaporation, maximum 1 d pan evaporation and mini-
mum 1 d pan evaporation. The land surface indices included
antecedent streamflow and runoff coefficient. Two clustering
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Figure 2. Calibration schemes. (a) Objectives of the schemes. (b) Schematic illustration of the five schemes. Note that in scheme 1, the
parameters are time-invariant; in scheme 2, the dynamic of only the specific parameter is operated. The specific parameters in different
sub-periods and the other fixed parameters are optimized simultaneously; in scheme 3, the parameter set is dynamized. The parameter sets in
different sub-periods are optimized simultaneously; in scheme 4, only the data from the individual sub-periods are used for minimizing the
objective function, while the model is run for the whole period. The parameter sets in different sub-periods are optimized. In the validation
period, the parameter set between two consecutive sub-periods is updated accordingly. In scheme 5, the calibration is the same as in scheme 4.
In the validation period, the simulated flow data from each separate sub-period are combined and compared with the observed flow.

operations were performed based on the pre-processed cli-
matic index system and land surface index system, respec-
tively. The clustering results are shown in Fig. 1c. The re-
sults showed that the performance of the model with a CPP
framework was significantly improved at high, middle and
low streamflow. The transferability of the dynamic parame-
ter set from the calibration to the validation period was also
greatly improved.

It is worth emphasizing that the dynamic parameters dur-
ing the validation period are set to the same as in the cal-
ibration period. The values are dependent on the calendar
days. This is because our previous research (Lan et al., 2018)
showed that the clustering results of the validation period
are almost the same as the results of the calibration period.
In that study, the hydrological model was calibrated in each
sub-period to achieve the dynamics of the parameter set. The
calendar year is clustered into four sub-annual periods based
on hydrological similarities, and the clustering results were
further verified by the hydrological data in the validation pe-
riod. The reason is that the study area, i.e., the Han Jiang
basin, is located in the monsoon region of the eastern Asia
subtropical zone, and the seasonal variations of both climate
conditions and vegetation density and types are more impor-
tant than inter-annual variations (Fang et al., 2002).

3 Methodology

3.1 Calibration schemes

Five calibration schemes are designed and compared
(see Fig. 2). The potential problems when dynamics
of hydrological-model parameters are used include time-
invariant parameters, compensation among parameters, the
high dimensionality of the parameters and abrupt changes
in the parameters; these factors are investigated, and a solu-
tion is recommended. For illustration purposes, the HYMOD
(HYdrological MODel) model (Moore, 1985; Wagener et
al., 2001; Vrugt et al., 2002; Yadav et al., 2007; de Vos et
al., 2010; Pathiraja et al., 2018), which is a commonly used
lumped rainfall–runoff model with five parameters, is uti-
lized. It consists of a simple rainfall excess model based on
the probability-distributed moisture store which character-
izes the catchment storage as a Pareto distribution of buckets
of varying depths as the soil moisture accounting component.
It routes through three parallel tanks for quick flow and a tank
for slow flow and required five adjustable parameters: HUZ ,
B, α, Kq and Ks. XHUZ and XCUZ are state variables char-
acterizing the upper soil moisture content; AE is actual evap-
otranspiration, which is calculated by linear correlations be-
tween the soil moisture state and the potential evapotranspi-
ration; effP is effective precipitation; OV is excess precipita-
tion to the routing module generated from the overflow of the
soil moisture accounting component; see Moore (1985) for a
detailed description of the soil moisture accounting model;
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Table 1. Definition of parameters, state variables and fluxes used in the HYMOD model (Wagener et al., 2001).

Label Property Range Description

Huz Parameter 0–1000 mm Maximum height of the soil moisture accounting tank
B Parameter 0–1.99 mm Scaled distribution function shape
α Parameter 0–0.99 mm Quick or slow split
Kq Parameter 0–0.99 mm Quick-flow routing tanks’ rate
Ks Parameter 0–0.99 mm Slow-flow routing tank’s rate
XHuz State variable mm Upper-zone soil moisture tank state height
XCuz State variable mm Upper-zone soil moisture tank state contents
Xq State variable mm Quick-flow tank states contents
Xs State variable mm Slow-flow tank state contents
AE Flux mm d−1 Actual evapotranspiration flux
OV Flux mm d−1 Precipitation excess flux
Qq Flux mm d−1 Quick-flow flux
Qs Flux mm d−1 Slow-flow flux
Qsim Flux mm d−1 Total streamflow flux

Note that the Kq parameter with the highest identifiability is chosen as the dynamic parameter in scheme 2.

Xq1 , Xq2 , Xq3 and Xs are the state variables of the individual
tanks of the routing module; andQq andQs are the flow val-
ues generated from the quick- and slow-flow tanks, respec-
tively. The definitions of the model parameters, state vari-
able and fluxes are presented in Table 1. All schemes with
the same set of shuffled complex evolution method were de-
veloped at the University of Arizona (SCE-UA). The SCE-
UA algorithm is a subset of a global evolution algorithm
(Duan et al., 1993; Hanne, 2000; Michalewicz and Schoe-
nauer, 1996; Omran and Mahdavi, 2008; Storn and Price,
1997; Yiu-Wing and Yuping, 2001) which was used as an ex-
ample of a global optimization algorithm in this study. More
information is presented in Sect. S1 of the Supplement. The
simulations have a warm-up period of 1 year in the calibra-
tion period and 3 months in the validation period. The ob-
jective function is defined as the combination of the Nash–
Sutcliffe efficiency index (NSE) and the logarithmic trans-
formation (LNSE) (Nash and Sutcliffe, 1970). The NSE is
sensitive to the discharge dynamics, and the LNSE empha-
sizes the low flows because the log of the discharge is used
(Nash and Sutcliffe, 1970; Guntner et al., 1999; Kiptala et
al., 2014; Nijzink et al., 2016). It is expressed as

OF= 1− 0.5 · (NSE+LNSE), (1)

where OF(0, ∞) is the objective function value. The closer
the value of OF is to zero, the better the model performance
is.

– Scheme 1. This scheme investigates the problem
of time-invariant parameters. The parameters do not
change during the entire calibration and validation peri-
ods.

– Scheme 2. This scheme investigates the compensation
among the parameters. In the calibration period, a spe-
cific dynamic parameter and the other fixed parameters

in different sub-periods are optimized simultaneously.
For example, eight parameters, namely one specific pa-
rameter in the four sub-periods and another four fixed
(i.e., temporally invariant) parameters, are optimized si-
multaneously during one run in HYMOD. The transi-
tion of the state variables and fluxes between two con-
secutive sub-periods is achieved by considering the last
values of the former period as the initial values of the
next period. In the validation period, the model is run
using the inputs with the specific dynamic parameter
and other fixed parameters. The transitions of parame-
ters, state variables and fluxes between two consecutive
sub-periods are handled the same as in the calibration
period.

The specific dynamic parameter is usually identified by
whether it responds to the dynamic catchment char-
acteristics. However, due to the complex correlations
among the parameters and imperfect model structures
(missing processes or oversimplified parameterizations
in the model), the individual parameters may not repre-
sent their defined physical characteristics, such as tem-
poral changes in soil, land cover and climate conditions.
Hence, the parameter with the highest sensitivity was
chosen as the dynamic parameter (Merz et al., 2011;
Pfannerstill et al., 2014; Zhang et al., 2015; Deng et
al., 2016, 2018; Guse et al., 2016; Ouyang et al., 2016;
Xiong et al., 2019). In this study, the dynamic param-
eter Kq with the highest identifiability and the other
fixed parameters are optimized. The chosen parameter
is marked in Table 1.

– Scheme 3. This scheme investigates the high dimen-
sionality of the parameters. In the calibration period,
the parameter sets in different sub-periods are op-
timized simultaneously. For example, 20 parameters,
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namely 5 parameters of the hydrological model in 4 sub-
periods, are optimized simultaneously in one run. The
transition of the state variables and fluxes between two
consecutive sub-periods is achieved by considering the
last values of the former period as the initial values of
the next period. In the validation period, the model is
run using the dynamic parameter set. The transitions of
the parameters, state variables and fluxes between two
consecutive sub-periods are handled the same as in the
calibration period.

– Scheme 4. This scheme investigates the abrupt changes
in the parameters. In the calibration period, only the data
from the individual sub-periods are used for minimiz-
ing the objective function, while the model is run for
the whole period. For example, five parameters of the
hydrological model in four sub-periods are optimized
in four runs. The calibrated flow data from each sub-
period are then combined and compared with the ob-
served flow. In the validation period, the transitions of
parameters, state variables and fluxes between two con-
secutive sub-periods are handled the same as in the val-
idation period of scheme 3. In the validation period, the
effects of the correlations and high dimensions of the
parameters are excluded, and the influences caused by
the abrupt changes in the parameters are investigated.

– Scheme 5. A solution is recommended to overcome the
above problems that are caused by the time-invariant
parameters, compensation among parameters, high di-
mensionality and abrupt shifts in the parameters. In the
calibration period, the model run is the same as that of
the calibration period of scheme 4. In the validation pe-
riod, the simulated flow data from each sub-period are
combined and compared with the observed flow.

The above description reveals that the model run in the cali-
bration period is the same in scheme 4 and scheme 5. How-
ever, the model run in the validation period is actually dif-
ferent. In the validation period of scheme 4, the model runs
one time using the dynamic parameter set. The parameter set
between two consecutive sub-periods is switched. As a re-
sult, the transition of the state variables and fluxes between
two consecutive sub-periods is abrupt and achieved by con-
sidering the last values of the former period as the initial val-
ues of the next period. In the validation period of scheme 5,
the model runs N times (N is the number of the divided
sub-periods), combining the simulated flow data in the sub-
periods. The comparison between scheme 4 and scheme 5 is
to investigate the effect of the abrupt shifts in the parameters
on the model run with dynamic parameters.

3.2 Assessment

3.2.1 Assessment of model performance

The performance assessments of the calibration schemes
include (1) an assessment of the performance in different
phases of the streamflow and (2) an assessment of the trans-
ferability of the dynamic parameters to different time peri-
ods. Seven performance metrics are used to assess the perfor-
mance for different parts of the hydrograph in the calibration
and validation periods. The metrics are listed and defined in
Table 2. The differences in these metrics between the cali-
bration period and the validation period are used to assess
the transferability of the optimized parameters. The transfer-
ability of the parameters to different time periods is consid-
ered a requirement for the successful validation of the model
(Gharari et al., 2013; Klemeš, 1986).

3.2.2 Assessment of the state variables and fluxes

The internal processes of the hydrological model run include
the state variable and flux time series. The abrupt changes
in the parameters between two consecutive sub-periods may
result in changes in the state variables and fluxes, thereby af-
fecting the simulation results. Hence, all the state variables
and fluxes obtained from the different schemes are investi-
gated, and the underlying physical mechanisms are discussed
(Kim and Han, 2017).

3.2.3 Assessment of the dynamic parameter set

The response of the dynamic parameter sets to the dynamic
catchment characteristics in all schemes is investigated for
the two response modes of HYMOD, i.e., the soil moisture
mode and routing mode. Furthermore, the underlying physi-
cal mechanisms based on dynamic catchment characteristics
are analyzed.

4 Results

4.1 Model performance

For a concise model evaluation, the model performance
is analyzed with multi-metric frameworks with appropri-
ate performance metrics, including five-segment evaluation
(5 FDC; flow duration curve with the root mean square er-
ror) (Pfannerstill et al., 2014), the Nash–Sutcliffe efficiency
index (NSE) (Nash and Sutcliffe, 1970) and the logarithmic
transformation. For the robustness of model evaluation, the
transferability of the optimized parameters between the cal-
ibration period and the validation period is considered. The
results of the assessment are shown in Fig. 3.

The performance of scheme 2 is only slightly better than
that of scheme 1, which indicates only a slight increase
in the model performance. Scheme 3 has the worst model
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Table 2. Definitions of the performance metrics.

Performance Description
metric

NSE Sensitive to peaks and discharge dynamic
LNSE Emphasizing low flows with log of discharge
RMSE_Q5 RMSE in FDC Q5 very-low-segment volume
RMSE_Q20 RMSE in FDC between Q5 and Q20 low-segment volume
RMSE_Qmid RMSE in FDC between Q20 and Q70 mid-segment volume
RMSE_Q70 RMSE in FDC between Q70 and Q95 high-segment volume
RMSE_Q95 RMSE in FDC Q95 very-high-segment volume

Note that the flow duration curve (FDC) is usually split into different segments to describe different
flow characteristics of a catchment (Cheng et al., 2012; Coopersmith et al., 2012; Kim and
Kaluarachchi, 2014; Pugliese et al., 2014; Pfannerstill et al., 2014). The RMSE with quadratic character
is usually used to evaluate poor model performance due to the strong sensitivity to extreme positive and
negative error values.

Figure 3. Model performance. Model performance of the five schemes in the Hanzhong basin; (1) the performance in different phases of the
streamflow and (2) the transferability of dynamic parameters to different time periods.

performance at the global level; i.e., all metrics are much
higher than one in the calibration period and validation pe-
riod. Scheme 4 has the highest overall model performance in
the calibration period. For example, the NSE and LNSE are
45.3 % and 13.8 %, respectively; these values are consider-
ably higher than the metrics of scheme 1. The other metrics
also indicate that scheme 4 performs best in all flow phases
in the calibration period. However, the model performance
of scheme 4 in the validation period is only slightly better
than that of scheme 1. Scheme 5 has the same model perfor-
mance as scheme 4 in the calibration period. Nevertheless,
the overall model performance of scheme 5 is significantly
higher than that of the other schemes in the validation period.

The transferability of the optimized parameters is analyzed
in all schemes. Scheme 5 has the smallest differences, and
scheme 4 has the largest differences in the metrics between
the calibration period and validation period.

In summary, scheme 5 does not only have the highest over-
all performance under different flow conditions in the cali-
bration period and validation period but also exhibits good
transferability of the model parameters. Scheme 4 exhibits
good performance in the calibration period but does not per-
form well in the validation period. Scheme 3 has extremely
poor model performance at the global level. Scheme 2 does
not have better performance than scheme 1. The evaluation
results of the five schemes in the Muma He basin and Xun He
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basin are listed in Sect. S3. The results are similar to those of
the Hanzhong basin and will be discussed in Sect. 5.1.

4.2 State variables and fluxes

The assessment results of the state variables and fluxes are
shown in Figs. 4 and 5. The variables of scheme 2 are similar
to those of scheme 1. The model performance of scheme 2
is only slightly better than that of scheme 1. In scheme 3,
there are some unexpected values of the state variables in the
time series. In scheme 4, invalid values of the fluxes and state
variables are found at the junction of sub-periods, where the
parameter set exhibits abrupt changes. In scheme 5, (1) Qs,
XHUZ and XCUZ are lower in the dry period and higher in
rainfall period II than those in scheme 1. The results indi-
cate that the performance of the model run is better in the
dry period and rainfall period II because the runoff is usually
overestimated in the dry period (Pool et al., 2017; Wang et
al., 2017a; Tongal and Booij, 2018; Xiong et al., 2018) and
underestimated in the wettest period (Guo et al., 2018; Höge
et al., 2018; Pande and Moayeri, 2018; Wang et al., 2018).
It is observed that the state variable Xs and the flux Qs have
larger effects on simulating runoff than the quick-flow (Qq

and Xq ) mode in rainfall period II. The reason is that most
of the excess streamflow is diverted to the slow-flow routing,
hence the fluxes and state variables present more representa-
tiveness of the slow-flow tank mode. (2) A comparison of the
observations and simulations of the runoff in scheme 1 and
scheme 5 indicates that both peak flows in rainfall period II
are more accurately simulated by scheme 5. (3) Scheme 5
also exhibits superior performance in the two normal peri-
ods because the state variables provide a good representa-
tion of the physical mechanism. The state variables XHUZ
andXCUZ are lower in rainfall period I and higher in rainfall
period III than in scheme 1. The reason is that the antecedent
soil moisture content in rainfall period III is higher than in
rainfall period I (Lan et al., 2018). Consequently, the results
are consistent with the results in Sect. 4.1. The dynamic pa-
rameters in scheme 5 provided a good representation of the
dynamic catchment characteristics.

4.3 Dynamic parameter set

The dynamic parameter values optimized by the four sub-
period calibration schemes in the Hanzhong basin are shown
in Fig. 6. In scheme 2, the dynamic parameter Kq with the
highest identifiability and the other fixed parameters are op-
timized. The result shows that the responses of the dynamic
parameter Kq to the dynamic catchment characteristics are
not clear. In scheme 3, the parameters HUZ and B in the soil
moisture mode of HYMOD (Moore, 1985; Vrugt et al., 2002)
show no regular patterns in any of the schemes, and this is
similar for α, Kq and Ks in the slow- and quick-flow routing
mode. In short, the dynamic parameters do not show clear re-
sponses to the dynamic catchment characteristics in scheme 2

or scheme 3. In scheme 5, which is the same as scheme 4 in
the calibration period, Ks accurately describes the model re-
sponses in the sub-periods for the different catchment char-
acteristics. The value of Ks is lowest in the dry period and
highest in the wettest period. However, the parameterKq ex-
hibits no significantly regular changes. The main reason is
that most of the excess streamflow in the three rainfall peri-
ods is diverted to the slow-flow tank because the α values are
close to zero. This means that the quick-flow tanks do not
have an effect on the simulations. The parameter sets opti-
mized by scheme 1 and scheme 5 in the Muma He basin and
Xun He basin are listed in Sect. S3. The results are similar to
those of the Hanzhong basin.

In summary, scheme 5 performs best for identifying the
dominant parameters and their responses to the dynamic
catchment characteristics. The dynamic features of the pa-
rameters also demonstrate the necessity for sub-period cali-
bration. Furthermore, it is interesting that the state variables
and fluxes describe the dynamic catchment behavior more
robustly than the dynamic parameters. In light of this, the
underlying causes for the poor response of the dynamic pa-
rameter set to the catchment dynamics are investigated.

5 Discussion

5.1 Underlying causes of poor model performance

The evaluation results of the five schemes are summarized to
explore the possible reasons for poor model performance:

1. Time-invariant parameters. Scheme 1, with the time-
invariant parameter set, averages the hydrological re-
sponses. As a result, scheme 1 resulted in poor sim-
ulation accuracy or weak transferability of the opti-
mized parameters in different flow conditions. The re-
sults were consistent with Delorit et al. (2017), Fowler
et al. (2018), and Xiong et al. (2019).

2. Compensation among parameters. In scheme 2, the in-
dividual parameters with high identifiability did show
clear responses to the dynamic catchment characteris-
tics. Bárdossy (2007) demonstrated that changes in one
parameter may be compensated for by changes in other
parameters due to their interdependence (Westra et al.,
2014; Klotz et al., 2017; Wang et al., 2017b, 2018).
Therefore, although a specific parameter is dynamic, the
other parameters may counteract those changes, result-
ing in no overall change in the hydrological processes.
Hence, the model performance in scheme 2 was rela-
tively low.

3. High dimensionality of parameters. In scheme 3, it has
a sound logic by continuously running the model with
the dynamic parameter set like the real system. How-
ever, the results showed that all fluxes and state vari-
ables in the time series were anomalous, and the model
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Figure 4. Results of the flux assessment. The fluxes (including AE, OV, Qq , Qs and Qsim) for the five schemes in the reference year in the
validation period in the Hanzhong basin. Note that the variables in different sub-periods are denoted by different colors (same colors as in
Fig. 2a). The variables of scheme 0 are denoted by the thin grey lines in each box. The observed streamflow time series data are denoted as
thin red lines. All fluxes and state variables in the calibration and validation periods are presented in Sect. S3.

www.hydrol-earth-syst-sci.net/24/1347/2020/ Hydrol. Earth Syst. Sci., 24, 1347–1366, 2020



1356 T. Lan et al.: Dynamics of hydrological-model parameters: mechanisms, problems and solutions

Figure 5. Results of the state variable assessment. The state variables (includingXHUZ ,XCUZ ,Xq1 ,Xq2 ,Xq3 andXs) for the five schemes
in the reference year in the validation period in the Hanzhong basin.
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Figure 6. Results of the dynamic-parameter-set assessment. The dynamic parameter sets optimized by the four sub-period calibration
schemes in the Hanzhong basin.

exhibited extremely poor performance. It was demon-
strated that parameter optimization in high-dimensional
parameter space with correlated parameters resulted in
the failure of the modeling run (Beven and Binley, 1992;
Sivakumar, 2004; Bárdossy and Singh, 2008; Laloy and
Vrugt, 2012).

4. Abrupt shifts in parameters. In scheme 4, the abrupt
shifts in the parameter set between the sub-periods re-
sulted in anomalous values in the fluxes and state vari-
ables in the time series, which results in the failure of
the model in the validation period. Kim and Han (2017)
also emphasized the negative effects of abrupt shifts in
the parameter set on the model performance.

In summary, scheme 5 is recommended for dynamic
hydrological-model parameters because it can capture the
temporal variations of the dynamic catchment characteristics
and overcome the underlying problems responsible for poor
model performance. Although scheme 5 has a higher com-
putational cost, this does not represent a large problem with
current computing devices.

5.2 Underlying causes of the poor response of the
dynamic parameters to the catchment dynamics

The dynamic parameter set was estimated using global opti-
mization algorithms. However, if the convergence fails, the
global optimum cannot be determined, and the optimal pa-
rameter values may be anomalous. In this case, the optimal
results do not represent the hydrological processes in a catch-
ment (Gomez, 2019; Weise, 2009). In order to investigate
the underlying causes of the poor response of the dynamic
parameters to the catchment dynamics, we assessed the con-
vergence performance of the dynamic parameters and deter-
mined the ability of the parameters to respond to the catch-
ment dynamics (Zecchin et al., 2012; Zheng et al., 2017;
Azad and Optimization, 2019).

5.2.1 A tool for the convergence evaluation of the
dynamic parameters

In order to overcome the limitation of traditional tools for
evaluating the convergence behavior of global optimization
algorithms for hydrological models, including the visual-
ization of the high-dimensional parameter response surface,
rough response surfaces with discontinuous derivatives, poor
or inconsistent sensitivities of the response surface, non-
convex mesh surfaces, and the dynamic convergence process
in high-dimensional parameter spaces (Duan et al., 1992,
1994; Sorooshian et al., 1993; Cooper et al., 1997; Gupta et
al., 1998; Vrugt et al., 2005; Weise, 2009; Zhang et al., 2009;
Sun et al., 2012; Arora and Singh, 2013; Derrac et al., 2014;
Piotrowski et al., 2017; Gomez, 2019), a simple and power-
ful approach is proposed, namely, Evaluate the Convergence
Performance using Violin Plots (ECP-VP). This tool rep-
resents the potential features of the fitness landscapes (see
Fig. 7) and provides a visualization of the convergence be-
havior in multi-parameter space. The strategy is as follows.

The end of each evolution loop in the optimization process
is regarded as a cut-off point. The parameter set with the best
objective function value in each evolution loop is recorded in
the “convergence process”.

Violin plots, which are an excellent tool to visualize the
kernel density distribution of the data points (Hintze and Nel-
son, 1998; Piel et al., 2010), are used to configure the conver-
gence process in the individual parameter spaces. The proba-
bility distributions of the violin plots are used to represent the
possible properties of the fitness landscapes. The anatomy of
the violin plot and the associated information can be found
in Sect. S2. With an adequate parameter space and sufficient
density of coverage, the four types of distributions of violin
plots are matched to the property sketches of the fitness land-
scapes (Weinberger, 1990; Forrest, 1995; Harik et al., 1999;
Gibbs et al., 2004; Arsenault et al., 2014; Maier et al., 2014).

A decrease in the performance of the convergence and the
candidate mechanisms are interpreted as (I) an unimodal dis-
tribution: an ideal global convergence process is used to esti-
mate the best solution. The unimodal distribution matches
two types of fitness landscape sketches including the best
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Figure 7. Evaluation of the ability of the dynamic parameters to respond to the catchment dynamics. (a) Evaluation of the convergence
processes using violin plots (ECP-VP). The horizontal axis of the violin plot denotes the parameter values, and the vertical axis denotes
the probability values. The probability distribution of elements of the search space is represented by the violin plots. (b) All possible
properties of the fitness landscapes. (c) The basic cycle of the global evolution algorithm. Initial population: create an initial population
of random individual. Evaluation: compute the objective values of the solution candidates. Fitness assignment: use the objective values to
determine the fitness values. Selection: select the fittest individuals for reproduction. Reproduction: create new individuals from the mating
pool by crossover and mutation. Note that the fitness landscapes are a very powerful metaphor for visualizing the convergence processes
in global optimization. Some intuitive sketches of fitness landscapes with possible properties are as follows. The horizontal axis denotes
the parameter values, and the vertical axis denotes the objective function values. The direction of the arrow represents the direction of
evolution. The possible properties include the following. (a) Best case: an optimization process is ideal for estimating the globally optimal
parameters. (b) Low variation: an optimization process with low variation is fair for estimating the globally optimal parameters. (c) Premature
convergence: an optimization process has prematurely converged to a local optimum if it is no longer able to explore other parts of the search
space than the area currently being examined and there exists another region that contains a superior solution. (d) Ruggedness: if the objective
function values are fluctuating, i.e., increasing or decreasing, it is difficult to determine the correct direction for the optimization process. In
short, ruggedness is multimodality plus steep ascends and descends in the fitness landscape. (e) Deceptiveness: the gradient of the deceptive
objective function values leads the optimizer away from the optima. (f) Neutrality: the outcome of the application of a search operation
to an element of the search space is neutral if it yields no change in the objective function values. (g) Needle in a haystack: the optimum
occurs as an isolated spike in a plane, representing the occurrences of extreme ruggedness combined with a general lack of information in
the fitness landscape. (h) Nightmare: the optimum is difficult to achieve in an approximate plane. More details on the fitness landscapes and
their properties can be found in Weise (2009).
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case and low variation. These can also be interpreted as (II) a
bimodal distribution: there are two main local optima and
the distance to the two local convergence regions is far. It
becomes more complicated for the optimization process to
find the global optimum, and the premature convergence to
a local optimum may occur (Duan et al., 1992, 1993, 1994;
Weise, 2009; Sun et al., 2012; Derrac et al., 2014; Gomez,
2019). The bimodal distribution symbolizes the two types of
fitness landscape sketches including the multimodal and de-
ceptive types. These can also be interpreted as (III) a multi-
modal distribution: the response surface may be multimodal
plus steep ascends and descends. This means that multiple
local optima exist. With the maze of minor local optima, the
calibration algorithm may fail to reach the global optimum.
Because the minor optima may be found quite far from the
global optimum, the search may terminate prematurely with-
out finding an approximate solution (Dakhlaoui et al., 2017;
Duan et al., 1992, 1993, 1994). The multimodal distribution
matches the three types of fitness landscape sketches includ-
ing the multimodal, rugged and deceptive types. These can
also be interpreted as (IV) a flat distribution: this is similar
to the multimodal distribution, and its surface may be noisy.
The very poor sensitivity of the objective function to the pa-
rameter fluctuation causes weak convergence of the parame-
ter (Duan et al., 1992, 1993, 1994; Dakhlaoui et al., 2017;
Rahnamay Naeini et al., 2018; Vrugt and Beven, 2018).
The flat distribution matches the three types of fitness land-
scape sketches, including the neutral, needle-in-a-haystack
and nightmare types.

5.2.2 Convergence assessment

The convergence assessment results of scheme 1 and
scheme 5 in the Hanzhong basin are shown in Fig. 8. In
scheme 1, (1) the parameter B represents the bimodal dis-
tribution in the parameter space, indicating that the fitness
landscape of B is unsteady or fluctuating (see Fig. 8a). It is
inferred that the convergence processes of the parameter B
may be affected by a prominent local optimum. The out-
comes of the search operations may be arbitrary, which leads
to a divergence away from the global optima. As a result, the
convergence performance of B is poor. (2) Although HUZ ,
α, Kq and Ks rapidly converge, and the range is small, the
magnification (Fig. 8b) shows bimodal or multimodal distri-
butions. The global optima cannot be determined in theHUZ ,
α, Kq and Ks parameter space. As a consequence, the con-
vergence of the parameters in scheme 1 is poor and the re-
sponse of the parameters to the catchment behavior with a
low level of confidence.

In scheme 5, the four sub-periods are evaluated separately.
(1) In the dry period, except for Ks, the distributions of the
other parameters are oscillating in the entire feasible param-
eter space. Indeed, the magnification of parameter Ks (see
Fig. 8b) shows a multimodal distribution. The result indicates
that the convergence performance of the parameter set in the

dry period is poor. Due to the weak relationship between pre-
cipitation and runoff in the dry period (Moore, 1985; Yadav
et al., 2007; de Vos et al., 2010), most modules of the model
in the dry period do not accurately characterize the behavior
of the catchment. (2) In rainfall periods I–III, the parame-
ters α andKs with a unimodal distribution have the best con-
vergence performance. The α values in the three rainfall peri-
ods are close to the minimum; hence the slow-flow tank con-
trols the cascade routing component of the model. The α and
Ks parameters, with high identicality and the best conver-
gence performance, also demonstrate that the chosen model
is most suitable for the streamflow simulation in the three
rainfall periods. The main reason is that the HYMOD model
is well suited for catchments dominated by “saturation excess
overland flow” processes. Intense rainfall events contribute
to saturation excess overland flow in rainfall periods (Her-
man et al., 2013; Sarrazin et al., 2016; Wang et al., 2017a;
2018). Moreover, the results also illustrate that the optimal α
andKq (orKs) in the cascade routing component have higher
reliability than the optimal HUZ and B in the soil moisture
component. In summary, the dynamic parameters α and Kq
(orKs) in scheme 5 have good convergence performance and
accurately describe the response to the dynamic catchment
characteristics. However, the parameters HUZ and B, with
poor convergence performance, exhibit a poor ability to de-
scribe the response to the dynamic catchment characteristics.
Interestingly, the convergence performance results of the pa-
rameters for the dominant response modes in HYMOD are
consistent with the results of the performance of the state
variables and fluxes and the dynamic parameter set. The eval-
uation results of ECP-VP for scheme 1 and scheme 5 in the
Muma He basin and Xun He basin are shown in Sect. S4.
The results are similar to those of the Hanzhong basin.

The following results were observed: (1) the proposed
ECP-VP tool accurately described the convergence behavior
of the models in the individual parameter spaces, demonstrat-
ing the reliability of the optimized dynamic parameter values
in responding dynamic catchment characteristics. The tool
can be used to determine the reason for the potentially poor
convergence performance. (2) The convergence performance
can be used to identify the operation modes of hydrologi-
cal models and provides valuable guidance for the improve-
ment of hydrological models with different catchment char-
acteristics. (3) The convergence performance of the parame-
ters in one sub-period might be superior or inferior to those
of other sub-periods. For example, the convergence perfor-
mance of all parameters was worse in the dry period than in
the three rainfall periods. Indeed, due to the complex correla-
tions between the parameters in a parameter set, the conver-
gence performance of an individual parameter may be signif-
icantly affected by the other parameters. For this reason, it is
not recommended to use the convergence performance of in-
dividual parameters but rather the convergence performance
of the parameter set. However, the application of this solu-
tion requires a significant amount of experiments, validation,

www.hydrol-earth-syst-sci.net/24/1347/2020/ Hydrol. Earth Syst. Sci., 24, 1347–1366, 2020



1360 T. Lan et al.: Dynamics of hydrological-model parameters: mechanisms, problems and solutions

Figure 8. Convergence performance for scheme 1 and scheme 5 in the Hanzhong basin. (a) The convergence processes in the parameter
spaces; (b) magnification of the convergence processes of the parameters.
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analysis and discussion, and these points will be investigated
in future studies.

6 Conclusions

We designed five calibration schemes for the dynamics of
hydrological-model parameters to investigate the underly-
ing causes of poor model performance. An assessment sys-
tem was proposed to determine an appropriate calibration
scheme. The potential reasons for the poor response of the
dynamic parameter set to the catchment dynamics were dis-
cussed. The following conclusions were drawn:

1. The five schemes were systematically evaluated with re-
spect to the model performance in different flow phases,
the transferability of the dynamic parameters to differ-
ent time periods, the state variable and flux time series,
and the response of the dynamic parameter set to the
dynamic catchment characteristics. The possible rea-
sons for the poor model performance included (1) time-
invariant parameters, (2) compensation among param-
eters, (3) high dimensionality of the parameters and
(4) abrupt shifts of the parameters. Interestingly, the re-
sults also proved that changes in the state variables and
fluxes time series provided a more robust description of
the dynamic catchment characteristics than the dynamic
parameters.

2. The proposed calibration (1) compensated for the defi-
ciencies in the model structure, (2) provided high fore-
cast accuracy for different flow phases, (3) exhibited
good transferability of the model parameters between
the calibration and validation periods, (4) improved the
ability to identify the dominant parameters and their re-
sponses to the catchment processes, and (5) accurately
characterized the dynamic behavior of the catchments.

3. The reasons for the poor response of the dynamic pa-
rameter to the catchment dynamics were determined
by assessing the convergence performance of the dy-
namic parameters. The results indicated that the dy-
namic parameters with good convergence performance
accurately described the response to the dynamic catch-
ment characteristics, whereas parameters with a poor
convergence performance had poor ability to describe
the response to the dynamic catchment characteristics.

4. The assessment results of the state variables and fluxes
and the convergence performance of the parameters
provided robust indications of the dominant response
modes of the hydrological models in different sub-
periods or catchments with distinguishing catchment
characteristics.
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