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Abstract. This study documents the development of a semi-
distributed hydrological model aimed at reflecting the dom-
inant controls on observed streamflow spatial variability.
The process is presented through the case study of the
Thur catchment (Switzerland, 1702 km2), an alpine and pre-
alpine catchment where streamflow (measured at 10 sub-
catchments) has different spatial characteristics in terms of
amounts, seasonal patterns, and dominance of baseflow. In
order to appraise the dominant controls on streamflow spa-
tial variability and build a model that reflects them, we fol-
low a two-stage approach. In a first stage, we identify the
main climatic or landscape properties that control the spa-
tial variability of streamflow signatures. This stage is based
on correlation analysis, complemented by expert judgement
to identify the most plausible cause—effect relationships. In
a second stage, the results of the previous analysis are used
to develop a set of model experiments aimed at determin-
ing an appropriate model representation of the Thur catch-
ment. These experiments confirm that only a hydrological
model that accounts for the heterogeneity of precipitation,
snow-related processes, and landscape features such as ge-
ology produces hydrographs that have signatures similar to
the observed ones. This model provides consistent results
in space—time validation, which is promising for predictions
in ungauged basins. The presented methodology for model
building can be transferred to other case studies, since the

data used in this work (meteorological variables, streamflow,
morphology, and geology maps) are available in numerous
regions around the globe.

1 Introduction

Semi-distributed rainfall-runoff models are widely applied
in operation for applications such as flood forecasting (e.g.
Ajami et al., 2004) or developing sustainable irrigation prac-
tices (e.g. MclInerney et al., 2018). The main purpose of these
models is to simulate streamflow at a limited number of fixed
points along river channels (e.g. Boyle et al., 2001), and for
this reason they are characterized by a coarser spatial reso-
lution than fully distributed models, which allow a very de-
tailed representation of the spatial variability of catchment
processes. Compared to fully distributed models, they are
characterized by lower data and computational requirements,
which represents a valuable practical advantage in their op-
erational use.

Similarly to the case of lumped models, the parameters
of semi-distributed models are estimated via calibration.
Therefore, it is important that the structure of these models
is commensurate with the available data, including length,
timescale, and spatial distribution (Wooldridge et al., 2001).
However, semi-distributed models, even when used for sim-
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ilar applications such as streamflow predictions, differ sig-
nificantly in terms of their process representation as well as
the number of calibration parameters. For example, Gao et
al. (2014) assume topography to be a dominant control on
hydrological processes, whereas the SWAT model (Arnold et
al., 1998) emphasizes the role of soil properties. These dif-
ferences raise the question of how to select an appropriate
model structure for the data at hand, which requires under-
standing of the association between model parameters and
the climatological and geomorphological characteristics of
the catchment.

Understanding the relationship between climate, land-
scape, and catchment response is a common objective of
many research areas in hydrology, including comparative hy-
drology (e.g. Falkenmark and Chapman, 1989), model re-
gionalization (e.g. Parajka et al., 2005), catchment classifica-
tion (e.g. Wagener et al., 2007), and prediction in ungauged
basins (e.g. Hrachowitz et al., 2013). In the case of stream-
flow, the attempt to explain its spatial variability is typically
accomplished either using statistical approaches, which are
designed to regionalize selected characteristics of the hydro-
graph (streamflow signatures), or through hydrological mod-
els that account for relevant spatial information. In particular,
statistical approaches such as regression analysis (e.g. Berger
and Entekhabi, 2001; Bloomfield et al., 2009) and correla-
tion analysis (e.g. Trancoso et al., 2017), or machine learn-
ing techniques like clustering (e.g. Sawicz et al., 2011; Toth,
2013; Kuentz et al., 2017), are used to group together catch-
ments that present similar characteristics and to extrapolate
the signatures where unknown. Such approaches have been
useful for quantifying the hydrological variability and iden-
tifying its principal drivers. However, they are often not de-
signed to discover causality links and can be affected by mul-
ticollinearity, which arises when multiple factors are corre-
lated internally and with the target variable (Kroll and Song,
2013).

By incorporating spatial information about meteorologi-
cal forcings and landscape characteristics, semi-distributed
hydrological models have the ability to mimic the mecha-
nisms that influence hydrograph spatial variability. However,
identifying the relevant mechanisms is challenging. One pos-
sibility is to be as inclusive as possible in accounting for
all the catchment properties that are, in principle, important
in controlling catchment response. However, this approach
leads to models that tend to be data demanding and contain
many parameters. For example, Gurtz et al. (1999) consid-
ered several landscape characteristics (elevation, land use,
etc.) in their application of a semi-distributed model to the
Thur catchment (Switzerland), which resulted in a model
with hundreds of hydrological response units (HRUs) that
were defined a priori based on the complexity of the catch-
ment. The other option is to try to identify the most relevant
processes and neglect others in order to control model com-
plexity. For example, Fenicia et al. (2016) compared various
model hypotheses to determine an appropriate discretization
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of the catchment in HRUS and appropriate structures for dif-
ferent HRUs. Antonetti et al. (2016) used a map of domi-
nant runoff processes following Scherrer and Naef (2003) for
defining HRUs. However, these approaches require a good
experimental understanding of the area, which is not always
available.

Convincing model calibration—validation strategies are es-
sential to provide confidence that the model ability to fit ob-
servations is a reflection of model realism and not a conse-
quence of calibrating an overparameterized model (e.g. An-
dréassian et al., 2009). A common approach for the cali-
bration of semi-distributed models is the so-called “sequen-
tial” approach, where subcatchments are calibrated sequen-
tially from upstream to downstream (e.g. Verbunt et al., 2006;
Feyen et al., 2008; Lerat et al., 2012; De Lavenne et al.,
2016). Although this approach may provide good fits and
therefore has its practical utility where data are available,
it does not provide understanding of the causes of stream-
flow spatial variability and results in models that are not spa-
tially transferable. Moreover, such models are prone to con-
tain many parameters, as each subcatchment would be repre-
sented by its own set of parameters. Alternative calibration—
validation approaches that enable model validation not only
in time but also in space are conceptually preferable, particu-
larly when the modelling is used for process understanding or
prediction in ungauged locations (e.g. Wagener et al., 2004;
Fenicia et al., 2016).

The objective of this study is to develop a semi-distributed
hydrological model with the appropriate level of functional
complexity to reproduce streamflow spatial variability in the
Thur catchment. For this purpose, we use a two-stage ap-
proach, the first one dedicated to an in-depth analysis of the
available data and the second one focused on hydrological
modelling.

Our specific objectives are to (1) explore the spatial vari-
ability present in the Swiss Thur catchment regarding land-
scape characteristics, meteorological forcing, and streamflow
signatures; (2) identify the main climate and landscape con-
trols that explain the variability of the hydrological response;
(3) based on this analysis, build a set of model experiments
aimed to test the relative importance of dominant processes
and their effect on the hydrograph; and (4) appraise model
assumptions against competing alternatives using a stringent
validation strategy.

The paper is organized as follows: Sect. 2 presents the
study area and gives information about data availability;
Sect. 3 illustrates the methodology; Sect. 4 shows the re-
sults; Sect. 5 analyses the results and puts them in perspec-
tive, showing what other similar studies have found; Sect. 6,
finally, summarizes the main conclusions.
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Figure 1. Landscape characteristics of the Thur catchment: (a) subdivision into subcatchments, river network, and gauging stations; (b) ele-
vation map; (c) land-use map; (d) simplified geology map; (e) soil depth map; (f) slope map (derived from the elevation map).

2 Study area

This study is carried out in the Thur catchment (Fig. 1), lo-
cated in the north-east of Switzerland, south-west of Lake
Constance. With a total length of 127 km and a catchment
area of 1702 km?, the Thur is the longest Swiss river, with-
out any natural or artificial reservoir along its course. The
Thur River is very dynamic, with streamflow values that
can change by 2 orders of magnitude within a few hours
(Schirmer et al., 2014).

The Thur catchment has been the subject of several stud-
ies in the past: Gurtz et al. (1999) performed the first mod-
elling study on the entire catchment using a semi-distributed
hydrological model; Abbaspour et al. (2007) modelled hy-
drology and water quality using the SWAT model; Fundel et
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al. (2013) and Jorg-Hess et al. (2015) focused on low flows
and droughts; Jasper et al. (2004) investigated the impact of
climate change on the natural water budget. Other modelling
studies also include Melsen et al. (2014, 2016), who investi-
gated parameter estimation in data-limited scenarios and pa-
rameter transferability across spatial and temporal scales, and
Brunner et al. (2019), who studied the spatial dependence
of floods. The Thur also includes a small-sized experimental
subcatchment (Rietholzbach, called Mosnang in this paper
after the name of the gauging station) that was the subject
of many field studies at the interface between process un-
derstanding and hydrological modelling (e.g. Menzel, 1996;
Gurtz et al., 2003; Seneviratne et al., 2012; von Freyberg et
al., 2014, 2015).
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1322 M. Dal Molin et al.: Understanding dominant controls on streamflow spatial variability

Table 1. Identification of the gauging stations and description of the
river network.

Index Code* Upstream
catchments

Andelfingen 1 2044 2-10
Appenzell 2 2112 -
Frauenfeld 3 2386 10
Halden 4 2181  2,3,5-10
Herisau 5 2305 -
Jonschwil 6 2303 7,8
Mogelsberg 7 23714 -
Mosnang 8§ 2414 -
St. Gallen 9 2468 2
Wiingi 10 2126 -

* Code of the gauging station, as defined by the Federal Office
for the Environment, FOEN.

The topography of the catchment is presented in Fig. 1b;
the elevation ranges between 356 ma.s.l. at the outlet and
2502 ma.s.l. at Mount Sintis. The majority of the catch-
ment lies below 1000ma.s.l. (75%) and only 0.6 % is
above 2000 m a.s.l. (Gurtz et al., 1999). Based on topogra-
phy (Fig. 1b), the catchment can be visually subdivided into
two distinct regions: the northern part, with low elevation and
dominated by hills and flat land, and the southern part, which
presents a mountainous landscape.

The land use (Fig. Ic) is dominated by pasture and
sparsely vegetated soil (60 %) and forest (25 %); urbanized
and cultivated areas are located mainly in the north and cover
7 % and 4 % of the catchment respectively.

Most of the catchment is underlain by conglomerates, marl
incrustations, and sandstone (Gurtz et al., 1999). For the pur-
pose of this study, the geological formations have been di-
vided into three classes (Fig. 1d): “consolidated”, covering
mainly the mountainous part of the catchment, “unconsol-
idated”, located in the north, and “alluvial”, located in the
proximity of the river network, mainly in the plateau area;
the latter formation constitutes the main source of ground-
water in the region (Schirmer et al., 2014). The soil depth
(Fig. 1e) is shallower in the mountainous part of the catch-
ment and deeper in the northern part.

Based on the availability of gauging stations (Table 1), the
catchment was divided into 10 subcatchments (Fig. 1a), with
a total drained area that ranges between 3.2 km? (Mosnang)
and 1702 km? (Andelfingen). Streamflow time series are ob-
tained from the Federal Office for the Environment FOEN,
and the data are available from 1974 to 2017 but are used
only from 1981 to 2005 to match the precipitation, temper-
ature, and potential evapotranspiration (PET) time series. In
the considered range, the streamflow data are relatively con-
tinuous, with two gaps, one in St. Gallen, from 31 Decem-
ber 1981 to 1 January 1983, and the other one in Herisau,
from 31 December 1982 to 9 May 1983.
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The raw maps (topography, land use, geology, and soil) are
obtained from the Federal Office of Topography (swisstopo).
The meteorological data are obtained from the Federal Of-
fice of Meteorology and Climatology MeteoSwiss. Precipi-
tation and temperature are interpolated, as done in Melsen et
al. (2016), with the WINMET pre-processing tool (Viviroli
et al., 2009) using inverse distance weight (IDW) and de-
trended IDW respectively; while the first method considers
only the horizontal variability (related to the distance from
the meteorological stations), the second adds a vertical com-
ponent to the variability related to the elevation (Garen and
Marks, 2001). PET data are then obtained, as done in Gurtz
et al. (1999), starting from meteorological and land-use data,
using the Penman—Monteith equation (Monteith, 1975), im-
plemented as part of the PREVAH hydrological model (Vivi-
roli et al., 2009). All these values are calculated at pixel
(100 m) scale and then averaged over the subcatchments. All
the time series are used at daily resolution in the subsequent
analyses, aggregating the available hourly data. This choice
was influenced on the one hand by the need to limit the com-
putational demand for the model experiments, for which a
coarser temporal resolution is preferable, and on the other
hand by the need to represent relevant hydrograph dynamics,
for which finer temporal resolution is desirable (e.g. Kavetski
etal., 2011). A daily data resolution, although it may obscure
subdaily process dynamics, appeared to be a good compro-
mise, and it is a typical choice in distributed model applica-
tions at such spatial scales (e.g. Kirchner et al., 2004).

3 Methods

The methodology follows a two-stage approach. The first
stage aims at determining the climatic and landscape con-
trols on streamflow signatures. The second stage uses this
understanding to configure the structure of a semi-distributed
model, whose functional suitability is tested through a set of
model experiments. Section 3.1 describes the first stage of
the analysis, that is, the identification of influence factors on
the spatial variability of streamflow signatures. Section 3.2
describes the general structure of the semi-distributed model
and the model evaluation approach. The design of the model
experiments, which is dependent on the outcomes of the
first stage of analyses, is presented directly in the results
(Sect. 4.2.2).

3.1 Identification of influence factors on the spatial
variability of streamflow signatures

The purpose of the analysis presented in this section is to un-
derstand the influence of climatic conditions and landscape
characteristics on streamflow. Climatic conditions are repre-
sented by precipitation, potential evaporation, and tempera-
ture time series. Landscape characteristics are represented by
maps of topography, land use, geology, and soil.

www.hydrol-earth-syst-sci.net/24/1319/2020/
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Climatic conditions, landscape characteristics, and stream-
flow are represented through a set of statistics (listed in Ta-
ble 2). In the following, statistics calculated based on stream-
flow data will be called streamflow “signatures”, as is of-
ten done in the catchment classification literature (e.g. Siva-
palan, 2006). We will refer to climatic and landscape “in-
dices” for statistics calculated based on climatic data and
landscape characteristics. A broad list of signatures and in-
dices is presented in Sect. 3.1.1; Sect. 3.1.2 presents the ap-
proach for reducing such a list to a set of meaningful vari-
ables; Sect. 3.1.3 illustrates the approach for determining the
indices that mostly control streamflow signatures; Sect. 3.1.4
describes how the signature analysis is used to set up the
model experiments.

3.1.1 Catchment indices for representing streamflow,
climate, and landscape

Streamflow signatures (¢) and climatic indices () were ob-
tained using streamflow, precipitation, PET, and temperature
time series. The values were calculated using 24 years of
data, between 1 September 1981 and 31 August 2005; we
considered 1 September to be the beginning of the hydrologi-
cal year. The periods with gaps in the data (refer to Sect. 2 for
details) were discarded from the analysis of the specific sub-
catchment. Landscape indices were obtained using the maps
described in Sect. 2.

Addor et al. (2017) recently compiled a comprehensive
list of streamflow signatures and climatic indices for char-
acterizing catchment behaviour (see Table 3 in Addor et al.,
2017). Here, we adopted their selection: while being origi-
nally introduced for a study about large-sample hydrology,
we believe that the indices proposed are also able to capture
several different aspects of the time series and are therefore
also suitable for this regional study. The streamflow signa-
tures considered here are described hereafter, followed by an
explanation of their rationale:

— average daily streamflow {q = ¢, where q is the stream-
flow time series and the overbar represents the average
over the observation period;

— runoff ratio {rr = %, where p is the precipitation time
series;

— streamflow elasticity (¢gr) defined as

wem((B(D) 0

where Ag and Ap represent the streamflow and pre-
cipitation difference between two consecutive years and
med is the median function;

— slope of the flow duration curve ({gpc) defined
as the slope between the log-transformed 33rd and
66th streamflow percentiles;

www.hydrol-earth-syst-sci.net/24/1319/2020/

. 70
— baseflow index {grr = &—, where q(b) represents the

baseflow and was calculated using a low-pass filter as
illustrated in Ladson et al. (2013) with the equations

1+ 3
g = (o, g, + — @ - qt_n) , )
b
61;( ) = qr — q,(f), 3)

with qt(ﬂ representing the quickflow. The settings of the
filter were taken according to the findings of Ladson
et al. (2013) and, in particular, three filter passes were
applied (forward, backward, and forward), the parame-
ter ¥y, was chosen to be equal to 0.925, and a reflection
of 30 time steps at the beginning and at the end of the
time series was used;

— mean half streamflow date ({gpp) (Court, 1962), de-
fined as the number of days needed in order to have a
cumulated streamflow that reaches 50 % of the total an-
nual streamflow;

— 5th and 95th percentiles of the streamflow (g5 and £qos
respectively);

- frequency (¢ngr) and mean duration ({ggp) of high-
flow events: they are defined as the days when the
streamflow is bigger than 9 times the median daily
streamflow;

— frequency ({1.gF) and mean duration ({r.gp) of low-flow
events: they are defined as the days when the streamflow
is smaller than 0.2 times the mean daily streamflow.

The frequency of days with zero streamflow, present in Ad-
dor et al. (2017), was not considered in this study because
there are no ephemeral subcatchments in the study area.

This group of streamflow signatures is capable of cap-
turing various characteristics of the hydrograph: {q mea-
sures the overall water flows, (rr represents the propor-
tion of precipitation that becomes streamflow, {g, measures
the sensitivity of the streamflow to precipitation variations,
with a value greater than 1 indicating an elastic subcatch-
ment (i.e. sensitive to change in precipitation) (Sawicz et
al., 2011), ¢rppc measures the variability of the hydrograph,
with a steeper flow duration curve indicating a more vari-
able streamflow, {gry measures the magnitude of the base-
flow component of the hydrograph and can be considered
a proxy for the relative amount of groundwater flow in the
hydrograph, {yrp measures the streamflow seasonality, {qs,
{LQF, and ¢ gp measure low-flow dynamics, and {qos, (HQF,
and {yop measure high-flow dynamics.

Climatology was represented through the following in-
dices (see Addor et al., 2017, Table 2):

— average daily precipitation yp = p;

Hydrol. Earth Syst. Sci., 24, 1319-1345, 2020
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Table 2. List of streamflow signatures, climatic indices, and subcatchment characteristics considered in the study.

Symbol

Name

Streamflow signatures

{Q (mm d_l)
{RR ()

¢EL ()
¢rpC (&)
¢Br1 ()

¢HDF (day of the year)

tQs (mmd~1)
{Qos (mm d=h
tugr (dyr1)

Average daily streamflow
Runoff ratio

Streamflow elasticity

Slope of the flow duration curve
Baseflow index

Mean half streamflow date

5th percentile of the streamflow
95th percentile of the streamflow
Frequency of high-flow events

¢HEDp (@) Mean duration of high-flow events

{LQF (d yr_l) Frequency of low-flow events

ZLop (d) Mean duration of low-flow events

Climatic indices

Yp (mmd—1) Average daily precipitation

Yper (mmd ™) Average daily potential evapotranspiration

UNES) Aridity index

VEs () Fraction of snow

Yypr (d yrfl) Frequency of high-precipitation events

Yupp (d) Mean duration of high-precipitation events

YHDS (-) Season with most high-precipitation events

Yrpr (d yrfl) Frequency of low-precipitation events

Yipp (d) Mean duration of low-precipitation events

vips () Season with most low-precipitation events
Subcatchment characteristics

En (kmz) Subcatchment area

&g (m) Average elevation

éts,, (°) Average slope

§1s, (%) Fraction of the subcatchment with steep areas

é1a, (%) Fraction of the subcatchment facing south

1A, (%) Fraction of the subcatchment facing north

ETA.y (%) Fraction of the subcatchment facing east or west
Egm (M) Average soil depth

&sp (%) Fraction of the subcatchment with deep soil

ELF (%) Fraction of the subcatchment with forest land use
&Lc (%) Fraction of the subcatchment with crop land use
&Ly (%) Fraction of the subcatchment with urbanized land use
&Lp (%) Fraction of the subcatchment with pasture land use
Ega (%) Fraction of the subcatchment with alluvial geology
&gc (%) Fraction of the subcatchment with consolidated geology
&gu (%) Fraction of the subcatchment with unconsolidated geology

— average daily PET vpgr = €01, Where e is the poten-
tial evapotranspiration time series;

— frequency (Y¥gpr) and mean duration (Ygpp) of high-
precipitation events: they are defined as days when the
precipitation is more than 5 times the mean daily pre-

— aridity index Wy = %; cipitation;

— season (Ypps) with most high-precipitation events (de-

— fraction of snow (irs), defined as the volumetric frac- fined as above);

tion of precipitation falling as snow (i.e. on days colder

than 0 °C);
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Table 3. Values of the streamflow signatures. The names of the subcatchments are abbreviated using the first three letters and the symbols
are reported in Table 2. The last column contains the coefficient of variation of each signature.

Subcatchment

And App Fra Hal Her Jon Mog Mos StG Win CV
%Q 2.46 4.14 1.64 3.08 2.95 3.71 3.21 291 343 2.03 025
{RR 0.63 0.80 0.49 0.70 0.71 0.80 0.70 0.72 0.71 0.56 0.14
CEL 1.35 1.22 1.68 1.24 1.17 1.35 0.97 1.37 0.99 1.54 0.17
CEDC 2.12 241 2.11 2.30 2.08 2.49 2.76 2.78 247 2.02 0.12
{BFI 0.55 0.50 0.56 0.52 0.50 0.50 0.45 0.42 0.48 0.57 0.10
tupr 19421  220.63 170.38 202.00 193.87 20538 196.96 168.33 20936 173.17 0.09
{Qs 0.50 0.70 0.35 0.57 0.74 0.54 0.44 0.28 0.60 049 027
£Qos 6.96 12.85 4.83 9.23 9.17 11.19 10.57 10.46 11.00 598 0.28
CHQF 221 5.17 3.50 3.67 6.34 4.46 6.54 12.96 5.87 296 0.57
CHQD 1.39 1.25 1.45 1.35 1.40 1.39 1.37 1.58 1.35 1.29  0.06
{LQF 17.50 31.92 12.92 24.21 2.62 37.21 49.42 66.92 28.35 725 0.71
{LQD 6.67 6.18 3.69 6.53 2.00 7.44 6.38 7.11 4.53 435 032

— frequency (Yrpr) and mean duration (Yrpp) of dry
days: they are defined as days when the precipitation
is lower than 1 mmd~!;

— season (Y ps) with most dry days (defined as above).

The seasonality of precipitation used in Addor et al. (2017)
was not considered in this study as it relied on fitting a sinu-
soidal function to the precipitation values, which in our case
did not produce reliable results. Nevertheless, these clima-
tological indices are able to comprehensively represent the
climatic conditions of the subcatchment, with {p represent-
ing average water input, YpgpT representing average evapo-
rative demand, ¥ a1 measuring the dryness of the climate,
Yrs measuring the relative importance of snow, ¥gpr, YHPD,
and Ygps measuring the importance of intense precipitation
events, and ¥ pr, YLpD, and Y ps measuring the importance
of dry days.

The landscape characteristics were divided into four cat-
egories: topography, land use, soil, and geology. In order
to quantify the characteristics of each category, a set of in-
dices (£) was defined. It is important to notice that all the
areas calculated in this analysis were normalized by the re-
spective subcatchment area (£4) in order to get comparable
values between subcatchments of different sizes.

Topography was represented with the following indices,
calculated based on the digital elevation model:

average elevation (é1g);

average slope (§1s,,);

fraction of the subcatchment with steep areas (£ts,),
with slope larger than 10°;

aspect, i.e. fraction of the subcatchment facing
north (¢1a,), south (§ta,), or east and west (&ta,,, )-

www.hydrol-earth-syst-sci.net/24/1319/2020/

Land use was represented with the following characteristics,
obtained by reclassifying the land-use map into four cate-
gories (from 22 original classes):

fraction of the subcatchment with crop land use (&1c);

fraction of the subcatchment with pasture land
use (§Lp);

fraction of the subcatchment with forest land use (§1F);

fraction of the subcatchment with urbanized land
use (§Lu)-

Soil type was represented with the following indices, derived
by the soil map:

— fraction of the subcatchment with deep soil (soil depth
greater than 2 m) (&sp);

— average soil depth (&snm).

Geology was represented by the following indices, obtained
by reclassifying the original map into three categories (from
22 original classes):

— fraction of the subcatchment with alluvial geol-
ogy (§ca);

— fraction of the subcatchment with consolidated geol-
ogy (§Gc);

— fraction of the subcatchment with unconsolidated geol-
ogy (§cu).

The reclassification of the land use and of the geology maps
consisted in aggregating specific classes into general classes
(e.g. combining different types of forests into a unique forest
class) with the objective of reducing their number, in order to
facilitate subsequent analyses.
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The consideration of topography, land use, soil, and geol-
ogy for defining landscape indices was based on their poten-
tial influence on hydrological processes and, in turn, on the
shape of the hydrograph. These landscape characteristics can
all play an important role in controlling hydrological pro-
cesses: land use can, for example, influence the infiltration
of water in the substrate; soil thickness can affect the parti-
tioning between water storage and runoff; vegetation is typ-
ically assumed to affect evaporation, and geology can affect
groundwater dynamics. Indeed, these characteristics are used
by many semi-distributed hydrological models, for example
for determining parameter values or for dividing the catch-
ment into areas with a homogenous hydrological response
(e.g. Gurtz et al., 1999).

3.1.2 Selection of meaningful streamflow signatures,
climatic indices, and catchment indices

The sets of statistics presented in Sect. 3.1.1 were designed to
be comprehensive. However, they may also be redundant, for
example by containing metrics that express similar character-
istics of the underlying data. In order to facilitate subsequent
correlation analyses between the various sets of statistics, it
is important to reduce each set to a short list of meaningful
variables. The reduction of each set of streamflow signatures,
climatic indices, and landscape indices was achieved through
the following steps.

— All the statistics that did not show sufficient variability
between the subcatchments were eliminated. We were
in fact interested in identifying causes of spatial vari-
ability in the streamflow dynamics of the subcatchments
of the Thur. Therefore, statistics that had a low variabil-
ity were not of interest in this analysis. The variability
was assessed using the coefficient of variation (defined
by the ratio between the standard deviation and the av-
erage) and statistics with a value lower than 5 % were
discarded.

— All the catchment indices (e.g. a certain type of land
use) that account for a limited part of any subcatchment
were discarded. This point was motivated by the ex-
pectation that landscape characteristics covering a very
small fraction of the subcatchment should not have a
strong influence on the streamflow signatures consid-
ered. Here, landscape indices accounting for less than
5 % of any subcatchment area were discarded.

— Within each set of streamflow signatures, climatic in-
dices, and catchment indices, we retained only relatively
independent metrics, if these are believed to represent
the same underlying features of the time series. This
step was motivated by the need to remove redundant
information within each set. The selection of indepen-
dent metrics was aided by Spearman’s rank score be-
tween each pair of metrics, which represents (also non-
linear) correlation between variables. Pairs of metrics
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with high absolute values of Spearman’s rank score are
potentially redundant. In eliminating potentially redun-
dant variables, we adopted the following criteria.

— Among highly correlated metrics, we preferred
those depending on single variables (e.g. only pre-
cipitation or only streamflow) to those containing
multiple variables (e.g. combining precipitation and
streamflow or evaporation, such as the runoff ratio
or the aridity index), as this may be a problem when
looking for correlations between metrics.

— With respect to landscape indices, in many cases the
high correlation is due to the fact that they are com-
plementary (the areal fractions sum up to unity). In
such cases, we kept one index per class (e.g. a sin-
gle index for geology).

— A high correlation between metrics does not always
mean that the metrics represent the same information.
Therefore, the final selection of relevant metrics within
each set was guided by expert judgement.

Based on this process, we compiled a reduced list of sig-
natures, climatic indices, and landscape indices, which was
used in subsequent analyses.

3.1.3 Identification of climate and landscape controls
on streamflow and consequences for model
development

This analysis aimed to identify climatic and landscape in-
dices that mostly control streamflow signatures. In order to
identify causality links between indices (¢ and &) and signa-
tures (¢), we proceed as follows:

— we calculated the correlation between indices and sig-
natures using Spearman’s rank score and identified pairs
of variables with high correlation;

— we scrutinized pairs of variables with high correlations
using expert judgement to decide whether a causality
link between variables is justified.

The outcome of this process will be used to inform the semi-
distributed model setup. The expert judgement is a critical
step in the elicitation of causality from correlation (e.g. An-
tonetti and Zappa, 2018), and it is clearly subjective, being
dependent on personal experience and subject matter knowl-
edge. Although personal and subjective, expert decisions are
based on an attempt to interpret data rather than being a pri-
ori defined, which is typically the case in the application of
semi-distributed hydrological models.

3.1.4 Semi-distributed model setup and model
experiments

We assumed a generic structure for a semi-distributed hydro-
logical model, described in Sect. 3.2.1, where some model
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structure characteristics are defined a priori and others are to
be defined. In order to motivate the open decisions, we pro-
ceeded as follows:

— we used the identified causality links to interpret the
dominant processes influencing signature spatial vari-
ability;

— we designed model experiments aimed to confirm
the hypothesized climatic and landscape controls on
streamflow spatial variability.

The overall objective of the model experiments is to prove
that only models that incorporate the correct dependencies
are able to correctly predict regional streamflow variability.
In order to test this assumption, the model experiments will
include cases where the assumed dependencies are not incor-
porated. Omitting an assumed dependency leads to a struc-
turally simpler model, which may raise doubt that potential
differences in model performance might be due to differences
in model complexity. For this reason, the model experiments
will include cases where alternative dependencies are incor-
porated, which do not reduce model complexity. In order to
keep the study and presentation tractable, the model experi-
ments will be limited to a few cases, illustrated in Sect. 4.2.1,
which we judge relevant for this specific application.

3.2 General structure of the semi-distributed
hydrological model and model evaluation approach

This section describes the approach for building and testing
a semi-distributed hydrological model designed to represent
the observed streamflow and particularly the observed spa-
tial variability of streamflow signatures. The general model
structure is explained in Sect. 3.2.1, the error model and the
calibration procedure are described in Sects. 3.2.2 and 3.2.3,

and the metrics utilized to assess the performance are shown
in Sect. 3.2.4.

3.2.1 General structure of the hydrological model

We describe here the general model structure; the definition
of specific model experiments, which depends on the results
of the signature analysis done in the first step, will be de-
scribed in Sect. 4.2.2.

The model uses a two-layer decomposition of the catch-
ment.

1. Subcatchments are defined by the presence of the gaug-
ing stations; this subdivision is due to the necessity of
having locations in the model where the streamflow is
both observed and simulated and, therefore, it is possi-
ble to calibrate and evaluate the parameters of the hy-
drological model.

2. HRUs are defined based on catchment characteristics
(e.g. topography, geology, or vegetation); they represent
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parts of the catchment that are supposed to have a simi-
lar hydrological response to the meteorological forcing.
Each HRU is characterized by its own parameterization.
Different definitions of HRUs are tested, as described in
Sect. 4.2.2.

Each HRU has a unique parameterization. However, depend-
ing on how the inputs are discretized, the same HRU can have
different states in different parts of the catchment. Therefore,
the same HRU needs its own model representation when-
ever the spatial variability of states needs to be considered.
For example, if the inputs are discretized per subcatchment,
the same HRU needs a separate model representation in each
subcatchment where it is present. For more details about our
model implementation of HRUs, refer to Fig. 4 of Fenicia et
al. (2016).

In order to limit the levels of decisions of the semi-
distributed models, some of the aspects of the distributed
models are fixed a priori, and others are left open. In par-
ticular,

— the structure chosen to represent the various HRUs is
kept fixed. That is, differences between HRUs will be
reflected only through the parameter values.

— The definition of HRUs is left open. In particular, we do
not a priori specify which approach is used to discretize
the landscape.

— The spatial discretization of the model inputs is left
open. Hence, we do not decide in advance which spa-
tial discretization of the inputs is most appropriate.

Only the fixed decision about the HRU model structure is
described here, whereas the open decisions are described
in the results section (Sect. 4.2.2). The spatial organization
of the model structure is represented in Fig. 6, with the
equations listed in Appendix A. The structure includes a
snow reservoir (WR), with inputs distributed per subcatch-
ments. Snowmelt and rainfall are input to an unsaturated
reservoir (UR), which determines the portion of precipita-
tion that produces runoff. This flux is split through a fast
reservoir (FR), designed to represent the peaks of the hy-
drograph, proceeded by a lag function to offset the hydro-
graph, and a slow reservoir (SR), designed to represent base-
flow. This structure was chosen to be parsimonious while
general enough to reproduce typical hydrograph behaviour;
it was tested in previous applications (e.g. van Esse et al.,
2013; Fenicia et al., 2014, 2016), demonstrating its suitabil-
ity for reproducing a wide range of catchment responses. It
also resembles popular conceptual hydrological models such
as HBV (Lindstrom et al., 1997) and HyMod (Wagener et
al., 2001), which have been shown to have wide applicabil-
ity. The model was built using the SUPERFLEX modelling
framework (Fenicia et al., 2011).
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3.2.2 Error model

As commonly done in hydrological modelling (e.g. Mclner-
ney et al., 2017), we here account for uncertainties by con-
sidering a probabilistic model of the observations Q(6,x),
where @ is the vector of parameters and x the model input,
which is composed of a deterministic hydrological model
h(0y,x) (illustrated in Sect. 3.2.1) and a random residual
error term E (fg) that accounts for all data and model un-
certainties (0}, and g represent the hydrological and error
parameters):

2[Q0,x); Al =z[h(0n,x); A]+ E (0E), 4

where z[y; A] represents the Box—Cox transformation (Box
and Cox, 1964) with parameter A, which is used to account
for heteroscedasticity (stabilize the variance). For A # 0,

|
<[] = )

The residual error term is assumed to follow a Gaussian dis-
tribution with zero mean and variance o2

E, ~ N(o;a2). (©)

The error model has, therefore, two parameters (A and o2y,
the first one was fixed to 0.5 (Mclnerney et al., 2017) and the
second one was inferred.

This choice of error model (Gaussian noise applied to the
Box—Cox transformation of the streamflow) allows for an ex-
plicit definition of the likelihood function (McInerney et al.,
2017)

T
P (GorslBn. 05, %) = [ ]2/ (doms.18) i (Ec10:0%), (D)
t=1

where T represents the length of the time series, fx is the
Gaussian probability density function (PDF) and z'(q ,ps|0E)
is the derivative of z(g ., ) with respect to g evaluated at
the observed data q ... Specifying Eq. (5) for the case where
2(q ops; OE) 1s defined by Eq. (5), the expression of the likeli-
hood function becomes

T
P (@onl0n. 0. x) = [ Tags. 1 (Ent0:0?). ®
t=1

Equation (8) represents the likelihood function that is then
used, together with a uniform prior distribution, to calibrate
the parameters of the model as described in Sect. 3.2.3.

3.2.3 Calibration

Parameter calibration is performed with the objective of max-
imizing their posterior density. According to the Bayes equa-
tion, the posterior distribution of model parameters is ex-
pressed as the product between the prior distribution and
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the likelihood function; since a uniform prior is used for
the parameters, this is equivalent to maximizing the likeli-
hood function in the defined parameter space; the optimiza-
tion procedure is performed with a multi-start quasi-Newton
method (Kavetski et al., 2007) with 20 independent searches.
We empirically established that with models of our complex-
ity (about 10 parameters), 20 independent searches provide
good confidence that a global optimum will be found.

The evaluation of the model ability to reproduce stream-
flow is carried out in space—time validation (see also Fenicia
et al., 2016). For this purpose, the time domain is divided
into two periods of 12 years each (from 1 September 1981 to
1 September 1993 and from 1 September 1993 to 1 Septem-
ber 2005) and the subcatchments are split into two groups
(A and B), according to a spatial alternation (subcatchment
in group A flows into a subcatchment in group B that flows
into one in group A and so on); the subcatchments belonging
to group A are Andelfingen, Herisau, Jonschwil, St. Gallen,
and Wingi and the ones in group B are Appenzell, Frauen-
feld, Halden, Mogelsberg, and Mosnang. This method im-
plies a division of the space—time domain into four quad-
rants, such that the model can be calibrated in one quadrant
and validated in the other three. For space—time validation,
the model is calibrated using each group of subcatchment
and period and validated using the other group of subcatch-
ment and period. That is, the model calibrated using group A
and period 1 was validated using group B and period 2, and
so on for the other three combinations of subcatchments and
groups. The model output in the four space—time validation
periods is then combined to calculate model performance us-
ing various indicators (see Sect. 3.2.4). Results are presented
for space—time validation, which represents the most chal-
lenging test of model performance.

3.2.4 Performance assessment
Model performance is assessed using the following metrics.

1. Time series metrics, which evaluate the ability to repro-
duce streamflow time series. The metrics used for this
assessment are the following.

— Normalized log likelihood (F1r), that is, the log-
arithm of Eq. (8) normalized by the number of
time steps present in the time series. This met-
ric corresponds to the objective function used for
model optimization. It can be observed that, since
A is fixed at 0.5 in the Box—Cox transformation,
model calibration is equivalent to maximizing the
Nash—Sutcliffe efficiency (Fns) calculated with the
square root of the streamflow. F1 [ is not bounded,
but a higher value means a better match between
two time series since, in this case, the absolute
value of the residual is smaller and, thus, their PDF
higher.
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— Nash-Sutcliffe efficiency:

Z (QSim,t - LIObs,t)z
Fns (qobsv qsim) =1-"

T
=1

= O

_\2
Z (‘Iobs,t - qobs)
=1

which is often used in hydrological applications and
provides a sense of the general quality of the sim-
ulations. Fns is bounded between —oo and 1, with
1 meaning a perfect match.

2. Signature metrics, which determine the ability to repro-
duce the streamflow signatures (¢) selected using the
procedure illustrated in Sect. 3.1.2. The agreement be-
tween simulated and observed signatures is assessed us-
ing two metrics: Spearman’s rank correlation () and the
normalized root mean square error:

N 2
Z (Zsim,n *{obs.n)
n=1

N

N
Z Sobs.n
n=1

FrMsE = (10

While r assesses how well the simulated signatures can
be described using a monotonic function, Frmsg im-
poses a more stringent requirement, as it assesses how
well the simulated and observed signatures line up on
the diagonal line.

The use of multiple metrics for assessing model performance
enables a comprehensive assessment of various characteris-
tics of the simulations. Time series metrics are designed to
appraise the general quality of the model fit. Signatures, in-
stead, are designed to highlight selected characteristics of the
data at the expense of others.

4 Results and interpretation

4.1 Influence factors on the spatial variability of
streamflow signatures

This section illustrates the results of the correlation analysis
complemented by expert judgement aimed to identify influ-
ence factors that control the spatial variability of streamflow
signatures; Sect. 4.1.1 presents the results of the selection of
meaningful statistics; Sect. 4.1.2 identifies climate and land-
scape indices controlling streamflow signatures and presents
consequences for model development.

4.1.1 Selection of meaningful streamflow signatures,
climatic indices, and catchment indices

The streamflow signatures defined in Sect. 3.1.1 were calcu-
lated for each subcatchment and the values are shown in Ta-
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ble 3 together with the coefficient of variation. All the signa-
tures have a coefficient of variability bigger than the thresh-
old value of 5 %, with the most variable signature being ¢1.qF
(71 %) and the least variable {xgp (6 %). Therefore, none of
these signatures was discarded.

Figure 2 shows the correlations between the streamflow
signatures: the lower triangle contains Spearman’s rank cor-
relation and the upper triangle the p value associated with the
correlations. Based on correlations and on its interpretation,
a subset of ¢ can be defined as follows.

— {Q, ¢rr and gy are strongly correlated (r > 0.72). We
retained ¢q and discarded ¢rr and gL because both
contain climatic information (precipitation) in their def-
inition.

— ¢grr and {ppc are strongly correlated (r = —0.77). We
decided to retain ¢gpy as it is of easier interpretation
(it is a proxy for the importance of groundwater flow,
which is a potentially important process for the subse-
quent model development).

— ¢yrp was kept because it measures the seasonality of
the streamflow. Note that {ypp is strongly correlated
with g (r = 0.88). However, they reflect different prop-
erties of the hydrograph. In particular, {grp can be an
useful indicator of the effect of snow-related processes.

— ¢qs and ¢ygp were retained because they have low cor-
relation (r < 0.71) with the other selected signatures
and because the first represents low flows and the sec-
ond high flows;

— £Qu5, CHQF £LQD, and & qF were discarded because they
all show correlations with the selected signatures.

In summary, the original set of streamflow signatures was
reduced to a set of five meaningful signatures, which
will be used in the subsequent analyses: average daily
streamflow (¢q), baseflow index (¢grr), half streamflow pe-
riod (¢HEp), Sth percentiles of the streamflow (£qs), and du-
ration of high-flow events ({agp)-

In terms of climatic indices, Table 4 shows their values
together with the coefficient of variation. It can be seen that
there are some indices that show very little or no variation at
all and, therefore, they could already be excluded from the
subsequent correlation analysis; they are Y¥ypp (1 %), Yups
(0%), YLpE (4 %), YLPD (3 %), and Yps (0 %).

Figure 3 shows the correlation between the remaining in-
dices. It can be observed that they all have strong internal
correlation (» > 0.71). For this reason it was decided to re-
tain only ¥p and {gs, as they have lower correlation. The
former represents an important term of the water budget, and
the latter captures snow dynamics.

Table 5 shows the values of the catchment characteristics
considered in this study. All of them have a coefficient of
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CQ 0.00 0.02 0.10 0.14 0.00 0.08 0.00 0.21 0.14 0.11 0.37

Zrr 023 007 007 009 019 000 010 0.60 0.08 0.23

ZeL 031 005 004 008 005 009 031 047 088
Zroe 001 049 045 002 004 073 000 0.03

€ 0.91 0.60 0.03 0.51
ChrD 0.02 049 0.63

Cas 0.16 035 0.43
Cqos 024 002 0.20
CHar 0.56 0.08 0.85
CHap 093 0.73
ClaF 0.03 0.02
CLap

o
N

Crr
CeL
Croc
Ceri
Curp
Cas
Caos
ChaF
CHap
ClaF
Clap

Figure 2. Internal correlation between the streamflow signatures. The lower triangle shows Spearman’s rank score with the red colour that
indicates negative correlations and the blue that indicates positive correlations. The upper triangle reports the corresponding p values, where
yellow colour indicates a statistically significant correlation (p value < 0.05). The symbols used in the figure are reported in Table 2.

Table 4. Values of the climatic indices. The names of the subcatchments are abbreviated using the first three letters and the symbols are
reported in Table 2. The last column contains the coefficient of variation of each index.

Subcatchment

And App Fra Hal Her Jon Mog Mos StG Win CvV
vp 3.91 5.15 3.36 4.38 4.13 4.64 4.57 4.04 4.80 3.62 0.13
Yyper  1.60 1.37 1.70 1.55 1.61 1.54 1.57 1.69 1.49 1.71 0.07
VAL 0.41 0.27 0.50 0.35 0.39 0.33 0.34 0.42 0.31 0.47 0.19
YES 0.04 0.21 0.04 0.05 0.09 0.15 0.13 0.09 0.13 0.05 0.57
Yygpr  15.21 14.38 17.67 14.58 15.82 14.54 14.58 16.13 14.31 17.50 0.08
Yupp 1.20 1.17 1.17 1.18 1.22 1.20 1.19 1.22 1.17 1.19 0.01

Ygps Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer 0.00
yrpr  201.67 195.79 216.83 198.54 205.04 197.21 198.92 205.75 197.69 213.17 0.04
yrpp  3.57 3.50 3.83 3.50 3.63 3.51 351 3.66 351 3.76 0.03
Yrps Autumn  Autumn  Autumn  Autumn  Autumn  Autumn  Autumn  Autumn  Autumn  Autumn  0.00
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Wp 0.00 0.00 0.00 0.00

WeeT 0.00 0.02 0.00

XM 0.99 0.96 0.00 0.00

(/23 0.88 -0.71 -0.82 0.02

-0.95 0.97 0.97

WHpr

Wai

o
>

WpeT
Yrs
WHPF

Figure 3. Internal correlation between the climatic indices. The
lower triangle shows Spearman’s rank score with the red colour that
indicates negative correlations and the blue that indicates positive
correlations. The upper triangle reports the corresponding p values,
where yellow colour indicates a statistically significant correlation
(p value < 0.05). The symbols used in the figure are reported in Ta-
ble 2.

variation larger than the minimum threshold of 5 %. There-
fore, none of them was excluded based on this criterion. The
second criterion for the pre-exclusion of the catchments char-
acteristics, consisting in removing £ occupying less than 5 %
of the subcatchments, led to the suppression of & ¢ (which
occupies 4 % of the subcatchment).

Figure 4 shows the correlations between catchment char-
acteristics; in many cases the high correlation is due to the
fact that many indices are complementary (e.g. different
types of geology). The following & were selected (one index
per class):

— &4 because it is low correlated with the other features;
— &1E and &ta, in representation of the topography;

— & for the land use;

— &gp representing the soil characteristics;

— &gc for the geology.

In summary, the original set of catchment indices was re-
duced to a set of six indices.

4.1.2 Selection of controlling factors on streamflow
signatures

Figure 5 reports the results of Spearman’s correlation be-
tween climatic indices plus catchment characteristics and
streamflow signatures. Panel (a) contains Spearman’s rank
coefficients and panel (b) shows p values associated with
them.

The following results can be noted.

www.hydrol-earth-syst-sci.net/24/1319/2020/

— The three statistics average precipitation (y¥p), frac-
tion of snow (Ygs), and average elevation (§1g) corre-
late strongly with average streamflow ({q) and season-
ality (¢grp) (r > 0.64 and p value < 0.05). This cor-
relation can be interpreted as follows: subcatchments
with high elevation (¢1g) tend to have higher precip-
itation (y¥p) due to orographic effects, which leads to
higher streamflow (¢q). They also tend to have more
snow (rs) due to lower temperatures, which influences
the seasonality (¢HED).

— There are then some catchment characteristics that have
no correlation (r < 0.45) with the streamflow signa-
tures (catchment area (£4) and land use (§.F)) or lim-
ited correlation (aspect (§t1a,) and deep soil (§sp), with
r <0.64).

— The consolidated geology (Egc) presents a strong corre-
lation (r = —0.87) only with the baseflow index ({gpy);
that is not captured by the other indices.

— The streamflow signatures of low and high flows (¢qs
and {ygp) cannot be explained by any index, with little
correlation only with ¥p and &rg (r < 0.60) that is not
sufficient to reach a p value lower than 0.05.

These results are the premise for designing meaningful
model experiments.

4.2 Hypotheses for model building

This section interprets the results found in Sect. 4.1.2 and
formulates some hypotheses regarding the hydrological func-
tioning of the catchment (Sect. 4.2.1). Section 4.2.2, then,
presents the model alternatives designed for testing those hy-
potheses.

4.2.1 Hypotheses on catchment functioning

The results of the correlation analysis can be interpreted to
formulate the following hypotheses regarding the drivers of
streamflow variability.

1. The precipitation is the first driver of the differences
in the water balance of the subcatchments. The effect
of topographic variability manifests itself primarily as
an influence on precipitation (amount and type). Ac-
counting for variability of precipitation therefore im-
plicitly reflects such effect of topography on the hydro-
graph, since some inputs were interpolated taking into
account the effect of the elevation (Sect. 2). Other phe-
nomena potentially altering the water balance (e.g. re-
gional groundwater flow) do not have a significant role
and should not be considered.

2. Snow-related processes (e.g. amount of snow, timing of
snowmelt) control differences in streamflow seasonality
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Table 5. Values of the subcatchment characteristics. The names of the subcatchments are abbreviated using the first three letters and the
symbols are reported in Table 2. The last two columns contain the coefficient of variation and the maximum value of each signature.

Subcatchment

And App Fra Hal Her Jon Mog Mos StG Win CV  MAX
En 1701 7446 21334 1085 16.72 4930 88.11 3.19 261.1 7896 1.40 1701
ETE 768 1250 591 908 831 1020 954 797 1039 650 0.22 1250
&Ts,, 1332 2523 9.70 16.87 1544 20.66 19.77 15.68 19.72 1249 0.27 2523
&1, 0.47 0.81 0.33 0.62 0.69 0.77 0.79 0.71 0.73 045 0.26 0.81
ETA, 0.25 0.22 0.23 0.23 0.21 0.23 0.24 0.40 0.24 021 0.23 0.40
&1A, 0.32 0.35 0.33 0.32 0.33 0.32 0.31 0.24 0.33 0.32 0.09 0.35
ETA., 043 0.43 0.44 0.44 0.46 0.44 0.45 0.36 0.43 047 0.07 0.47
Esm 1.30 0.56 1.48 1.10 1.32 0.93 1.17 1.00 1.03 1.35 0.23 1.48
&p 0.40 0.04 0.49 0.25 0.41 0.13 0.28 0.00 0.26 036 0.63 0.49
&R 0.26 0.25 0.28 0.27 0.21 0.31 0.34 0.18 0.27 0.30 0.17 0.34
&LC 0.04 0.00 0.04 0.03 0.03 0.01 0.01 0.01 0.01 0.04 0.79 0.04
&Lu 0.08 0.03 0.10 0.06 0.15 0.04 0.03 0.03 0.05 0.10 0.63 0.15
&Lp 0.60 0.59 0.57 0.61 0.61 0.61 0.62 0.77 0.63 0.55 0.09 0.77
EGA 0.06 0.01 0.09 0.03 0.00 0.02 0.02 0.00 0.01 0.11  1.05 0.11
&ge 0.59 0.92 0.54 0.73 0.88 0.90 0.92 1.00 0.88 0.63 0.20 1.00
&gu 0.35 0.07 0.36 0.23 0.12 0.07 0.06 0.00 0.10 026  0.79 0.36

between subcatchments. Hence, the model needs to ac-
count for snow-related processes and their spatial vari-
ability.

3. Geology exerts an important control on the partition-
ing between quickflow and baseflow. Hence, the model
should distinguish the different response behaviours of
distinct geological areas.

4. The other catchment characteristics (e.g. soil, vegeta-
tion) show little or no correlation with the streamflow
signatures, and therefore they should not be considered
if the idea is to keep the model as simple as possible.

The streamflow signatures {qgs and {ygp, which have been
selected as part of the analysis shown in Sect. 4.1.1, do not
manifest a strong correlation with any of the indices (r is al-
ways less than 0.60), meaning that the identification of their
potential controls is not obvious with the chosen approach.
Hence, we have not been able to build model hypotheses
that specifically target those signatures. As a result, we ex-
pect that the chosen models will not excel and will perform
similarly in reproducing these signatures. The model com-
parisons used to test the four hypotheses listed above are de-
scribed in Sect. 4.2.2.

4.2.2 Modelling experiments for testing the hypotheses

Using the model structure described in Sect. 3.2.1, four
model configurations were compared by varying the number
and the definition of the HRUs, and changing the structure of
the HRUs (Fig. 6). The objective of the experiments was to
test the hypotheses 1—4 in Sect. 4.2.1 using semi-distributed
hydrological models.
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For all the models, the meteorological inputs (precipita-
tion, PET, temperature) are aggregated at the subcatchment
scale. Based on the first hypothesis, we assume that this
discretization is sufficient to capture the regional difference
in water balance between subcatchments. This hypothesis is
tested with model MO, with uniform parameters in the catch-
ment (i.e. a single HRU) and distributed precipitation input.
This model does not consider snow processes. We expect that
this model will be able to reproduce differences in stream-
flow averages between subcatchments.

The second hypothesis (snow controls seasonality) is
tested with model M 1. Relative to MO, M1 accounts for snow
processes, represented by a simple degree-day snow module
(see Kavetski and Kuczera, 2007), with inputs (temperature)
distributed per subcatchment. We expect that this model will
be able to reproduce differences in streamflow seasonality
between subcatchments.

The third hypothesis (geology controls baseflow) is tested
with model M2. Relative to M1, M2 considers two HRUs,
defined based on geology type. One HRU contains the areas
with consolidated geology, while the other HRU contains the
rest of the catchment (unconsolidated and alluvial geology
together). We expect that M2 will be able to reproduce dif-
ferences in the baseflow index between subcatchments.

The fourth hypothesis (other catchment characteristics
should not be considered if the idea is to keep the model
as simple as possible) is exemplified by model M3. M3 is
analogous to M2 in terms of complexity, but the HRUs are
based on catchment characteristics that did not show corre-
lation with the streamflow signatures. Among those charac-
teristics, we have selected land use and considered an HRU
based on forest and crops and the second one that occupies
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Figure 4. Internal correlation between the catchment characteristics. The lower triangle shows Spearman’s rank score with the red colour
that indicates negative correlations and the blue that indicates positive correlations. The upper triangle reports the corresponding p values,
where yellow colour indicates a statistically significant correlation (p value < 0.05). The symbols used in the figure are reported in Table 2.

the rest of the catchment. This model is as complex as M2
(therefore it is more complex than M1); hence it has the same
dimensions of flexibility to fit the data. However, since the
structure of this model does not incorporate the cause—effect
relationships derived from the signature analysis, we expect
that its predictive performance will be poorer than M2.

The total number of the calibrated parameters depends on
the number of HRUs and on the structure used to represent
them: it was 8 for MO, 9 in M1, and 13 in M2 and M3, of
which 5 parameters are common to all the HRUs (Fig. 6 and
Table Al); these parameters are C, that governs the evapo-
transpiration, tgg and trli];e that control the routing in the river
network, kwr that regulates the outflow of the snow reser-
voir, and SYR that determines the behaviour of the unsatu-
rated reservoir.
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4.3 Modelling results

The models presented in Sect. 4.2.2 are evaluated in terms
of hydrograph metrics (Sect. 4.3.1) and signature metrics
(Sect. 4.3.2).

4.3.1 Model performance in terms of hydrograph
metrics

Figure 7a shows the values of the likelihood function (corre-
sponding to the calibration objective function) for the four
models in calibration and validation. It can be observed
that MO is, by far, the worst model, with the lowest value
of the likelihood function. Regarding the other three mod-
els, it can be seen that, during calibration, M1, which has
the lowest number of calibration parameters, has the lowest

Hydrol. Earth Syst. Sci., 24, 1319-1345, 2020



1334 M. Dal Molin et al.: Understanding dominant controls on streamflow spatial variability

(@)

Ca

Cari

Chrp

Zos -0.02
Chap -0.05
(b)

{q 000 000 093 000 080 005 091 0.04
Cgr 011 005 049 011 013 014 035 0.00
Cwrp 000 0.05 029 000 096 028 0.65 0.49
lgs 007 037 085 007 026 096 045 096
Chop 011 029 070 041 026 049 043 088

s W3

Wrs
&te
Eas
&sp
&ir
&ac

Figure 5. Correlation between the selected streamflow signatures
(rows) and the selected climatic indices and catchment characteris-
tics (columns). Panel (a) shows Spearman’s rank score with the red
colour that indicates negative correlations and the blue that indicates
positive correlations. Panel (b) reports the corresponding p values,
where yellow colour indicates a statistically significant correlation
(p value < 0.05). The symbols used in the figure are reported in Ta-
ble 2.

performance, whereas M2 and M3 have higher and similar
likelihood values. This behaviour persists in time validation,
with M2 and M3 that outperform M1. In space and space—
time validation, however, M3 has the lowest likelihood value
of the three, whereas M1 and M2 limit their decrease in per-
formance, ranking respectively second and first in terms of
optimal likelihood value.

The likelihood function represents an aggregate metric of
model performance; in order to get a sense of appreciation
of model fit on individual subcatchments, Fig. 7b reports
the values of Nash—Sutcliffe efficiency in space—time valida-
tion for each of the subcatchments. On average, M2 has the
best performance of all models (Fns = 0.79), followed by
M1 (Fns = 0.78), M3 (Fns = 0.77), and MO (Fns = 0.68).
M3 and MO have the highest variability of performance,
with Fns values between 0.58 and 0.86 and between 0.59
and 0.81. M1 and M2 have similar spread of Fns values,
ranging from 0.69 to 0.85 for M1 and from 0.73 to 0.87
for M2. Therefore, M1 and M2 have a more stable perfor-
mance across subcatchments than M3. M3 obtains a signif-
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icantly worse performance than the other three models on
Mosnang, where it reaches a Fns value of 0.58 (MO, M1,
and M2 have values of 0.62, 0.69, and 0.73 respectively).

It can also be observed that M2 is generally better than
M1, with Fns values that are higher or approximately equal
except for subcatchments Andelfingen and Halden, where
the Fns is slightly worse (however still higher than 0.80).
M3 is clearly better than M1 in Andelfingen, Frauenfeld, and
Wiingi, and clearly worse in Herisau and Mosnang. In partic-
ular, in Mosnang (the smallest basin), M3 reaches the worst
performance of all the models on all the subcatchments.

Regarding MO, it is interesting to observe that it has the
worst performance (among all the subcatchments) in Appen-
zell, which is the subcatchment that is most affected by snow
(Yrs = 0.21), while it reaches a performance similar to M1
in Frauenfeld and Wingi, which are two subcatchments with
almost no snow.

4.3.2 Model performance in terms of signature metrics

Figure 8 compares the ability of MO and M1 to capture the
signatures representing average streamflow (£q) and season-
ality (¢grp). The analysis is presented for space—time valida-
tion and, for ¢yrp, focuses only on the four subcatchments
that are most affected by the snow (rs > 0.10), to empha-
size the differences between the results of the two models.
Each colour represents a different subcatchment and each dot
a year; the red dashed line has a 45° slope and represents
where the dots should align in case of perfect simulation re-
sults. The normalized root mean square error and Spearman’s
rank score are also reported. It is important to stress that the
models have not been calibrated using any of the signatures
as an objective function, which therefore represent indepen-
dent evaluation metrics.

It can be observed that MO represents ¢g equally well
as M1, with almost no difference between the two models
(r is 0.95 in both cases, whereas Frvsg is 0.11 for MO and
0.10 for M1). Focusing on the ability to capture {gpp, it can
be seen that the points corresponding to MO all lie in the
upper-left part of the plot, meaning that this model under-
estimates the signature values. With respect to M1, instead,
the points are more aligned around the diagonal. This dif-
ference in performance is captured by the values of FrMsg
(0.13 for MO and 0.07 for M1) and of r (0.66 for MO and
0.85 for M1).

Figure 9 compares the observed and simulated signatures
for the other three models (M1, M2, and M3). All of them
are equally good in representing {qo (Frmsk is 0.10, 0.10,
and 0.11, and r is 0.95, 0.96, and 0.95 for M1, M2, and M3
respectively) and ¢yrp (Frwmsg is 0.07, 0.07, and 0.05 and
r is 0.85, 0.84, and 0.87 for M1, M2, and M3 respectively).
In all cases the cloud of points appears to be aligned to the di-
agonal, meaning that the three models are able to capture the
values of the signatures each year. Moreover, there is no sen-
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Figure 6. Spatial organization of the model structure: the catchment is divided into subcatchments (black lines), based on the location of
the gauging stations, and HRUs (background colour), based on the catchment characteristics. All the HRUs have the same structure, but
each HRU has its own parameterization except for some shared parameters. In the case of a single-HRU model (i.e. MO and M1), the model
maintains the subdivision into subcatchments but loses the subdivision into multiple HRUs.

sible difference in the various models in representing those
signatures.

The performance of all the models decreases for {5 where
the models have a similar performance, with Frmsg equal
t0 0.32,0.28, and 0.33, and r equal to 0.62, 0.66, and 0.61 for
M1, M2, and M3 respectively. The points are still aligned
along the diagonal but are quite dispersed, especially if com-
pared with g and ¢grp, meaning that the models capture the
general tendency but have deficiencies in capturing the inter-
annual variability.

In terms of ¢gr1, M2 performs clearly better than the other
models. It is the only model that is able to represent this
signature, with Frmsg = 0.07, r = 0.83, and the points that
align compactly with the diagonal. The other two models
have a lower performance (Frmsg equal to 0.11 and 0.10, and
r equal to 0.31 and 0.52 for M1 and M3 respectively), with
points that are quite dispersed and align almost vertically,
implying that the simulated values have a range of variability
that is definitely smaller than the observed data.

Figure 10 shows the comparison between observed and
simulated {Hgp; since this signature requires a long time
window to be computed, it is not calculated year by year (as
done with the other signatures) but as an aggregated value
over the 24 years. In terms of performance, M2 still remains
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the best among the three models, with Frmsg of 0.09 and
r of 0.69; in second place comes M1, which outperforms M2
in terms of r (0.77) but has a higher Frymsg (0.19), meaning
that M1 has the points that are more aligned but on a line that
is farther from the diagonal compared to M2; M3, finally, has
a bad performance, with high Frvsg (0.18) and low r (0.48).
All the models tend to slightly overestimate the duration of
high-flow events with most of the points that lie on the right-
hand side of the diagonal.

4.4 Hypotheses testing

The results of the hydrological model experiments appear
to support our general hypothesis that only models that ac-
count for the influence factors that affect the streamflow sig-
natures are able to reproduce streamflow spatial variability
(see Sect. 4.2.1). This provides confidence that those mod-
els are a realistic representation of dominant processes in the
catchment.

The implications of the modelling results with respect to
the evaluation of the four hypotheses are explained as fol-
lows.

1. Hypothesis 1: precipitation is the first driver of dif-
ferences in the water balance. The good performance
of model MO in the representation of the mean an-
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