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Abstract. Medium- to long-range forecasts often guide
reservoir release decisions to support water management ob-
jectives, including mitigating flood and drought risks. While
there is a burgeoning field of science targeted at improving
forecast products and associated decision support models,
data describing how and when forecasts are applied in prac-
tice remain undeveloped. This lack of knowledge may pre-
vent hydrological modelers from developing accurate reser-
voir release schemes for large-scale, distributed hydrology
models that are increasingly used to assess the vulnerabil-
ities of large regions to hydrological stress. We address this
issue by estimating seasonally varying, regulated inflow fore-
cast horizons used in the operations of more than 300 dams
throughout the conterminous United States (CONUS). For
each dam, we take actual forward observed inflows (perfect
foresight) as a proxy for forecasted flows available to the op-
erator and then identify for each week of the year the for-
ward horizon that best explains the release decisions taken.
Resulting “horizon curves” specify for each dam the inferred
inflow forecast horizon as a function of the week of the wa-
ter year. These curves are analyzed for strength of evidence
for contribution of medium- to long-range forecasts in deci-
sion making. We use random forest classification to estimate
that approximately 80 % of large dams and reservoirs in the
US (1553± 50 out of 1927 dams with at least 10 Mm3 stor-
age capacity) adopt medium- to long-range inflow forecasts
to inform release decisions during at least part of the wa-
ter year. Long-range forecast horizons (more than 6 weeks
ahead) are detected in the operations of reservoirs located in
high-elevation regions of the western US, where snowpack
information likely guides the release. A simulation exercise
conducted on four key western US reservoirs indicates that

forecast-informed models of reservoir operations may out-
perform models that neglect the horizon curve – including
during flood and drought conditions.

1 Introduction

Dams regulate nearly all rivers in the United States. They
generate more than half of US renewable electrical power,
protect thousands of communities against damaging floods,
and supply copious water for the nation’s irrigated agricul-
ture and urban water systems (US Army Corps of Engineers,
2018; Bureau of Reclamation, 2016). To provide these essen-
tial services, dams must be operated efficiently for uncertain
hydrological conditions days and weeks ahead. Water man-
agers thus rely increasingly on reservoir inflow forecasts to
guide water release decisions (Gong et al., 2010; Brown et
al., 2015; Boucher and Ramos, 2018) and will continue to do
so as the range, resolution, and quality of hydrological fore-
cast products continue to advance (e.g., Wang and Robert-
son, 2011; Yuan et al., 2015; Bennett et al., 2016). Inflow
forecasts are valuable because they help operators manage
difficult trade-offs. For example, the threat of drought is best
addressed with maximum stored water, while the threat of
flooding requires spare storage capacity for capturing water.
Knowledge as to the likelihood of either hazard is thus indis-
pensable when deciding how much water to hold in storage.
This is why, for instance, the depth of upstream winter snow-
pack in high western US headwaters, which provides a strong
indication of the volume of water likely to enter a reservoir
in the spring, guides operators on how much water to hold in
storage early in the year (Garen, 1992).
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While we know that inflow forecasts are useful, our un-
derstanding of their precise contribution to water release de-
cision making across a large number of dams is limited.
Lack of detailed reporting of operational rules and guidelines
means the science community remains largely uniformed on
a number of key details, such as typical forecast lead times
adopted and times of year when forecasting is deemed most
important. To our knowledge, these data have yet to be col-
lected through any qualitative or quantitative research study
conducted at a national scale. Lacking accurate operational
data and associated decision-making schemes, large-scale,
distributed hydrology models (e.g., Van Vliet et al., 2016;
Wada et al., 2016; Voisin et al., 2013b, 2017; Vernon et al.,
2019; see Nazemi and Wheater, 2015 for a review) are liable
to misrepresent the influence of human water management
on river flows (Yassin et al., 2019), including during extreme
flood and drought conditions. The applications of these mod-
els – increasingly, large-scale multisectoral planning studies
aiming to predict stresses on water, energy, and food systems
– may in turn suffer a mischaracterization of human systems’
exposure to hydrological risks.

This paper asks whether the use of forecasts in real-world
operations can be inferred (i.e., back-calculated) from his-
torical records of reservoir storage, inflow, and release. We
suggest that the contribution of forecasts to decision making
at a given dam can be described quantitatively through con-
struction of seasonally varying estimates of regulated inflow
forecast horizons adopted by the operator (herein termed the
dam’s “horizon curve” – a novel concept introduced in this
paper). To test this hypothesis, we attempt to infer the hori-
zon curves and associated water release policies for a sample
of 316 dams and reservoirs in the conterminous United States
(CONUS). Since horizon curves are derived empirically for
each dam using observed (i.e., regulated and nonnatural) in-
flows and releases, the estimated horizons are attributed to a
water forecast that could be derived from any source of infor-
mation, including meteorological, climatological, and hydro-
logical predictions, as well as knowledge of planned water
management, such as scheduled releases from a large dam
upstream. The approach is therefore agnostic to the possi-
ble sources of information that an operator may deploy to
predict future inflow. We explore how the inferred horizon
curves vary across dams and then interpret some of the dom-
inant as well as unexpected operator behaviors by focusing
on particular cases. By labeling each dam’s horizon curve
according to whether or not it provides compelling evidence
for medium-range inflow forecast use in operations, we iden-
tify (using random forest classification) the dam and reser-
voir characteristics that are conducive to forecast-informed
operations. Finally, simulations at four key dams are used to
test whether the horizon curve could lead to an improved rep-
resentation of water management in large-scale hydrological
models.

2 Method

2.1 Justification for the concept of a horizon curve

Several factors determine whether and how foresight informs
water release decisions, and these factors vary widely across
dams. For example, the value of an inflow forecast may de-
pend on the characteristics of the reservoir; there are di-
minishing returns in low-memory reservoirs (low storage ca-
pacity relative to inflow) and for certain operating purposes
(Georgakakos and Graham, 2008; Graham and Georgakakos,
2010; Zhao et al., 2012; Anghileri et al., 2016; Turner et al.,
2017). If the reservoir characteristics are suitable, the op-
erator’s decision to adopt a forecast-informed release pol-
icy will then depend on perceived forecast reliability and
how that reliability varies throughout the year (Rayner et al.,
2005; Whateley et al., 2015). Forecast reliability, in turn, de-
pends on the available predictive information. An operator
might rely on upstream water storage (e.g., soil moisture,
snowpack, and lake levels) (Shukla and Lettenmaier, 2011),
hydrological regime state (Turner and Galelli, 2016), cli-
mate indices and teleconnections (Yang et al., 2017; Libisch-
Lehner et al., 2019), weather forecasts (Georgakakos et al.,
2005; Shukla et al., 2012; Nayak et al., 2018), current river
flow rates (Hejazi et al., 2008), knowledge of planned wa-
ter releases from upstream dams, and perhaps some or all
of these in combination (Denaro et al., 2017). This enor-
mous scope for variability in forecast quality and application
across dams means there is no obvious way to identify the
actual operationalized forecast, or indeed the model used to
assimilate it into decision making, for a given system with-
out insight into individual agencies’ models and data pref-
erences. Large-scale hydrology models may encompass sev-
eral hundred dams, so acquiring this insight through quali-
tative survey would be a major challenge. We therefore pro-
pose a practical, empirical approach to inferring – or back-
calculating – seasonally varying forecast horizons adopted in
dam and reservoir operations.

2.2 Derivation of horizon curves

To characterize the contribution of forecasts to release de-
cisions across a large sample of dams, we adopt a simple,
regression-based method that can be applied to any reservoir
for which observational daily time series of storage volumes
and at least one of inflow or release are available. The ap-
proach returns for any dam a signature of the inferred regu-
lated inflow forecast horizon over the water year (the horizon
curve) as well as an associated inferred operating policy de-
scribing how future inflow out to those horizons informs the
release and depending on time of year. To achieve this, we
must first assume that the future observed inflows (perfect
forecast) may act as a proxy for the actual forecast available
to the operator at the time of deciding how much water to
release (the limitations of this necessary assumption are cov-
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ered in the Discussion section). If this holds and if regulated
inflow forecasts contribute substantially to the release deci-
sion amidst other rules and constraints, then the future in-
flow would better indicate the observed release decision than
the current inflow. In other words, the operational forecast
horizon is assumed to be the one that best explains the re-
lease decision taken. No prior assumption of forecast use is
needed because the method identifies for each dam whether a
forward inflow horizon substantially informs the release de-
cision.

For a given dam or reservoir, the procedure is executed as
follows (as illustrated in Fig. 1). First, daily time series of in-
flow and release rates are aggregated to weekly volumes (in
millions of cubic meters) by water week, with week 1 start-
ing 1 October – the start of the hydrological year. The weekly
time step allows us to reasonably back-calculate inflow or re-
lease (if either is missing) from a change in storage, using
the conservation of mass and assuming negligible evapora-
tion and other losses (such estimates are not reliable at the
daily scale, because storage and flow variables tend to be re-
ported as daily averages). This gives us a much larger sample
of dams to work with. Then, for each water week, the interan-
nual values of starting storage, release, and inflow are used to
fit release–availability functions (i.e., relationships that spec-
ify the water release decision as a function of water available)
for multiple candidate future inflow horizons, where in each
case the availability a is computed as the starting storage plus
the cumulative future inflow out to horizon h weeks (see ex-
ample in Fig. 1). The inferred release–availability function
fitted to these data is a piecewise linear model with a sin-
gle breakpoint. This model provides appropriate flexibility
to account for the typical behavior of operations, wherein an
excess of incoming water may be addressed with a compara-
ble increase in the release (leading to a relatively sharp pos-
itive slope on the right-hand side of the function), while a
lack of water must be satisfied by a reduction in the release,
which cannot be negative and which is often bound by a re-
quirement to provide environmental flows (leading to a flat or
low-gradient positive slope on the left-hand side of the func-
tion). These piecewise functions are fitted to observed release
and availability data for all possible horizons in increments of
1 week (with x-axis availability a recomputed for each hori-
zon). Functions may be fitted for a given set of breakpoint
coordinates by performing linear regression on either side of
the breakpoint; the breakpoint coordinates themselves can be
optimized for a minimum sum of squares in the model resid-
uals. Once functions are fitted for all candidate horizons, the
horizon offering the closest fit to observed decisions is se-
lected as the operational horizon for that water week of the
year (subject to some conservative adjustments described be-
low).

A desirable feature of this model is its compatibility with
archetypal rule curves often implemented in practice. To
demonstrate this compatibility, let us first assume that fore-
casts are not used at all and that the operator uses season-

ally varying storage targets to decide on how much water to
release. Our scheme allows us to mimic this type of oper-
ation very effectively. The two-stage piecewise model pro-
vides the flexibility to represent two situations: (a) the reser-
voir is above the guide curve, in which case one would ex-
pect the operator to respond by releasing water to draw the
reservoir back down (with a higher release for higher storage
levels – allowed for by the right-hand slope of the piecewise
function); and (b) the reservoir is below the guide curve, in
which case the operator would wish to cut back the release
significantly to allow the reservoir to refill. The breakpoint
of a given week’s piecewise function on the horizontal axis
(which, absent the forecast, is simply water in storage) essen-
tially represents the traditional reservoir guide-curve level,
and the slopes on either side of the function specify how the
operator behaves in either situation. Our scheme is of course
also designed to allow us to integrate forecast information in
the rule-curve system. The difference is that the rule is no
longer a function of current storage but becomes a function
of current storage plus the inflow out to various candidate
horizons.

A conceptually similar piecewise model is presented in
Yassin et al. (2019) with the fundamental difference that the
process omits forecasts and is therefore based on climatol-
ogy and current storage and inflow conditions. Importantly,
because our algorithm is also computed for individual weeks,
it ensures that the effects of operational decisions driven
by long-term average water availability conditions are inter-
cepted and removed when estimating the horizon. For exam-
ple, a simple operating rule designed to accommodate typical
high flows delivered in springtime would not lead to the de-
tection of a forecast horizon in our procedure. The reason is
that such actions are a function of the time of year rather than
the forecasted flow. High releases to create a flood pool in
anticipation of typical springtime flows can be implemented
in reservoir rules without foresight, for example by releasing
high volumes of water each March. Foresight would only be
detected if there were clear evidence of the flood buffer being
adjusted based on a forecast of the inflow and its deviation
from normal conditions for that time of year. This behavior
has been confirmed through a simple simulation exercise to
check for the unwarranted detection of horizons beyond the
current period in a synthetic reservoir with a seasonally vary-
ing operating rules that are not explicitly forecast-informed.

2.3 Experimental setup

For this study we compile daily observed storage, inflow and
release time series for more than 900 dams and reservoirs in
the conterminous United States (sources are the US Army
Corps of Engineers, US Bureau of Reclamation, US Geo-
logical Survey, California Data Exchange, and Texas Water
Development Board; see acknowledgements). In cases where
only storage data are available, releases are obtained from
US Geological Survey (USGS) streamflow gauges immedi-
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Figure 1. Example of the derivation of the horizon curve for a given dam using piecewise linear functions fitted to release (r) availability (a)
scatters. Best-fit horizons (based on coefficient of determination) for each water week (i.e., each row of the release–availability plots above)
are combined to create the horizon.
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ately downstream of the dam. After addressing minor gaps
(10 continuous days or less), we remove incomplete, short
(less than 10 years of continuous data), and duplicate records,
leaving a set of 316 dams with sufficient data for creating
horizon curves. These dams represent a range of operating
purposes and reservoir storage sizes and are well distributed
across the conterminous United States west of the Missis-
sippi River (Fig. 2). We then create a horizon curve for each
dam following the steps outlined above and in Fig. 1. Piece-
wise functions are fitted to each water week (1, 2, . . . 52) and
future inflow horizon (1, 2, . . . 30 weeks) combination for
each dam (total of 52× 30= 1560 functions fitted for each
dam) by identifying the function breakpoint coordinates that
minimize root mean squared error (RMSE), achieved using
a numerical optimization algorithm designed for derivative-
free, nonlinear problems (Powell, 2009) and found to per-
form efficiently in our testing. To avoid an overfit to unre-
alistic operating policies, the piecewise functions are con-
strained such that both slopes are nonnegative and that the
right-hand slope exceeds the left-hand slope. We wish to
avoid inferring forecast contribution in cases where the ev-
idence is marginal relative to lower horizons or no-forecast
cases. We therefore infer forecast contribution only when the
policy for forecast horizon h results in a substantially better
fitting policy (> 0.1 increase in R2) relative to forecast hori-
zon h− 1. In other words, when the strongest policy fits are
similar across a range of horizons (say, an increase in R2 of
less than 0.1 between horizons of 6 and 7 weeks ahead), the
lowest of these horizons (6 weeks ahead) is assumed to drive
the release decision. Given the imperfections of the process, a
degree of noise is to be expected in the derived horizon curve
for any dam. This is addressed by despiking each horizon
curve and then smoothing using a locally weighted smooth-
ing spline (Cleveland, 1981). All of these calculations and
assumptions are made freely available through an open code
repository (https://github.com/IMMM-SFA/horizon, last ac-
cess: 16 March 2020).

2.4 Classification of horizon curves

With the horizon curves derived, we use random forest clas-
sification (Ho, 1995) to identify features of dams associated
with detection of significant medium- to long-range inflow
forecast contribution in the horizon curve. The classification
not only helps us interpret results but also allows for explor-
ing the possibility of extrapolation of horizon curves to dams
with no observed data. In this analysis the target response is
a simple Boolean (true/false) variable as to whether there is
evidence for a significant forecast contribution or not. This
first requires a definition of what constitutes significant fore-
cast detection in the horizon curve. One can anticipate that
many horizon curves could contain only very weak evidence
for foresight in operations (e.g., a horizon curve in which
periods of apparent forecast use are sporadic and with short
lead times). Ideally, these should be labeled as nonsignificant

horizon curves. Unfortunately, separating these low-evidence
cases from the others is a rather arbitrary exercise. We label
a horizon curve as significant (meaning containing sufficient
evidence for medium- to long-range forecast horizons) if it
contains an unbroken, 3-week period with operating hori-
zons of at least 2 weeks ahead and with the coefficient of
determination of the release–availability functions associated
with those horizons exceeding 0.5. Relaxing these thresholds
would of course result in more dams being categorized as
significant (and vice versa), so we take the additional step of
performing sensitivity to changes in these thresholds (with
relevant results included in Appendix A).

The candidate explanatory features in this classification
analysis include dam and reservoir specifications, operat-
ing purposes, and various statistics describing the inflow and
storage time series (variability, autocorrelation, etc., at vari-
ous time scales) for a total of 26 features (listed in Table A1).
It is essential that a random forest classification scheme is
set up to avoid the possibility of overfitting. Here we set the
number of trees to 1000 and limit the number of decision
layers to a maximum of three. A bootstrap is used to repeat
random forest generation 200 times with different training-
test splits. In each case, a different random sample of 70 %
of dams constitutes the training set, while the remaining 30 %
are used as unseen testing data for validation and evaluation.
The feature importance is then determined using the com-
monly used Gini impurity of the tree. Gini impurity, like en-
tropy, describes the likelihood of an incorrect classification.
The feature importance score is calculated as the percentage
decrease in Gini impurity with that feature included, aver-
aged across the forest (see Friedman et al., 2001).

2.5 Practical application of the horizon curve in a
reservoir simulation

The intended application of the horizon curves is to enhance
reservoir release schemes of large-scale, distributed hydro-
logical models incorporating water management specifically
in anticipation of flood and drought events. The derivation of
horizon curves involves determining the horizon that leads to
the best-fit operating policy (release as a function of avail-
able water) at weekly intervals, leading to a relatively high-
resolution dataset that could be deployed in these models. A
regional-scale hydrological simulation lies beyond the scope
of the current study and is being conducted in ongoing re-
search. Nonetheless, we can explore the potential improve-
ments that a forecast-driven model might proffer by conduct-
ing offline, single-reservoir simulations forced with observed
inflows. For each of four significant, large storage dams in
the western United States, we perform the horizon curve
derivation procedure as outlined above. The chosen dams are
Grand Coulee (Columbia River), Glen Canyon (Lake Pow-
ell, Colorado River), Shasta (Sacramento River, California),
and Dworshak (Snake River), which represent a set of diverse
storage capacity, flow seasonality, and level of regulation in
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Figure 2. Dams with sufficient data to derive a horizon curve (n= 316). Data sources are the California Data Exchange (CDEC), Texas
Water Development Board (TWDB), US Army Corps of Engineers (USACE), US Bureau of Reclamation (USBR), and US Geological
Survey (USGS).

inflows. For each water week and selected horizon, there is
an associated piecewise function that specifies a release deci-
sion as a function of water availability (storage volume plus
cumulative future inflow out to the duration of the horizon).
Simulation is performed using observed inflow and storage
levels. This means errors in the release are not allowed to ac-
cumulate through storage, providing the cleanest test of over-
all decision accuracy across all data points. Further testing
that allows for storage error accumulation and includes the
effects of inflow bias lies outside the scope of this work and
is being conducted in ongoing research. To compare results
against a release policy that neglects forecasts, we use the
same format of piecewise models but instead train them with
a uniform horizon of 1 week ahead for all weeks of the year.
This means the benchmark operating policy is a function of
current storage plus current inflow (with the model varying
by week).

3 Results

3.1 Horizon curves for 316 dams

We group resulting horizon curves according to the timing of
the peak horizon (i.e., the week of the year when the max-
imum forecast horizon is used) within the water year and
then order within each group by magnitude of the peak hori-
zon. Resulting horizon curves are displayed in Fig. 3. Of the
316 horizon curves derived, the use of foresight is detected
in 283 cases (i.e., 283 cases in which at least 1 week of the

year contains a detectable horizon of at least 1 week ahead of
the current week). This equates to 90 % of the dams studied.
The remaining 33 dams have completely flat horizon curves,
suggesting that the releases from these dams are guided at
all weeks of the year using information on currently avail-
able water alone. Perhaps surprisingly, the timing of the peak
horizon varies widely across dams. Horizon peaks occurring
toward the end of the water year tend to be short-lived, last-
ing 3 or 4 weeks. In contrast, horizons detected in earlier in
the year (from weeks 9 through 25 or mid-December through
early April) are often drawn out, lasting a number of months.

While no two horizon curves are identical, some consis-
tent and intelligible patterns emerge. Flat horizon curves with
consistent horizons of 1 week (which should be interpreted as
the current period inflow or no forecast use) and consistently
strong policy fits (R2 > 0.9) are found for run-of-river hy-
dropower facilities, such as Ice Harbor Lock and Dam, on the
Columbia River, Washington (Fig. 4a). These dams have very
low storage relative to inflow (typically a day’s flow or less),
meaning forecasts of more than a few days ahead are super-
fluous. At a weekly resolution, inflow is close to outflow, so
we observe a near-perfect relationship between release and
current water availability and progressively weaker relation-
ships as the horizon is extended. Though unsurprising, this
result is satisfying because it demonstrates that cases where
forecasts certainly do not influence the decision are easily
identified as such by the derivation procedure.

Evidence for week-ahead horizons begins to emerge as we
move to reservoirs with slightly longer memory (Fig. 4b).
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Figure 3. Horizon curves for 316 dams, binned according to timing of its peak horizon (i.e., the week of the water year where the longest-
range foresight horizon is detected). Each horizon curve specifies the inferred operational horizon from water week 1 (week commencing
1 October, at the left of the horizon curve) to 52 (week commencing 24 September, at the very right of the horizon curve).

Orwell Dam, Minnesota, for example, impounds a small, up-
stream reservoir (∼ 25 Mm3) used for flood control and mu-
nicipal water supply. Storage capacity is about 5 % of annual
inflow. Here we infer week-ahead forecast use during a few
periods of the latter half of the water year. The region is prone
to summer thunderstorms, so perhaps severe weather warn-
ings during these weeks have, on occasion, prompted opera-
tors to lower reservoir levels to increase the flood buffering
volume.

In cases where long-range forecasting is inferred (defined
here as 4 consecutive water weeks with a horizon of 6 weeks
or more), horizon curves tend to be n-shaped: low during the
beginning and end of the water year, with a significant rise
emerging in winter or early spring, and then fading off by
early summertime. These cases are indicative of snowpack-
driven forecasting. Operations at Glen Canyon Dam (Lake
Powell) exemplify this behavior (Fig. 4c). Here we observe
inferred forecast horizons increasing rapidly by the start of
the calendar year – neatly coinciding with the first issue of
April–July streamflow forecasts provided by the Colorado
River Basin Forecast Center – and then slowly declining in
horizon as the snowmelt season approaches. Similar exam-
ples include Jackson Lake, Wyoming (Fig. 4d), and Bridge-
port Reservoir, California (Fig. 4e), for which the inferred
horizon rises at the onset of the snowmelt season (early
April) for the Rockies and the High Sierra, respectively. Per-
haps in these cases early-year forecasts are too unreliable to
inform releases. Or perhaps early-year forecasts do inform
releases, with the policy undetected here due to the uncertain-

ties or conservative assumptions embedded in the derivation
procedure (e.g., use of actual observed future flow instead of
the actual forecast available to the operator).

Some horizon curves require more in-depth interpretation.
A few dams follow the same snowmelt-driven forecast be-
havior described above but also appear to use significant
foresight during fall (i.e., at the start and end of the water
year). This may indicate use of seasonal water outlooks in-
formed by the El Niño–Southern Oscillation (ENSO), which
improves the skill of winter precipitation forecasts in the re-
gion (Yang et al., 2018). Canyon Ferry, Montana (Fig. 4f),
and Millerton Lake, California (Fig. 4g), are two such cases,
although we must be careful not to conflate climate forecasts
with other possible sources of foresight. Millerton Lake lies
below a cascade of dams on the San Joaquin River; coordi-
nated operations, rather than hydrological forecasting, may
provide the foresight to guide releases. Indeed, it appears
that in other cases the guiding information comes not from
any hydrological or meteorological forecasts but from sim-
ple knowledge of planned upstream water management deci-
sions. Agate Dam and Reservoir (Fig. 4h) depends almost ex-
clusively on diverted water from upstream storage via a canal
system. Close inspection of release decisions reveals very
clear correlations between release and future inflow at spe-
cific points in the water year. The January release is typically
zero, with the two exceptions: 2002 and 2017. For both years
the currently available water at the time of those releases is
normal, but the cumulative future (diverted) inflow is well
above average, suggesting that releases from this dam are
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Figure 4. Horizon curve examples for eight dams located throughout the western United States. The policy fit refers to the coefficient of
determination (R2) of the piecewise release–availability relationship for the best-fit horizons.

closely coordinated with planned upstream diversions. Gen-
erally, we may assume that if a dam depends almost entirely
on the water management decisions from upstream reservoirs
and if those decisions can be planned weeks ahead in ad-
vance, then the inflows can be known with a high degree of
accuracy and could be used to guide decisions. Knowledge of
upstream water management decisions (either dam releases
or perhaps planned abstractions for irrigation or other pur-
poses) rather than hydrological or meteorological forecast-
ing may explain much of the operational foresight detected in
summer months at several dams (week 40 onwards in Fig. 3).

Correlation between the current release and future inflow
need not always imply that the release is driven by knowl-
edge of the future inflow. It could be that the future inflow
is driven by the release. Suppose for instance that a dam is
called upon to release significant volumes of water over an
extended period of time to address water quality concerns, re-
sulting in a significant drawdown below the reservoir guide
curve. This release event could trigger an upstream opera-
tional response to refill the downstream reservoir, perhaps

over a period of several weeks. Complex coordinated oper-
ations of this sort are bound to create a myriad of uninter-
pretable wrinkles in the horizon curves derived. These com-
plexities highlight the enormity of the challenge faced by
large-scale hydrological modelers trying to represent human
water management actions without information on the actual
operating schemes deployed in practice.

3.2 Features of dams with significant horizon curves

We applied the significance test described in Sect. 2.2 on
the horizon curves. Of the 316 dams studied, 256 (82 %) are
classified as having a significant horizon curve after applying
these criteria. Relaxing these thresholds would of course re-
sult in more dams being categorized as significant (and vice
versa), so we take the additional step of performing sensi-
tivity to the tightening and relaxing of thresholds (results
presented in Appendix A). After applying the classification
scheme described in Sect. 2.3, dam and reservoir features that
best determine whether the horizon is significant are the stor-
age ratio of the dam (storage over mean annual inflow), the
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annual inflow volume, the average timing (within the water
year) of the minimum reservoir storage, the dam elevation
above sea level, and the variability of storage and inflow time
series at an interannual and seasonal resolution (Fig. 5). The
storage ratio determines the memory of the system; forecasts
do not contribute to release decisions for reservoirs with a
low storage ratio, as reported above with respect to run-of-
river hydropower dams. As such, the storage ratio – and re-
lated features such as mean annual inflow and storage capac-
ity – are among the most important variables in determin-
ing horizon curve significance (Fig. 6a). Neither the dam’s
primary purpose (water supply, hydropower, irrigation, flood
control, etc.) nor the source of data (US Army Corps, US Bu-
reau of Reclamation, etc.) provide a predictive capability in
the random forest classification scheme.

Features describing the water week with the minimum
storage, within-year variability of storage levels, and dam el-
evation may all be significant because they indicate the like-
lihood of a snowmelt-driven regime. Spring snowmelt reser-
voir refill patterns are typical of high-elevation dams (Giu-
liani and Herman, 2018). Snowpack volumes are the most
reliable source of long-range streamflow forecast skill in
the snowmelt-dominated western United States (Day 1985;
Pagano et al., 2014), so one should expect that features like
elevation become more important in determining whether
long-range forecasts contribute. This indeed appears to be
the case. If we group horizon curves into separate categories
based on the longest forecast horizon observed, we find that
long-range forecasts (6 to 11 weeks ahead) and seasonal
forecasts (12 weeks ahead or more) typically contribute to
the release decisions of high elevation dams and reservoirs
(> 1000 m above sea level) (Fig. 6b). Long-range and sea-
sonal horizons are found in approximately 35 % of dams with
an elevation below 500 m a.s.l., compared with 46 % of dams
in the 500–1000 m category and more than half of dams in
the 1000–1500 m and > 1500 m categories. Corroborating
this finding, in the months leading up to the snowmelt season
(weeks 9 through 25; Fig. 3) we observe prolonged inferred
horizons that reflect the long period of snowpack accumula-
tion during which long-range foresight is available.

The random forest classification scheme can be used to in-
fer whether or not dams and reservoirs outside of the study
sample are likely to apply medium- to long-range forecast
horizons. To extrapolate our results across all large dams
(greater than 10 Mm3 storage capacity) in the conterminous
United States (1927 large storage dams in total), we retrain
the random forest classification model using features that are
available for all dams represented in the Global Reservoir
and Dams (GRanD) database (Lehner et al., 2011). To this
we add two additional features describing the number and
accumulated storage of upstream dams (created from water-
shed mapping). Data describing the variability and autocorre-
lation of the inflow and storage time series are unrepresented
in GRanD, so they must be excluded from the classification
model. This turns out to be unproblematic; a random forest

trained with only the storage ratio, elevation above sea level,
mean annual inflow, storage capacity, and number of up-
stream dams is sufficiently accurate in validation, with strong
scores of 0.91, 0.89, and 0.94 achieved for the common ac-
curacy metrics of F1 score, precision and recall, respectively
(see Appendix for mathematical definitions of these scores).
The fact that these scores are achieved without the additional
features suggests that these features may be redundant with
others represented in the pared-down feature set. We use this
pared down model to extrapolate our results for all dams in
the conterminous United States. The classification model es-
timates that 1553± 50 (90 % confidence interval), or 82 %,
of large dams (storage capacity > 10 Mm3) are character-
istic of dams with significant horizon curves. Inferred hori-
zons are prevalent across large dams. Approximately 81 % of
CONUS dams with a storage capacity greater than 100 Mm3

are estimated to have releases influenced by inflow fore-
casts; for dams with storage capacity greater than 1000 Mm3

(139 dams), the estimate is about 90 %. Regions where in-
flow forecast contribution is prevalent include mountainous
regions of CONUS, such as along the spine of the Rocky
Mountains, the Sierra Nevada of California, the Cascades
of the Pacific Northwest, and the Appalachians to the east
(Fig. 7).

3.3 Improvements in reservoir simulations using the
horizon curve

Figure 8 displays policy simulation results for the Grand
Coulee, Glen Canyon, Shasta, and Dworshak dams. The sim-
ulations are driven by actual observed inflow in each case.
For each dam, results are shown for two simulations: sim-
ulated optimized piecewise policies assuming release to be
informed only by current water availability and simulated op-
timized piecewise policies using future flow as defined by the
inferred horizon curve. These results demonstrate significant
improvements in release decisions (relative to observation as
measured by root mean squared error) for the daily simu-
lation, annual daily maxima, and annual average 90 d min-
ima time series of releases, as well as for the transformed
RMSE (TRMSE), wherein the simulated and observed re-
leases are first transformed so that the result is weighted by
performance during periods of low release (Box–Cox trans-
form with an exponent of 0.3, as adopted in van Werkhoven
et al., 2009) (Table 1). This and the maxima and minima as-
sessments are added to indicate performance improvements
during flood and drought conditions. While some of these
improvements are marginal (5 %–10 % reduction in RMSE),
one could hypothesize that there would be substantial differ-
ences in the representation of regional water management if
such improvements were repeated across a large sample of
dozens or perhaps hundreds of dams. Moreover, a marginal
difference in a reservoir’s capability to release or store water
during an extreme event could imply a substantial difference
in the downstream impact.
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Figure 5. Distribution of feature importance across 400 random forests (eight features with the highest median importance shown). The
distribution is created by bootstrapping the random forest classification model with resampled training and test data. Boxplots give the
median and interquartile range.

Table 1. Performance metrics for observed versus simulated daily release for two policies: “current week” (CW) neglects forecasts and
instead uses piecewise release–availability functions trained on availability = storage + current inflow; “horizon curve” (HC) adopts the
horizon curve and associated piecewise release–availability functions. Metrics assessed are the RMSE of daily releases, RMSE of annual
maxima of the daily releases, RMSE of annual 90 d minimum series, and Box–Cox transformed RMSE (TRMSE).

Grand Coulee Lake Powell Shasta Dworshak

CW HC CW HC CW HC CW HC

RMSEr_daily 72.1 59.5 (−17.5 %) 8.7 7.8 (−10.3 %) 10.4 9.8 (−5.8 %) 9.0 8.1 (−10.0 %)
RMSEr_ann_max 70.5 55.6 (−21.1 %) 31.6 32.6 (+3.2 %) 11.3 10.2 (−9.7 %) 11.1 9.6 (−13.5 %)
RMSEr_ann_90dmin 17.2 14.0 (−18.6 %) 4.9 4.7 (−4.1 %) 2.0 2.0 (–) 1.3 1.0 (−23.1 %)
TRMSEr 1.58 1.28 (−15.4 %) 0.68 0.62 (−8.7 %) 1.12 1.06 (−5.4 %) 1.25 1.12 (−10.5 %)

4 Discussion

The water management modules of large-scale hydrology
models have to date relied on relatively simple heuristics to
simulate releases, such as monthly storage and release tar-
gets based on average climate (Hanasaki et al., 2006; Döll et
al., 2009; Biemans et al., 2011; Solander et al., 2016; Voisin
et al., 2013a, 2017) or year-ahead, perfect foresight (Had-
deland et al., 2006). Important nuances, such as the appro-
priate environmental release, are typically applied uniformly
across all dams. The parameters of the 52 (weekly) piece-

wise release–availability functions (including detail of the
forecast horizon) could inform a far more detailed and rep-
resentative set of operating schemes with forward-looking
operations. This could be crucially important in many re-
gions where inflow forecasts greatly enhance the reservoir’s
capability for flood and drought alleviation. Given the preva-
lence of forecast application, as suggested by this study, im-
proved dam and reservoir models that represent intelligent
operator response to anticipated reservoir inflows over sea-
sonally varying horizons within the myriad of other opera-
tional constraints should contribute to a better understanding
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Figure 6. Stacked (100 %) bars showing the distribution of dams
by detected forecast horizon within categories of (a) storage ra-
tio and (b) elevation. Forecast-use categories are no forecast, 2–
5 weeks ahead of the horizon, 6–11 weeks ahead of the horizon,
and 12 weeks or greater ahead of the horizon. Maximum detected
horizon assumes that the horizon is detected in the horizon curves
for at least 3 consecutive weeks with the policy fit (R2) exceeding
0.5 in each week.

of hydrological stressors on energy and food security that are
increasingly linked to large-scale hydrological models (e.g.,
Van Vliet et al., 2016; Wada et al., 2016; Voisin et al., 2013b;
Hejazi et al., 2015; Voisin et al., 2016, 2018).

This approach to deriving a horizon curve is clearly not
without limitations. Streamflow forecasts used in practice are
often highly uncertain, so strong correlations between release
and actual future observed inflow may be elusive, particu-
larly for long-range forecast horizons. In theory, this issue
could be addressed by using the actual forecasts available
to operators to inform the availability axis of the candidate
release–availability functions. In reality, these data are dif-
ficult to acquire – particularly for large-scale studies with
many dams and reservoirs. Often the forecasts adopted will
be probabilistic in the form of a forecast ensemble rather than
a deterministic forecast. In the present work, the actual ob-
served future inflow is an imperfect yet practical alternative,
and the results obtained suggest that it can be effective in
many cases. Another challenge is selecting the correct study
period. Ideally, a multidecadal time series would be used to
capture interannual variability in release and water available
for all periods of the water year. The flip side is that the oper-

ating policy may have changed at some point in the last few
years; it may be that new forecast products were introduced
only in the latter years of the record, for instance. In such
cases of nonstationarity in the policy, it would be prudent to
use only those latter, forecast-informed years of operation so
as to avoid averaging away the forecast-use signal. Lacking
prior knowledge of how or when forecasts may have been in-
troduced, the practical approach is to discard operations prior
to some cut-off year (in the present work we use 1995 but
also test the robustness of this decision using cut-off years of
2000 and 2005). Nonstationarity in the inflows is not a limita-
tion here; as long as the operating policy is consistent through
time, then a wide range of possible inflow conditions would
be desirable for determining the nature of that policy. A re-
lated problem is that the resulting models are not conducive
to the type of rigorous validation exercise that has become
standard in a hydrological study. Apart from the problem
that we are uninformed as to whether the policy of a given
reservoir may have changed radically during the period of the
record, there are simply too few data points to support robust
validation (∼ 20 data points for 20 years of data, in a good
case, which will contain perhaps only 1 or 2 flood or drought
years to guide either side of the release–availability func-
tion). In the absence of long records of consistently applied
policy, it is vital to protect against overfitting. We achieve
this by constraining each piecewise function to an expected,
archetypal form (see Sect. 2.3 Experimental setup), although
the corollary is that the resulting functions may in some cases
be overconstrained. They may lack the required flexibility to
represent more complex operating rules applied in practice.
Despite these limitations, we find that the approach arrives at
convincing evidence for regulated inflow forecast contribu-
tion as well as a range of other interesting operator behaviors.
While the associated release policies are likely to be highly
imperfect models of actual operations, they potentially of-
fer a significant advance on general, theory-driven rules cur-
rently adopted in state-of-the-art large-scale, distributed hy-
drological models (see Yassin et al., 2019, for a state-of-the-
art review of existing approaches).

5 Conclusions

The use of foresight in reservoir release decisions can be
interpreted without reported operating rules for individual
dams and reservoirs. All that is needed is operational data
– time series of storage and flows into and out of reser-
voirs – and an appropriate release–availability function that
can be fitted to these data to test a range of candidate op-
erational horizons. Our analysis is the first to use this idea
to estimate the contribution of regulated inflow forecasts to
reservoir releases across a large number of dams and reser-
voirs. The results provide a first national-scale estimate of
the existing contribution of monthly to seasonal flow fore-
cast to release decisions. The general approach of horizon
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Figure 7. Foresight use for 1942 CONUS dams and reservoirs, based on horizon curves (316 dams; black outlined circles) and out-of-
sample, extrapolated estimates (gray outlined circles). Storage ratio (split into four categories) is storage capacity divided by the annual
average reservoir inflow. Background shading gives land elevation.

curve derivation is inhibited by a number of nontrivial chal-
lenges. These include identifying the appropriate operational
period from which to build the curve, reconciling the differ-
ences between the forecast used by the operator and actual
inflow over the horizon, and selecting appropriate thresholds
for the indicating evidence for foresight contribution, such as
the goodness of fit of the release–availability function. The
single-breakpoint piecewise function adopted in this study is
simple, but intelligible and, most importantly, effective for
the purpose of identifying release policies driven by the fore-
sight of future inflow. And although the exactness of the hori-
zon curves is undoubtedly impaired by the limitations noted
above, our analysis supports some interesting conclusions.

First, we find that the use of operational foresight – de-
termining what to do in the present with some foresight of
what will happen in the coming weeks or months – is preva-
lent in US dam and reservoir management. We detect a sig-
nificant contribution of regulated inflow forecasts of at least
1 week ahead in more than 80 % of dams in our sample of
316 dams. A similar proportion is estimated when we ex-
trapolate to a much larger sample of CONUS dams with a
capacity greater than 10 Mm3. Second, our classification ex-
ercise highlights the potential to extrapolate horizon curves
to data-sparse reservoirs. Large dams and dams at high ele-
vations appear more likely to adopt longer range forecasting,
but aside from the general and obvious rule that run-of-river
facilities cannot benefit from forecasts, it appears that dams
of all sizes, purposes, and locations rely on some degree of
medium-range foresight to guide operations. Detected fore-
sight appears to derive from a wide variety of sources, in-
cluding climate and weather forecasting, but also from coor-
dinated operations between dams. Some particular patterns,

such as snowmelt forecasting, are intelligible from the hori-
zon curve shapes and the dam features (e.g., high elevation).
The importance of forecasting to release decision making
may be studied in future research to understand the role of
rule curves, forecast accuracy, the reluctance to adopt fore-
cast into operations (see Rayner et al., 2005), and other fac-
tors that may limit the value of forecast to release decision
making. Whether a more detailed and accurate approach to
identifying the source of information leading to forecast can
be derived from operational data alone is also a challenge
for future research. Classification models, such as random
forests, may be useful for extrapolating not only the presence
of a significant horizon curve but also parameters of policy
functions for reservoirs lacking the operational data to build
a policy directly.

Our approach, as configured in this work, assumes that
operators use release–availability functions based on cumu-
lative forecasted inflow. In reality the forecasts may be as-
similated in a different way. For example, many reservoir
operators follow rule curves and release water according to
a step-wise function, or they may deploy a threshold-based
forecast across a range of horizons. While our approach is
simple and intuitive, the integration of forecasts into decision
making is a complex process, and all subtleties might not be
captured. Our study may motivate further work at a national
scale into understanding how forecasts are integrated into de-
cision making by dam operators. The application of horizon
curves and their associated release–availability functions in
regional-scale hydrological modeling is being tested in ongo-
ing research and is expected to enhance the representation of
water resources in spatially and temporally varying wet and
dry conditions. This potential is demonstrated here through
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Figure 8. Simulation performance improvements with the horizon curves adopted. Blue represents the forecast excluded; pink represents the
forecast included. Results given for four large storage dams, showing the inferred horizon curve, scatter plots for annual maxima and annual
minima (90 d average) releases (representing performance during flood and drought conditions, respectively) and the daily release time series.
Numbers inside plot panels give RMSE scores relative to the observation (percent difference with the horizon curve in parentheses).

the implementation of horizon curves in the simulation of
four key dams in the western US. The operating policy in-
formation (i.e., release–availability function) derived in this
work could also be explored on its own merits. For example,
one could compare the lower limits of release across all time

periods and dams to explore variation in environmental re-
leases. Deriving new horizon curves for different periods of
history may reveal changing preferences – such as points in
time where environmental releases have increased or the first
introduction of forecast use in decision making.
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Appendix A: Definitions of feature performance scores

In validation of the classification model, true positives (TP)
are the number of correctly predicted true values (i.e., fore-
cast detected), while false positives (FP) are the number of
incorrectly predicted true values (i.e., model predicts “fore-
cast detected= true” when it should be false). Similarly, true
negatives (TN) are the number of correctly predicted false
values, and false negatives (FN) are the number of incorrectly
predicted false values.

Precision= TP/(TP+FP)

Recall= TP/(TP+FN)

F1= (2× precision× recall)/(precision+ recall)

Table A1. Sensitivity of results to change in the number of consecutive weeks of the horizon detected required to label a dam as having
a significant horizon curve. The 26 features determined for each dam and included in this analysis are dam elevation above sea level, dam
purpose (a single categorical variable for a primary purpose as well as seven Boolean variables indicating whether dam is used for water
supply, irrigation, flood control, recreation, hydropower, ecological provision, and navigation, respectively), dam latitude, dam longitude,
reservoir storage capacity, storage ratio (i.e., storage to annual inflow ratio), coefficient of variation of storage (annual and weekly time
series), mean annual inflow, coefficient of variation of inflow (annual and weekly), lag-1 autocorrelation of inflow (annual, quarterly, monthly,
and weekly), average week of water year when the minimum inflow occurs, average week of water year when the maximum inflow occurs,
number of dams upstream, and total capacity of dams upstream.

Consecutive weeks of horizon Observed number of Predicted number of Top five predictive features for whether
detected required to label the dams with significant dams > 10 Mm3 with dam’s horizon curve is significant,
horizon curve “significant” horizon curve significant horizon curve ordered by mean importance in random for-

est classification

2 277 (88 %) 1677± 6 (87 %) Storage ratio (0.15)
Elevation (0.09)
Mean annual inflow (0.08)
Coefficient of variation of weekly storage
(0.06)
Week of minimum flow (0.06)

3 (in study) 258 (82 %) 1553± 50 (81 %) Storage ratio (0.12)
Mean annual inflow (0.08)
Week of minimum flow (0.06)
Storage capacity (0.07)
Elevation (0.06)

4 223 (71 %) 1219± 40 (63 %) Storage ratio (0.09)
Lag-1 autocorrelation of monthly inflow
(0.08)
Coefficient of variation of annual storage
(0.07)
Elevation (0.06)
Coefficient of variation of weekly storage
(0.06)
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able through the US Bureau of Reclamation (https://www.usbr.gov/
pn/hydromet/, last access: 30 November 2019, US Bureau of Recla-
mation, 2019a; https://water.usbr.gov/api/web/app.php/api/, last ac-
cess: 30 November 2019, US Bureau of Reclamation, 2019b),
US Army Corps of Engineers (via Duke University; https://
nicholasinstitute.duke.edu/reservoir-data/, last access: 30 Novem-
ber 2019, Patterson et al., 2018), California Data Exchange Cen-
ter (https://info.water.ca.gov/reservoir.html, last access: 30 Novem-
ber 2019, California Data Exchange Center, 2019), Texas Wa-
ter Development Board (https://waterdatafortexas.org/reservoirs/
statewide, last access: 15 March 2020, Texas Water Development
Board, 2020)), and US Geological Survey (https://waterdata.usgs.
gov/, last access: 3 November 2019, US Geological Survey, 2019).
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access: 16 March 2020).

Author contributions. ST and NV designed the study. ST devel-
oped the horizon curve derivation approach, wrote the horizon soft-
ware, and ran numerical experiments. WX designed and executed
the random forest classification. NV supervised the study. ST pre-
pared the paper with contributions from all co-authors.

Competing interests. The authors declare that they have no conflict
of interest.

Disclaimer. The views expressed in the article do not necessarily
represent the views of the DOE or the U.S. Government.

Acknowledgements. This research was supported by the US De-
partment of Energy Office of Science as part of the Integrated Mul-
tiscale, Multisector Modeling project (grant no. 59534). This work
was authored by the Pacific Northwest National Laboratory, man-
aged by Battelle (contract no. DE-AC05-76RL01830) for the US
Department of Energy (DOE). We thank Andy Wood (NCAR),
Jeff Arnold (USACE), Ken Nowak (USBR), and Levi Brekke
(USBR) for helpful insights and discussion. We also thank Charles
Rougé and one anonymous referee for constructive suggestions that
improved the paper significantly.

Financial support. This research has been supported by the US De-
partment of Energy Office of Science (grant no. 59534).

Review statement. This paper was edited by Louise Slater and re-
viewed by Charles Rougé and one anonymous referee.

References

Anghileri, D., Voisin, N., Castelletti, A., Pianosi, F., Nijssen, B.,
and Lettenmaier, D.P.: Value of long-term streamflow forecasts
to reservoir operations for water supply in snow-dominated river
catchments, Water Resour. Res., 52, 4209–4225, 2016.

Bennett, J. C., Wang, Q. J., Li, M., Robertson, D. E., and Schepen,
A.: Reliable long-range ensemble streamflow forecasts by com-
bining dynamical climate forecasts, a conceptual runoff model
and a staged error model, Water Resour. Res., 52, 8238–8259,
2016.

Biemans, H., Haddeland, I., Kabat, P., Ludwig, F., Hutjes, R.
W. A., Heinke, J., Von Bloh, W., and Gerten, D.: Impact
of reservoirs on river discharge and irrigation water supply
during the 20th century, Water Resour. Res., 47, W03509,
https://doi.org/10.1029/2009WR008929, 2011.

Boucher, M. A. and Ramos, M. H.: Ensemble Streamflow Forecasts
for Hydropower Systems, in: Handbook of Hydrometeorologi-
cal Ensemble Forecasting, edited by: Duan, Q., Pappenberger,
F., Thielen, J., Wood, A., Cloke, H., and Schaake, J., Springer,
Berlin, Heidelberg, 2018.

Brown, C. M., Lund, J. R., Cai, X., Reed, P. M., Zagona, E. A.,
Ostfeld, A., Hall, J., Characklis, G. W., Yu, W., and Brekke, L.:
The future of water resources systems analysis: Toward a sci-
entific framework for sustainable water management, Water Re-
sour. Res., 51, 6110–6124, 2015.

Bureau of Reclamation: About Us: Fact Sheet, Washington, D.C.,
available at: http://www.usbr.gov/main/about/fact.html (last ac-
cess: 5 April 2019), 2016.

California Data Exchange Center, California Department of Wa-
ter Resources: Reservoirs, available at: https://info.water.ca.gov/
reservoir.html, last access: 30 November 2019.

Cleveland, W. S.: LOWESS: A program for smoothing scatter-
plots by robust locally weighted regression, Am. Stat., 35, 54,
https://doi.org/10.2307/2683591, 1981.

Day, G. N.: Extended streamflow forecasting using NWSRFS, J.
Water Res. Plan. Man., 111, 157–170, 1985.

Denaro, S., Anghileri, D., Giuliani, M., and Castelletti, A.: Inform-
ing the operations of water reservoirs over multiple temporal
scales by direct use of hydro-meteorological data, Adv. Water
Resour., 103, 51–63, 2017.

Döll, P., Fiedler, K., and Zhang, J.: Global-scale analysis of river
flow alterations due to water withdrawals and reservoirs, Hydrol.
Earth Syst. Sci., 13, 2413–2432, https://doi.org/10.5194/hess-13-
2413-2009, 2009.

Friedman, J., Hastie, T., and Tibshirani, R.: The elements of sta-
tistical learning, vol. 1, no. 10, Springer series in statistics, New
York, USA, 2001.

Garen, D. C.: Improved techniques in regression-based streamflow
volume forecasting, J. Water Res. Plan. Man., 118, 654–670,
1992.

Georgakakos, K. P. and Graham, N. E.: Potential benefits of sea-
sonal inflow prediction uncertainty for reservoir release deci-
sions, J. Appl. Meteorol. Clim., 47, 1297–1321, 2008.

Georgakakos, K. P., Graham, N. E., Carpenter, T. M., and Yao,
H.: Integrating climate-hydrology forecasts and multi-objective
reservoir management for northern California, Eos, Transactions
American Geophysical Union, 86, 122–127, 2005.

www.hydrol-earth-syst-sci.net/24/1275/2020/ Hydrol. Earth Syst. Sci., 24, 1275–1291, 2020

https://www.usbr.gov/pn/hydromet/
https://www.usbr.gov/pn/hydromet/
https://water.usbr.gov/api/web/app.php/api/
https://nicholasinstitute.duke.edu/reservoir-data/
https://nicholasinstitute.duke.edu/reservoir-data/
https://info.water.ca.gov/reservoir.html
https://waterdatafortexas.org/reservoirs/statewide
https://waterdatafortexas.org/reservoirs/statewide
https://waterdata.usgs.gov/
https://waterdata.usgs.gov/
https://github.com/IMMM-SFA/horizon
https://doi.org/10.1029/2009WR008929
http://www.usbr.gov/main/about/fact.html
https://info.water.ca.gov/reservoir.html
https://info.water.ca.gov/reservoir.html
https://doi.org/10.2307/2683591
https://doi.org/10.5194/hess-13-2413-2009
https://doi.org/10.5194/hess-13-2413-2009


1290 S. W. D. Turner et al.: Inferred inflow forecast horizons guiding reservoir release decisions

Giuliani, M. and Herman, J. D.: Modeling the behavior of water
reservoir operators via eigenbehavior analysis, Adv. Water Re-
sour., 122, 228–237, 2018.

Gong, G., Wang, L., Condon, L., Shearman, A., and Lall, U.: A sim-
ple framework for incorporating seasonal streamflow forecasts
into existing water resource management practices, J. Am. Water
Resour. As., 46, 574–585, 2010.

Graham, N. E. and Georgakakos, K. P.: Toward Understanding
the Value of Climate Information for Multiobjective Reser-
voir Management under Present and Future Climate and De-
mand Scenarios, J. Appl. Meteor. Climatol., 49, 557–573,
https://doi.org/10.1175/2009JAMC2135.1, 2010.

Haddeland, I., Skaugen, T., and Lettenmaier, D. P.: Anthropogenic
impacts on continental surface water fluxes, Geophys. Res. Lett.,
33, L08406, https://doi.org/10.1029/2006GL026047, 2006.

Hanasaki, N., Kanae, S., and Oki, T. A.: Reservoir operation scheme
for global river routing models, J. Hydrol., 327, 22–41, 2006.

Hejazi, M. I., Cai, X., and Ruddell, B. L.: The role of hydrologic
information in reservoir operation–learning from historical re-
leases, Adv. Water Resour., 31, 1636–1650, 2008.

Hejazi, M. I., Voisin, N., Liu, L., Bramer, L. M., Fortin, D. C., Hath-
away, J. E., Huang, M., Kyle, P., Leung, L. R., Li, H. Y., and
Liu, Y.: 21st century United States emissions mitigation could
increase water stress more than the climate change it is mitigat-
ing, P. Natl. Acad. Sci. USA, 112, 10635–10640, 2015.

Ho, T. K.: Random decision forests, in: vol. 1, Proceedings of
3rd International Conference on Document Analysis and Recog-
nition, Montreal, Quebec, Canada, 278–282, 1995.

Lehner, B., Liermann, C.R., Revenga, C., Vörösmarty, C., Fekete,
B., Crouzet, P., Döll, P., Endejan, M., Frenken, K., Magome, J.,
and Nilsson, C.: High-resolution mapping of the world’s reser-
voirs and dams for sustainable river-flow management, Front.
Ecol. Environ., 9, 494–502, 2011.

Libisch-Lehner, C., Nguyen, H. T., Taormina, R., Nachtnebel, H. P.,
and Galelli, S.: On the value of ENSO state for urban water sup-
ply system operators: Opportunities, trade-offs, and challenges,
Water Resour. Res., 55, 2856–2875, 2019.

Nayak, M. A., Herman, J. D., and Steinschneider, S.: Balancing
Flood Risk and Water Supply in California: Policy Search Inte-
grating Short-Term Forecast Ensembles With Conjunctive Use,
Water Resour. Res., 54, 7557–7576, 2018.

Nazemi, A. and Wheater, H. S.: On inclusion of water re-
source management in Earth system models – Part 2: Rep-
resentation of water supply and allocation and opportunities
for improved modeling, Hydrol. Earth Syst. Sci., 19, 63–90,
https://doi.org/10.5194/hess-19-63-2015, 2015.

Pagano, T., Wood, A., Werner, K., and Tama-Sweet, R.: Western
U.S. Water Supply Forecasting: A Tradition Evolves, EOS Trans-
actions American Geophysical Union, 95, 28–29, 2014.

Patterson, L. A., Doyle, M. W., and Kuzma, S.: Creating Data
as a Service for U.S. Army Corps of Engineers Reservoirs,
NI R 18-01, Duke University, Durham, NC, available at: http:
//nicholasinstitute.duke.edu/ (last access: 30 November 2019),
2018.

Powell, M. J. D.: The BOBYQA algorithm for bound constrained
optimization without derivatives, technical report NA2009/06,
Department of Applied Mathematics and Theoretical Physics,
Cambridge, UK, 2009.

Rayner, S., Lach, D., and Ingram, H.: Weather forecasts are for
wimps: why water resource managers do not use climate fore-
casts, Climatic Change, 69, 197–227, 2005.

Shukla, S. and Lettenmaier, D. P.: Seasonal hydrologic predic-
tion in the United States: understanding the role of initial hy-
drologic conditions and seasonal climate forecast skill, Hydrol.
Earth Syst. Sci., 15, 3529–3538, https://doi.org/10.5194/hess-15-
3529-2011, 2011.

Shukla, S., Voisin, N., and Lettenmaier, D. P.: Value of medium
range weather forecasts in the improvement of seasonal hydro-
logic prediction skill, Hydrol. Earth Syst. Sci., 16, 2825–2838,
https://doi.org/10.5194/hess-16-2825-2012, 2012.

Solander, K. C., Reager, J. T., Thomas, B. F., David, C. H., and
Famiglietti, J. S.: Simulating Human Water Regulation: The De-
velopment of an Optimal Complexity, Climate-Adaptive Reser-
voir Management Model for an LSM, J. Hydrometeorol., 17,
725–744, https://doi.org/10.1175/JHM-D-15-0056.1, 2016.

Texas Water Development Board: Water Data For Texas – Texas
Reservoirs, available at: https://waterdatafortexas.org/reservoirs/
statewide/, last access: 15 March 2020.

Turner, S. W. D. and Galelli, S.: Regime-shifting streamflow pro-
cesses: Implications for water supply reservoir operations, Water
Resour. Res., 52, 3984–4002, 2016.

Turner, S. W. D., Bennett, J. C., Robertson, D. E., and Galelli, S.:
Complex relationship between seasonal streamflow forecast skill
and value in reservoir operations, Hydrol. Earth Syst. Sci., 21,
4841–4859, https://doi.org/10.5194/hess-21-4841-2017, 2017.

U.S. Army Corps of Engineers: National Inventory of Dams, Wash-
ington, D.C., available at: http://nid.usace.army.mil/ (last access:
5 April 2019), 2016.

US Bureau of Reclamation: Reclamation Hydromet, available
at: https://www.usbr.gov/pn/hydromet/arcread.html (last access:
30 November 2019), 2019a.

US Bureau of Reclamation: USBR Water API v1, available at: https:
//water.usbr.gov/api/web/app.php/api/ (last access: 30 Novem-
ber 2019), 2019b.

US Geological Survey: USGS Water Data for the Nation, avail-
able at: https://waterdata.usgs.gov/nwis, last access: 3 Novem-
ber 2019.

Van Vliet, M. T., Sheffield, J., Wiberg, D., and Wood, E. F.: Im-
pacts of recent drought and warm years on water resources and
electricity supply worldwide, Environ. Res. Lett., 11, 124021,
https://doi.org/10.1088/1748-9326/11/12/124021, 2016.

Van Werkhoven, K., Wagener, T., Reed, P., and Tang, Y.:
Sensitivity-guided reduction of parametric dimensionality for
multi-objective calibration of watershed models, Adv. Water Re-
sour., 32, 1154–1169, 2009.

Vernon, C. R., Hejazi, M. I., Turner, S. W., Liu, Y., Braun, C.
J., Li, X., and Link, R. P.: A Global Hydrologic Framework
to Accelerate Scientific Discovery, J. Open Res. Softw., 7, 1,
https://doi.org/10.5334/jors.24, 2019.

Voisin, N., Li, H., Ward, D., Huang, M., Wigmosta, M., and Leung,
L. R.: On an improved sub-regional water resources management
representation for integration into earth system models, Hydrol.
Earth Syst. Sci., 17, 3605–3622, https://doi.org/10.5194/hess-17-
3605-2013, 2013a.

Voisin, N., Liu, L., Hejazi, M., Tesfa, T., Li, H., Huang, M., Liu,
Y., and Leung, L. R.: One-way coupling of an integrated assess-
ment model and a water resources model: evaluation and implica-

Hydrol. Earth Syst. Sci., 24, 1275–1291, 2020 www.hydrol-earth-syst-sci.net/24/1275/2020/

https://doi.org/10.1175/2009JAMC2135.1
https://doi.org/10.1029/2006GL026047
https://doi.org/10.5194/hess-19-63-2015
http://nicholasinstitute.duke.edu/
http://nicholasinstitute.duke.edu/
https://doi.org/10.5194/hess-15-3529-2011
https://doi.org/10.5194/hess-15-3529-2011
https://doi.org/10.5194/hess-16-2825-2012
https://doi.org/10.1175/JHM-D-15-0056.1
https://waterdatafortexas.org/reservoirs/statewide/
https://waterdatafortexas.org/reservoirs/statewide/
https://doi.org/10.5194/hess-21-4841-2017
http://nid.usace.army.mil/
https://www.usbr.gov/pn/hydromet/arcread.html
https://water.usbr.gov/api/web/app.php/api/
https://water.usbr.gov/api/web/app.php/api/
https://waterdata.usgs.gov/nwis
https://doi.org/10.1088/1748-9326/11/12/124021
https://doi.org/10.5334/jors.24
https://doi.org/10.5194/hess-17-3605-2013
https://doi.org/10.5194/hess-17-3605-2013


S. W. D. Turner et al.: Inferred inflow forecast horizons guiding reservoir release decisions 1291

tions of future changes over the US Midwest, Hydrol. Earth Syst.
Sci., 17, 4555–4575, https://doi.org/10.5194/hess-17-4555-2013,
2013b.

Voisin, N., Kintner-Meyer, M., Skaggs, R., Nguyen, T., Wu, D.,
Dirks, J., Xie, Y., and Hejazi, M.: Vulnerability of the US western
electric grid to hydro-climatological conditions: How bad can it
get?, Energy, 115, 1–12, 2016.

Voisin, N., Hejazi, M. I., Leung, L. R., Liu, L., Huang, M., Li,
H.-Y., and Tesfa, T.: Effects of spatially distributed sectoral wa-
ter management on the redistribution of water resources in an
integrated water model, Water Resour. Res., 53, 4253–4270,
https://doi.org/10.1002/2016WR019767, 2017.

Voisin, N., Kintner-Meyer, M., Wu, D., Skaggs, R., Fu, T., Zhou,
T., Nguyen, T., and Kraucunas, I.: Opportunities for Joint Water–
Energy Management: Sensitivity of the 2010 Western US Elec-
tricity Grid Operations to Climate Oscillations, B. Am. Meteorol.
Soc., 99, 299–312, 2018.

Wada, Y., de Graaf, I. E. M., and van Beek, L. P. H.: High-
resolution modeling of human and climate impacts on global
water resources, J. Adv. Model. Earth Syst., 8, 735–763,
https://doi.org/10.1002/2015MS000618, 2016.

Wang, Q. J. and Robertson, D. E.: Multisite probabilis-
tic forecasting of seasonal flows for streams with zero
value occurrences, Water Resour. Res., 47, W02546,
https://doi.org/10.1029/2010WR009333, 2011.

Whateley, S., Palmer, R. N., and Brown, C.: Seasonal hydrocli-
matic forecasts as innovations and the challenges of adoption
by water managers, J. Water Res. Plan. Man., 141, 04014071,
https://doi.org/10.1061/(ASCE)WR.1943-5452.0000466, 2015.

Yang, T., Asanjan, A. A., Welles, E., Gao, X., Sorooshian, S., and
Liu, X.: Developing reservoir monthly inflow forecasts using ar-
tificial intelligence and climate phenomenon information, Water
Resour. Res., 53, 2786–2812, 2017.

Yang, X., Jia, L., Kapnick, S. B., Delworth, T. L., Vecchi, G. A.,
Gudgel, R., Underwood, S., and Zeng, F.: On the seasonal pre-
diction of the western United States El Niño precipitation pat-
tern during the 2015/16 winter, Clim. Dynam., 51, 3765–3783,
https://doi.org/10.1007/s00382-018-4109-3, 2018.

Yassin, F., Razavi, S., Elshamy, M., Davison, B., Sapriza-Azuri,
G., and Wheater, H.: Representation and improved param-
eterization of reservoir operation in hydrological and land-
surface models, Hydrol. Earth Syst. Sci., 23, 3735–3764,
https://doi.org/10.5194/hess-23-3735-2019, 2019.

Yuan, X., Wood, E. F., and Ma, Z.: A review on climate model-based
seasonal hydrologic forecasting: physical understanding and sys-
tem development, WIRES: Water, 2, 523–536, 2015.

Zhao, T., Yang, D., Cai, X., Zhao, J., and Wang, H.: Identifying
effective forecast horizon for real-time reservoir operation un-
der a limited inflow forecast, Water Resour. Res., 48, W01540,
https://doi.org/10.1029/2011WR010623, 2012.

www.hydrol-earth-syst-sci.net/24/1275/2020/ Hydrol. Earth Syst. Sci., 24, 1275–1291, 2020

https://doi.org/10.5194/hess-17-4555-2013
https://doi.org/10.1002/2016WR019767
https://doi.org/10.1002/2015MS000618
https://doi.org/10.1029/2010WR009333
https://doi.org/10.1061/(ASCE)WR.1943-5452.0000466
https://doi.org/10.1007/s00382-018-4109-3
https://doi.org/10.5194/hess-23-3735-2019
https://doi.org/10.1029/2011WR010623

	Abstract
	Introduction
	Method
	Justification for the concept of a horizon curve
	Derivation of horizon curves
	Experimental setup
	Classification of horizon curves
	Practical application of the horizon curve in a reservoir simulation

	Results
	Horizon curves for 316 dams
	Features of dams with significant horizon curves
	Improvements in reservoir simulations using the horizon curve

	Discussion
	Conclusions
	Appendix A: Definitions of feature performance scores
	Code and data availability
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

