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Abstract. Non-point source (NPS) pollution has degraded
groundwater quality of unconsolidated sedimentary basins
over many decades. Properly conceptualizing NPS pollution
from the well scale to the regional scale leads to complex and
expensive numerical models: key controlling factors of NPS
pollution – recharge rate, leakage of pollutants, and soil and
aquifer hydraulic properties – are spatially and, for recharge
and pollutant leakage, temporally variable. This leads to high
uncertainty in predicting well pollution. On the other hand,
concentration levels of some key NPS contaminants (salinity,
nitrate) vary within a limited range (< 2 orders of magnitude),
and significant mixing occurs across the aquifer profile along
the most critical compliance surface: drinking water wells
with their extended vertical screen length. Given these two
unique NPS contamination conditions, we here investigate
the degree to which NPS travel time to wells and the NPS
source area associated with an individual well can be appro-
priately captured, for practical applications, when spatiotem-
porally variable recharge, contaminant leakage rates, or hy-
draulic conductivity are represented through a sub-regionally
homogenized parametrization. We employ a Monte Carlo-
based stochastic framework to assess the impact of model
homogenization on key management metrics for NPS con-
tamination. Results indicate that travel time distributions are
relatively insensitive to the spatial variability of recharge
and contaminant loading, while capture zone and contami-
nant time series exhibit some sensitivity to source variability.
In contrast, homogenization of aquifer heterogeneity signifi-
cantly affects the uncertainty assessment of travel times and
capture zone delineation. Surprisingly, the statistics of rel-
evant NPS well concentrations (fast and intermediate travel

times) are fairly well reproduced by a series of equivalent ho-
mogeneous aquifers, highlighting the dominant role of NPS
solute mixing along well screens.

1 Introduction

The use of agrochemicals to address an ever-growing food
demand has led to the contamination of many sedimen-
tary groundwater basins underlying intensively farmed re-
gions (Nolan et al., 2002; Zektser and Everett, 2004; Rock-
strom et al., 2009). Given the broad, continuous expanse
of agricultural pollution sources across affected groundwa-
ter basins, this type of large-scale pollution is often referred
to as non-point source (NPS) pollution (Ritter and Shirmo-
hammadi, 2000). The development of effective protection
or remediation strategies in groundwater bodies affected by
NPS pollution will require understanding of the dynamics of
such pollution in groundwater systems. Important aspects of
NPS pollution are pollutant travel times, the location of well
source areas (also known as capture zones; Barlow et al.,
2018) to identify specific pollution sources, and the long-
term evolution of contaminant levels in and across affected
wells and streams. The predictive modeling of these pro-
cesses and associated management metrics is challenged by
the inherent complexity of NPS pollution in groundwater
systems.

Spatial variability represents a key source of complexity
to be considered in understanding pollutant transport in the
subsurface. Decades of investigation at contaminated indus-
trial sites have highlighted the critical role that aquifer het-
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erogeneity (e.g., the hydraulic conductivity) has in accurately
understanding the solute transport behavior to identify pol-
luters and to design effective remediation schemes and assess
associated risk (e.g., Dagan and Nguyen, 1989; Cvetkovic
et al., 1992; de Barros and Nowak, 2010; Henri et al., 2016).
Large aquifer heterogeneity significantly affects the macro-
dispersive behavior of contaminant plumes emanating from
point sources. Lacking data to characterize subsurface prop-
erties in sufficient detail introduces significant uncertainty in
the prediction of solute transport, the design of remediation
measures, and the prediction of future concentrations at wells
of interest (e.g., Dagan, 1984; Rubin, 2003). The prediction
of solute transport from the NPS to a compliance area of in-
terest (e.g., extraction or observation wells) has been shown
to be critically impacted by aquifer heterogeneity but also
by mixing along the screen of production wells: contaminant
mass arrivals in extraction wells may take decades to cen-
turies and are characterized by significant uncertainty (Hua
and Harter, 2006; Henri and Harter, 2019).

Unique to non-point sources, the spatial (and temporal)
variability of the source itself across a groundwater basin
introduces an additional level of system complexity. NPS
pollution of groundwater is typically associated with dis-
solved solutes associated with groundwater recharge across
the landscape. Both recharge rates and contaminant concen-
trations in non-point sources are subject to large spatial and
temporal variability. The variability is partly due to spatially
variable soil properties (e.g., Nielsen et al., 1973). These
properties control infiltration, recharge to groundwater, and
the fate and transport of contaminants in the unsaturated zone
(Hillel, 1980). Landscape management that leads to NPS pol-
lution releases, e.g., irrigation, fertilization, construction and
maintenance of urban, domestic, and other distributed waste
systems leaking incidentally or intentionally into groundwa-
ter, is also subject to large spatial and temporal variability
(Jordan et al., 1997). As with aquifer properties, the minutia
of such spatial and temporal variability cannot be measured
(or estimated) except at larger scales. For example, to the
degree that differences exist in average recharge and pollu-
tant loading between mappable landscape management sys-
tems, these may be explicitly represented in space and time
(e.g., Loague and Corwin, 1998; Nolan et al., 2018). This in-
cludes NPS differences between different farming systems
(Kladivko et al., 2004) or between crops (Logsdon et al.,
2002). Similarly, the degree to which mappable soil units af-
fect recharge and pollutant fate and transport to the water
table can also be explicitly represented (Biggar and Nielsen,
1976). However, spatial variability at smaller spatial scales
or between individual units of the same mappable class are
subject to stochastic variability (Sisson and Wierenga, 1981;
Vereecken et al., 2007). Furthermore, both the timing and the
spatial distribution of mappable and smaller-scale unknown
landscape processes is a stochastic process from a regional
management perspective, which is concerned with pollution
dynamics across an ensemble of wells.

The dual complexity of aquifer heterogeneity and spa-
tiotemporal source variability represent a largely unexplored
challenge in the assessment and management of NPS pol-
lution in aquifers. Yet, conceptually simplified approaches
have been successfully employed to predict general trends
and expected (average) contaminant behavior across ensem-
bles of pollutant receptors of interest (wells, stream reaches)
(e.g., Conan et al., 2003). Typically, these assessments lack
any measures to also assess predictive uncertainties.

Some key characteristics of NPS contamination on the
other hand make the NPS pollution system in groundwa-
ter well suited for upscaling without loss of information
relevant to understanding the range of impacts on recep-
tors: first, the individual compliance surface of interest (the
groundwater–well interface, the groundwater–stream reach
interface) is subject to complete mixing prior to exposure
(extracted well water, stream reach baseflow contribution).
For example, production wells for urban water supplies are
typically screened over dozens of meters (Henri and Har-
ter, 2019). Even domestic wells are typically screened ver-
tically over several meters of an aquifer system (Horn and
Harter, 2009; Perrone and Jasechko, 2019). Similarly, stream
reaches mix across an aquifer area of several tens to tens
of thousands of square meters. The source area associated
with such significantly sized compliance surfaces typically
has length scales exceeding 100 m and frequently exceeding
1 km (Horn and Harter, 2009; Henri and Harter, 2019). As a
result, extracted water will be a mixture of groundwater age
and source water quality (Weissmann et al., 2002; Koh et al.,
2018).

Secondly, while the source is widespread, compliance lev-
els of key NPS contaminants (e.g., salt, nitrate) are com-
monly much less than 1 order of magnitude lower than the
concentration in NPS recharge. This is characteristically dif-
ferent from most point-source contamination, where con-
centrations at the source may exceed compliance levels by
many orders of magnitude (e.g., Frind et al., 1999). With
the smaller difference between compliance and NPS recharge
concentration, mixing at the compliance surface (i.e., in the
well screen, at the stream reach scale) acts to homogenize the
NPS recharge signature in both space and time, thus reducing
the need to accurately characterize the variability in space
or in time to determine the mixed concentration at an indi-
vidual compliance surface (Kourakos et al., 2012). In con-
trast to assessing point sources of industrial pollution, signif-
icant simplification in the spatiotemporal representation of
both or either water and contaminant leakage rates and hy-
draulic conductivity may be possible without loss of accu-
racy. Bastani and Harter (2020) explored the homogeniza-
tion of temporal variability in NPS behavior. Yet little work
has been done to better understand and quantify the degree
to which spatiotemporal variability in NPS representation or
spatial variability in aquifer representation can be homog-
enized in NPS simulation tools while still accurately pre-
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dicting NPS management metrics, including concentrations
at compliance surfaces.

In this paper, we assess the degree to which detailed spa-
tial representation of both the aquifer hydraulic conductiv-
ity and of contaminant source parameters – recharge rate of
water and contaminant loading from the NPS to the ground-
water table – can be homogenized in NPS models without
reducing model accuracy. We consider three NPS manage-
ment metrics and use a comparative simulation approach for
our assessment.

Our starting point is a set of simulations that predict the
long-term contamination of an aquifer from NPS pollution
under highly resolved heterogeneous aquifer and NPS source
conditions. Results are compared against various simulation
scenarios with homogenized representations of the aquifer
and source heterogeneity. We compare results from various
homogenization scenarios by focusing on three stochastic
management metrics: the travel time distribution to produc-
tion wells, the stochastic capture zone, and the stochastic
contaminant time series in well water. Stochastic manage-
ment metrics are quantified both for the pollution variability
across an ensemble of production wells encountered over a
basin and for the uncertainty about pollution levels at an indi-
vidual well. The later assumes structural ergodicity (Dagan,
1990), i.e., that the mean and variance of a single realiza-
tion of the hydraulic conductivity field are close to the same
statistics of the ensemble distribution (see the histograms in
Supplement Fig. S1).

2 Methodology

2.1 Reference case

We consider an unconsolidated sedimentary aquifer system
typical of the Central Valley (California, USA), initially un-
contaminated (e.g., pre-development state) and subject to
nitrate pollution from agricultural NPS sources. The sub-
region is characterized by a semi-arid Mediterranean climate,
with dry summers and significant winter precipitation oc-
curring mostly via the surrounding mountain ranges. The
Central Valley groundwater basin is subject to intensive ir-
rigated agricultural activities supported by reservoirs manag-
ing surface water inflows from surrounding mountain ranges
and by groundwater. Over the past 8 decades, irrigation and
groundwater pumping have added a significant vertical flow
component: lateral groundwater flow fed by mountain front
recharge and discharged along the thalweg used to dominate
the groundwater system dynamic. Modern groundwater dis-
charge is mostly due to groundwater extraction. Recharge
from intensive irrigation is superimposed on a weak lateral
gradient, significantly increasing the importance of down-
ward flows (Faunt, 2009). Water recharged from the irrigated
landscape to groundwater bodies carries significant loading

of agricultural NPS pollutants, such as salt or nitrate (e.g.,
Baram et al., 2016).

The simulated soil and aquifer contamination setting rep-
resents conditions typically encountered in the Central Val-
ley’s agricultural basins, but are not specific to a particular
location. We represent heterogeneity in the hydraulic con-
ductivity as well as the spatial variability in soil types and
land use. The latter two are key characteristics that control
spatial variability in recharge and contaminant leakage rates.
The transfer of water and nitrate from the soil surface to the
aquifer is estimated through the modeling of flow and trans-
port in the unsaturated zone for a series of typical soil types
and crops found in the Central Valley.

2.1.1 Stochastic analysis

Uncertainty in the representation of the spatial variability of
the aquifer and soil hydraulic conductivity is systematically
accounted for through the use of a geostatistical model in
a Monte Carlo framework (Rubin, 2003). The propagation
of variability and uncertainty into management metrics is as-
sessed across an ensemble of production wells. Assuming er-
godicity (Dagan, 1990), stochastic analysis is applied to first
quantify uncertainty about pollution outcomes at individual
wells and to secondly quantify regional spatial variability in
pollution outcomes across an ensemble of wells: to character-
ize the uncertainty at an individual well, a large number of re-
alizations of individual wells with equiprobable aquifer and
soil realizations is generated. Flow and transport processes
across each are solved using a specified (fixed), mappable
land-use representation. To assess the spatial variability of
NPS management metrics across an ensemble of well loca-
tions in a groundwater basin, the equiprobable realizations of
the aquifer system represent the variety of locations across a
basin with geostatistically similar geological features. This is
true since the domain is designed to ensure that source areas
of the three production wells are fully accommodated and
that each well’s area of capture can be considered indepen-
dent. In the case of a regional analysis, land use is simulated
as a random process.

Then, stochastic management metrics quantify both the
mean and variability of pollution levels across a large sam-
ple of production wells encountered over a basin as well as
the expected value and uncertainty about pollution levels at
an individual well. This is done by simulating stationary ran-
dom fields (Fig. S3) and assuming ergodic conditions (e.g.,
Gelhar, 1993; Rajaram, 2002).

2.1.2 Aquifer

Spatial variability in the aquifer hydraulic conductivity (K)
is represented using the transition probability/Markov chain
method (Carle, 1999) for generating random realizations of
the hydrofacies field (Carle and Fogg, 1996, 1998). Here,
we consider four hydrofacies: gravel, sand, muddy sand and
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Figure 1. Illustration of the methodology used in the study,
considering a representative quadrilateral subsystem of a highly
heterogeneous alluvial aquifer system, 19.2× 6× 0.25 km3

(12 miles×3.75 miles×820 feet). A land-use map is randomly
generated (a). Each color represents a different crop. A soil map
(b) is extracted from the top layer of each geostatistical realization
of the hydraulic conductivity (K). For each combination soil-type–
crop, effective leakage rates of water and nitrate are numerically
estimated. White particles represent a snapshot of the NPS pollu-
tion (particles) 80 years after a single year of contaminant loading.
In each simulation, three extraction wells are explicitly represented
at the downstream location of the domain. The lower part of each
well (in red) represents its screen from where water is extracted
and from where mass arrival is recorded. Other wells are implicitly
represented by the flux into the lower boundary of the domain.

Table 1. Proportion and hydraulic conductivity of the four cate-
gories (g: gravel; s: sand; ms: muddy sand; m: mud).

g s ms m

proportion ( %) 0.10 0.35 0.25 0.3
hydraulic conductivity (m d−1) 200.0 50.0 0.5 0.01

mud. The geostatistical model requires the characterization
of the proportion, mean length and hydraulic conductivity of
each facies, and of the facies-to-facies transition probability
rates. We set these parameters to be representative of Cen-
tral Valley aquifer conditions (Weissmann and Fogg, 1999a,
b) (Table 1 and 2). A total of 50 realizations of the K field
was generated. An example of a K field can be observed in
Fig. 1. The histograms of the mean and the variance of the
logarithm of K are shown in Fig. S3. Fifty realizations were
sufficient to converge the lower statistical moments ofK and
of the resulting mean velocities (Fig. S9).

2.1.3 Soil map

The top layer of eachK-field realization is here considered to
represent the (unmapped) spatial variability of the soil type.
Thus, a soil map, displaying the spatial distribution of the
four hydrofacies at the land surface, is geostatistically con-

Table 2. Mean length (diagonal values) of each category (g: gravel;
s: sand; ms: muddy sand; m: mud) and embedded transition proba-
bility (non-diagonal values) in the longitudinal (x), horizontal trans-
verse (y), and vertical transverse (z) directions. Matrices read as
transition probabilities from the row facies to the column facies.
The background category is designated by the letter b.

(x) g s ms m

g Lg,x = 800.0 m 0.7 0.15 b
s 0.7 Ls,x = 1500.0 m 0.28 b
ms 0.15 0.28 Lms,x = 1000.0 m b
m b b b b

(y) g s ms m

g Lg,y = 500.0 m 0.7 0.15 b
s 0.7 Ls,y = 850.0 m 0.28 b
ms 0.15 0.28 Lms,y = 900.0 m b
m b b b b

(z) g s ms m

g Lg,z = 2.0 m 0.7 0.15 b
s 0.7 Ls,z = 3.5m 0.28 b
ms 0.15 0.28 Lms,z = 2.0 m b
m b b b b

sistent with each realization of the aquiferK field underlying
the soil horizon.

2.1.4 Land use

The landscape of the simulated sub-basin is considered to
be exclusively occupied by agricultural activities. Six differ-
ent crop types are randomly distributed over a domain of
19200 m×6000 m. The crops are almond, citrus, corn, cot-
ton, grain and grapes. All fields are of the same rectangular
dimension, 360 m×300 m (11 ha, 27 acres). The spatial dis-
tribution of crop types is generated randomly and fulfills the
following proportions of the six crop types: 24 % of almond,
24 % of citrus, 18 % of corn, 12 % of cotton, 12 % of grain,
and 10 % of grapes (Table 3). Crop types and proportion are
representative of what may be encountered in the southeast-
ern Central Valley (Harter et al., 2012).

2.1.5 Estimation of recharge and contaminant leakage

Numerical simulations were conducted to simulate the va-
dose zone flow and transport processes across all possible
crop and soil-type combinations. Here, the gravel category in
a soil layer was assumed to represent the same sandy soil as
the sand category. Hence, a total of 18 vadose zone profiles
represent all possible combinations of the 6 different land
types (crops) and 3 different hydraulic soil profiles (sand,
muddy sand, and mud). Simulations provide time-varying
recharge and pollutant leakage rates for each of the 18 pos-
sible land-use and soil combinations at the water table of the
respective underlying aquifer system. The time series of the
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18 simulations are computed a priori and then applied to de-
fine the water table boundary conditions of the groundwater
flow and transport simulations.

Governing equations

One-dimensional water flow in soils is described by the
Richards equation (Diamantopoulos and Durner, 2012):

∂θ

∂t
=
∂

∂z

[
K ′(ψ)

(
∂

∂z
+ 1

)]
− S, (1)

where θ (–) is the volumetric water content, t (d) is time,
z (m) is the vertical spatial coordinate, positive upward,
ψ (m) is the pressure head, K ′(ψ) (m2 d−1) is the satu-
rated/unsaturated hydraulic conductivity as a function of ψ
and S is the sink term, representing root water uptake (d−1).
The water retention curve θ(ψ) and the hydraulic conductiv-
ity curve are required. The two functions are described by the
van Genuchten–Mualem (van Genuchten, 1980) model:

θ(ψ)=

{
θr+ (θs− θr)× (1+ | αψ |n)−m ψ < 0,
θs ψ ≥ 0, (2)

Se =
θ(ψ)− θr

θs− θr
, (3)

K ′(Se)=Ks× S
l
e×

[
1−

(
1− S1/m

e

)m]2
, (4)

where θs and θr (–) are the saturated and residual water con-
tents, respectively, α (m−1), n (–), m (–), and l (–) are shape
parameters, m= 1− 1/n,n > 1, and Se (–) is the effective
saturation.

Solute transport for a conservative tracer is described using
a standard advection–dispersion equation of the form

∂θc

∂t
=
∂

∂z

(
θD

∂c

∂z

)
−
∂qc

∂z
− S× c, (5)

where c (g m−3) is the concentration of the solute in the liq-
uid phase, D (m2 d−1) is the dispersion coefficient, q is the
volumetric water flux density (m d−1) evaluated with the flow
equation and S× c (g m−3 d−1) is the root nutrient uptake
for the case of passive uptake. By focusing on hydrodynamic
dispersion, D is defined as

D = λq/θ, (6)

where λ is the dispersivity (m).

Parametrization of Hydrus 1D

For the numerical solutions of Eqs. (1) and (5), we used the
Hydrus 1D software (Šimunek et al., 2016). Root water up-
take for the six different crops was simulated by assuming
a macroscopic root water uptake approach (Feddes et al.,
1978). The parameters for Eqs. (2) and (5) were estimated by
using the Rosetta pedotransfer function (Scaap et al., 2004)

Table 3. Area distribution, fertilization application and root zone
depth for the five crops considered in this study.

Crop Area (%) Fertilization applicationa Root zoneb

(kg ha−1 yr−1) (cm)

Almond 24.0 246.0 137.0
Citrus 24.0 157.0 107.0
Corn 18.0 239.0 91.0
Cotton 12.0 195.0 122.0
Grain 12.0 198.0 91.0
Grapes 10.0 39.0 91.0

a From Harter et al. (2012). b From the United States Department of Agriculture
(1997).

and are shown in Table 4. For each soil horizon, dispersivity
values were calculated by using the pedotransfer function of
Perfect et al. (2002).

The simulation time was 21 years, from 1 January 1995
until 31 December 2015. Of the 21 years, the first 11 were
used as a warm-up period and the remaining 10 were used
to represent temporally variable boundary conditions at the
top of the groundwater system. For an initial condition of
Eqs. (1) and (5), we assumed a uniform distribution of the
pressure head and a solute-free profile, respectively. The up-
per boundary condition for the flow problem accounts for
precipitation, irrigation, and crop evapotranspiration. Daily
reference (grass) evapotranspiration (ET0) and precipitation
(P ) from the Stratford Meteorological Station (California Ir-
rigation Management Information System (CIMIS)) are used
to represent southeastern Central Valley climate conditions.
For each crop, ET0 values were converted to potential crop
evapotranspiration (ETc) by using the single crop coefficient
method (Allen et al., 1998). Daily time series of boundary
conditions are used in Hydrus 1D. Based on calculated ETc
and P values, we created an irrigation schedule for each com-
bination of crop-soil type, using the so-called evapotranspi-
ration method (Allen et al., 1998). Irrigation was assumed to
take place only during the crop period and not through the
winter period (Fig. 2). For all crop–soil combinations, we as-
sume three fertilization events per year with the total amount
of fertilizer application given in Table 3.

Preparing water table boundary conditions from
unsaturated zone simulation results

Simulations led to an estimation of the temporal evolution
of water and nitrate leakage rate at the bottom of the 1-
D profile (Figs. S1 and S2) for each crop–soil-type combi-
nation, at daily time steps. For the sake of simplicity, our
groundwater simulations are conducted for steady-state flow
(but transient transport) conditions. Following Bastani and
Harter (2020), we homogenize both recharge and pollutant
flux in time and compute average, effective recharge and ni-
trate leakage rates over a 10-year time series (illustration in
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Table 4. Horizon depth, soil hydraulic properties and dispersity of each horizon, for the three different soil profiles assumed in this study.

Soil type Horizons θr θs α n Ks l λ

(cm) (cm3 cm−3) (cm3 cm−3) (cm−1) (–) (cm d−1) (–) (cm)

S1 0–20 0.036 0.389 0.033 1.41 20.30 −1.03 2.0
20–56 0.035 0.389 0.036 1.43 23.44 −1.06 3.6
56–86 0.038 0.388 0.034 1.42 20.39 −1.07 3.0

86–147 0.035 0.389 0.038 1.44 25.49 −1.06 6.1
147–1000 0.033 0.391 0.040 1.47 29.72 −1.03 3.0

0–30 0.039 0.376 0.057 1.66 50.17 −1.08 3.0

S2 30–107 0.048 0.370 0.055 1.86 46.55 -1.07 7.7
107–1000 0.032 0.343 0.056 1.66 46.66 −1.07 4.3

0–23 0.091 0.4988 0.022 1.19 7.86 −3.01 2.3

S3 23–94 0.084 0.4978 0.014 1.22 0.09 −1.58 7.1
94–1000 0.094 0.4740 0.018 1.27 4.28 −1.52 5.6

Figure 2. Illustration example of daily values of potential crop evap-
otranspiration (orange points) used for the description of the upper
boundary condition. The blue bars represent rainfall events and the
light blue bars irrigation events. The red bar defines fertilization
application for an amount equal to 65 kg ha−1 (195 kg ha−1 yr−1).
The crop is cotton.

Figs. S1 and S2 and average values in Table 5). For each
of the 50 K-field (and, therefore, soil map) realizations, the
temporally homogenized results for each crop–soil combina-
tion are then used to describe the spatial distribution of the
effective recharge (r(x,y)) and nitrate mass flux (m0(x,y)).
Histograms of the mean and the variance of recharge rate (r)
and initial concentrations (c0) are shown in Figs. S4 and S5,
respectively.

2.2 Groundwater flow and transport

2.2.1 Flow

Groundwater flow and nitrate transport are numerically sim-
ulated. We consider a 3-D aquifer with a length (Lx) of
19200 m, a width (Ly) of 6000 m, and a depth (Lz) of 250 m
(Table 6). Average steady-state groundwater flow conditions

are governed by (Rushton and Redshaw, 1979)

∂

∂x

(
Kxx

∂h

∂x

)
+
∂

∂y

(
Kyy

∂h

∂y

)
+
∂

∂z

(
Kzz

∂h

∂z

)
+Q′s = 0, (7)

where h (m) is the hydraulic head, and Q′s is a volumetric
flux per unit volume representing sources and sinks of wa-
ter. Groundwater fluxes are simulated by solving numerically
Darcy’s law:

q(x)=−K(x)∇h(x), (8)

where q (m d−1) is the specific discharge in the three dimen-
sions x = {x,y,z}. The longitudinal flow is defined by a re-
gional gradient of 1.0× 10−3. The vertical flow is impacted
by recharge and by a downward flux from the bottom of the
domain. The spatially distributed fixed flux boundary condi-
tion across the bottom of the domain represents water flux
to pumping wells in the deeper part of the aquifer and the
effect of implied, non-simulated groundwater extraction by
wells distributed throughout the lower part of the simulated
aquifer sub-basin. Domestic wells are not considered to sig-
nificantly affect flow and transport processes and are not sim-
ulated. Recharge is considered spatially variable to account
for realistic spatial distribution of crop and soil types (see
Sect. 2.1.5). For indications about the range of values and
degree of variability, histograms of the mean and variance of
the recharge rates applied in the 50 realizations of heteroge-
neous cases are shown in Fig. S4.

Three extraction wells are located near the downstream
edge of the domain. The extraction rate, Qout, is set to
3000 m3 d−1 (551 gpm), corresponding to an actual irrigation
pumping rate of 6000 m3 d−1 (1102 gpm) or 9000 m3 d−1

(1653 gpm) during a 6-month or 4-month annual irrigation
season, respectively. The length of the well screen is loca-
tion and realization dependent, depending on the vertical dis-
tribution of highly conductive material (gravel, sand) (Ap-
pendix A). The total outflow (downward flux at the domain
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Table 5. Recharge rate and nitrate mass flux applied for each crop–soil-type combination.

r almond citrus corn cotton grain grapes
(m3 m−2 d−1)

S1 2.3× 10−3 1.7× 10−3 1.5× 10−3 1.7× 10−3 4.1× 10−4 1.8× 10−3

S2 1.7× 10−3 1.4× 10−3 1.3× 10−3 1.4× 10−3 5.0× 10−4 1.4× 10−3

S3 2.9× 10−5 2.3× 10−4 2.6× 10−4 2.0× 10−4 2.0× 10−5 1.5× 10−4

mf almond citrus corn cotton grain grapes
(g m−2 d−1)

S1 2.8× 10−2 2.5× 10−2 2.0× 10−2 2.1× 10−2 1.4× 10−2 4.6× 10−3

S2 2.8× 10−2 2.1× 10−2 1.5× 10−2 1.4× 10−2 1.8× 10−2 4.3× 10−3

S3 0.0 1.9× 10−10 3.3× 10−9 0.0 0.0 0.0

Table 6. Domain discretization and physical parameters used in all the simulations.

Parameter Value

Domain discretization

Number of cells, nx × ny × nz 120 × 60 × 625
Cell dimension, 1x ×1y ×1z (m× m× m) 160.0× 100.0× 0.4
Domain length, Lx ×Ly ×Lz (m× m× m) 19200.0× 6000.0× 250.0

Flow and transport problem

Porosity, φ (–) 0.3
Average longitudinal hydraulic gradient, ix (–) 1× 10−3

Extraction rate, Qout (m3 d−1) 3× 103

bottom plus extraction at the three wells) is set to be equal to
the inflow of water by recharge. The resulting water flow sys-
tem representation is solved using MODFLOW (Harbaugh
et al., 2000) for each realization of the K field and the upper
boundary.

2.2.2 Transport

Nitrate transport is modeled using the advection–dispersion
equation (ADE) given by

φ
∂c

∂t
=∇ · (φD∇c)+∇ · (qc), (9)

where c is the solute concentration, D is the 3-D dispersion
tensor, and φ is the porosity. The ADE is solved by the ran-
dom walk particle tracking (RWPT) method implemented in
Fortran code RW3D (Fernàndez-Garcia et al., 2005; Henri
and Fernàndez-Garcia, 2014, 2015). RWPT solves the ADE
by moving a large number of particles in successive jumps
given by Salamon et al. (e.g., 2006).

xp(t +1t)= xp(t)+1t[v(xp(t))+∇ ·D(xp(t))]

+

√
D(xp(t))1t · ξ(t), (10)

where xp is the particle position, v is the velocity vector, and
ξ is a normally distributed random variable with zero mean
and unit variance.

The detailed discretization of the velocity field described
above captures the most relevant characteristics affecting the
macro-dispersive transport behavior (LaBolle, 1999; LaBolle
and Fogg, 2001; Weissmann et al., 2002; Henri and Har-
ter, 2019). Therefore, effects of grid-scale dispersion are as-
sumed to be negligible, i.e., D= 0, and Eq. (10) is simpli-
fied to xp(t+1t)= xp(t)+1t×v(xp(t)). This assumption,
which potentially impacts NPS management metrics, is fur-
ther evaluated in Appendix B.

Nitrate transport originating from the water table is sim-
ulated using an instantaneous injection of 500 000 particles
over the entire top of the domain. Particle transport is tracked
using the RWPT algorithm (Eq. 10) for a simulation time
of 350 years. In simulations with spatially variable initial
contaminant mass loading, the local density of particles re-
produces the local initial concentration (c0(x,y)) in recharge
water at the groundwater table. Histograms of the mean and
variance of the initial concentration over the 50 realizations
are shown in Fig. S5 if a visualization of the range of val-
ues and of the variability is needed. Following the superpo-
sition principle, the cumulative mass arrival at wells result-
ing from an instantaneous injection of mass m0 can be in-
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terpreted as ṁ(t), the simulated mass flux at wells resulting
from a continuous and temporally constant release of mass
m0. Well concentrations are computed as cw(t)= ṁ(t)/Qout.
Flow and transport are simulated for each realization of the
K-field and water table boundary condition.

2.3 Non-point source pollution management metrics

Three relevant non-point source (NPS) pollution manage-
ment metrics are considered to measure the stochastic sim-
ulation outcomes: the probability density function of pollu-
tant travel times to wells, the probability distribution of pol-
lutant concentration in wells, and the probability distribution
of source locations.

2.3.1 Pollutant travel times

The probability density function of travel times is obtained
by recording travel times of particles to the compliance area,
that is, the screen of the extraction well, for each particle. We
obtain normalized travel times ti by computing the time re-
quired to observe a specified fraction i of the total mass that
reaches a well over the total 350-year simulation period. For
instance, t5 represents the travel time from the water table to
the well for the fifth percentile of the total mass reaching the
well in 350 years. Following a stochastic approach, proba-
bility density functions (pdfs) of travel times ti are obtained
using time series from 150 simulated wells (50 realizations,
each with 3 wells). Figure S6 shows satisfactorily the conver-
gence of the mean and variance of t50. Travel time pdfs can
represent a useful tool to assess both the expected time of
solute arrival at the compliance area and the propagation of
uncertainty from the hydraulic conductivity field to pollutant
transport (e.g., Dagan and Nguyen, 1989; Cvetkovic et al.,
1992; de Barros and Rubin, 2008; Henri et al., 2016).

2.3.2 Pollutant concentrations in wells (breakthrough
curves)

The assessment of potential contaminant levels in extraction
wells represents a key step in NPS pollution management.
Under uncertain flow conditions, managers would benefit
from knowing the probability of exceeding a threshold con-
centration such as the maximum contaminant level (MCL) in
a given well or in a series of wells. For each of the 150 simu-
lated wells, breakthrough curves c(t) are obtained. Figure S7
shows satisfactorily the convergence of the mean and vari-
ance of the concentration exceeded by 50 % of wells. Their
probability distribution Pi(c, t) is obtained as a sample dis-
tribution of c(t), where Pi(c, t) is the probability of i% of
wells exceeding the contaminant level c at time t .

2.3.3 Capture zones

NPS pollution management may also require the assessment
of the effective source area, i.e., the capture zone or con-

tributing area of the pollution observed in a production well.
The spatial variability of hydraulic properties leads to uncer-
tainty about and spatial variability of the source area (e.g.,
Varljen and Shafer, 1991; Franzetti and Guadagnini, 1996;
Riva et al., 1999; Stauffer et al., 2002). In the stochastic
framework, the capture zone is assessed by defining the spa-
tial distribution of the probability that a contaminant leaking
from the NPS will reach a well (Pw), i.e.,

Pw(xNPS)= Prob(xp(t ∈ [0, tend])

= xw | xp(t = 0)= xNPS), (11)

where xp is the 3-D location (in the Cartesian coordinate sys-
tem given by x = {x,y,z} of a portion of the plume (repre-
sented by a particle in this study), xw is a location shared
with a well screen, and xNPS is a given location of the NPS.
The spatial extension of non-zero probabilities then forms a
probabilistic capture zone. The time required for a contami-
nant leaving a given location of the contributing area to reach
the extraction well (or so-called time-related capture zone) is
also stochastically analyzed.

3 Upscaling and test cases

3.1 Homogenization of source terms

The NPS metrics from fully heterogeneous simulations are
compared to the NPS metrics obtained from a range of up-
scaled (e.g., Fleckenstein and Fogg, 2008), homogenized
simulations that employ effective homogeneous properties
rather than the original heterogenous distribution of theK , r ,
and c0 terms. The source terms (r(x,y), c0(x,y)) are homog-
enized separately for each realization by spatial averaging to
obtain 〈r〉 and 〈c0〉. Histograms of 〈r〉 and 〈c0〉 show signifi-
cant variability of the homogenized source terms between re-
alizations (Figs. S3 and S4). Homogenized recharge rates and
source concentrations range from 0.9 to 1.4 m d−1 m−2 and
from 5.0 to 8.5 g m−3, respectively. A number of different
homogenized models are considered and compared against
the reference case:

– a heterogeneous r and heterogeneous c0 (reference
case);

– a heterogeneous r and homogeneous c0;

– a homogeneous r and heterogeneous c0;

– a homogeneous r and homogeneous c0.

3.2 Homogenization of the hydraulic conductivity and
transport upscaling

To simulate flow and transport in equivalent homogeneous,
upscaled K conditions, we estimate the effective longitudi-
nal and transverse vertical hydraulic conductivity, K∗x and
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K∗z , and dispersion, α∗L and α∗TV. The transverse horizontal
(y-direction) component of transport is considered negligible
given the size of the NPS plume and given that no gradient
in y was applied. Effective parameters in the longitudinal di-
rection (K∗x and α∗L) are determined from the first and second
spatial moments of a plume resulting from an injection of
mass in a vertical plane of width 3000 m and depth 50 m. The
same approach is adopted to estimate the effective parame-
ters in the transverse vertical direction (K∗z and α∗TV) by in-
jecting particles in a horizontal plane covering the entire top
of the domain. No extraction is considered in both cases in
order to capture the natural behavior of the plume. For each
realization of theK field, the slope of the temporal evolution
of the first spatial moment, i.e., the plume center of mass,
is used to evaluate the apparent velocities, v∗x and v∗z . After
estimation of the gradients from simulated head differentials
in the x and z directions, Darcy’s law is applied to evaluate
effective hydraulic conductivities K∗x and K∗z (Eq. 8). Effec-
tive dispersion values (α∗L and α∗TV) are similarly obtained
by analyzing the slope of the normalized second spatial mo-
ment of the particle plume. The importance of representing
upscaled dispersion is independently tested. Histograms of
results of upscaled K∗x , K∗z , α∗L, and α∗TV values as well as
the satisfactory convergence of the mean of the apparent pa-
rameters after 50 realizations are shown in Figs. S8 and S9,
respectively.

Furthermore, the cumulative implication of homogeniza-
tion in aquifer properties and in the source terms c0 and r is
tested. The series of scenarios considered are

– a heterogeneous K , a heterogeneous r and a heteroge-
neous c0 (reference case);

– an upscaled K , r and c0, considering advection only;

– an upscaled K , a heterogeneous r and c0, considering
advection only;

– an upscaled K , a heterogeneous r and c0, considering
advection and upscaled dispersion.

4 Results and discussion: homogenization of source
terms

The effect of conceptually simplifying recharge, contami-
nant input concentration, and aquifer heterogeneity on the
stochastic description of travel times, well concentrations,
and capture zones is here illustrated specifically for the case
of quantifying uncertainty about these NPS pollution man-
agement metrics at a particular well surrounded by a spa-
tially distributed but fixed (known) distribution of land use
across all realizations (scenario “LU 1”). Alternatively, the
effects of homogenization on the analysis of spatial vari-
ability across an ensemble of wells in a groundwater basin,
where land use is different in each realization (scenario “LU
50”), are further discussed in Sect. 6.

Figure 3. Probability density function of the time required for
5 % (a), 50 % (b), and 95 % (c) of the total recorded mass to reach
a well considering a heterogeneous r and heterogeneous c0 (refer-
ence case, red line); a homogeneous r and heterogeneous c0 (yellow
line); a heterogeneous r and homogeneous c0 (light blue line); a ho-
mogeneous r and homogeneous c0 (green line). Plain lines refer to
the consideration of an identical land-use map for all realizations.
For comparison, the red dashed lines show outputs from simulations
with realization-dependent land-use maps.

4.1 Travel time

We analyze the pdfs of travel times for the fifth per-
centile (t5), 50th percentile (t50) and 95th percentile (t95)
masses reaching a well within the 350-year simulation pe-
riod (Fig. 3). These metrics characterize the temporal vari-
ability of the early, median, and late mass travel times from
1-year pollutant (e.g., nitrate) input to the aquifer system. For
all simulations, early mass travel times are within a range
of 10 to 100 years with a peak of probability of 50 years
(Fig. 3a). Late mass travel times are likely to be in the range
of 50 to 300 years (Fig. 3c), with a peak probability at about
120 years. These results are roughly consistent with the esti-
mation of groundwater age distribution made by Weissmann
et al. (2002) in the San Joaquin Valley from detailed mod-
eling and from chlorofluorocarbon (CFC) age data (mean
groundwater ages of 10 to 50 years in 2 to 3 times shallower
wells than the ones simulated in this study).

The homogenization of recharge spatial variability directly
affects the flow field in the uppermost part of the aquifer.
While the effect is larger than the homogenization of the
concentration (see the next paragraph), it also has no signif-
icant impact on travel time pdfs (Fig. 3): the distributions
are slightly less spread out over the time axis, with slightly
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higher and earlier modes (peak of the pdf) and lower prob-
abilities in the tails of the pdf (probability differences at
all times < 5 %), especially of the late travel time (prob-
ability differences at all times around 10 %). Previously,
Li and Graham (1998) investigated the impact of recharge
spatial variability in a more theoretical and simplified 2-D
heterogeneous aquifer contaminated by a point source un-
der non-pumping conditions. The work highlights that spa-
tial variability in recharge increases spreading, especially in
the transverse direction. In our 3-D NPS setting, transverse
spreading is less relevant (Fig. 3), and we do not observe the
increase in variability.

The homogenization of initial concentrations has no phys-
ical impact on travel times since it does not affect the veloc-
ity field in the groundwater system. However, the difference
in input concentration changes the distribution of the initial
mass across the water table. Hence, there are small but dis-
cernible differences in the travel time pdfs of variable and
homogeneous c both in the case of spatially variable r (red
and blue lines in Figs. 3) and in the case of homogeneous r
(yellow and green lines in Fig. 3).

Importantly, the homogenized representation of r and c
has nearly no effect on the time span between early and late
arrival times at the well screen (the contrast in the position
of the travel time pdfs for t5 and t95), which represents the
age difference between the youngest and oldest water cap-
tured by the well screen and then mixed during the pumping
process (Weissmann et al., 2002; Koh et al., 2018; Henri and
Harter, 2019).

4.2 Stochastic capture zone

The stochastic capture zone (or source area) is the area char-
acterized by Pw(x,y) > 0. Simulation results for the fully
stochastic representation of source heterogeneity show that
the stochastic capture zone covers an area of about 8000
by 4000 m (about 30 % of the simulated domain, containing
approximately 300 individual fields), while the zone from
where mass is most likely to reach a well (critical zone,
Pw(x,y) > 0.5) is more spatially focused (about 3 % of the
simulated domain, the size of about 30 individual fields; see
Fig. 4).

As explained above, homogenizing the input concentration
does not affect the velocity field and transport processes and
only slightly reduces Pw values of the critical zone (Fig. 4b).
On the other hand, not accounting for spatial variability in
recharge leads to an overestimation of Pw values inside the
critical zone (Fig. 4c). The same observation is made when
both r and c0 are considered homogeneous (Fig. 4d). The lo-
cation of the critical zone, being controlled by regional flow
conditions and well characteristics (extraction rate, depth and
length of the screen), is not impacted by the spatial descrip-
tion of source terms. Spatial variability in the recharge is re-
sponsible for somewhat more uncertainty (i.e., a decrease in
the highest Pw values) in the exact delineation of the capture

Figure 4. Probability of a particle leaving a given grid cell to reach
a well accounting for a heterogeneous r and heterogeneous c0 (ref-
erence case, a); a heterogeneous r and homogeneous c0 (b); a ho-
mogeneous r and heterogeneous c0 (c); a homogeneous r and ho-
mogeneous c0 (d); a lnK-weighted r and lnK-weighted c0 (e).

zone along its margins than what is captured by the homoge-
nization of c0.

Recharge rates, if considered heterogeneous, are by de-
sign correlated with the hydraulic conductivity. Highly con-
ductive material is associated with high recharge rates,
which may increase the channeling effect through preferen-
tial paths. Accounting for spatial variability in the recharge
rate will, therefore, exacerbate the impact of the heterogene-
ity on the K field, especially near the water table (where
recharge is applied), thus increasing the uncertainty about de-
lineating the source area.

Just as travel time pdfs are little affected (Fig. 3), the over-
all location of the stochastic capture zone is approximated
quite well with the homogenized parametrization of concen-
tration and recharge. Consequently, the average travel times
required for a particle leaving a given location of the NPS to
reach a well also are not dramatically impacted by the spatial
representation of the two source terms (Fig. 5). The aver-
age flow condition is common to all simulations. Since the
top of well screens is 100 m deep, the solute transport from
the source to the compliance areas occurs mostly at depths
far away from the spatially variable top boundary condition,
where local changes in flow conditions at the surface does
not impact significantly groundwater fluxes.
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Figure 5. Expected travel time (years) of a particle leaving a given
grid cell and reaching a well for a heterogeneous r and heteroge-
neous c0 (reference case, a); a heterogeneous r and homogeneous
c0 (b); a homogeneous r and heterogeneous c0 (c); a homogeneous
r and homogeneous c0 (d); a lnK-weighted r and lnK-weighted
c0 (e).

4.3 Well NPS pollution concentration

A common characteristic of NPS pollution different from
many point source cases is the temporal continuity and con-
sistency in NPS inputs. For example, significant nitrate load-
ing to groundwater began with the introduction of commer-
cial fertilizer just before World War II and has continued
since then (Rockstrom et al., 2009; Harter et al., 2017).
The long-term consequence of such continuous NPS load-
ing, year after year, can be obtained from our simulations by
superpositioning breakthrough curves obtained for NPS out-
put in a single year at t = 0. If we neglect long-term trends
or year-to-year variations in NPS and assume a constant in-
put of nitrate to the water table, then the stochastic break-
through curve at the well screen is simply obtained by com-
puting the cumulative distribution function (CDF) of the con-
centration pdf (Henri and Harter, 2019) (Fig. 6). The CDF
plots provide a measure of the expected time at which a given
threshold contaminant level (in the x axis) such as the MCL
(10 mg L−1 for nitrate as nitrogen in the US) will be exceeded
with a probability of 90 % (P90, left), 50 % (P50, center), or
10 % (P10, right). In a regional context, these graphs can be
interpreted as the time (x axis) after which at least 90 %,
50 %, and 10 % of all wells in the aquifer region exceed a
concentration of interest (y axis), respectively.

For the reference scenario (red curve in Fig. 6), we observe
that the concentration eventually exceeded by 90 % of wells
is about 4.5 mg N L−1, after about 250 years (left graph in
Fig. 6). Half of the wells will have a concentration exceeding
11 mg N L−1 (again, after about 250 years). Also in at least
half of the wells, the onset of rising nitrate levels (to above
background levels) will occur no later than 50 years after the
start of nitrate loading, reaching levels corresponding to half
of the MCL (5 mg N L−1) after about 70 years, and reach-
ing the MCL (10 mg N L−1) no later than about 150 years
(middle graph in Fig. 6). The 10 % most nitrate contami-
nated wells will show an onset of nitrate contamination no
later than 30 years after the start of NPS pollution, exceed
the MCL in less than 70 years, and reach concentrations ex-
ceeding 14.5 mg N L−1 no later than about 150 years (right
graph in Fig. 6).

For an individual well, the results indicate that there is a
10 % chance of nitrate concentrations starting to rise before
30 years, a 50 % chance of rising no later than 50 years, and
a 90 % chance of rising before 70 years. Similarly, results
suggest that the MCL will be exceeded with 10 % probability
after 70 years and with 50 % probability after 140 years.

These results are consistent with observations of nitrate
concentrations in drinking water and irrigation wells in the
San Joaquin Valley, the southern half of the Central Val-
ley. In Merced, Stanislaus, Tulare, and Kings County, about
40 % of domestic wells (with screen depths not exceeding
100 m) exceed the drinking water standard (Ransom et al.,
2013), but only about 10 % of the large production wells in
the southeastern San Joaquin Valley (the wells represented
in this study) exceed the nitrate MCL (10 mg N L−1) (Survey
et al., 2012, 2013), approximately 70 years after the begin-
ning of extensive fertilizer use in the region. We note that
the timescale for these concentration increases is very sen-
sitive to two aquifer parameters: the hydraulic conductivity
and the average effective porosity. If the regional average K
was twice as large as assumed in our model, all times would
be half as long. Similarly, if the average regional effective
aquifer porosity was 20 % larger, travel times would be 20 %
shorter.

The homogenization of spatial variability in the recharge
rate and in the source concentration, while of limited con-
sequence to travel time estimates and to estimates of source
area extent, has measurable implications for stochastic well
concentration predictions, particularly at the lower margin:
homogenizing only the recharge rate leads to significantly
(> 40 %) underestimating the maximum concentration ex-
ceeded by 90 % of wells in the intermediate and long term.
Homogenization leads to somewhat (≈ 10 %) overestimat-
ing the concentration exceeded by 10 % of wells over the
long term, but reproduces well the concentration exceeded
by 50 % of wells at all times (yellow vs. red in Fig. 6).

Homogenizing both recharge and contaminant loading
does not affect the predictions quite as much, and in the
opposite direction: the (lower) concentrations exceeded by
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Figure 6. Time (y axis) required for a well to exceed a given concentration (x axis) with a probability of 90 % (a), 50 % (b) and 10 % (c)
considering a heterogeneous r and heterogeneous c0 (reference case, red line); a homogeneous r and heterogeneous c0 (yellow line); a
heterogeneous r and homogeneous c0 (light blue line); and a homogeneous r and homogeneous c0 (green line). For comparison, the red dash
lines show outputs from simulations with a realization-dependent land-use map.

90 % of wells are overestimated and the (higher) concentra-
tions exceeded by only 10 % of wells are underestimated,
while the concentrations exceeded by 50 % of wells are less
than 5 % different from the fully stochastic prediction.

Li and Graham (1998) stochastically analyze the impact
of spatially random recharge rate on transport in a 2-D point
source setting. Their work concluded that, for those condi-
tions, large variability in – and therefore uncertainty about –
recharge increases uncertainty in solute concentration. In our
work, we observe the opposite. The difference may be partly
due to the 3-D non-point source transport and partly caused
by the implicit correlation between the hydraulic conductiv-
ity and the recharge rate in our scenarios, which may increase
the conditioning of the flow field that leads to the observed
decrease in uncertainty relative to the homogenized scenario.

Results are also sensitive to a homogenization of only the
initial concentrations, which would underestimate all con-
centrations by about 10 % (blue lines in Fig. 6). Homoge-
nizing only concentration also leads to an underprediction,
by about 20 %, of concentrations exceeded by either 90 %,
50 %, or 10 % of wells, relative to the fully stochastic land-
use treatment (compare the blue and red lines in Fig. 6).

The results of the homogenization and the differences in
treating land use in fully stochastic mode (“50 LUs”) are
driven directly by three factors: the distribution of land use,
including the sizes of fields relative to the source area, and
the distribution of recharge and nitrate leaching among dif-
ferent land uses. As shown in Sect. 4.2, the extent of the cap-
ture zone encompasses hundreds of fields, while the critical
capture zone – the core contribution area – encompasses at
least 30 fields. For field sizes much larger than those simu-
lated here or for a more spatially correlated distribution of
crops among fields, homogenization across all land uses in
a basin may lead to larger errors due to the smaller number

of land-use “samples” intersected by the capture zone (Gib-
bons, 1994). Furthermore, unsaturated zone flow and trans-
port simulations have led to the highest contaminant leak-
age rates in areas of high recharge (almonds, citrus; see Ta-
ble 5). Homogenizing mass leakage therefore decreases the
amount of contaminants in high recharge areas and conse-
quently globally underestimates well concentrations. Out-
comes would be different if the highest concentration is as-
sociated with the lower recharge rate.

The examples shown here indicate that there may be sig-
nificant errors in predicting future concentrations exceeded
by 90 % of wells and by 10 % of wells, i.e., the distribution
of exceedance probabilities among the ensemble of wells,
whereas the concentration exceeded by half of the wells is
characterized quite accurately under homogenized land-use
treatment. Overall, the homogenization of recharge in par-
ticular leads to the largest potential errors of NPS pollution
management metrics, less so for predicting travel times and
capture zone, but significantly so for predicting the distri-
bution of exceedance concentrations across an ensemble of
wells.

5 Results and discussion: homogenization of K

5.1 Travel time

In a second step, the implications of upscaling aquifer het-
erogeneity for the stochastic description of travel times, cap-
ture zones and well concentrations are assessed. Probability
density functions of early, medium and late travel times are
significantly impacted by the full homogenization of the hy-
draulic conductivity field (Fig. 7). A homogenization of both
aquifer and land-use random processes (K , r , c0) drastically
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Figure 7. Probability density function of the time required for
5 % (a), 50 % (b), and 95 % (c) of the total recorded mass to reach a
well considering a heterogeneous K field, heterogeneous r and het-
erogeneous c0 (reference case, red solid line); an upscaledK value,
averaged r and averaged c0 accounting for advection only (yellow
dashed line); an upscaled K value, heterogeneous r and heteroge-
neous c0 accounting for advection only (blue dashed line); an up-
scaled K value, heterogeneous r and heterogeneous c0 accounting
for advection and dispersion (green dashed line).

reduces the spread of all mass percentile travel times (yellow
lines in Fig. 7). But the homogenized prediction of modes is
quite accurate: the modes of the early mass and median mass
travel times (t5 and t50) are predicted with about 10 % accu-
racy relative to the fully stochastic solution (Fig. 7a and b).
For the late mass travel times, the mode in the homogenized
prediction occurs later than for the case of a fully heteroge-
neous system (Fig. 7c).

Aquifer heterogeneity generates a complex network of
well-connected channels but also zones of near stagnation,
all of which controls the spatiotemporal behavior of contam-
inant plumes across all scales. The effective solute path ar-
chitecture is, therefore, specific to theK-field realization and
highly uncertain. In the stochastic solution, this generates a
large range of probable solute travel times (travel time pdfs
with large variance) to the well screen that cannot be cap-
tured by simulating transport in a homogenized K architec-
ture (Fig. 7).

However, the global motion of the plume, characterized
by its first spatial moment and the downward movement of
the first moment along the depth interval of the well screen
over time, would be approximately similar for all realizations
given the geostatistical parameters and regional gradients.

Thus, accounting for upscaled advective motion only (ob-
tained from the estimation of the first spatial moment) pre-
serves the large mixing in the well screen (Fig. A1) but un-
derestimates the uncertainty in travel times arising from the
macro-dispersive effects of heterogeneity. This is captured by
the fact that the modes of the early, median, and late mass ar-
rivals are spread over similar time periods (45 to 140 years);
even the prediction based on a completely homogenized rep-
resentation of both aquifer and land-use processes captures
a significant fraction of the age distribution of mass arriv-
ing at the well screen. This is due to the significant mixing
that occurs in the well screen when the well is being pumped
(Weissmann et al., 2002; Henri and Harter, 2019).

Similar results to those for a fully homogenized represen-
tation are found when only the K field is homogenized, but
land use is represented with heterogeneous r and c0. The
spread of each mass percentile travel time pdf is slightly
larger than in the fully homogenized case, but is relatively
far from capturing the full extent of the travel time pdfs for
the fully heterogeneous simulations (compare the blue and
red lines in Fig. 7).

While the homogenization of K removes the control-
ling process of the macro-dispersive pollutant behavior, the
macro-dispersive behavior can be approximated by including
an upscaled, homogenized dispersion process (Eq. 9) in the
simulation (Eq. 10). Using both homogenizedK and a repre-
sentative, effective macro-dispersion much improves the ac-
curacy of the homogenized prediction and captures signifi-
cant features of the fully stochastic prediction (green lines
in Fig. 7). Early mass travel times are slightly underesti-
mated, while median and especially late mass travel times
are slightly overestimated.

Applying second spatial moments from heterogeneous
simulations to estimate the macrodispersion of an upscaled
homogeneous model, however, assumes that the macro-
dispersion process follows a Gaussian process (Dagan,
1990). It has been shown here and in other work (e.g., Da-
gan, 1984; Cvetkovic et al., 1992) that solute transport in
heterogeneous media instead produces significantly skewed
plume distributions, with early peak of mass and a long tail.
Approximating such a skewed distribution with a Gaussian
curve that is located at the same center of mass travel time
and has the same second spatial moment is known to gener-
ate earlier first travel times, a later peak of mass, and later late
travel times, consistent with our results. This complexity of
upscaling transport from heterogeneous conditions to a sim-
plified homogeneous aquifer using lower spatial moments
only has been highlighted before. The results presented here
confirm this observation for the case of non-point source
contaminations but also highlight the generation of a quasi-
macro-dispersive process through the (vertical) well mixing
process.
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Figure 8. Probability of a particle leaving a given grid cell to reach
a well accounting for a heterogeneousK field, heterogeneous r and
heterogeneous c0 (reference case, a); an upscaled K value, aver-
aged r and averaged c0 accounting for advection only (b); an up-
scaled K value, heterogeneous r and heterogeneous c0 accounting
for advection only (c); an upscaled K value, heterogeneous r and
heterogeneous c0 accounting for advection and dispersion (d).

5.2 Time-related capture zone

Analogous to the travel time pdfs, the spatial distribution of
the stochastic capture zone, i.e., probability of a particle leav-
ing a given location of the NPS to reach a well, is highly im-
pacted by the homogenization of the hydraulic conductivity,
much more so than by homogenization of land-use processes
alone (Fig. 8).

In fully heterogeneous conditions, a wide range of Pw val-
ues are distributed over a large portion of the domain surface.
However, most of the probabilistic capture zone is character-
ized by very low Pw values. The critical zone (area of high-
est probability) is characterized by Pw values of ≈ 0.6 and is
centered at a longitudinal distance of about ≈ 2000 m from
the well. In the solution to the equivalent homogeneous pa-
rameter and boundary conditions, the uncertainty of the cap-
ture zone location is significantly underestimated, with most
of the capture zone being characterized by a high probability
of reaching a well (Fig. 8b). Describing the spatial variability
of nitrate mass loading and recharge (with a homogeneous
K field) only adds a moderate degree of uncertainty to the
capture zone delineation (i.e., lower highest Pw values), as
expected from the travel time pdf results above. Utilizing the
alternative homogenized transport modeling approach with
a homogenized K and an equivalent macro-dispersion term,

unlike for travel time pdfs, does not substantially improve the
stochastic prediction of the capture zone (compare Fig. 8c
and d). Furthermore, homogenizing the hydraulic conduc-
tivity seems, independently of the description of the source
terms or of the consideration of dispersion, to mispredict
the location of the capture zone: the critical zone is slightly
moved downstream, closer to the wells, and the capture zone
extends to a small portion of the downstream edge of wells.
The most distant part of the critical zone in the homogenized
prediction of the capture zone overlaps with the actual loca-
tion of the critical zone in the fully stochastic solution.

Simulation outcomes highlight that the set of upscaled K
values among the 50 realizations does not cover a range large
enough to reproduce the high variability of original contam-
inant location expected in heterogeneous situation. This in-
dicates that regional hydraulic vertical and longitudinal gra-
dients, common to all simulations, control mostly the behav-
ior of first spatial moments of heterogeneous plumes used
here to estimate apparent velocities. Thus, contaminant mass
reaching the top of the well has little variability – here only
to the degree that the homogenization is done individually
for each realization – leading to some minor realization-to-
realization variability at the downstream side of the capture
zone for the homogenized K (Fig. 8). More uncertainty is
observed on the upstream side of the capture zone since it
represents mass reaching the bottom of the screen, the verti-
cal position of which is realization dependent.

Interestingly, the critical zone (high Pw) is predicted to be
more downstream than its actual location if K is homoge-
nized using apparent velocities (Fig. 8). In the case of hetero-
geneous K , a strong layering effect is observed, due to the
superposition of relatively thin layers of highly and poorly
conductive materials that stretch the plume longitudinally at
large scale and move the capture zone upstream.

Consistent with these results, the spatial distribution of
the mean travel time required for the contaminant to reach
a well is similarly contracted to a much smaller area that ex-
tends downstream from the well, unlike in the fully stochastic
representation (Fig. 9). The observed spatial variation of the
mean travel times, increasing with the distance from a well,
is overestimated when K fields are homogenized. This leads
to higher predicted mean travel times over the entire capture
zone for all tested aquifer simplifications.

5.3 Contaminant levels

Future concentrations exceeded by only 10 % of wells (P10)
and those exceeded by half of the wells (P50) are captured
to within a factor 2 for the transition period between 20 and
150 years, but agree to within 10 % with the fully stochastic
simulation results at late times under near-steady-state pollu-
tion conditions. The (low) concentration levels exceeded by
90 % of wells (P90) differ by a factor 2 or more, at all times,
from the fully stochastic solution (Fig. 10). Representing the
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Figure 9. Expected travel time (years) of a particle leaving a given
grid cell and reaching a well for a heterogeneous K field, hetero-
geneous r and heterogeneous c0 (reference case, a); an upscaled
K value, averaged r and averaged c0 accounting for advection
only (b); an upscaled K value, heterogeneous r and heterogeneous
c0 accounting for advection only (c); an upscaled K value, hetero-
geneous r and heterogeneous c0 accounting for advection and dis-
persion (d).

spatial variability of source terms, but using a homogenized
K field, improves the prediction of the P90 evolution.

Using the alternative homogenized representation with an
equivalent macro-dispersion improves the prediction only at
late time (> 150 years) and predicts long-term concentra-
tions for P50 and P10 very accurately (green lines in Fig. 10).
But it underestimates the concentrations for all of P90 and
during the transition time for P50 and P90.

The agreement between fully stochastic solutions and the
homogenized solutions is in contrast to the seemingly signif-
icant differences between homogenized and fully stochastic
results observed for travel time distributions of the individ-
ual mass percentiles and the capture zone location. That the
homogenized prediction is still capable of producing useful
results is due to the unique properties of the non-point source
pollution listed earlier: first, the NPS pollution is a continu-
ous process rather than a one-time event, with some inter-
annual variability and slow long-term trends (Hansen et al.,
2012; Harter et al., 2017). Second, the mixing of water qual-
ity occurring in the well screen greatly controls the observed
pollutant levels because of the continuous loading and be-
cause differences in pollutant loading rates for the more per-
meable soils, across all crops (Table 5), vary within less than
1 order of magnitude. Third, the composition of the land use

and therefore the recharge and mass loading rates vary at a
scale that is much smaller than the source area of the well.
Hence, any location of the source area will capture a simi-
lar overall mass of the NPS pollutant over time. Third, the
amount of water quality mixing in the well is strongly con-
trolled by the vertical location and length of the well screen
and, for typical municipal production wells or agricultural
wells, as simulated here, well construction will dominate the
range of travel time distributions of water and solutes en-
tering the well screen over effects of macro-dispersion. Re-
producing the range of average regional gradients potentially
observed in a region and average loading therefore provides
critical and important information to reproduce in-well mix-
ing of age and, hence, recorded water quality.

6 Results and discussion: regional stochastic analysis

Results and discussion thus far have focused on the uncer-
tainty about predicting concentrations and source area as-
sociated with a single well, where land-use distribution is
heterogeneous but deterministic (mappable). In the simula-
tions discussed, the land use (but not the soil) was the same
across all realizations. In NPS pollution management, an
understanding of the variability in concentration evolution
over time across the ensemble of wells in a basin, region,
or management zone is of equal or more importance than
understanding the uncertainty of future pollution dynamics
at a particular well. For the regional analysis, the concep-
tual modeling approach is identical to the stochastic analysis
of an individual well, except that the land-use distribution is
also a random variable. To adapt the simulation setup to the
regional stochastic analysis, the spatial distribution pattern of
crops (i.e., land-use map) across the fixed grid of fields was
randomly generated for each realization (“50 LUs”). Thus
each realization represents an equiprobable location within
a basin that is much larger in extent than the simulation do-
main. In the regional interpretation of the stochastic results,
the range of individual travel times, capture zones, and con-
centration breakthrough curves observed represents the vari-
ability across the ensemble of wells in the region rather than
the uncertainty about the outcome at a particular well (ergod-
icity principle, Dagan, 1990).

Adding random land use to the simulations leads to nearly
identical travel time pdfs for early and median mass travel
times appearing and somewhat earlier late mass travel times
(compare dashed and plain red lines in Fig. 3). Travel times
are therefore largely insensitive to the stochastic conceptual-
ization of the land-use spatial variability (“1 LU” compared
to “50 LU”). Similarly, the capture zone area is not sensitive
to whether a fixed heterogeneous (“1 LU”) or random hetero-
geneous (“50 LU”) stochastic concept is employed (Fig. 11).
As a result, the lowest and highest contaminant levels (P90
and P10) are only slightly lower at late times, while P50 are
similar at any times for both analyses (compare dashed and
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Figure 10. Time (y axis) required for a well to exceed a given concentration (x axis) with a probability of 90 % (a), 50 % (b) and 10 % (c)
considering a heterogeneousK field, heterogeneous r and heterogeneous c0 (reference case, red solid line); an upscaledK value, averaged r
and averaged c0 accounting for advection only (yellow dashed line); an upscaledK value, heterogeneous r and heterogeneous c0 accounting
for advection only (blue dashed line); an upscaled K value, heterogeneous r and heterogeneous c0 accounting for advection and dispersion
(green dashed line).

plain red lines in Fig. 6). The similarity in results here is due
to the spatial scale of the land-use variability, set by the size
of the fields, with several dozen fields occupying the criti-
cal area of the capture zone (see above). Given the mixing
in the well screen and the continuity of NPS pollution, the
number of fields in the capture zone is therefore sufficiently
large, and the contrast in loading rates sufficiently small, that
a single sample of the heterogeneous land-use representation
(“1 LU”) becomes representative of an ensemble of land-use
patterns. That said, the advantages and disadvantages of the
homogenization methods for land-use and aquifer properties
highlighted above apply equally to the depiction of regional
variability in nitrate contamination of large production wells
and to the uncertainty of nitrate dynamics in an individual
well.

For instance, results show that homogenized K fields per-
form more poorly in predicting the lowest concentrations
(P90) than the highest ones (P50 and P10). From a NPS pollu-
tion management perspective, the accuracy of the higher con-
centrations exceeded by half of wells or even by just 10 % of
wells is most critical, since they are more likely to exceed the
MCL. The homogenized predictions are least accurate during
the transition (breakthrough) period when concentrations in
the vertically mixed sample obtained from a well are strongly
controlled by travel time pdfs, which in turn are affected by
the heterogeneity in the land use and aquifer dynamics.

7 Conclusions

A significant body of groundwater flow and transport liter-
ature has focused on upscaling flow and transport processes
associated with industrial point source pollution. For acci-

dental pollution with pollutants exceeding compliance levels
by orders of magnitude, field research has shown that large
uncertainties exist in predicting the fate of such contami-
nant plumes and the inability of upscaled methods to cap-
ture site-specific plume behavior. Stochastic methods have
been used to characterize such large uncertainties. Here we
explore the ability to which homogenized, effective repre-
sentations of aquifer structure and landscape spatial variabil-
ity in flow and transport simulations of NPS pollution are
capable of accurately predicting pollution management met-
rics. We use three metrics typically of interest to NPS pollu-
tion management: travel time pdfs, stochastic capture zones,
and stochastic breakthrough curves. We compare solutions
of these metrics for a fully heterogeneous aquifer structure
and landscape system with those of a homogenized, upscaled
landscape system, those of a homogenized, upscaled aquifer
system, and those of a completely homogenized aquifer and
landscape system. Within the landscape system, we further
distinguish between homogenizing recharge flux and homog-
enizing pollutant mass flux. The analysis is performed for a
typical intensive, irrigated Mediterranean agricultural land-
scape of orchards, vineyards, and field crops overlying an
alluvial aquifer system polluted with nitrate from fertilizer
applications. Based on the simulation results presented, we
make the following key conclusions.

– Land use, soil, and aquifer heterogeneity lead to large
variability in groundwater travel paths, travel times,
source location, and therefore well nitrate concentra-
tions across a regional set of wells and, hence, signif-
icant uncertainty about pollution dynamics at any one
well.
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Figure 11. Probability of (a, b) and mean travel time required for (c, d) a particle leaving a given grid cell to reach a well accounting for a
single randomly generated land-use map for all realizations (a, c) and for a different randomly generated land-use map for each realization (b,
d).

– The impact of continuous landscape pollutant loading
on a typical high-capacity production well with the top
of the screen at 100 m below the water table is first seen
a couple of decades after pollution initiation but is not
fully reflected across all wells of a region until 1 or 2
centuries later.

– With the capture zone of an individual well typically
stretching across a diverse subset of land use in a region,
the homogenization of the recharge and mass loading
across the landscape to simulate NPS pollution man-
agement metrics can be appropriate, especially for sim-
ulating travel time pdfs and stochastic capture zones. In
this case, nitrate variability between wells is much more
affected by aquifer and soil heterogeneity than the het-
erogeneity in crop patterns across the landscape. This
finding may not apply to cases where land-use units
(fields, orchards) occupy a much larger area or many
fields of one crop type are clustered, or for wells with
small pumping rates and, hence, small capture zones
– in those cases the variability in capture zone loading
across an ensemble of wells may be ill-represented by a
homogenized, regionally averaged recharge and nitrate
mass loading.

– Homogenization of the aquifer hydraulic property sig-
nificantly degrades travel time statistics as well as the
stochastic delineation of the capture zone. Account-
ing for aquifer heterogeneity by utilizing an upscaled
macrodispersion only slightly improves predictions of
travel time pdfs or stochastic capture zones.

– During the transition period (20 to 170 years after pol-
lution initialization), simulations using a homogenized

representation of the aquifer structure provide aggre-
gated concentration predictions, such as the concentra-
tion exceeded by half of wells, that are as much as a
factor 2 different from predictions that fully represent
aquifer heterogeneity.

– On the other hand, due to the strong effect of verti-
cal groundwater mixing during the well pumping pro-
cess and due to the continuity of NPS pollution, an up-
scaled, homogenized representation of aquifer hetero-
geneity using an effective hydraulic conductivity pro-
duces reliable and useful predictions for the concen-
tration levels exceeded by half of the wells and even
the higher concentrations exceeded by only 10 % of the
wells, especially in the long term. These are the wells of
most concern in NPS pollution of groundwater.

– Homogenized approaches may be most useful to predict
whether long-term outcomes meet management goals
across a regional ensemble of wells, but may be less
accurate in specifying how quickly such goals may be
achievable.

Future work is needed to further understand the role of crop-
type clustering in landscape homogenization and the effect
of interannual and seasonal loading variability on NPS pollu-
tion management metrics. More work is also needed to inves-
tigate other forms of partial or full homogenization of aquifer
structure on prediction metrics considered here.
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Appendix A: Well screen design

For each realization of the hydraulic conductivity field, three
extraction wells are implemented. The pumping rate of each
well is fixed to 3000 m3 d−1 and the top of the screen is
fixed to 100 m. As in real settings, the length of this screen
is dependent on the local aquifer properties in order to sus-
tain the total extraction rate. Indeed, pumping effectively oc-
curs through portions of wells located in highly conductive
aquifer material. To simulate this local K dependence of the
well screen length, we are using a rule of thumb stating that
10 cumulative feet (3.05 m) of gravel and sand have to be
crossed for every 100 gallons per minute (545.1 m3 d−1) of
extraction. The probability histogram (over all realizations)
of the simulated screen lengths for each tested extraction rate
is shown in Fig. A1 in the Appendix.

Figure A1. Probability histogram of the simulated screen lengths.

Appendix B: Impact of dispersion

Former studies (LaBolle, 1999; LaBolle and Fogg, 2001;
Weissmann et al., 2002) highlighted the insensitivity of trans-
port simulations to local-scale dispersivity (αi , where i indi-
cates the transport direction) if aquifer heterogeneity is rep-
resented in a finely detailed manner by means of the tran-
sition probability method (TPROGS). This insensitivity is
explained by the large macrodispersion caused by the well-
represented facies-scale heterogeneity, which renders spread-
ing from local dispersivity insignificant. As a result, fairly
small values of αL are, in this setting, usually adopted. For
instance, Weissmann et al. (2002) applied to their transport
model (with a computational grid similar to the one used in
our study) a grid-scale longitudinal dispersivity of 0.04 m,
which appeared to have an insignificant impact on trans-
port and resulting groundwater age distribution. Values of αL
were chosen to fulfill the magnitude of dispersivity values
reported at field sites of a scale similar to the computation
cells (references in previously cited work). Here, we test the
impact of much larger values of dispersivity (1.5 and 15.0 m)
on breakthrough curves recorded at a well. The simulation
setup is identical to the one described in the paper. Results

Figure B1. Breakthrough curve recorded at a well accounting for
advection only (red curve), for advection and dispersion with a lon-
gitudinal dispersivity of 1.5 m (yellow curve), and for advection and
dispersion with a longitudinal dispersivity of 15.0 m (blue curve).
Transverse horizontal and transverse vertical dispersivities are al-
ways, respectively, 1/10 and 1/100 of the longitudinal dispersivity.

are shown for a single realization of the hydraulic conductiv-
ity field.

Our outputs display no significant impact on transport of
a αL coefficient of 1.5 m. Increasing grid-scale dispersivity
to 15 m leads to slightly earlier first travel times, later late
travel times and lower contaminant levels observed at inter-
mediate and late times (Fig. B1). Therefore, no implications
can be expected when accounting exclusively for advection
when grid dispersivity is lower than 1.5 m, as always used in
previously cited studies.
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