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Abstract. Providing accurate soil moisture (SM) conditions
is a critical step in model initialization in weather forecast-
ing, agricultural planning, and water resources management.
This study develops monthly-to-seasonal (M2S) top layer
SM forecasts by forcing 1- to 3-month-ahead precipitation
forecasts with Noah3.2 Land Surface Model. The SM fore-
casts are developed over the southeastern US (SEUS), and
the SM forecasting skill is evaluated in comparison with the
remotely sensed SM observations collected by the Soil Mois-
ture Active Passive (SMAP) satellite. Our results indicate po-
tential in developing real-time SM forecasts. The retrospec-
tive 18-month (April 2015–September 2016) comparison be-
tween SM forecasts and the SMAP observations shows sta-
tistically significant correlations of 0.62, 0.57, and 0.58 over
1-, 2-, and 3-month lead times respectively.

1 Introduction

Seasonal climate forecasts provide beneficial information
for developing hydrologic forecasts that support the plan-
ning and management of water resources. Likewise, accu-
rate soil moisture (SM) forecasting can significantly assist
the decision-making for agricultural systems. Most evalua-
tion of climate forecasts has traditionally focused only on
the skill in predicting seasonal precipitation, temperature,
and the resultant terrestrial fluxes, primarily monthly-to-
seasonal (M2S) streamflow (Devineni et al., 2008; Armal
et al., 2018; Mazrooei et al., 2015) Also, studies have fo-

cused on the utility of climate forecasts for agriculture sys-
tems by evaluating the skill in predicting seasonal crop yield
under rain-fed agriculture (Hansen et al., 2006). As rain-fed
agriculture heavily depends on actual soil moisture condi-
tions and the stress that crops face during the growing phase,
long-range SM forecasts would be more advantageous to im-
prove crop yield forecasts. Moreover, accurate prediction of
initial hydrologic conditions (IHCs) enhances the estimation
of land surface feedback to the atmosphere in regional cli-
mate models and accordingly enhances the skill in seasonal
hydrologic forecasts (Koster and Suarez, 2001; Berger and
Entekhabi, 2001; Wood et al., 2002).

Most efforts in developing SM forecasts through land-
surface models (LSMs) have actually been compared to the
model’s SM products under a simulation scheme – using
observation-based atmospheric forcings to execute the model
– as opposed to actual SM observations (Mo et al., 2012;
Mo and Lettenmaier, 2014). Nevertheless, systematic evalu-
ation of our ability to forecast actual SM has not been carried
out due to the limited availability of high-quality observed
SM data over large domains. Thus, comparison of SM fore-
casts with remotely sensed SM observations holds consider-
able potential. Remote sensing of SM observations using mi-
crowave scanners began in the late 1970s with the Scanning
Multichannel Microwave Radiometer (SMMR) and contin-
ued with the Special Sensor Microwave/Imager (SSM/I).
With the launch of Advanced Microwave Scanning Ra-
diometer (AMSR) there is now a decade-long dataset (2002–
2011) of SM estimates from space, and the effort continued
with the European Space Agency Soil Moisture and Ocean
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Salinity (SMOS) mission. Recently developed observations
from the Soil Moisture Active Passive (SMAP) mission (En-
tekhabi et al., 2010) provides a great opportunity to eval-
uate our ability to predict and forecast SM conditions, be-
cause of its superior quality compared to other satellite sen-
sors (Chen et al., 2018). Thus, this study is motivated by ex-
ploiting SMAP data to validate M2S soil moisture forecast-
ing. SMAP, being an L-band sensor, has a deeper penetra-
tion depth and hence a higher sensitivity to moisture content
in the top layer of soil. Also, SMAP data are provided at a
36 km resolution and resampled at 9 km resolution, and the
latter resolution makes it very appropriate for our study. In
addition, SMAP observations at 06:00 and 18:00 LT capture
the significant time points of the diurnal hydrological cycle.
(Entekhabi et al., 2010).

The main intent of this study is (1) to develop M2S
SM forecasts from Noah3.2 LSM forced with climate fore-
casts and (2) to evaluate the skill of SM forecasts based on
SM observations from the SMAP satellite over the south-
eastern US (SEUS). To our knowledge, this is the first effort
that evaluates the skill of a LSM in developing SM forecasts
based on SMAP observations over a large region. The next
section briefly describes the data and forecasting methodol-
ogy, followed by the results and evaluation of the forecasting
skill and discussion.

2 Hydroclimatic data and methodology

This study utilizes Noah3.2 LSM to develop monthly
SM simulations and M2S SM forecasts over the SEUS.
Noah LSM has been developed since 1993 through multi-
institutional cooperation and has been widely used in oper-
ational weather and climate predictions (Ek et al., 2003). It
also exhibits significant skill in developing monthly to sea-
sonal streamflow forecasts over the study region (Mazrooei
et al., 2015). Noah3.2 LSM is executed within NASA’s
Land Information System (LIS) framework (Kumar et al.,
2006), designed for high-performance hydrological mod-
eling. Under the forecasting scheme, precipitation fore-
casts from the ECHAM4.5 Atmospheric General Circulation
Model (AGCM) along with the hourly climatology of non-
precipitation meteorological forcing variables (e.g., wind
speed, humidity, net shortwave and longwave radiations, etc.)
are used to implement the LSM.

Phase 2 of the North American Land Data Assimilation
System (NLDAS-2) is a comprehensive dataset of meteo-
rological forcings available at relatively fine spatiotemporal
resolution (hourly temporal scale and 1/8◦ spatial resolution)
from 1979 to present (Mitchell et al., 2004). Hence, it pro-
vides a valuable basis to compute hourly climatological forc-
ings for hydrologic forecasting purposes. Under the forecast-
ing scheme, the hourly climatological forcings (i.e., hourly
mean of NLDAS-2 forcings over a period of 31 years, 1979–
2010) are fed to the LSM.

Figure 1. Soil moisture forecasting schematic. (a) Observed pre-
cipitation forcings from Maurer et al. (2002) and (b) observed non-
precipitation land surface forcing fields from NLDAS-2 are imple-
mented into NOAH3.2 LSM to simulate (I) the initial hydrologic
conditions (IHCs) prior to each forecasting period. The IHCs are
then used along with (c) 1- to 3-month-ahead ECHAM4.5 precipita-
tion forecasts (spatially downscaled and temporally disaggregated,
see Sect. 2.1) and (d) climatological forcings (i.e., mean of NLDAS-
2 nonprecipitation forcings over the period 1979–2010), in order to
execute NOAH3.2 LSM under a forecasting scheme and to develop
(II) 1- to 3-month-ahead soil moisture forecasts.

Land-surface IHCs are one of the key components of
LSMs in seasonal hydrologic forecasting, as the predictabil-
ity of the terrestrial fluxes is associated with the accuracy of
the IHCs (Wood et al., 2016). In order to prepare adequate
estimates of IHCs prior to forecasting, NLDAS-2 meteoro-
logical forcings are used to run Noah3.2 LSM in a simula-
tion scheme (Fig. 1). The computed hydrologic conditions at
the end of the simulation period are then used to update the
model’s IHCs at the beginning of each forecasting period.
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2.1 ECHAM4.5 precipitation forecasts

Besides the climatological forcings from NLDAS-2, precip-
itation forecasts from ECHAM4.5 AGCM are used in the
forecasting approach. ECHAM4.5 climate forecasts are more
skillful than the hourly climatology of the NLDAS-2 pre-
cipitation variable because they inherit the ENSO signals
(Mazrooei et al., 2015). ECHAM4.5 precipitation forecasts
are obtained from the International Research Institute for Cli-
mate and Society (IRI) Climate Data Library (Li and God-
dard, 2005). These forecasts are available at 2.8◦ spatial res-
olution and monthly timescales from January 1957 to the
present with lead times up to 7 months ahead consisting
of 24 ensemble members. Constructed analogue sea surface
temperature (SST) forecasts have been used to develop the
ECHAM4.5 AGCM climate forecasts. The spatial and tem-
poral resolutions of the climate forecasts are much coarser
than the resolution of the Noah3.2 LSM forcing variables
(i.e., 1/8◦), and thus statistical downscaling and disaggrega-
tion methods are employed in order to address this mismatch.

Monthly precipitation forecasts are first spatially down-
scaled from 2.8 to 1/8◦ resolution through a principal com-
ponent regression (PCR) model and then a kernel nearest
neighbor (K-NN) approach is applied in order to reproduce
daily time series of precipitation forecasts from monthly
forecasts. For each 1/8◦ grid cell over the study region, the
four nearest 2.8◦ grid cells from ECHAM4.5 AGCM are
identified as the PCR predictors and the observed monthly
precipitation at 1/8◦ resolution from Maurer et al. (2002)
is used to train the PCR model. The PCR model is ex-
ecuted in a retroactive mode for each forecasting month
(from April 2015 to September 2016) using 54 years of data
(from 1957 to 2010) as the training period. This time pe-
riod is the intersection of the intervals of the observational
data and the ECHAM4.5 forecasts. For example, in order to
obtain downscaled forecasts for January 2016, all the Jan-
uary data from 1957 to 2010 serve as the training dataset.
Next, using the K-NN disaggregation approach, the down-
scaled monthly forecast is compared to the historical obser-
vations of the same month (from 1949 to 2010) to identify
and rank the nearest neighbors (i.e., months with the closest
quantity). The observed daily precipitation corresponding to
the identified months are resampled based on the Lall and
Sharma (1996) kernel. The K-NN temporal disaggregation
scheme preserves the monthly precipitation totals during the
daily-resampling process. The explained steps are applied to
the ECHAM4.5 forecasts in order to develop 1- to 3-month-
ahead daily precipitation forecasts (Fig. 1). Further details
of downscaling and disaggregation methods, the assessment
of uncertainty propagation, and the seasonal skill of down-
scaled precipitation forecasts can be found in Mazrooei et al.
(2015).

Under the LSM forecasting mode (Fig. 1), spatially
downscaled and temporally disaggregated precipitation fore-
casts along with the hourly climatology of the NLDAS-

2 non-precipitation forcing variables are implemented to
run Noah3.2 LSM in 30 min time steps. This setup is per-
formed at the beginning of each month over the period Febru-
ary 2015–September 2016 in order to develop up to 3-month-
ahead forecasts of hydrological fluxes. The Noah3.2 products
are issued at daily timescale and at 0.25◦ spatial resolution.
Mean monthly SM forecasts of the top 10 cm layer of soil are
computed by averaging daily forecasted SM quantities.

2.2 SMAP soil moisture data

The SMAP satellite was launched on 31 January 2015 and
designed to measure near-surface (0–5 cm) SM and land sur-
face freeze–thaw conditions with a complete global cover-
age in 2–3 d (Entekhabi et al., 2010). In this study, Level-3
SMAP radiometer global daily SM data at 9 km spatial res-
olution are obtained from the National Snow and Ice Data
Center (NSIDC) (O’Neill et al., 2018). These data are avail-
able for the time period April 2015 to the present, and we
used the data over an 18-month period from April 2015 to
September 2016.

To reproduce monthly SM observations matching spa-
tiotemporal resolution of the LSM products, 9 km daily ob-
servations during a specific month are averaged and upscaled
to 0.25◦. Given a 0.25◦ grid cell, the daily SMAP observa-
tions within a circular window circumscribed on the grid cell
are averaged to represent the monthly observation for that
location.

Furthermore, for each grid cell a uniform bias correction
is applied to the time series of monthly SM forecasts from
Noah3.2 LSM based on the difference between the mean
of the SMAP observations and the mean of the forecasts
over the 18-months study period. Monthly bias-corrected
SM forecasts (in three different lead times) are then com-
pared to the corresponding monthly time series of SMAP
observations using the correlation coefficient and root mean
squared error (RMSE) metrics in order to quantify the fore-
casting skill.

3 Results

Figures 2 and 3 show the RMSE and correlation coef-
ficients between the bias-corrected monthly SM forecasts
and monthly SMAP observations for 1- to 3-month lead
times. Since 18 data points (monthly data over the study
time frame) are used for the correlation quantification, grids
with insignificant correlation coefficient at 95 % confidence
interval (±1.96/

√
n, where n denotes the length of data

points) are plotted on a gray scale (Steel et al., 1960). From
Fig. 2, higher RMSEs occur over regions with predominantly
wetland soil (e.g., Mississippi) and over regions with low
amounts of clay-abundant soil with slight swelling poten-
tial (e.g., eastern side of North Carolina and South Carolina
states) according to Olive et al. (1989). The RMSE is also
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Figure 2. RMSE of the bias corrected 1- to 3-month-ahead soil moisture forecasts based on the SMAP soil moisture observations.

Figure 3. Correlation coefficient between 1- to 3-month-ahead soil moisture forecasts with the SMAP soil moisture observations; grid cells
with insignificant correlations (based on 18 monthly data points) are grayed out.

higher over the wetlands of the Everglades. The SM fore-
casts from LSM have lower RMSEs and higher correla-
tion over Alabama–Coosa–Tallapoosa (ACT) and Tennessee
River basins, and over the east-flowing rivers of Georgia.
SM forecasts also have limited skill over the western parts
of North Carolina and South Carolina, with the correlation
becoming insignificant as a result of increasing forecast lead
time.

Among all the 2121 grid cells covering our study do-
main, about 23 % of the grid cells show a slightly increased
RMSE due to a longer forecast lead time, mostly located in
the southeastern side of Appalachian mountains. Over most
grid points, the forecasting error, RMSE, does not change
significantly with an increase in lead time, which indicates
the strong role of IHCs and limited skill of precipitation
forecasts over the SEUS (Koster et al., 2010; Sinha et al.,
2014). The spatially averaged RMSEs over the SEUS are
equal to 0.039, 0.042, and 0.041 for 1-, 2-, and 3-month
lead times respectively. The minimal change in RMSE across
different lead times expresses the strong memory (persis-
tence) of SM over SEUS. However, based on the correla-
tion coefficients in Fig. 3, when the lead time increases from
1 month to 3 months, the number of grid cells with in-
significant correlation increases specifically over the south-
ern side of Appalachian. On the other hand, areas with a
significant presence of deep soils (Effland, 2008) such as
Mississippi, Alabama, and the eastern side of Texas state in-
dicate increased correlation coefficients in longer forecast-

ing lead times. Along with the SM persistence, initializ-
ing Noah3.2 LSM with simulated hydrologic conditions has
a strong influence on improving the SM forecasting even
for longer lead times (Shukla and Lettenmaier, 2011). The
spatially averaged correlation coefficients are equal to 0.62,
0.57, and 0.58 for 1-, 2-, and 3-month lead times respectively.
Overall, the skill of the SM forecasts declines slightly with
increasing lead time due to the errors in imprecise precipita-
tion forecasts.

To further understand how the forecasts capture the vari-
ability in SM observations, two regions (each including four
grid cells) with high and low skill in forecasting are selected
and the anomalies around the mean of SM observations are
presented in Fig. 4. This figure also includes linear model
fits and the prediction intervals at 95 % confidence level. The
first column shows scatter plots between the anomalies of
the forecasts and the observations over four neighboring grid
cells with relatively low RMSE (0.019 on average) and a
strong correlation coefficient (0.726 on average) located in
Alabama state. The second column shows similar informa-
tion from the pack of four grid cells located in South Car-
olina with poor forecasting skill (high RMSEs and low cor-
relations). The R2 quantity included in each plot indicates
the ability of forecasts in explaining the variability in SMAP
observations, and the declining slope of the fitted line also
implies the increasing forecasting error for longer lead times.
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Figure 4. Scatter plots of soil moisture residuals for two sets of
sample grid cells with good and bad forecasting skills. The residuals
are centered around the mean of SMAP observations.

4 Discussion

The main focus of this study is on developing M2S SM
forecasts through Noah3.2 LSM using ECHAM4.5 precip-
itation forecasts and evaluating the skill in SM forecasting
by a comparison with the newly emerging SM observations
from the SMAP satellite. Efforts have primarily focused on
evaluating the skill of M2S SM forecasting over the contigu-
ous USA by comparing with the model simulation driven by
observed forcing as a benchmark (Mo et al., 2012; Mo and
Lettenmaier, 2014). Integration of the ECHAM4.5 precipi-
tation forecasts with the NLDAS-2 non-precipitation forcing
variables supports the idea of evaluating the LSM in real-
time SM forecasting. Our previous studies have also showed
the robust performance of ECHAM4.5 forecasts for improv-
ing streamflow forecasting (Sinha et al., 2014; Mazrooei and
Sankarasubramanian, 2017). Both forecast verification met-
rics, correlation coefficient and RMSE, show that the fore-
casted SM captures the variability in SMAP observations
with decent accuracy. There is a slight skill reduction in
SM forecasting as the forecasting lead time increases.

To disseminate the proposed forecasting approach with
agencies, the hydroclimatology group at North Carolina State
University (NCSU) in collaboration with the North Carolina
state Climate Office have developed a SM and streamflow
forecasting portal that automatically develops forecasts in
real time and updates the percentiles of SM forecasts by com-
paring them with the climatological distribution of long-term
simulated SM (Arumugam et al., 2015). Most of the skill
in SM forecasting is predominantly influenced by updating
model initial conditions prior to forecasting. The skill of the
SM forecasts also declines slightly with increasing lead time
due to the errors in imprecise precipitation forecasts. This
has also been observed in the context of streamflow fore-
casting where most of the skill in developing tercile stream-
flow forecasts primarily comes from updated initial condi-
tions (Mazrooei and Sankarasubramanian, 2017, 2019).

Yet, the specification and quantification of different
sources of uncertainty in SMAP data need to be fully ad-
dressed to achieve a comprehensive assessment of forecast-
ing skill. In addition, this study is limited using one particular
general circulation model for climate forecasts and one land
surface model for hydroclimatic modeling. Hence, our find-
ings can be expanded to future research by examining and
combining different LSMs and climate models. For instance,
multimodel precipitation forecasts tend to improve the relia-
bility of climate forecasts, which could potentially improve
the predictability of SM conditions. Moreover, the increas-
ing availability of observational data from ongoing and fu-
ture satellite missions along with the implementation of data
assimilation methods would presumably improve the accu-
racy of our estimations of model’s IHCs and consequently
increases the hydrologic forecasting skill (Liu et al., 2012).

This study could be extended by applying the same
methodology using different LSMs along with precipitation
forecasts from multiple general circulation models. As it was
presented here, the developed SM forecasts indicate promis-
ing skill over the southeastern US when evaluated against
the soil moisture estimates from the SMAP satellite. This
work proposes a gainful area for future investigations as
the SM forecasts could be evaluated based on the SM ob-
servations from other sources such as the European Space
Agency (ESA) Climate Change Initiative (CCI), available for
a longer time period compared to SMAP products. Also it is a
point of interest to check the accuracy of the forecasts over a
selection of historical drought events and assess the value of
such forecasts in drought management during severe events.

5 Conclusion

The main contribution of the paper is in systematic de-
velopment of M2S soil moisture forecasts through a dis-
tributed land surface model contingent on climate forecasts.
In conclusion, utilizing coarse-scale climate forecasts along
with proper downscaling methods (e.g., statistical or dy-
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namic downscaling) provides valuable information to force
land surface models and predict future hydrologic conditions.
The methodology introduced in this manuscript is one de-
tailed process of the hydrologic forecasting chain. And more
broadly, it can be embedded into an interactive forecasting
toolkit including multiple alternative approaches for prepar-
ing climatic forcings and hydrologic modeling. This sys-
tem can be specifically designed for facilitating water-related
problems useful for natural resource managers and agricul-
tural users (Abdi and Endreny, 2019). The SM forecasts also
need to be tested for historical drought events such as the
2007 drought over southeastern US. Even if the SMAP obser-
vations are not available for such historical drought events,
still the forecasted SM products can be compared with the
US Drought Monitor (USDM) data records from the Na-
tional Drought Mitigation Center (Svoboda et al., 2002; Sea-
ger et al., 2009) for the purpose of skill evaluation and im-
proving forecasts’ bias correction.

Data availability. The dataset synthesized in this study can
be obtained from https://doi.org/10.6084/m9.figshare.11923302.v2
(Mazrooei, 2020).
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