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Abstract. The ecological integrity of freshwater ecosystems
is intimately linked to natural fluctuations in the river flow
regime. In catchments with little human-induced alterations
of the flow regime (e.g. abstractions and regulations), exist-
ing hydrological models can be used to predict changes in
the local flow regime to assess any changes in its rivers’ liv-
ing environment for endemic species. However, hydrologi-
cal models are traditionally calibrated to give a good gen-
eral fit to observed hydrographs, e.g. using criteria such as
the Nash–Sutcliffe efficiency (NSE) or the Kling–Gupta ef-
ficiency (KGE). Much ecological research has shown that
aquatic species respond to a range of specific characteristics
of the hydrograph, including magnitude, frequency, duration,
timing, and the rate of change of flow events. This study in-
vestigates the performance of specially developed and tai-
lored criteria formed from combinations of those specific
streamflow characteristics (SFCs) found to be ecologically
relevant in previous ecohydrological studies. These are com-
pared with the more traditional Kling–Gupta criterion for 33
Irish catchments. A split-sample test with a rolling window is
applied to reduce the influence on the conclusions of differ-
ences between the calibration and evaluation periods. These
tailored criteria are shown to be marginally better suited to
predicting the targeted streamflow characteristics; however,
traditional criteria are more robust and produce more con-
sistent behavioural parameter sets, suggesting a trade-off be-
tween model performance and model parameter consistency

when predicting specific streamflow characteristics. Analy-
sis of the fitting to each of 165 streamflow characteristics re-
vealed a general lack of versatility for criteria with a strong
focus on low-flow conditions, especially in predicting high-
flow conditions. On the other hand, the Kling–Gupta effi-
ciency applied to the square root of flow values performs as
well as two sets of tailored criteria across the 165 stream-
flow characteristics. These findings suggest that traditional
composite criteria such as the Kling–Gupta efficiency may
still be preferable over tailored criteria for the prediction of
streamflow characteristics, when robustness and consistency
are important.

1 Introduction

River flow is the cornerstone of freshwater ecosystems, the
ecological integrity of which relies on natural fluctuations in
the river flow regime (Poff et al., 1997). A long history of hu-
man alterations of the river flow regime for water supply, irri-
gation, flood protection, or hydropower threatens water secu-
rity and freshwater biodiversity in many regions of the world
(Vörösmarty et al., 2010). Richter et al. (1997) raised the
overarching research question: “How much water does a river
need?”. In order to quantify these needs and assess the effects
of altered flow regime on freshwater ecology, many differ-
ent hydrological indices have been used, whether they are
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referred to as streamflow characteristics (SFCs) (Vis et al.,
2015; Pool et al., 2017), ecologically relevant flow statistics
(ERFSs) (Caldwell et al., 2015), or indicators of hydrologi-
cal alteration (IHAs) (Richter et al., 1996). These SFCs de-
scribe specific aspects of the river flow regime that can be
extracted from the streamflow hydrograph and can be cate-
gorised on the basis of magnitude, frequency, rate of change,
timing, and duration of high-, average-, and low-flow events
(Poff et al., 1997). Olden and Poff (2003) listed a range of
such SFCs used to characterise river flow regime in relation
to ecological species’ preferences. The prediction of these
SFCs at ungauged locations has historically been done us-
ing statistical analyses such as regional regression models
that relate them to some climatic and physiographic descrip-
tors (e.g. Carlisle et al., 2011; Knight et al., 2014). However,
these regression models are not well-suited for investigating
water management or climate change scenarios because they
often rely on long-term descriptors, assumed to be station-
ary. On the other hand, hydrological models can allow for
such scenario analyses, and they produce simulated stream-
flow hydrographs from which the streamflow characteristics
can be computed (e.g. Shrestha et al., 2014; Caldwell et al.,
2015).

Most rainfall–runoff models used to predict SFCs relevant
for stream ecology require parameter calibration. The selec-
tion of the calibration criterion or objective function is of
great importance for predictions of SFCs (Vis et al., 2015;
Kiesel et al., 2017; Pool et al., 2017). As demonstrated by Vis
et al. (2015), different sets of parameters, each equally well-
performing based on the Nash–Sutcliffe efficiency (NSE) cri-
terion (Nash and Sutcliffe, 1970), can yield very different
performances when looking at the prediction of SFCs. This
exposes the limitations of models in representing the entirety
of real-world processes in a catchment. Indeed, because of
uncertainties in model structure, model forcing, and evalu-
ation data (Beven, 2016), the identification of a single per-
fect parameter set is usually unachievable (Beven, 2006), and
in practice trade-offs are required between modelling differ-
ent aspects of the hydrograph. The choice of the objective
function directly influences which trade-offs are made. The
calibration of a rainfall–runoff model using the NSE gives
more importance to fitting flow peaks because of its quadratic
formulation, and this is reflected in its better performance
in general in predicting streamflow characteristics for high-
flow conditions (Shrestha et al., 2014). Composite objective
functions such as the Kling–Gupta efficiency (KGE) are now
often preferred, since KGE explicitly considers linear cor-
relation, bias, and variability in a balanced or customisable
way (Gupta et al., 2009; Kling et al., 2012). Nonetheless, the
quadratic formulation based on flows remains in the linear
correlation component of KGE, and a prior transformation
of flow values is often suggested, for example to put more
emphasis on low flows (Santos et al., 2018). In order to im-
prove the model calibration for the predictions of the entire
hydrograph, the whole or parts of the flow duration curve

have also been found useful (e.g. Westerberg et al., 2011;
Pfannerstill et al., 2014). However, the flow duration curve
does not embed any information about the timing or dura-
tion of flow events, which can be essential for some species
(Arthington et al., 2006).

In order to improve the prediction of a diverse range of
SFCs (e.g. related to both high-flow and low-flow conditions
or both magnitude and duration of flows), multi-objective
calibration methods applied to flows (referred to as tradi-
tional objective functions hereafter) have been explored by
others. For instance, Vis et al. (2015) found that certain com-
binations of objective functions each focussing on different
statistical aspects of the hydrograph tend to be more suitable
for the prediction of the magnitude of average flows and the
timing of moderate and low flows than using a single objec-
tive function. But on average, they found that NSE calibra-
tion produces the smallest errors for 12 SFCs, and they did
not find a single best calibration strategy for predicting all
SFCs at once. Garcia et al. (2017) identified that an average
of KGE applied to flows and KGE applied to inverted flows
has a better skill at predicting seven SFCs relative to low-
flow conditions than either normal KGE or KGE applied to
inverted flows alone. Hernandez-Suarez et al. (2018) found
that a three-criteria calibration strategy with NSE, NSE of the
square root transformed flows, and NSE on the relative devi-
ations can predict 128 SFCs within a ± 30 % error range in
their study catchment, with larger errors on SFCs for extreme
high- and low-flow conditions. Mizukami et al. (2019) com-
pared objective functions that predict the bias in annual peak
flows, and they found that KGE was better suited than NSE
at reproducing the flow variability, reducing, but not elimi-
nating, the underestimation of high flows. These studies sug-
gest that combinations of traditional objective functions (e.g.
NSE and KGE) on transformed and untransformed stream-
flow series can improve the prediction of SFCs compared to
single objective calibration strategies, while the predictions
of extreme flow conditions remain problematic.

To further improve the prediction of a range of SFCs, a
pragmatic approach is to use an objective function fitted to
the target SFCs (referred to as tailored objective functions
hereafter) in the expectation that this will improve predic-
tions of these same SFCs. Mizukami et al. (2019) found that
the annual peak flow bias was best predicted by using the
bias itself as the objective function (to be minimised), out-
performing KGE, and other KGE formulations that had more
weight on flow variability, but they also found that using this
single SFC as an objective function resulted in overfitting, re-
ducing its transferability in time. Pool et al. (2017) also found
that a given SFC is the best objective function for a model
intended to predict itself, and, for 13 different SFCs, this ap-
proach outperformed NSE. The authors also used a four-SFC
metric as the objective function, but the prediction of other
SFCs, not included in this objective function, was not im-
proved compared to NSE. Kiesel et al. (2017) used a seven-
SFC metric as objective function to predict seven SFCs, and
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they found that this objective function outperformed KGE
on almost all seven SFCs. The authors also found that for
two of these seven, SFCs used as a single objective function
produced better overall performance than KGE. Zhang et al.
(2016) found that a 16-SFC metric used as the objective func-
tion outperformed the RMSE, especially for the prediction of
SFCs based on low- and high-flow events. On the other hand,
Garcia et al. (2017) reached a different conclusion when pre-
dicting seven SFCs focussing on low-flow conditions, where
their combined seven-SFC metric was not as robust as the
composite objective function made of KGE and KGE on in-
verted flows. However, unlike the other studies previously
mentioned, this multi-SFC metric focussed solely on low-
flow conditions, which could explain its lack of robustness,
given its difficulty in predicting extreme flows well.

Hydrological models are generally found to be less accu-
rate than regional regression models in predicting particular
SFCs because separate regression models can be developed
for each target SFC (Murphy et al., 2013). Similar behaviour
has been found for calibrated rainfall–runoff models, where
specific calibration focussed on the target SFC is the best cal-
ibration option for predicting that SFC (Kiesel et al., 2017;
Pool et al., 2017; Mizukami et al., 2019). However, while
calibrating on a specific SFC may improve the model’s abil-
ity to predict that indicator, its representation of the catch-
ment’s overall behaviour could be compromised, limiting the
value of the model for predicting other indicators. For in-
stance, Pool et al. (2017) found that using a combination of
SFCs as an objective function does not perform as well as the
Nash–Sutcliffe efficiency fitted to flows to predict SFCs not
included in the calibration, and the authors suggested that the
use of SFCs in calibration may not produce consistent model
parameter sets. Poff and Zimmerman (2010) and Knight et al.
(2014) showed that each aquatic species is sensitive to its
own combination of SFCs relating to its own preferences for
living conditions (Knight et al., 2012). When several species
are considered simultaneously, the number of SFCs to predict
is likely to increase, even though some species may respond
to broadly similar streamflow characteristics. If the number
of SFCs to predict were to increase, it could be expected that
using traditional objective functions would be a more par-
simonious calibration strategy and that more targeted char-
acteristics of the hydrograph would be predicted well. For
example, Archfield et al. (2014) found that a set of seven
streamflow statistics based on daily streamflows, including
traditional objective functions fitted to flows, is more parsi-
monious than a set of 33 SFCs to classify stream gauges for
hydro-ecological purposes.

The objectives of this study are to compare the skills of
tailored objective functions fitted to SFCs against more tradi-
tional objective functions fitted to flows to predict SFCs. This
comparison is articulated around four research questions:

Q1 Which objective function provides the most accurate
SFC predictions?

Q2 Which objective function provides the most robust SFC
predictions?

Q3 Which objective function provides the most stable SFC
predictions?

Q4 Which objective function yields the most consistent be-
havioural parameter sets?

In order to consider the notions of stability and consistency,
14 different calibration–evaluation periods are used. More-
over, three different sets of SFCs are considered as prediction
targets in order to overcome the possibility of the conclusions
being specific to the combinations of SFCs considered. In ad-
dition, the skill of the objective functions are compared on a
set of 156 SFCs and on 9 percentiles of the flow duration
curve to extend the comparison beyond the SFCs contained
in the tailored objective functions and explore trends on spe-
cific categories of streamflow characteristics.

The paper is organised as follows: Sect. 2 describes the
data and models used for the study; Sect. 3 unveils the
methodology employed to answer the research questions
above; Sect. 4 presents the results of the comparison of the
objective functions; and Sect. 5 draws on the findings and
their implications for the predictions of SFCs and discusses
the limitations of the study.

2 Data and model

2.1 Streamflow characteristics

In the absence of adequate local data, the selection of stream-
flow characteristics used in the tailored objective functions
relies on previous studies that identified sets of SFCs rep-
resentative of the habitat preferences of fish communities in
the southeastern US (Knight et al., 2014; Pool et al., 2017)
and of invertebrate communities in Germany (Kakouei et al.,
2017; Kiesel et al., 2017). In addition, a third set of SFCs is
formed by combining the first two sets of SFCs, assuming
that invertebrate and fish communities are sensitive to two
mainly distinct habitat preferences, requiring a larger set of
SFCs. These three sets are assumed to be of some ecologi-
cal relevance to the Irish study catchments for the purpose of
comparing traditional and plausible tailored objective func-
tions; however, currently there is a scarcity of direct empiri-
cal evidence to confirm this.

The indices are listed and detailed in Table 1. Except for
q85 that is derived from the flow duration curve, all stream-
flow characteristics are defined in Olden and Poff (2003)
and their calculation follows the method implemented in
the R package EflowStats (Henriksen et al., 2006; Archfield
et al., 2014). However, all computations for this study were
carried out in Python where the NumPy package was used
to vectorise the calculations of the SFCs (i.e. to formulate
the calculations as arithmetic operations between vectors and
matrices) (Hallouin, 2019a).
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Table 1. List and description of the 18 selected streamflow characteristics. Detailed calculations for each SFC available in Table A2. The
three last columns indicate whether a given SFC is included (∈) or not included ( 6∈) in Eq. (4) for the definition of each of the three tailored
objective functions.

Category SFC Description Unit EKSFC EPSFC EKP
SFC

Magnitude

Average flows ma26 Variability in March mean flow % 6∈ ∈ ∈

ma41 Annual mean daily flow m3 s−1
6∈ ∈ ∈

Low flows ml17 Base flow ratio 1 − ∈ 6∈ ∈

ml20 Base flow ratio 3 – 6∈ ∈ ∈

q85 Flow exceeded 85 % of the time m3 s−1
6∈ ∈ ∈

High flows mh10 Mean October highest flood m3 s−1
6∈ ∈ ∈

Frequency

Low flows fl2 Variability in low-flow pulse count % ∈ ∈ ∈

High flows fh6 Frequency of moderate floods yr−1
6∈ ∈ ∈

fh7 Frequency of large floods 1 yr−1
6∈ ∈ ∈

fh9 Frequency of large floods 2 yr−1
∈ 6∈ ∈

Duration

Low flows dl9 Variability in annual minimum 30 d mean flow % ∈ 6∈ ∈

High flows dh4 Annual maximum of 30 d moving mean flow m3 s−1
∈ 6∈ ∈

dh13 Variability in annual maximum 30 d mean flow − 6∈ ∈ ∈

dh16 Variability in high-flow pulse duration % 6∈ ∈ ∈

Timing

Average flows ta1 Flow constancy − ∈ ∈ ∈

Low flows tl1 Timing of annual minimum flow Julian date 6∈ ∈ ∈

Rate of change

All flows ra2 Variability in flow rise rate % ∈ 6∈ ∈

ra7 Flow recession rate m3 s−1
6∈ ∈ ∈

2.2 Study catchments

This study used discharge records with a minimum of 14 hy-
drological years with complete daily discharge data in the
period from 1 October 1986 to 30 September 2016. If any
daily value was missing, the relevant hydrological year was
discarded as the calculation of some streamflow characteris-
tics requires a strictly continuous daily streamflow time se-
ries. The length of 14 years was set as the minimum require-
ment in order to have 7 years for calibration and 7 years for
evaluation for each catchment. A minimum calibration pe-
riod length of 5 years is recommended by Merz et al. (2009)
to capture the temporal hydrological variability.

The data availability for the gauges meeting these require-
ments is presented on Appendix Fig. A1. In most catchments,
these 14 complete hydrological years were not necessarily
consecutive. For catchments featuring more than 14 com-
plete hydrological years, the additional available years were

not used in order to avoid the possibility of bias due to differ-
ences in data series length. The daily discharge data used in
this study are provided by the Office of Public Works (2019)
and Ireland’s Environmental Protection Agency (2019).

Catchment selection was also influenced by the quality of
the discharge data, including the goodness of fit of the rat-
ing equation at the gauge, the number of measurements, and
their coverage of low-flow and high-flow extremes, as de-
termined by Webster et al. (2017). Heavily regulated rivers
were discarded. A total of 33 gauges (displayed on Fig. 1b)
featured sufficient data of good quality to be used as study
catchments. Of these, there are 15 distinct catchments and
18 gauges nested within these. The 15 distinct catchments
(displayed on Fig. 1a) cover 26 % of the Republic of Ire-
land. They are spread throughout the country and represent
a diversity of Irish soils and geology (Fig. 1c, d). However,
while their average elevation ranges from 5 to 910 m a.s.l.
(above sea level), they do not include any of the most el-
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Figure 1. Spatial location and information on the study catchments: (a) map of the average annual rainfall for the Republic of Ireland for
the period 1981–2010 (source: Met Éireann) overlaid with the 15 distinct river basins containing the 33 study catchments – each name
corresponds to a river basin; (b) map of the topography for the Republic of Ireland (source: Ireland’s EPA) overlaid with the location of
the 33 hydrometric gauges forming the 33 study catchments – each number corresponds to the code of a hydrometric gauge; (c) map of
the pedology for the Republic of Ireland (source: Teagasc) overlaid with the outlines of the 15 river basins; (d) map of the geology for the
Republic of Ireland (source: © Geological Survey Ireland) overlaid with the outlines of the 15 river basins.
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evated catchments in the Wicklow Mountains (relief on the
eastern coast) and the mountainous edge on the Atlantic coast
(Fig. 1b). Their average annual rainfall ranges from 916 to
1660 mmyr−1, and the average annual potential evapotran-
spiration varies from 497 to 578 mmyr−1. The size of the
catchments varies from 25 to 2462 km2, and their average
slope ranges from 19 to 121 mkm−1. Estimated baseflow in-
dices range from 0.31 to 0.79 (see Table A1 in the Appendix
for full details).

2.3 Rainfall–runoff model

The Soil Moisture Accounting and Routing for Trans-
port (SMART) model used here is an enhancement of
the SMARG (Soil Moisture Accounting and Routing with
Groundwater) lumped, conceptual rainfall–runoff model de-
veloped at National University of Ireland, Galway (Kachroo,
1992), and based on the soil layers concept (O’Connell
et al., 1970; Nash and Sutcliffe, 1970). Separate soil lay-
ers were introduced to capture the decline with soil depth
in the ability of plant roots to extract water for evapotranspi-
ration. SMARG was originally developed for flow modelling
and forecasting and was incorporated into the Galway Real-
Time River Flow Forecasting System (GFFS) (Goswami
et al., 2005). The SMART model reorganised and extended
SMARG to provide a basis for water quality modelling by
separating explicitly the important flow pathways in a catch-
ment, and it has been successfully fitted to over 30 % of Irish
catchments (Mockler et al., 2016).

The routing component distinguishes between five dif-
ferent runoff pathways: overland flow, drain flow, inter-
flow, shallow groundwater flow, and deep groundwater flow
(Fig. 2). It runs at an hourly or daily time step, requires inputs
of precipitation and potential evapotranspiration, and pro-
duces estimates of discharge from the catchment. It normally
has 10 parameters (Fig. 2). During energy-limited periods
(i.e. when potential evapotranspiration is less than incident
rainfall), the model first estimates effective or excess rainfall
by applying a scaling correction θT and subtracting any di-
rect evaporation. A threshold parameter θH determines how
much (if any) of this becomes direct surface runoff through
the Horton (infiltration excess) mechanism. Any surplus rain-
fall is assumed to infiltrate into the top layer of the soil. The
soil is modelled as six layers with a total soil moisture ca-
pacity of θZ . As the moisture holding capacity of a layer
is exceeded, surplus moisture moves to a deeper layer if it
has capacity or else is intercepted by drains or moves to the
shallow or deep groundwater stores. In water-limited periods
(i.e. when potential evapotranspiration exceeds any rainfall),
the model attempts to meet the evapotranspiration demand
by supplying moisture from the soil layers, starting from the
top layer, and incrementally moving to the lower layers, as
layers become dry, with an increasing difficulty expressed
by the parameter θC , until the demand is met, or all layers
have dried up. Each of the above pathways is modelled as

Table 2. List and description of the 10 parameters of the SMART
model.

Parameter Description Unit

T Rainfall aerial correction factor –
C Evaporation decay coefficient –
H Quick runoff ratio –
D Drain flow ratio –
S Soil outflow coefficient –
Z Effective soil depth mm
SK Surface reservoir residence time Time step
FK Interflow reservoir residence time Time step
GK Groundwater reservoir residence time Time step
RK Channel reservoir residence time Time step

Figure 2. Conceptual representation of the SMART model struc-
ture. P and EP , precipitation and potential evapotranspiration, re-
spectively, are the model inputs; Q and EA, discharge and actual
evapotranspiration, respectively, are the model outputs. For full de-
scription of the parameters, states, and fluxes presented on the fig-
ure, as well as the conceptual model equations, the reader is referred
to the documentation provided in the Supplement.

a single linear reservoir, each with its own parameter (θSK
for overland and drain flow, θFK for interflow, and θGK for
shallow and deep groundwater flow). The outputs of all of
these are routed through a single linear reservoir represent-
ing river routing (θRK). The model does not contain any snow
component, as it is infrequent in Ireland. Note that a detailed
description of the conceptual model is provided in the Sup-
plement.

3 Method

3.1 Split-sample tests

Split-sample tests are commonly used to analyse the perfor-
mance of hydrological models (Klemeš, 1986). Coron et al.
(2012) proposed a generalised split-sample test using a slid-
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ing window of a given duration across the study period: cal-
ibration is carried out on the given window, and the model
performance is evaluated for all other independent windows
in the study period, thus evaluating on more than one period.
This approach was simplified by de Lavenne et al. (2016) to
evaluate on all data not included in the window (i.e. combin-
ing the years before and after the calibration window), thus
evaluating on one period only. These approaches have the
advantage of reducing any influence of different calibration–
evaluation periods, compared with a single split-sample test
that divides the study period into fixed, separate calibration
and evaluation periods.

The split-sampling strategy in this study is adapted from
the original approach by de Lavenne et al. (2016) in that it
uses each hydrological year the same number of times in
each of the 14 split-sample tests. For each catchment, the 14-
hydrological-year series of discharge measurements is split
into two 7-hydrological-year periods, and the split is repeated
14 times (Fig. 3). It is implicitly assumed that any combi-
nation of hydrological years can be used, even if they are
not consecutive. Thus, there are theoretically 3432 different
combinations of 7-year periods in a 14-year study period.
These combinations would be expected to represent all pos-
sible climatic combinations represented in the data for the
study period; however, given the large dataset this would gen-
erate, it was decided to work only on 14 combinations by
using the window of 7 consecutive years, rather than more
complex bootstrapping strategies.

3.2 Model setup

The SMART model is used in a lumped manner to pre-
dict streamflow at the catchment outlet. The model is forced
with daily rainfall and potential evapotranspiration data pro-
vided by the national meteorological office, Met Éireann
(2019). The potential evapotranspiration is calculated by Met
Éireann using the Food and Agriculture Organization of
the United Nations (FAO) Penman–Monteith formula (Allen
et al., 1998) with coefficients adjusted for Irish conditions
and meteorological data from their synoptic weather sta-
tions. A 5-hydrological-year warm-up period is used to de-
termine the initial states of the soil layers and reservoirs in
the model. The 5-year warm-up period is applied prior to the
first complete hydrological year used in the split-sample test
on Fig. A1. A Python implementation of the SMART model
(Hallouin et al., 2019) is used to simulate the hydrological
response in all study catchments from the first day of the
first warm-up year until the last day of the 14th complete
hydrological year. The corresponding calibration and eval-
uation periods are then extracted from these time series as
required (see Fig. 3).

3.3 Model calibration

The calibration of the model is done using six different ob-
jective functions. The calibration procedure is illustrated in
steps (a) to (d) of Fig. 4 and is applied for each study catch-
ment individually. First, in step (a), the model parameter
space is explored using a Latin hypercube sampling (LHS)
strategy (McKay et al., 1979) to generate 105 random pa-
rameter sets well distributed in the parameter space. The lim-
its of the parameter space explored are based on a previous
study by Mockler et al. (2016), providing typical ranges for
Irish catchments. The model is then used in step (b) to simu-
late the catchment response with each of these 105 parameter
sets, which produces as many hydrographs.

In step (c) (Fig. 4), six different objective functions are
used to calculate the model performance by comparing the
simulated and observed catchment responses. Three variants
of the Kling–Gupta efficiency (Gupta et al., 2009) are tested.
First, the KGE criterion is computed on the untransformed
discharge series, i.e. EQKG (Fig. 1). This is considered to put
more emphasis on high-flow conditions (Krause et al., 2005).
Second, the KGE criterion is computed on the inverted dis-
charge series, i.e. EQ

−1

KG (Fig. 2); this objective function puts
more emphasis on low-flow conditions (Santos et al., 2018).
Third, the KGE criterion is computed from the square root
of the discharge series, i.e. EQ

0.5

KG (Fig. 3); this reduces the
influence of high flows allowing moderate flow conditions
to have a bigger influence (Garcia et al., 2017). These vari-
ants of KGE are referred to as traditional objective functions
hereafter and are computed using all data points in the hydro-
graphs. In addition, three combinations (vectors) of stream-
flow characteristics, referred to as tailored objective func-
tions hereafter, are constructed. For each vector of SFCs, the
Euclidean distance (Fig. 4) separating the observed and sim-
ulated points in the multi-dimensional space formed by each
dimension in the vector of SFCs is calculated. This is sub-
tracted from one so the efficiency measure has an optimum
at one, like KGE. Similar to Kiesel et al. (2017), each SFC is
normalised (Eqs. 5, 6) so that its value is bounded between
zero and one. This ensures each SFC has the same weight
in the computation of the Euclidean distance. Each of these
six objectives functions are used to produce 105 efficiency
scores for all the calibration cases.

Eventually, in step (d), the best 1 % parameter sets (i.e.
those with the highest efficiency scores on the chosen objec-
tive function) are retained as “behavioural”, yielding a set of
103 parameter sets. This calibration approach is similar to
the Generalized Likelihood Uncertainty Estimation (GLUE)
methodology (Beven and Binley, 1992, 2014) but without
a threshold for acceptability to characterise the behavioural
character of a parameter set.

To examine the absolute performance of each of the six ob-
jective functions, a benchmark is defined by randomly sam-
pling 103 parameter sets in the previously mentioned Latin
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Figure 3. Split-sampling strategy using a 7-year rolling window, adapted from de Lavenne et al. (2016). Each period of 14 hydrological
years enumerated as decimal numerals in Fig. A1 is represented on the x axis and split into two 7-year periods, one for model calibration (in
purple), and one for model evaluation (in pink). Each period of 5 hydrological years identified as roman numerals on the x axis corresponds
to the 5-consecutive-year warm-up period immediately preceding the hydrological year number 1.

Figure 4. Model calibration and evaluation strategy for the prediction of SFCs with different objective functions. Steps (a) to (d) correspond
to model calibration, while steps (e) to (g) correspond to model evaluation. These steps are replicated for each study catchment and for each
split-sample test.

hypercube. This benchmark corresponds to an uninforma-
tive calibration and will be referred to as R in the Results
section. This follows the recommendations made by Seibert
et al. (2018) to define a lower benchmark when assessing
the performance of a hydrological model because any model
should be expected to reproduce some of the streamflow vari-
ability simply due to the use of observed forcing data specific
to the catchment of interest. If the performance of the cali-
brated model does not exceed the performance of the bench-
mark, then the suitability of the model and/or its calibration

is questionable.

E
Q
KG = EKG

(
qobs,qsim

)
= 1−

√
(r − 1)2+ (α− 1)2+ (β − 1)2

= 1−

√(
cov(qobs,qsim)

σqobs · σqsim

− 1
)2

+

(
σqsim

σqobs

− 1
)2

+

(
µqsim

µqobs

− 1
)2

, (1)
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E
Q−1

KG = EKG

(
1

qobs+ 0.01 ·µqobs

,
1

qsim+ 0.01 ·µqsim

)
, (2)

E
Q0.5

KG = EKG
(√

qobs,
√

qsim
)
, (3)

where cov, σ , and µ correspond to the covariance, the stan-
dard deviation, and the arithmetic mean, respectively; qobs
and qsim correspond to the time series of observed discharge
and simulated discharge, respectively. Noteworthy, a con-
stant is added to the inverted discharge values in Eq. (2) in
order to avoid zero-flow issues, and a hundredth of the arith-
metic mean of the corresponding discharge series is used as
recommended by Pushpalatha et al. (2012).

E
target
SFC = 1−

√√√√Ntarget∑
j=1

(
c∗obs,j − c

∗

sim,j
)2
, (4)

where Ntarget corresponds to the number of SFCs contained
in the targeted combination of SFCs (the specific SFCs con-
tained in each targeted combination can be found in Ta-
ble 1) and where c∗obs,j and c∗sim,j correspond to the j th ob-
served SFC value in the combination and the j th simulated
SFC value in the combination, respectively, which were nor-
malised as described in Eqs. (5) and (Eq. 6), respectively.

c∗obs,j =
cobs,j −min

(
cobs,j ;

{
csimi,j

}105

i=1

)
max

(
cobs,j ;

{
csimi,j

}105

i=1

)
−min

(
cobs,j ;

{
csimi,j

}105

i=1

) , (5)

c∗simi,j
=

csimi,j
−min

(
cobs,j ;

{
csimi,j

}105

i=1

)
max

(
cobs,j ;

{
csimi,j

}105

i=1

)
−min

(
cobs,j ;

{
csimi,j

}105

i=1

) , (6)

where cobs,j and csimi,j
correspond to the j th observed SFC

value in the combination and the j th simulated SFC value in
the combination for the ith streamflow simulation amongst
the Latin hypercube sample, respectively.

3.4 Model evaluation

The method used to assess the predictions with a model cal-
ibrated with each of the six different objective functions is
described in steps (e) to (h) of Fig. 4. This methodology is
applied for each study catchment individually. First, in step
(e), the model is run separately with each of the 103 be-
havioural model parameter sets to simulate the evaluation
period, which produces 103 hydrographs. From each hydro-
graph, in step (f), the model prediction in the evaluation is
assessed with each of the six objective functions described
in Sect. 3.3, which yields 103 efficiency scores for the eval-
uation period. Then, in step (g), the median is used to sum-
marise the performance of the behavioural parameter sets for
each of the six objective functions in each catchment. Even-
tually, from these median values, further analyses are carried
out across split samples and across study catchments to ex-
plore the comparative skills of the six objective functions as
detailed below.

3.4.1 Overall performance

First, the overall performance for the evaluation period of the
model calibrated with each of the six objective functions is
assessed by averaging the median efficiency scores obtained
in step (g) (Fig. 4) across the 14 split-sample tests and then
averaging again across the 33 study catchments. Since all six
objective functions are defined as Euclidean distances sub-
tracted from one, the overall performance ranges from−∞
to one, with an optimal value at one. The skills of the six
objective functions to calibrate the model are first compared
using the traditional objective functions as efficiency scores
for the evaluation period (Sect. 4.1) to assess their ability to
reproduce the shape, timing, variability, and volume of the
observed hydrograph. This gives an indication of whether the
model structure gives a plausible approximation of the rele-
vant hydrological processes in the study catchments.

Next, the calibrated models are compared using the tai-
lored (SFC) objective functions for the evaluation period
(Sect. 4.2) to assess their prediction of sets of streamflow
characteristics. This is an important focus of this study.

3.4.2 Performance stability

The use of 14 split-sample tests allows for the comparison
of the calibrated models for different evaluation periods (see
Fig. 3). This gives an indication of the model stability in cal-
ibration and whether the model performance is independent
of the study period. The stability is calculated from the stan-
dard deviation of the median efficiency scores across the 14
split-sample tests and is then averaged across the 33 study
catchments (Sect. 4.3). This is done for all the models cali-
brated with each of the six objective functions. The stability
can range from the optimal value of zero without an upper
bound.

3.4.3 Performance robustness

The robustness of the models measures their ability to match
their calibration fitting skill with their performance in the
evaluation period. Poor robustness can indicate model over-
fitting to the calibration data, which could reduce the predic-
tive power of the model. The robustness is calculated from
the difference between the median efficiency in calibration
and the median efficiency in evaluation, then by averaging
these differences across the 14 split-sample tests, and finally
by averaging these across the 33 study catchments (Sect. 4.4)
to obtain the robustness for each of the six objective func-
tions. The optimal value is zero, and it can be positive or
negative. Robustness is expected to be positive because the
performance in calibration is usually better than the perfor-
mance in evaluation.
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3.4.4 Consistency in the selection of the model
parameter values

Finally, the model consistency obtained with each of the six
objective functions is explored. The concept of consistency
has been previously used in selecting from competing model
structures (Euser et al., 2013). Originally used as the capac-
ity of a model structure to predict a range of hydrological
signatures with the same parameter set, in this study the idea
of consistency is applied to the objective functions. The abil-
ity of different objective functions to identify the same pa-
rameter sets as behavioural is assessed across the 14 split-
sample tests. Consistency establishes whether similar perfor-
mance can be obtained from a model with largely different
parameter sets. The consistency is computed as the fraction
of the 103 behavioural parameter sets that are common to
all 14 split-sample tests. The average of this fraction across
the 33 study catchments is calculated (Sect. 4.5) to obtain
the model consistency for a given objective function used
to identify the behavioural parameter sets. The consistency
ranges from zero to one, with an optimal value at one.

For this analysis, the same Latin hypercube sampling of
the 105 parameter sets per catchment is used. That is to say
that the Latin hypercube is generated once, and it is used on
the 14 different calibration–evaluation periods in order to be
able to determine whether a behavioural parameter set iden-
tified as behavioural on one test remains behavioural on a
different test.

3.4.5 Analysis of the components of the objective
functions

To explore the reasons for the trends identified in model per-
formance, stability, robustness, and consistency, the ability
of the six objective functions to predict the shape and tim-
ing, the variability, and the bias of the observed hydrograph
is examined by assessing the three components of r , α, and
β of EQKG individually from Eq. (1). Because of the transfor-

mations applied to the discharge series in EQ
0.5

KG and EQ
−1

KG ,
the direct physical interpretation of their three components is
lost (Santos et al., 2018), so they are not analysed further.

In addition, the ability of the six objective functions to pre-
dict each individual SFC is assessed by calculating the abso-
lute normalised error between the simulated and the observed
SFC values (Eq. 7).

e∗simi,j
=

∣∣∣∣∣∣ csimi,j
− cobs,j

max
(
cobs,j ;

{
csimi,j

}105

i=1

)
−min

(
cobs,j ;

{
csimi,j

}105

i=1

)
∣∣∣∣∣∣ , (7)

where cobs,j and csimi,j
correspond to the j th observed SFC

value in the combination and the j th simulated SFC value in
the combination for the ith streamflow simulation amongst
the Latin hypercube sample, respectively.

For each component analysed, the approach is the same
as the one used for assessing the overall model performance

in Sect. 3.4.1. This means that the median value of a given
component for the behavioural parameter set is calculated;
it is then averaged across the 14 split-sample tests; and it
is finally averaged across the 33 study catchments to obtain
an overall skill of each objective function in predicting these
individual components.

3.4.6 Analysis of the performance on a large set of
SFCs

Finally, the comparative performance of the objective func-
tions to calibrate the hydrological model is assessed on 156
different SFCs and the 9 percentiles of the flow duration
curve where Eq. (7) is used to determine the predictive errors.
This analysis is intended to provide a more holistic picture
of the skills of the different objective functions in predicting
different flow conditions (i.e. low, moderate, and high flows)
and different flow characteristics (i.e. magnitude, duration,
frequency, timing, and rate of change).

4 Results

4.1 Are the candidate objective functions capable of
reproducing the catchment hydrograph?

The SMART model calibrated on EQKG does reproduce the
observed catchment hydrographs reasonably well in all 33
study catchments, with average EQKG scores in calibration
across the 14 split-sample tests ranging from 0.58 to 0.94
with a median of 0.86.

On average, all six objective functions reproduce the ob-
served hydrograph well when more weight is given to pre-
dicting high flows, with EQKG scores in the evaluation be-
tween 0.69 and 0.82 (Fig. 5a). They largely outperform the
average benchmark score of 0.40, indicating that all six ob-
jective functions do find parameter sets representative of the
hydrological behaviour of our catchments. Using EQKG for
calibration is the best objective function when measured us-
ing EQKG with a score of 0.82, followed by EQ

0.5

KG with a score

of 0.80. However,EQ
−1

KG is outperformed by the three tailored
objective functions. EKP

SFC is the best tailored objective func-
tion when measured on EQKG, followed by EPSFC and EKSFC.
This is because EKP

SFC and EPSFC contain a majority of SFCs
for high-flow conditions (Table 1), while EKSFC contains a
majority of SFCs for low-flow conditions.

When more importance is given to predicting average-flow
conditions, i.e. using EQ

0.5

KG (Fig. 5b), the best-performing

objective function is EQ
0.5

KG with a value of 0.87„ followed
by EQKG with 0.86 and the three tailored objective functions
with very comparable performances (between 0.84 and 0.85).
Since the three tailored objective functions contain compa-
rable proportions of SFCs for average-flow conditions (i.e.
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Figure 5. Comparison of the overall performance in evaluation of
the model calibrated with the six objective functions. The three tra-
ditional objective functions are used as evaluation efficiencies.EQKG
corresponds to the original Kling–Gupta efficiency (Gupta et al.,
2009).

around 30 %, see Table 1), it can explain why their values of
E
Q0.5

KG are close.

While EQ
−1

KG is the worst objective function when assessed

on EQKG or EQ
0.5

KG , when more emphasis is put on low flows,

i.e. assessed using EQ
−1

KG (Fig. 5c), it performs the best out of
the six objective functions with a score of 0.67, followed by
EKSFC with a score of 0.59. EQ

0.5

KG and EKP
SFC perform equally

with a score of 0.56, while EPSFC has a score of 0.55. EQKG is
the worst objective function to choose out of the six to pre-
dict low flows well. Nonetheless, it is better than the lower
benchmark with its score of 0.07. Again, the proportion of
low-flow SFCs explains the ranking of the three tailored ob-
jective functions, where EKSFC features three SFCs for low-
flow conditions out of its seven SFCs (see Table 1), while
EPSFC features the lowest proportion of SFCs for low-flow
conditions (i.e. 4 out of 13; Table 1).

4.2 Which objective function provides the most
accurate SFC predictions?

The differences between most of the objective functions are
small (Fig. 6a–c). They greatly exceed the benchmark on all
three tailored objective functions, indicating that all six ob-
jective functions are useful. The best evaluation scores for a
given set of SFCs is always obtained using the same com-
bination of SFCs in evaluation as was used in calibration;
e.g. the best EKSFC score in evaluation (0.74) is obtained with
EKSFC as the objective function for calibration. (EPSFC scores
0.56 on EPSFC; EKP

SFC scores 0.50 on EKP
SFC.) Furthermore, for

the combination with the largest number (18) of SFCs, EKP
SFC

is a competitive option, even when the focus is on smaller
subsets of SFCs (i.e. scores 0.73 on EKSFC or scores 0.56 on
EPSFC), and it outperforms any of the three formulations of
EKG.

The best traditional objective function to predict any of
the sets of SFCs is consistently EQ

0.5

KG , with scores of 0.72 on

EKSFC, 0.54 on EPSFC, and 0.48 on EKP
SFC. EQ

−1

KG is the worst-
performing traditional objective function, with scores of 0.67
on EKSFC, 0.41 on EPSFC and 0.34 on EKP

SFC. Given that EKSFC
contains the highest fraction of low-flow SFCs (three out of
seven), it is surprising to find the traditional objective func-
tion with the strongest focus on predicting low-flow condi-
tions is the worst-performing one. However, Garcia et al.
(2017) also found that EQ

−1

KG is not the best to predict low-
flow indices and recommend an arithmetic mean of EQKG and

E
Q−1

KG as a better alternative to predict them.
In addition, the dispersion of the performance across the

33 study catchments, measured by standard deviation (repre-
sented as error bars on Fig. 6a–c), is smaller for the better-
performing objective functions, which indicates that in addi-
tion to predicting well on average, they have less variability
across the different study catchments.

4.3 Which objective function provides the most stable
SFC predictions?

The average stability of the performance across the 14 split-
sample tests shows only small differences between the differ-
ent objective functions (Fig. 6d–f). Moreover, the absolute
stability scores, measured by the standard deviation across
the 14 split samples (see Sect. 3.4.2), are also relatively
small, i.e. never exceeding 0.05. Here, the benchmark is as
stable as the six objective functions used for calibration. This
suggests that stability is not very useful here to separate the
objective functions given that an uninformative calibration
yields similar stability. Their small values imply that the dif-
ferences observed previously are not dependent on the study
period considered.
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Figure 6. Comparison of the skills in evaluation of the model calibrated with the six objective functions. The first column of panels compares
them on the overall performance on the three tailored objective functions used as evaluation efficiencies (described in Sect. 3.4.1). The
second column compares them on the stability of these efficiencies across the 14 split-sample tests (described in Sect. 3.4.2). The third
column compares them on the robustness of these efficiencies between calibration and evaluation periods (described in Sect. 3.4.3).

4.4 Which objective function provides the most robust
SFC predictions?

The robustness of the different objective functions on the
three sets of SFCs uncovers a general trend whereby tradi-
tional objective functions are more robust than tailored ob-
jective functions; i.e. the drop in performance from the cali-
bration period to the evaluation period is smaller for the tra-
ditional objective functions (Fig. 6g–i).

The average drop in performance is consistently below
0.01 for EQKG, EQ

0.5

KG , and EQ
−1

KG on all three sets of SFCs.
On the other hand, the largest drop in performance on any
of the three sets of SFCs is always obtained with this same
set used in calibration. For instance, EKSFC shows an aver-
age drop of 0.045 on EKSFC, while the drop is only 0.016
with EPSFC and 0.022 with EKP

SFC. This difference in robust-
ness may be caused by tailored objective functions suffering
more from overfitting than the traditional objective functions.
Nonetheless, the tailored objective functions remain the best
options when considering results in the evaluation period so
that although they reach better fitting in calibration, it is at
the cost of larger performance drops from calibration to eval-
uation. These results are consistent with Garcia et al. (2017),
who also found that their tailored objective function made of
seven SFCs was not robust.

4.5 Which objective function yields the most consistent
behavioural parameter sets?

Unlike the measures of average model performance and sta-
bility, the consistency measures reveal more significant dif-
ferences between the six objective functions compared here
(Fig. 7). On average, EQ

0.5

KG and E
Q
KG clearly outperform

all other objective functions with consistencies of 0.52 and
0.51, respectively. This means that more than half of the be-
havioural parameter sets identified with these two objective
functions remain behavioural across all 14 split-sample tests.
The lowest consistencies are for EQ

−1

KG and EKSFC with 0.19
and 0.13, respectively. These focus mostly on low-flow con-
ditions, and this may contribute to their lack of consistency.

The consistency ratios for the tailored objective functions
appear to be related to the number of SFCs they contain.
For instance, EKSFC, containing only seven SFCs, comes last
with a consistency of 0.13; EPSFC with 13 SFCs has a con-
sistency of 0.31; and EKP

SFC, containing all 18 SFCs, has a
consistency of 0.34. However, given that only three sets of
SFCs are tested, this could be a coincidence, and additional
research on the impact of the number of SFC components in
the tailored objective functions on their consistencies is indi-
cated.
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Figure 7. Comparison of the consistency of the set of behavioural
parameter sets identified with the six objective functions across the
14 split-sample tests (described in Sect. 3.4.4).

4.6 Are there specific components of the objective
functions limiting their performances?

4.6.1 Shape and timing, variability, and bias

First, comparing the six objective functions on the three com-
ponents of EQKG (Fig. 8) reveals that the shape and timing (r)
is the most difficult aspect of the hydrograph to predict, while
the total volume (β) is the least difficult. The flow variability
(α) is consistently underestimated, while the total volume is
overestimated with all but one objective function (i.e. EQ

−1

KG ).

E
Q−1

KG performs the worst on two of the three components,
with a score of 0.836 on the linear correlation r and 0.882
on the variabilityα. This indicates that the objective function
struggles the most to reproduce the shape and timing of the
observed hydrograph, and also it is the one that most under-
estimates the observed spread of flows. On the other hand, it
is the best objective function to estimate the volume of water
at the catchment outlet (score of 0.997 onβ). On the other
hand, EQKG and EQ

0.5

KG perform well on α and β, while they
are not as good on the correlation coefficient r . Nevertheless,
they are better than most other objective functions on r , with
amongst the highest scores on r (0.894 and 0.888, respec-
tively).

The bad performance of EKSFC found in Sect. 4.1 can be
attributed mainly to a lower correlation component of EQKG,
with a value of 0.863, and to a lesser extent to a failure to
capture the flow variability (α value of 0.927). Even though
EKSFC is the worst objective function for bias (β has a value
of 1.038), this is its best score amongst the three components
of EQKG. EPSFC and EKP

SFC are good at capturing the flow vari-
ability, withα values close to one (0.953 and 0.951, respec-
tively). They are comparable to EQKG and EQ

0.5

KG on the cor-
relation coefficient, while they overestimate the total volume
the most (1.018 and 1.022 for the bias, respectively).
EKSFC and EQ

−1

KG share an emphasis on low-flow periods
that is likely the reason compromising their performance on
the linear correlation coefficient r , which gives more weight

to high-flow periods. High-flow periods typically exhibit
larger errors that are amplified by the quadratic formulation
of the correlation coefficient (Krause et al., 2005). Moreover,
EPSFC and EKP

SFC contain higher proportions (and larger num-
bers) of SFCs relating to flow magnitude thanEKSFC (Table 1),
which can explain why EKSFC is worst on the bias component.
Finally, EPSFC and EKP

SFC contain two SFCs for the timing of
flows, while EKSFC contains only one, which can explain why
EKSFC is not as good as the two others for the correlation co-
efficient.

4.6.2 Individual streamflow characteristics

The normalised errors for the 18 SFCs that are contained in
the three tailored objective functions (Fig. 8) show that, over-
all, all six objective functions tend to produce the largest er-
rors for the same SFCs, for example on fh7 (frequency of
large floods), fh6 (frequency of moderate floods), or tl1 (tim-
ing of annual minimum flow). Also the smallest errors are
produced for the same SFCs, for example dh13 (variability
in annual minimum 30 d mean flow) or ra2 (variability in
flow rise rate). The prediction of the SFCs considering the
frequency of flow events (fh6, fh7, fh9, and fl2) is the most
difficult with all six objective functions, while SFCs related
to their duration (dh4, dh13, dh16, and dl9) are amongst the
easiest to predict. For the magnitude of flow events, low-flow
events seem to be relatively easy to predict compared to the
magnitude of average- and high-flow events.

However, EKSFC and EQ
−1

KG tend to show more variability
than the other four objective functions in the ranking of the
errors across the 18 SFCs. For example, EQ

−1

KG shows larger
errors on SFCs related to high-flow conditions (mh10, fh6,
fh7, fh9, and dh4) because of the focus on low flows of the
objective function but also on some average-flow conditions
(ma26, ma41, and ra7) and even on low-flow SFCs (ml20
– baseflow ratio). This is also the case for mostly the same
SFCs with EKSFC. Again, these two objective functions place
more emphasis on low flows, and this seems to make them
less suitable across a wider range of flow conditions. On the
other hand, the emphasis on high flows in EKSFC seems less
detrimental to its performance on low-flow conditions. Al-
though it is worst of all on ml17 (baseflow ratio) and q85
(flow exceeded 85 % of the time), it is still with relative er-
rors below 10 %.

Unlike the overall performance behaviour described in
Sect. 3.4.1, a tailored objective function does not necessar-
ily perform the best on all of the individual SFCs it contains.
For example, EQKG outperforms EPSFC on ma41 (annual mean
daily flow), which was already noticed with the bias. Also,
E
Q−1
KG outperforms EPSFC on q85, which can be explained by

the strong emphasis EQ
−1

KG puts on low flows. Interestingly,
a tailored objective function can outperform another one on
SFCs it does not contain. Indeed, EPSFC outperforms EKSFC on
ra2, even though the latter is only contained in EKSFC.
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Figure 8. Comparison of performance in evaluation of the model calibrated with the six objective functions on individual components of
the objective functions. Panel (a) compares them on the three components of the Kling–Gupta efficiency. Panel (b) compares them on the
individual SFCs that are contained in the three tailored objective functions. A hollow diamond and an asterisk are used to display the SFCs
belonging to EKSFC and to EPSFC, respectively. Note that all SFCs belong to EKP

SFC.

4.7 Trends on a large range of flow regime
characteristics

Extending the number of SFCs examined shows that EQ
0.5

KG ,
EPSFC, and EKP

SFC perform very similarly across the 156 SFCs
and the 9 percentiles of the flow duration curve (Fig. 9) and
that they are somewhat similar to EQKG, except for the mag-
nitude and duration of low-flow events, where EQKG produces

larger errors. This implies that EQ
0.5

KG is a good choice for
model calibration when the purpose is to predict a wide range
of streamflow characteristics across various flow conditions,
since it performs almost as well as the best tailored objective
functions. In contrast, EQ

−1

KG produces noticeably larger er-
rors than any other objective function on the maximum daily
flow in each month (i.e. mh1 to mh12), on the mean annual
maximum of a moving mean of a 1, 3, 7, 30, and 90 d win-
dow (dh1 to dh5), or on the frequency of flood events of var-
ious intensities (fh1, fh5, fh6, and fh8). At the same time,
this objective function produces markedly smaller errors on
the mean annual minimum of a moving mean of a 1, 3, 7, 30,
and 90 d window (dl1 to dl5). Overall, the stronger weight on
low-flow conditions of EQ

−1

KG does improve the predictions
of SFCs for low-flow events to the detriment of the predic-
tion for high-flow events. This is also noticeable in the per-
centiles of the flow duration curve, with an almost monotonic
increase in the error amplitude from the 99th percentile to the
1st percentile. However,EQ

−1

KG is the worst objective function
for predicting the minimum daily flow in each month for the
period October–February (ml10, ml11, mh12, ml1, and ml2).
This is because the magnitude of low flows during this wet
period are higher than during the dry period so that errors
for low flows for the dry period are given a higher weight
than the ones for the wet period in EQ

−1

KG . Also, it has a larger
error for predicting the frequency of low-flow periods (fl1);
this is because the threshold for low-flow periods is set as the
25th percentile, which is not the magnitude of flows that is
the most emphasised by EQ

−1

KG (i.e. not on the lower tail of
the flow distribution).

Amongst the tailored objective functions, EKSFC performs
differently across the 156 SFCs and the 9 percentiles than its
two counterparts, which perform very similarly across these
SFCs. Indeed, EKSFC shows absolute normalised errors be-

tween EQ
−1

KG and the two other tailored objective functions.
EKSFC tends to show larger errors on the characteristics where

E
Q−1

KG is outperformed by the other traditional objective func-
tions, typically on characteristics for low-flow conditions.
This pattern was already observed on the smaller set of SFCs
in Sect. 4.6.2.

Beyond the patterns identified above, the relative agree-
ment in the SFCs showing the largest and smallest errors
across the six objective functions provides some insight on
the easiest and hardest SFCs to predict. It is clear that the
average number of flow reversals from one day to the next
(ra8) is the most difficult to predict and so are, to a lesser
extent, the average slope of the rising and recession limbs
(ra1 and ra3). Overall, high-flow events are trickier to pre-
dict, whether it is their magnitude (mh1–mh12 – mean daily
maximum for each month, mh19 – skewness in annual maxi-
mum daily flow, and mh20 – mean annual maximum daily
flow), their duration (dh1–dh10 – mean and variability in
annual maximum of a moving mean of a 1, 3, 7, 30, and
90 d window), their timing (th1 – timing of annual maximum
flow), or their frequency, except for the variability in high-
flood events (fh2) and the average number of days exceed-
ing 7 times the median flow (fh4). On the other hand, some
SFCs based on the magnitude of flows are easier to predict,
e.g. variability in the percentiles of the log-transformed dis-
charge record (ma4), the skewness in daily flows (ma5), vari-
ous ratios of flow percentiles (ma6-ma8), and various spreads
between flow percentiles (m9–m11). The volume of floods
exceeding the median, twice the median, and 3 times the me-
dian (mh21, mh22, and mh23) are also well predicted, along-
side the 90th and 75th percentiles normalised by the median
flow (mh16 and mh17). Finally, the mean annual maximum
of a moving mean of a 7 and 30 d window normalised by the
median flow (dh12 and dh13) are the best-predicted SFCs
relating to the duration of flows. For the percentiles of the
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Figure 9. Comparison of performance in evaluation of the model calibrated with the six objective functions on 156 streamflow characteristics
and 9 percentiles of the flow duration curve. A detailed description of each SFC can be found in the Appendix of Olden and Poff (2003).

flow duration curve, it appears that all six objective functions
are better suited to predicting its low tail, which is consistent
with the lower relative errors for the SFCs on the magnitude
of low flows compared with those of high flows.

5 Discussion

5.1 On the definition of SFC-based objective functions
for ecologically relevant streamflow predictions

The choice of the objective function for ecological applica-
tions influences the predictive performance of the hydrolog-
ical model for specific streamflow characteristics (Vis et al.,
2015; Kiesel et al., 2017; Pool et al., 2017). In particular, spe-
cially chosen composite objective functions containing the
target SFCs have improved the prediction of these SFCs (e.g.
Kiesel et al., 2017). This study confirmed these separate find-
ings using the same set of SFCs in Irish study catchments.
However, the consistency analysis done here reveals that the

parameter sets identified in the calibration are less consistent
across different split-sample tests with this type of objective
function than with two of the traditional objective functions
(i.e. EQKG and EQ

0.5

KG ).
The selection of particular streamflow characteristics for

their ecological relevance does not imply that they can rep-
resent the overall hydrograph. Indeed, while some indica-
tors originally used as ecologically relevant SFCs (Olden and
Poff, 2003) are also used as hydrological signatures (e.g. Ya-
dav et al., 2007; Zhang et al., 2008), their selection as a
relevant characteristic for a catchment is driven by the re-
quirement to model specific indicators. These indicators can
be ecologically relevant SFCs according to their influence
on the stream ecology (Poff and Zimmerman, 2010), while
they are also selected as hydrological signatures to represent
the hydrological behaviour of catchments (McMillan et al.,
2017). In such cases, they are SFCs that can be used for
catchment classification or the regionalisation of hydrologi-
cal information, for example. Ecologically relevant SFCs are
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not necessarily very informative when it comes to estimating
suitable parameter values in the calibration of hydrological
models, because they may not be key descriptors of the key
hydrological processes at the catchment scale. This may be
symptomatic of the problem of getting the right answer with
a model for the wrong reasons (Kirchner, 2006). For exam-
ple, Pool et al. (2017) defined a composite objective function
made of the most informative SFCs at hand (i.e. the ones
that, used alone, were the most useful to predict the other
SFCs well too), and yet, they were unable to accurately pre-
dict SFCs not included in the objective function. The use of
a consistency analysis in this study confirms that the tailored
objective functions tested are not skilled in selecting parame-
ter values stable across split-sample tests. Nonetheless, some
SFCs are useful in calibration. Yadav et al. (2007) suggest
that a carefully selected subset of SFCs has the potential to
constrain a model parameter space. Kiesel et al. (2017) even
found that the use of single SFCs may be almost as power-
ful as their complete set of seven SFCs to predict all seven
SFCs, suggesting that some ecologically relevant SFCs also
have potential to be indicative signatures of the hydrograph
of their German catchment.

In this context, the definition of a good tailored objec-
tive function for ecologically relevant streamflow predictions
must be based on SFCs that are key descriptors of the ecolog-
ical response while also being key descriptors of the hydro-
logical behaviour in the catchment. Otherwise, model consis-
tency may be compromised, and the model predictions will
not be as robust outside its calibration conditions. Moreover,
the number of SFCs contained in the tailored objective func-
tion needs to be considered, given that consistency seems to
improve with the number of SFCs contained in the objective
function. However, as only three different sets of SFCs were
tested in this study, more research would be required to con-
firm this hypothesis.

5.2 On the strengths of traditional objective functions

Composite traditional objective functions such as the Kling–
Gupta efficiency are strong contenders for the prediction of
these SFCs. In particular, the use of the KGE on square-
rooted flows (i.e.EQ

0.5

KG ) was as competitive as tailored objec-
tive functions while providing more robust predictions and a
more consistent set of behavioural parameter sets than its tai-
lored counterparts. On the other hand, the stronger focus on
low-flow errors of EQ

−1

KG reduces its ability to predict SFCs
for high-flow events, which is a disadvantage, unless the
ecological species of interest are only sensitive to low-flow
conditions. Even then, Garcia et al. (2017) found an arith-
metic mean of EQ

−1

KG and EQKG was better than EQ
−1

KG alone
to predict low-flow SFCs. Conversely, the heavier emphasis
on high-flow errors of EQKG is not as detrimental for its pre-
diction of low-flow events and is only marginally worse than
E
Q0.5

KG .

In future research on the skills of objective functions to
predict SFCs, a recently formulated non-parametric version
of the KGE criterion could prove useful to predict various
SFCs at once. It reduces the emphasis on high-flow condi-
tions, and it provides a more balanced criterion across var-
ious flow conditions while avoiding the assumptions on the
nature of the errors of the original KGE not necessarily justi-
fied for streamflow records (Pool et al., 2018). Alternatively,
segments of the flow duration curve have been used to cal-
ibrate hydrological models, which also offers opportunities
to balance low-, average-, and high-flow conditions (e.g. Yil-
maz et al., 2008; Pfannerstill et al., 2014). However, the flow
duration curve does not contain information on the timing (or
duration) of individual flow events, which is important for
aquatic species (Arthington et al., 2006). A combination of
different objective functions fitted to flows (Vis et al., 2015)
or a combination of objective functions fitted to flows and ob-
jective functions fitted to SFCs (Pool et al., 2017) can also be
competitive options. In particular, the latter has the potential
to overcome the consistency issue found with tailored objec-
tive functions by including traditional objective functions.

5.3 Limitations of this study

The lack of long continuous time series of observed stream-
flow is known to be a limiting factor for ecohydrological
studies, and, in this case study, the use of 14 years, i.e. 7 years
each for the calibration and evaluation periods, is a prime ex-
ample of this issue. Previous research suggests that a 5-year
period is enough to capture the temporal hydrological vari-
ability (Merz et al., 2009). However, Kennard et al. (2009)
found that at least a 15-year period was required to accurately
estimate a set of 120 SFCs, where the true SFC values were
taken from their full record of 75 years. This suggests that
the SFC values targeted in calibration in this study may not
be fully representative of the long-term hydrological regime,
and they are likely to be more variable and more difficult to
predict than long-term values. Indeed, Vigiak et al. (2018)
found that the uncertainty in the prediction of SFCs is sensi-
tive to the length of the period considered. Moreover, shorter
time series reduce the likelihood of encompassing the most
extreme flow events (droughts and floods).

In order to overcome the lack of long time series of stream-
flow data, we included non-continuous (i.e. interrupted) data
periods to increase the number of study catchments (see
Fig. A1). Given that missing discharge data tend to be more
frequent for high flows because of flood events damaging the
gauge, there is a risk that the natural flow variability is un-
derestimated; and as a consequence the observed SFC val-
ues for extreme flow conditions may be less representative
than other SFC values. In our study, some hydrological years
were discarded even if 1 d of observations was missing. In
future research, this requirement could be relaxed and infill-
ing methods could be used on gaps of a short length to infer
the values for the missing days in the streamflow series (see
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e.g. Gao et al., 2018, for a recent review of such imputation
methods).

Given forcing and evaluation data uncertainty and model
structural uncertainties, the small differences in model per-
formance calibrated with the different objective functions
could be considered insignificant. However, to reduce the
influence of data uncertainty, this comparison of objective
functions was carried out on a set of 33 study catchments
and on 14 split-sample tests. Moreover, the use of the me-
dian performance across a set of behavioural parameter sets
reduces the influence of equifinality problems (Beven and
Freer, 2001). Given that summary statistics across the split-
sample tests and across the study catchments are used, this
may explain why differences in performance are small. Re-
gardless, the differences in terms of model robustness and
consistency are more significant and give some confidence
in the general applicability of these findings.

The findings in this study could also be somewhat model
specific and region specific. However, Caldwell et al. (2015)
found that the choice of the hydrological model to predict
SFCs is not as important as the choices of the calibration
strategy, and this study confirms the results of two other sim-
ilar studies (Kiesel et al., 2017; Pool et al., 2017) that tailored
objective functions perform better than traditional ones. In
addition, the model suitability for the study catchments could
be further explored following the covariance approach re-
cently suggested by Visser-Quinn et al. (2019), and this could
potentially improve on the model consistency.

Finally, the analysis of the consistency was based on the
number of times the exact same parameter set was identified
as behavioural across the 14 split-sample tests. However, it
is possible that in some split-sample tests, a parameter set
identified as behavioural is near another parameter set also
identified as behavioural in another test. This is one limi-
tation of the consistency approach selected here, and it is
suggested that future research efforts on the topic could use
clustering analysis techniques in order to overcome this lim-
itation by comparing the spread of the cluster(s) formed by
the behavioural parameter sets instead.

5.4 Implications for the study of the impacts of climate
change on the stream ecology

Hydrological models are usually preferred over statistical re-
gression models when the impacts of a changing climate
on the flow regime and the associated ecologically relevant
SFCs is of interest. Even though regression models may fit
historical calibration data better (Murphy et al., 2013), hy-
drological models have better potential to be run with al-
ternative climate data in order to predict future changes in
the catchment hydrograph. The identification of the most
suitable objective function is therefore valuable for climate
change scenario analysis. Here, we have established the
marginal superiority of tailored objective functions over a
range of 14th different split-sample tests in which the ranking

between the objective functions is relatively stable. However,
a limitation of the study is that the flow data period from 1986
to 2016 is relatively short in climatological terms and does
not contain a drought period as severe, as some have been
identified from long-term (250-year) precipitation records
(Noone et al., 2017), since a corresponding flow record does
not exist.

Assuming a suitable set of SFCs has been found, as de-
scribed in Sect. 5.1, the use of a composite definition for
the objective function based on normalised absolute error
between observed and simulated SFCs may not be realistic
for practical applications. Indeed, while SFCs are often nor-
malised to avoid artificially weighing them based on their
amplitude, they are not weighed according to the impact a
given percentage deviation has on the stream ecology. The
use of an objective function whose components are weighted
according to their significance to the target species may
therefore prove useful to include. For example, Visser-Quinn
et al. (2019) used variable limits of acceptability for the iden-
tification of the plausible model parameter sets based on a
weighing scheme considering the importance of each of their
SFCs on the ecological response, using macro-invertebrates
as a surrogate (Visser et al., 2018).

5.5 Implications for ecologically relevant streamflow
predictions in ungauged basins

Understanding the ecological response to altered flow
regimes is hindered by the lack of corresponding hydrologi-
cal data (Poff et al., 2010) because hydrometric gauges may
not be in the same locations as ecological surveys. As a re-
sult, the usual data-based calibration of a hydrological model
for the ecological survey sites is not possible, and an indirect
method of predicting streamflow characteristics in ungauged
locations is required.

One approach to regionalisation is the transfer of opti-
mised parameter values from gauged to ungauged locations
(Parajka et al., 2005). Given their higher consistency demon-
strated in this study, the original KGE-based criteria appear
better suited for regionalisation than the tailored objective
functions tested in this study. Indeed, the optimised parame-
ter values need to be strongly related to catchment behaviour
and physical features to be transferable to ungauged loca-
tions. While consistency could be improved through a change
in model structure (Euser et al., 2013), Caldwell et al. (2015)
and Garcia et al. (2017) found the choice of the calibration
procedure more decisive than the model used for the predic-
tion of SFCs.

Alternatively, streamflow characteristics can be directly
transferred from gauged to ungauged locations (e.g. Yadav
et al., 2007; Westerberg et al., 2014) and used as calibra-
tion information in the ungauged catchment. However, these
SFCs are used as hydrological signatures to constrain the
model parameter space, and as a result, their potential was
assessed in order to predict the hydrograph in ungauged
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catchments. It remains to be explored whether these region-
alised ensemble predictions can prove useful in predicting
other SFCs relevant for ecological communities in ungauged
catchments.

6 Conclusions

Desirable qualities for a useful objective function are that it
identifies model parameter values that perform well in the
evaluation, i.e. outside calibration and independent of the pe-
riod considered, and that it consistently identifies the same
parameter sets regardless of the study period, i.e. that it de-
scribes a consistent catchment hydrological behaviour. This
study explored these aspects for six different objective func-
tions intended to predict three combinations of streamflow
characteristics that are assumed to be relevant for stream
ecology. In relation to the research questions presented in the
Introduction, the study showed that tailored objective func-
tions (fitted to SFCs) perform marginally better than tradi-
tional objective functions (fitted to flows) in predicting all
three combinations of SFCs on average (Q1), while prov-
ing to be less robust outside calibration than their traditional
counterpart (Q2); no general trend could be found to sup-
port the claim that any objective function yields more stable
SFC predictions across the split-sample tests (Q3); and tradi-
tional objectives functions fitted to untransformed flows and
to square-rooted flows select more consistently the same pa-
rameter sets as behavioural across the split-sample tests than
any of the three tailored objective functions made of SFCs
(Q4). In addition, it was found that the ranking of the six
objective functions is not altered when considering their per-
formance on a very large and diverse set of SFCs.

This study reveals that a gain in fitting performance for the
SFCs may be at the expense of consistency in the behavioural
parameter sets across the split-sample tests. This highlights
that fitting ecologically relevant SFCs well is not necessarily
a guarantee of representing all the key hydrological processes
(i.e. informative signature) defining the catchment response.
Unless streamflow characteristics are proven to be both eco-
logically relevant and an informative signature at once, care-
fully selected traditional objective functions fitted to flows
are likely to remain preferable to predict ecologically rele-
vant streamflow predictions to avoid consistency issues.
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Appendix A

Table A1. List and main characteristics of the 33 study catchments.

Hydrometric River Drainage Average Average potential Baseflow Mean Mean
gauge basin areaa rainfallb evapotranspirationb indexc elevationd sloped

– – km2 mmyr−1 mmyr−1 – m mkm−1

34 031 Moy 25 1349 526 0.36 115 38.7
15 021 Nore 70 1167 497 0.65 267 121.2
07 017 Boyne 73 1016 501 0.55 147 68.9
18 016 Blackwater 119 1660 526 0.35 211 54.2
34 024 Moy 128 1217 526 0.52 82 34.8
25 002 Mulkear 218 1342 572 0.54 192 97.5
16 003 Suir 258 1485 568 0.57 154 65.9
25 030 Graney 273 1301 570 0.55 135 74.7
07 002 Boyne 286 981 503 0.78 96 23.0
26 008 Rinn 297 1182 498 0.61 75 46.6
15 003 Nore 299 1029 537 0.55 208 56.4
18 009 Blackwater 311 1286 574 0.42 199 66.6
24 012 Deel 366 1109 569 0.43 116 41.4
15 005 Nore 380 916 499 0.71 127 28.6
25 003 Mulkear 399 1183 568 0.50 140 64.9
20 002 Bandon 422 1654 528 0.53 124 89.4
30 007 Clare 476 1121 504 0.65 75 23.8
27 002 Fergus 485 1497 574 0.67 74 53.3
16 002 Suir 492 972 568 0.63 128 19.3
23 002 Feale 647 1409 567 0.31 196 76.2
25 001 Mulkear 648 1235 578 0.52 153 73.7
36 010 Erne 762 1041 498 0.63 124 82.6
16 008 Suir 1090 1145 572 0.64 138 41.6
18 003 Blackwater 1255 1389 524 0.46 181 68.2
36 019 Erne 1491 1048 498 0.79 107 73.4
16 009 Suir 1586 1213 575 0.63 139 51.4
15 002 Nore 1647 980 502 0.63 149 43.9
34 003 Moy 1782 1406 527 0.79 82 48.4
34 001 Moy 1961 1396 520 0.78 81 49.7
15 011 Nore 2222 973 501 0.62 139 42.7
18 002 Blackwater 2331 1308 526 0.62 166 70.3
14 018 Barrow 2438 919 536 0.67 99 27.0
07 012 Boyne 2462 930 502 0.68 91 26.5

Data sources are the a EPA river sub-basins map; b Met Éireann weather stations; c Office of Public Works Flood Studies Update; and d EPA digital
terrain model.
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Table A2. Detailed computations for the 18 selected streamflow
characteristics.

SFC Description
Detailed calculations

ma26 Variability in March mean flow
Compute the mean and standard deviation in daily flows in March for each hydrological year. Divide the standard deviations
by the means. Calculate the mean of these ratios to get ma26.

ma41 Annual mean daily flow
Compute the mean daily flow for each hydrological year. Divide the means by the drainage area in square kilometres. Calculate
the mean of these ratios to get ma41.

ml17 Base flow ratio 1
Compute the 7 d rolling mean for each hydrological year. Calculate the minimum rolling mean and divide by the mean daily
flow for each hydrological year. Calculate the mean of these ratios to get ml17.

ml20 Base flow ratio 3
Break down the entire record of daily flows into 5 d blocks. Calculate the minimum flow in each block. This minimum is set as
the baseflow for the block if 90 % of its value is less than the minimum flow of its preceding and following blocks. Otherwise the
baseflow for this block is unassigned. Replace all unassigned baseflow values using linear interpolation on the already assigned
baseflow values. Calculate the total baseflow by summing up the baseflow values in each 5 d block and the total flow for the
entire record. Calculate the ratio of these two totals to get ml20.

q85 Flow exceeded 85% of the time
Calculate the 15th percentile for the entire record to get q85.

mh10 Mean October highest flood
Compute the maximum daily flow in October for each hydrological year. Calculate the mean of these values to get mh10.

fl2 Variability in low-flow pulse count
Calculate the 25th percentile for the entire record. Calculate the number of flow events that are below this percentile for each
hydrological year. Calculate the coefficient of variation (i.e. standard deviation divided by mean) of these values, and multiply
by 100 to get fl2.

fh6 Frequency of moderate floods
Calculate the median for the entire record. Calculate the number of flow events that are above 3 times this median for each
hydrological year. Calculate the mean of these values to get fh6.

fh7 Frequency of large floods 1
Calculate the median for the entire record. Calculate the number of flow events that are above 7 times this median for each
hydrological year. Calculate the mean of these values to get fh7.

fh9 Frequency of large floods 2
Calculate the 25th percentile for the entire record. Calculate the number of flow events that are above this percentile for each
hydrological year. Calculate the mean of these values to get fh9.

dl9 Variability in annual minimum 30 d mean flow
Compute the 30 d rolling mean for the entire record. Calculate the minimum of this rolling mean for each hydrological year.
Calculate the coefficient of variation (i.e. standard deviation divided by mean) of these values, and multiply by 100 to get dl9.

dh4 Annual maximum of 30 d moving mean flow
Compute the 30 d rolling mean for the entire record. Calculate the maximum of this rolling mean for each hydrological year.
Calculate the mean of these values to get dh4.

dh13 Variability in annual maximum 30 d mean flow
Compute the 30 d rolling mean for the entire record. Calculate the maximum of this rolling mean for each hydrological year.
Calculate the mean of these values, and divide by the median daily flow for the entire record to get dh13.

dh16 Variability in high-flow pulse duration
Calculate the 75th percentile for the entire record. Calculate the average duration of flow events above this percentile for each
hydrological year. Calculate the coefficient of variation of these values, and multiply by 100 to get dh16.
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Table A2. Continued.

SFC Description
Detailed calculations

ta1 Flow constancy
Decimal log-transform the entire record of daily flows. Calculate the decimal log of the mean daily flow for the entire record.
Compute the Colwell (1974) matrix featuring 365 rows for 365 d in a year (ignoring last day of February for leap years) and
11 columns for 11 flow states (break points are 0.10, 0.25, 0.50, 0.75, 1.00, 1.25, 1.50, 1.75, 2.00, and 2.25 times the log mean
daily flow calculated previously) for each hydrological year, incrementally adding to the tally in each cell from year to year.
Calculate Y , the sum of each column (vector), and Z, the sum of the whole matrix (scalar). Divide the elements of vector Y by
scalar Z. Multiply the elements of the new vector by their respective decimal log-transformed value; sum the elements of the
vectors to obtain a scalar; and multiply by minus one to obtain the uncertainty with respect to the statesH(Y ). DivideH(Y ) by
the decimal log of the number of states (11), and subtract this ratio from one to get ta1.

tl1 Timing of annual minimum flow Julian date
Determine the date of the annual minimum daily flow in the Julian calendar for each hydrological year. Convert these values
into an angle in the unit circle. Compute their coordinates (i.e. cosine and sine). Calculate the mean of these two values
separately. Calculate the ratio of this mean sine divided by this mean cosine. Calculate the arc tangent of this ratio to get the
angle corresponding to these mean coordinates. Convert this angle back to a Julian date to get tl1.

ra2 Variability in flow rise rate
Compute the difference in daily flows between each consecutive days for the entire record. Calculate the coefficient of variation
(i.e. standard deviation divided by mean) for the positive differences (i.e. rising limbs), and multiply by 100 to get ra2.

ra7 Flow recession rate
Natural log-transform the entire record of daily flows. Compute the difference in these log-transformed daily flows between
each consecutive day for the entire record. Calculate the median of the negative differences (i.e. recession limbs) to get ra7.

Figure A1. Discharge data availability for the 33 study catchments. The 14 complete hydrological years selected are represented in dark blue
and annotated from 1 to 14. Years in light blue are other complete hydrological years that are not retained. Grey years with missing data are
represented as bars with discontinuities.
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Code and data availability. The rainfall and potential evapotran-
spiration daily datasets are available online from Met Éireann
(2019). The streamflow observations are available online from Ire-
land’s Environmental Protection Agency (2019) and from the Of-
fice of Public Works (2019). The source code of the SMART
model is open source and accessible online (Hallouin et al., 2019)
(https://doi.org/10.5281/zenodo.2564042). The source code for the
tools used to calculate the streamflow characteristics and the tradi-
tional objective functions are also open source and accessible online
(Hallouin, 2019a, b) (https://doi.org/10.5281/zenodo.2591218).
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