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Abstract. A novel approach to stochastic rainfall generation
that can reproduce various statistical characteristics of ob-
served rainfall at hourly to yearly timescales is presented.
The model uses a seasonal autoregressive integrated mov-
ing average (SARIMA) model to generate monthly rainfall.
Then, it downscales the generated monthly rainfall to the
hourly aggregation level using the Modified Bartlett–Lewis
Rectangular Pulse (MBLRP) model, a type of Poisson clus-
ter rainfall model. Here, the MBLRP model is carefully cal-
ibrated such that it can reproduce the sub-daily statistical
properties of observed rainfall. This was achieved by first
generating a set of fine-scale rainfall statistics reflecting the
complex correlation structure between rainfall mean, vari-
ance, auto-covariance, and proportion of dry periods, and
then coupling it to the generated monthly rainfall, which
were used as the basis of the MBLRP parameterization. The
approach was tested on 34 gauges located in the Midwest to
the east coast of the continental United States with a vari-
ety of rainfall characteristics. The results of the test suggest
that our hybrid model accurately reproduces the first- to the
third-order statistics as well as the intermittency properties
from the hourly to the annual timescales, and the statistical
behaviour of monthly maxima and extreme values of the ob-
served rainfall were reproduced well.

1 Introduction and background

Most human and natural systems affected by rainfall re-
act sensitively to temporal variability of rainfall across
small (e.g. quarter-hourly) to large (e.g. monthly, yearly)
timescales. Small-scale rainfall temporal variability influ-

ences short-term watershed responses such as flash floods
(Reed et al., 2007) and subsequent transport of sediments
(Ogston et al., 2000) and contaminants (Zonta et al., 2005).
Large-scale rainfall temporal variability (Iliopoulou et al.,
2016; Tyralis et al., 2018) influences long-term resilience of
human–flood systems (Yu et al., 2017), human health (Patz
et al., 2005), food production (Shisanya et al., 2011), and
the evolution of human society (Warner and Afifi, 2014) and
ecosystems (Borgogno et al., 2007; Fernandez-Illescas and
Rodriguez-Iturbe, 2004).

The risk posed by these impacts needs to be precisely
assessed for the management of such systems, but the ob-
served rainfall record is oftentimes “not” long enough for
this purpose (Koutsoyiannis and Onof, 2001). Furthermore,
the rainfall records do not exist when the risks need to be
assessed for the future. For this reason, stochastic rainfall
generators, which can create synthetic rainfall records with
infinite length, have been frequently used to provide rainfall
input data to the modelling studies for risk assessment.

The Poisson cluster rainfall generation model (Rodriguez-
Iturbe et al., 1987, 1988) is one of the most widely applied
stochastic rainfall generators. Figure 1 shows a schematic
of the Modified Bartlett–Lewis Rectangular Pulse (MBLRP)
model, which is a typical Poisson cluster rainfall model. The
model assumes that a series of rainstorms (black circles)
comprising a sequence of rain cells (red circles) arrives in
time according to a Poisson process. The MBLRP model has
six parameters of which a brief description is provided in the
lower text box of Fig. 1.

As suggested by the figure, Poisson cluster rainfall models
are designed to reflect the original spatial structure of rain-
storms containing multiple rain cells (Austin and Houze Jr.,
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Figure 1. Schematic of the Modified Bartlett–Lewis Rectangular Pulse model. The blue area represents duration (width) and intensity (height)
of each rain cell, respectively. The dashed line represents superposed sum of the rain cell intensities.

1972; Olsson and Burlando, 2002), so they are good at repro-
ducing the first- to the third-order statistics of the observed
rainfall at quarter-hourly to daily accumulation levels, as well
as other hydrologically important statistics such as the pro-
portion of non-rainy periods (Olsson and Burlando, 2002).
The performance of the Poisson cluster rainfall models in re-
producing the statistical properties of observed rainfall has
been validated for various climates at numerous locations
across the globe (Bo et al., 1994; Cameron et al., 2000; Cow-
pertwait, 1991; Cowpertwait et al., 2007; Derzekos et al.,
2005; Entekhabi et al., 1989; Glasbey et al., 1995; Gyasi-
Agyei and Willgoose, 1997; Gyasi-Agyei, 1999; Islam et al.,
1990; Kaczmarska et al., 2014, 2015; Khaliq and Cunnane,
1996; Kim et al., 2013b, 2014, 2016, 2017a, b; Kossieris et
al., 2015, 2016; Onof and Wheater, 1993, 1994a, b; Ritschel
et al., 2017; Rodriguez-Iturbe et al., 1987, 1988; Smithers et
al., 2002; Velghe et al., 1994; Verhoest et al., 1997; Wasko et
al., 2015). For this reason, they have been widely applied to
assess the risks exerted on human and natural systems such as
floods (Paschalis et al., 2014), water availability (Faramarzi
et al., 2009), contaminant transport (Solo-Gabriele, 1998),
and landslides (Peres and Cancelliere, 2014, 2016; Thomas
et al., 2018). Recently, Poisson cluster rainfall models have
also been used to generate future rainfall scenarios under cli-
mate change (Kilsby et al., 2007; Burton et al., 2010; Fatichi
et al., 2011).

In the meantime, Poisson cluster rainfall models have an
intrinsic limitation derived from a fundamental model as-
sumption. As described by Fig. 1, they generate the rainfall
time series assuming that the rainstorms arrive according to a
Poisson process, which assumes that rainstorm occurrences
are independent. In addition, the rain cells in different storms
are independent with each other. These model assumptions
deprive the model of the ability to reproduce the long-term
memory of rainfall that is often observed in reality (Marani,
2003).

Let us introduce some notation. The aggregated process
Y (h) at timescale h hours is defined in terms of the continuous
time process Y by the following equation:

Y
(h)
i =

ih∫
(i−1)h

Y (t)dt.

We can then write the variance at timescale nh as follows:
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+ 2
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(h)
i , Y

(h)
j

)
,

(1)

where Vh is the variance of rainfall depths at scale h hours
and Cov( · , · ) is the covariance operator between the two
random variables.

The second term of the right-hand side of Eq. (1), which
represents the rainfall correlation between individual records
separated by (i− j) time steps of the time series of rainfall
depths at scale h hours, is likely to be underestimated by the
Poisson cluster rainfall model because it can only reproduce
short-term memory in the rainfall signal through its model
structure, i.e. through the clustering of rain cells. The de-
gree of underestimation will increase as the correlation be-
tween the individual records (Y (h)i ) of the observed rainfall
time series increases and as the aggregation level n increases.
This underestimation was consistently observed in the rain-
fall data of the United States (Kim et al., 2013a). If h= 1
in Eq. (1), i.e. hourly rainfall, and n∼= 720 (24 h day−1

×

30 days= 720 h∼= 1 month), the left-hand side of Eq. (1) will
represent the variance of monthly rainfall, which can be rep-
resented on the vertical axis of the box plots in Fig. 2.

In Fig. 2, the red box plots represent the distribution of the
monthly rainfall observed at gauge NCDC-85663 located in
Florida, USA, during the period between 1961 and 2010. The
blue box plots represent the variability of the monthly rainfall
estimated from the 50 years of hourly synthetic rainfall data
generated by the Modified Bartlett–Lewis Rectangular Pulse
(MBLRP) model, a type of Poisson cluster rainfall genera-
tor. Here, the MBLRP model used the parameter set that was
calibrated to reproduce the observed rainfall mean, variance,
lag-1 auto-covariance, and proportion of dry periods at sub-
daily aggregation intervals (1, 2, 4, 8, and 16 h), which is
a typical practice of MBLRP model calibration (Rodriguez-
Iturbe et al., 1987, 1988; Kim et al., 2013a). Note that the
vertical lengths of the red box plots are greater than those
of the blue box plots in general, which implies that the vari-
ability of the observed rainfall is systematically greater than
that of the synthetic rainfall. The discrepancy between the
two is shown as the grey shading in the figure. In addition,
the monthly extreme values shown as the highest points of
the lines are also underestimated by synthetic rainfall. This
is, in particular, caused by the aforementioned limitations of
the Poisson cluster rainfall models.

Considering that the management strategies of the water-
prone human and natural systems may be governed by the
few extreme rainfall values observed in the shaded domain
of Fig. 2, the risk analysis based on the rainfall data gen-
erated by Poisson cluster rainfall models may miss system
behaviour that is crucial for development of the management
plans. As a matter of fact, other rainfall models have similar
issues: they cannot reproduce the temporal variability of ob-
served rainfall across all timescales (Paschalis et al., 2014).
For example, Markov chains, alternating renewal processes,
and generalized linear models can reproduce the variability

only at timescales coarser than 1 day. Models based on au-
toregressive properties of rainfall are typically good at re-
producing the observed rainfall variability only for a limited
range of scales, for instance from 1 month to 1 or 2 years
(Mishra and Desai, 2005; Modarres and Ouarda, 2014; Yoo
et al., 2016).

Several studies discussed the need to use composite rain-
fall models to resolve this scale problem of rainfall mod-
els. Koutsoyiannis (2001) used two seasonal autoregressive
models with different temporal resolution to generate two
different time series referring to the same hydrologic pro-
cess. Then, they adjusted the fine-scale time series using their
novel coupling algorithm so that this series becomes con-
sistent with the coarser-scale time series without affecting
the second-order statistical properties. Menabde and Siva-
palan (2000) combined the alternating renewal process with
a multiplicative cascade model in which a multi-year rainfall
time series generated by a Poisson-process-based model is
disaggregated using a bounded random cascade model. Their
model reproduced the observed scaling behaviour of extreme
events very well up to 6 min of temporal resolution. Fatichi et
al. (2011) developed a model that generates monthly rainfall
using an autoregressive model and disaggregating the gener-
ated monthly rainfall using a Poisson cluster rainfall model.
Their composite model showed improved performance in re-
producing the rainfall interannual variability that the latter
often fails to reproduce. Kim et al. (2013a) proposed a model
where the Poisson cluster rainfall model is used to disag-
gregate the monthly rainfall that is randomly drawn from a
Gamma distribution. They found that incorporating the ob-
served rainfall interannual variability through their compos-
ite approach also helps reproduce the statistical behaviour
of rainfall annual maxima and extreme values at timescales
ranging from 1 to 24 h. Paschalis et al. (2014) introduced
a composite model consisting of a Poisson cluster rainfall
model or Markov chain model for large timescales and a mul-
tiplicative random cascade model for small timescales, which
performed better than individual models across a wide range
of scales at four different sites with distinct climatological
characteristics.

This study proposes a composite rainfall generation model
that can reproduce various statistical properties of observed
rainfall at timescales ranging between 1 h and 1 year.
First, the model generates the monthly rainfall time se-
ries using a seasonal autoregressive integrated moving av-
erage (SARIMA) model. Then, it downscales the generated
monthly rainfall time series to the hourly aggregation level
using a Poisson cluster rainfall model. Compared to the pre-
vious studies with similar methodology (Fatichi et al., 2011;
Paschalis et al., 2014), our model has a novelty in that (i) it
models the monthly rainfall values so as to generate monthly
statistics that will serve to calibrate the MBLRP model, and
(ii) each of the generated individual monthly rainfall values
are downscaled using month-specific MBLRP model param-
eter sets that reflect the complex correlation structure of var-
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Figure 2. Box plots of the observed monthly rainfall at gauge NCDC-85663 in Florida, USA (red). The box plots of the synthetic monthly
rainfall generated by the Modified Bartlett–Lewis Rectangular Pulse model at the same gauge are shown for reference (blue). Whiskers
reach minimum and maximum values of monthly rainfall during the period between 1961 and 2010, and grey shaded boxes represent the
discrepancy in the variability of the two monthly rainfall values.

ious rainfall statistics at fine timescales such as mean, vari-
ance, covariance, and proportion of dry periods, which ex-
isting composite approaches that are not based on Poisson
cluster rainfall models showed limitations in reproducing, es-
pecially at sub-daily scale. This distinctive approach of our
model enables an accurate reproduction of the first- to the
third-order statistics as well as the proportion of dry periods
from the hourly to the annual timescale, and the statistical
behaviour of monthly maxima and extreme values of the ob-
served rainfall is well reproduced.

2 Study area

Figure 3 shows the study area, which encompasses a re-
gion from the Midwest to the east coast of the continental
United States. We used the National Climatic Data Centre
(NCDC) hourly rainfall data observed at 34 gauge locations
(triangles in Fig. 3) for the period between 1981 and 2010.
The study area has a variety of rainfall characteristics (Kim
et al., 2013b). The northern, middle, and the southern part
of the study area are classified as humid continental (warm
summer), humid continental (cool summer), and humid sub-
tropical climate, respectively, according to the Köppen cli-
mate classification (Köppen, 1900; Kottek, 2006). The an-
nual rainfall of the study area varies from 750 to 1500 mm.

3 Methodology

Figure 4 describes the model structure of this study. The
model is composed of four distinct modules. The first mod-

ule generates the monthly rainfall. The second module gen-
erates the fine-scale (1 to 16 h) rainfall statistics correspond-
ing to each of the generated monthly rainfall values in the
first module. The third module estimates the parameters of
the MBLRP model based on the fine-scale rainfall statistics
generated by the second module. As a result of this process,
each of the generated monthly rainfall values is coupled with
the MBLRP parameter set reflecting its fine-scale statistical
characteristics. The fourth module downscales each of the
monthly rainfall values using the MBLRP model based on
the parameters obtained in the third module.

3.1 Monthly rainfall generation

We applied a seasonal autoregressive integrated moving av-
erage (SARIMA) model to generate monthly rainfall. Gen-
eration of monthly rainfall based on autoregressive relation-
ships has been widely applied due to its parsimonious na-
ture (Mishra and Desai, 2005) and was proven to success-
fully reproduce the first to the third-order statistics of the
observed rainfall at monthly timescales (Delleur and Kav-
vas, 1978; Katz and Skaggs, 1981; Ünal et al., 2004; Mishra
and Desai, 2005). Furthermore, some recent models assum-
ing an autoregressive process (Langousis and Koutsoyiannis,
2006; Koutsoyiannis, 2010; Efstratiadis et al., 2014; Dimi-
triadis and Koutsoyiannis, 2015, 2018) succeeded in repro-
ducing the various statistical properties of the observed rain-
fall over a wider range of scales. Rainfall data of different
stations have different temporal persistence, so we applied
the SARIMA model with different autoregressive (p), differ-
encing (d), and moving average terms (q) to different sta-
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Figure 3. Study area and 34 NCDC hourly rainfall gauges. The label of the markers is presented in the following format:
xxxxxx(i, j, k)(x, y, z)12, where xxxxxx represents the NCDC gauge ID; (i, j, k) represent the orders of the autoregressive, differencing,
and moving average terms of the SARIMA model; and (x, y, z) represent the orders of the seasonal autoregressive, differencing, and moving
average terms of SARIMA model. The colour of the markers represent the Bayesian information criterion (BIC) value of the SARIMA
model. The lower BIC indicates more parsimonious parameterization, larger likelihood, or both. Model description of SARIMA is detailed
in Sect. 3.1.

tions. The choice of the optimal model for each station was
determined through the following processes: First, a model
structure of SARIMA(p,d,q)(P,D,Q)m is assumed, where
P,D, and Q represent the numbers of seasonal autoregres-
sive, differencing, and moving average terms, respectively,
and m represents the number of periods (here, months) in
each season – here m= 12. Second, the parameters of the
SARIMA model are determined through the method of max-
imum likelihood. Third, the Bayesian information criterion
(BIC) are calculated for the fitted SARIMA model. Lastly,
the first to third steps are repeated for a combination of dif-
ferent values of p (0≤ p ≤ 2), d (0≤ d ≤ 2), q (0≤ q ≤ 2),
P (0≤ P ≤ 2), D (0≤D ≤ 2), and Q (0≤Q≤ 2), and the

model structure with the lowest BIC is selected for the sta-
tion. Therefore, a total of 729 (= 36) SARIMA model struc-
tures were tested to obtain the optimal model for a station.
The selected model structure and the BIC values were shown
in Fig. 3. Through this process, we generated 200 years of
monthly rainfall for the 34 gauges.

3.2 Generation of fine-timescale rainfall statistics

The second module generates the fine-timescale statistics
corresponding to each monthly rainfall value generated
through the SARIMA model. These synthetic fine-timescale
statistics will later be used for the calibration of the MBLRP
model to downscale the monthly rainfall to the hourly level.
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Figure 4. The four different modules of the model of this study.

In so doing we first consider the monthly rainfall, when di-
vided by the number of days in the month times 24, as pro-
viding us with an estimate of the mean hourly rainfall for that
particular month. Then, this estimated mean hourly rainfall
is provided as the input variable of the module that generates
the statistics needed to fit the MBLRP model, namely the
mean, variance, autocorrelation coefficient, and the propor-
tion of dry periods at 1, 2, 4, 8, and 16 h aggregation intervals,
as described in Fig. 5. In this process, the module employs
the information obtained from univariate regression analy-
ses between the fine-scale statistics of the observed rainfall
(Fig. 6) and the mathematical formulae relating rainfall vari-
ance and auto-covariance at different timescales (Eq. 4), as
explained below.

Figure 5 shows a schematic of the second module. In the
figure, Mh, Sh, Vh, ch(1)= Ch(1)/Vh, and Ph in each rect-
angle represents the rainfall mean, standard deviation, vari-
ance, lag-1 autocorrelation, and proportion of dry periods at
a timescale of h hours, respectively. The statistic connected
to each solid arrow head is stochastically generated based on
its linear relationship to the one connected to the tail of the
same arrow. In other words, the following equation is used:

Y = a[i]X+ b[i]+ ε[i], (2)

where Y is the variable being generated, andX is the variable
being used as the basis of the generation. Here, the variables
X and Y can be substituted by any combination of two vari-
ables connected by the solid arrow; a[i] and b[i] are the pa-
rameters of the regression analysis, and ε[i] is a random num-

ber drawn from the normal distribution ε[i] ∼N
(

0, σ 2
[i]

)
fit-

ted to the residuals of the regression analysis. Here, these
three parameters are estimated from the univariate regression
analysis relating the two variables observed during a given
calendar month over multiple years as shown by black dots
in each plot of Fig. 6, which shows the linear relationship be-
tween the rainfall statistics observed at gauge NCDC-200164
(yellow star mark in Fig. 3) during the month of July of dif-
ferent years.

The linear relationships were also identified at all other
gauges investigated. This is a secondary yet significant find-
ing of this study: a simple linearity can accurately express the
relationship between the variables reflecting such chaotic and
dynamic interactions occurring in natural phenomena con-
cerning rainfall. Also note that the linearity established here
applies only to sub-daily timescales. For example, a power-
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Figure 5. Schematic of the algorithm to generate fine-timescale rainfall statistics. The statistics in the blue boxes are used to calibrate the
MBLRP model and the statistics in grey boxes are used to estimate the lag-1 autocorrelation.

law may better express the relationship between the mean
and standard deviation at daily scale (Sotiriadou et al., 2016).

Consider, for example, statistic M1 which is connected to
V1(= S

2
1) through the solid arrow in the figure, which means

that the variance of 1 h rainfall (V1 = S
2
1 ) is stochastically

generated using its relationship to 1 h rainfall mean (M1)
(scatter of black dots in Fig. 6a) using the following formula:

S1 = a[6]M1+ ε[6], (3)

V1 = S
2
1 , (4)

where subscripts with square brackets are used for the resid-
uals so as to avoid confusion with the timescale, and where
a[6] is the coefficient determined from the regression analy-
sis (note that the constant term is zero here since, trivially,
S1 = 0 when M1 = 0), and ε[6] is a random number drawn
from a normal distribution: ε[6] ∼N(0,σ 2

[6]).
Similar principles can be applied to the remaining statis-

tics connected through solid arrows in Fig. 5. The black
dots in Fig. 6 shows the linear relationship between the rain-
fall statistics observed at gauge NCDC-200164 (star mark in
Fig. 3) during the month of July of different years.

The statistic connected to the dashed arrow head is calcu-
lated based on the ones connected to the tail of the same ar-
row using the mathematical (deterministic) relationship con-
necting these variables (Eq. 4). For instance, in Fig. 5, V1 and
V2 are connected to C1 (1) through a dashed arrow, which
means that C1 (1) is derived from V1 and V2. The following
equations establish the relationship between the variances at
timescales h and 2 h from which we shall obtain the relation-
ship between V1 and V2:

Var
(
Y
(2 h)
i

)
= Var

(
Y
(h)
2i−1

)
+Var

(
Y
(h)
2i

)

+ 2Cov
(
Y
(h)
2i−1,Y

(h)
2i

)
.

Or, in simplified notation:

V2 h = 2Vh+ 2Ch(1).

The autocorrelation lag-k is ch(k)= Ch(k)/Vh, so, for k = 1
and h= 1 h, we obtain the following relation:

c(1)=
V2

2V1
− 1. (5)

If we estimate the lag-1 autocorrelation using standard es-
timators of the terms in the right-hand side of this relation,
i.e. by using V̂2

2V̂1
−1, how good is the estimation likely to be?

Figure 7 compares this estimator with the standard estimator
ĉ (1) of the autocorrelation.

Figure 7a reveals that there exist discrepancies between the
true c(1) and its estimator (ĉ (1)), which are known to primar-
ily depend on the sample size (Dimitriadis and Koutsoyian-
nis, 2015; Koutsoyiannis, 2016). Using the discrepancies ε
between these two estimators which are approximately nor-
mally distributed as shown in Fig. 7b, i.e. ε ∼N

(
0, σ 2), we

therefore estimate the autocorrelation lag-1 of hourly rainfall
using V̂2

2V̂1
− 1+ ε.

V2 = a[7]V1+ ε[7] (6)
V4 = a[8]V2+ ε[8] (7)

From Eq. (6), it is clear that the term ε[7] is dependent upon
the hourly autocorrelation (lag-1) coefficient, and similarly
therefore that ε[8] in Eq. (7) is dependent upon the 2-hourly
(lag-1) autocorrelation coefficient.
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Figure 6.
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Figure 6. Linear relationship between various fine-timescale statistics of the rainfall observed for the month of July of different years at
gauge NCDC-200164 (black dots). The solid black line represents the least-squares regression line. Based on this regression relationship,
a set of the 20 fine-timescale statistics are generated, which are immediately used as the basis of the MBLRP model parameter calibration.
If the objective function of the parameter calibration corresponding to the generated set is greater than a given threshold, the set is rejected
(blue squares), and only the set with the objective function lower the threshold value is chosen (red squares).

The autocorrelations at various timescales are known to be
correlated with each other (Kim et al., 2013a, 2014), which
means that ε[7] and ε[8] should be correlated with each other.
Figure 8a shows the bivariate probability density function of
these two variables at gauge NCDC-200164 for the month
of September. Figure 8b shows the colour map of the cor-
relation coefficient between different ε[i]s. This study devel-
oped bivariate probability density functions for consecutively
numbered random variables ε, i.e. ε[i] and ε[i+1] (for i rang-
ing from 1 to 4 and 6 to 9 respectively – see Fig. 5). These
were then used to sample values of ε[i+1] conditional upon
ε[i]. This procedure in effect assumes that a Markov structure
governs the sequences

{
ε[i]
}
i=1, ... ,5 and

{
ε[i]
}
i=6, ... ,10. The

bivariate probability density functions were developed using

the Gaussian Copula and its parameters are determined using
the maximum likelihood method.

Residual terms (ε[i+1]) are thus generated using the condi-
tional distribution:

fε[i+1](y
∣∣ε[i] = x)= fε[i], ε[i+1](x, y)

fε[i](x)
, (8)

where i = 1,2,3,4,6,7,8; 9; fε[i+1](y
∣∣ε[i] = x) is the prob-

ability density function of ε[i+1] conditional upon ε[i] = x;
and fε[i], ε[i+1] is the bivariate distribution function of ε[i] and
ε[i+1].

As a result of this process, a total of 20 rainfall statistics
at fine timescales (mean; variance; lag-1 autocorrelation; and
proportion of dry period at 1-, 2-, 4-, 8-, and 16-hourly aggre-
gation interval) are sampled using these conditional distribu-
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Figure 7. (a) Comparison of estimator ĉ (1) (horizontal axis) with estimator V̂2
2V̂1
− 1 (vertical axis) of the autocorrelation lag-1 of hourly

rainfall. (b) The histogram of the discrepancies between these two estimators at gauge NCDC-200164.

Figure 8. (a) Relationship between ε[7] and ε[8] and the fitted bivariate distribution. (b) Color map of the correlation coefficient between
different ε[i]s at gauge NCDC-200164 on September.

tions and the individual monthly rainfall that is generated by
the SARIMA model.

3.3 MBLRP model parameter estimation

In this process, each of the monthly rainfall values gener-
ated by the SARIMA model is coupled with one set of six
MBLRP model parameters that define the random nature of
rainstorm and rain cell arrival frequency, and the intensity
and duration of rain cells (Fig. 1).

In this study, the parameters of the MBLRP model were
determined such that the rainfall statistics of the generated
rainfall resemble the 20 fine-scale rainfall statistics that were
coupled with the monthly rainfall generated by the SARIMA
model. The Isolated-Speciation Particle Swarm Optimization
(ISPSO; Cho et al., 2011) algorithm was employed to iden-
tify a set of parameters that minimizes the following objec-
tive function:

OF=
∑20

i=1
wi ·

[
1−

Fi(λ,ν, α, µ, φ, κ)

fi

]2

. (9)
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Fi is the ith statistic of the synthetic rainfall time series
(e.g. mean of hourly rainfall, standard deviation of 4-hourly
rainfall). The mathematical formulae for the Fis were derived
by Rodriguez-Iturbe et al. (1988) as a function of the six pa-
rameters (λ, ν, α, µ, φ, κ); fi is the ith generated statistic,
and wi the weighting factor given to the ith rainfall statis-
tic depending on the use of the synthetic rainfall time series
(Kim and Olivera, 2011). Here, it should be noted that a time
step with rainfall less than 0.5 mm was considered dry when
the proportion of non-rainy periods was calculated because
small rainfall values are known to distort the “true” propor-
tion of non-rainy periods exerting an adverse effect on cali-
bration process (Kim et al., 2016; Cross et al., 2018).

It is noteworthy that Module 2 may fail to generate a re-
alistic set of fine-scale rainfall statistics due to the complex
interdependencies between them. The unrealistic fine-scale
rainfall statistics cannot be represented by the MBLRP model
that reflects the original spatial structure of rainfall in real-
ity, which entails poorly calibrated model parameters with
the high objective function value of Eq. (8). To exclude the
poorly calibrated parameter sets caused by the unrealistic
fine-scale rainfall statistics generated by Module 2, we re-
peated the process of Module 2 and Module 3 until the ob-
jective function value of Eq. (8) becomes lower than a given
threshold value (0.8 in this study). If the algorithm fails to
find the parameter set after 50 repetitions, the parameter set
with the lowest objective function value is chosen. Figure 4
describes this filtering process, and the red squares in Fig. 6
show the chosen parameter sets.

3.4 Downscaling of monthly rainfall using the MBLRP
model

The MBLRP model was used to downscale the monthly rain-
fall to the hourly aggregation level. First, the MBLRP model
generates the hourly rainfall time series using the parameter
set for the monthly rainfall being downscaled. Second, the
discrepancy between the fine-timescale statistics generated
by the second module of the model (Fig. 5) and the statistics
of the synthetic hourly rainfall time series generated by the
MBLRP model is calculated using the following formula:

Dj =
∑20

i=1

[
S
j
i − fi

Ri

]2

, (10)

whereDj is the discrepancy between the generated statistics
and statistics of j th synthetic hourly rainfall time series. Sji
is the ith statistic of j th time series and Ri is the difference
between maximum and minimum values of Sji about the ith
statistic.

Third, the first and the second processes are repeated 300
times. Then the synthetic hourly rainfall time series with the
lowest discrepancy value is chosen. Finally, we repeated the
entire process 200 times to obtain 200 synthetic hourly rain-

fall time series for each of the generated monthly rainfall val-
ues.

3.5 Validation for ungauged periods

One of the primary purposes of the stochastic rainfall model
is to provide synthetic rainfall for the ungauged periods,
which can be the periods of missing data or future periods.
For this reason, we separated the period of model calibra-
tion and validation at some gauge locations (square marks
in Fig. 2) where the record length of each period is suffi-
ciently long (60+ years). Then, we tested our model not only
based on the statistics of the calibration period (1981–2010)
but also based on the validation period (1951–1980).

4 Result

4.1 Monthly rainfall statistics reproduction

Figure 9 compares the mean, variance, lag-1 autocorrelation,
and skewness of the monthly rainfall time series generated
by the SARIMA model (x axis) to those of the observed
monthly rainfall time series (y axis). Each scatter represents
one rainfall gauge. For the calibration period (1981–2010),
the first- and the second-order moments were reproduced ac-
curately with the coefficient of determination ranging from
0.69 to 0.95. Skewness was reproduced fairly well with the
coefficient value of 0.36. For the validation period (1951–
1980), mean and variance were reproduced, but not lag-1 au-
tocorrelation and skewness. However, this discrepancy can-
not be attributed solely to the limitations in the model be-
cause the discrepancy in each plot of Fig. 9 directly results
from the differences between the statistics of the calibration
and validation periods. In other words, had the statistics of
the calibration period been similar to those of the validation
period, we would have expected similar performance for both
periods, and vice versa.

4.2 Reproduction of large-scale rainfall variability

Figure 10 shows the behaviour of the rainfall variance vary-
ing with temporal aggregation intervals between 1 h and
1 year at gauge NCDC-122738. The behaviour correspond-
ing to the observed calibration (black, 1981–2010), observed
validation (green, 1951–1980), MBLRP (blue) and our hy-
brid model (red) is shown together. In addition, the behaviour
based on the two-parameter generalized Hurst–Kolmogorov
process (grey, GHK hereafter; Koutsoyiannis, 2016; Dimitri-
adis and Koutsoyiannis, 2018) is shown together. The good
fit between the GHK behaviour (grey) and the observed be-
haviour (black and green) indicates that the observed rain-
fall has a clear long-term persistency, which is also a fea-
ture of all 34 NCDC gauges. While our model successfully
reproduces the rainfall variance across the timescale, the
MBLRP model is successful in reproducing the rainfall vari-
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Figure 9. Comparison of (a) mean, (b) variance, (c) lag-1 autocorrelation, and (d) skewness of the synthetic (x) and observed (y) monthly
rainfall. Filled circles (dashed line) and hollow triangles (dotted line) correspond to the calibration (1981–2010) and validation period (1951–
1980) respectively.

ance only at the hourly accumulation level. This reflects the
fact that Poisson cluster rainfall models are not designed to
preserve the rainfall persistence at the aggregation interval
that is greater than the typical model storm duration, i.e. a
few hours. See Fig. 1 for example. Within the duration of
one storm, rainfall at different time steps may be similar in-
sofar as a portion of it is from the same rain cell. However,
the rainfall within one storm is independent of the rainfall
within another storm. Therefore, it is natural that Poisson
cluster rainfall models tend to underestimate the observed
rainfall variance (which reflects the covariance structure –
see Eq. 1) at timescales exceeding the rainstorm duration.
Kim et al. (2013b), when mapping the average model storm
duration across the continental United States using Eq. (11),
showed that the model storm duration of the MBLRP model
ranges from approximately 2 to 100 h, so it is not only at the
annual scale, but already at the scale of several hours (de-
pending upon the location) that the variability may be under-

estimated by the MBLRP model.

Average storm duration (h)∼=
1

φ α
ν

[
1+φ (κ +φ)− 1

4 φ (κ +φ)(κ + 4φ)+ 1
72 φ (κ +φ)(4κ

2 + 27κφ+ 72φ2
] .

(11)

A similar trend as exhibited in Fig. 11 was observed at all
of the 34 gauges. Figure 11 compares the variance of the syn-
thetic (x) and observed (y) rainfall time series at yearly (pur-
ple), monthly (red), 15-daily (yellow), weekly (blue), and
32-hourly (green) aggregation levels. The comparison of the
variance at the finer timescale is carried out in the following
section.

As indicated by the concentration of the scatters above the
1 : 1 line in Fig. 11b, the traditional MBLRP model system-
atically underestimates the variability at timescales greater
than 32 h. Our model did not show any bias in this range of
large timescales as shown in Fig. 11a.
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Figure 10. Behaviour of the rainfall variance with regard to the ag-
gregation interval of rainfall time series at gauge NCDC-122738.
The behaviour corresponding to the observed calibration (black,
1981–2010), observed validation (green, 1951–1980), MBLRP
(blue) and our hybrid model (red) is shown together.

4.3 Reproduction of sub-daily rainfall statistics

Figure 12 compares the mean, variance, lag-1 autocorrela-
tion, skewness, and the proportion of dry periods of the syn-
thetic (x) and observed (y) rainfall time series at hourly to
16-hourly aggregation levels. Here, we discuss the first- to
third-order moments only (i.e. mean, variance, autocorrela-
tion, and skewness) because of their relatively greater im-
portance compared to the higher moments (Kim and Oliv-
era, 2011; Dimitriadis and Koutsoyiannis, 2018). Each scat-
ter plot represents the statistics at a given gauge for a given
calendar month. The colours of the points on the plots rep-
resent the calendar months. In each plot, the coefficient of
determination (R2) of the linear regression between the two
variables is shown. All five statistics were accurately repro-
duced across various sub-daily timescales with R2 equal to
0.98 (mean), and varying between the following limits for
the other statistics: 0.90 and 0.93 (variance), 0.58 and 0.93
(lag-1 autocorrelation), 0.44 and 0.89 (skewness), and 0.67
and 0.85 (proportion of dry periods) for the calibration pe-
riod (Fig. 12a). Similar ranges of coefficient of determination
were obtained for the validation period (Fig. 12b).

4.4 Reproduction of extreme values and distribution of
annual maxima

The scatters in Fig. 13 compare the 20-, 50-, 100-, and 200-
year rainfall estimated from the observed rainfall (x) and the
synthetic rainfall (y) generated by the hybrid model (red) and
the MBLRP model (blue) at hourly to daily timescales. The
generalized extreme-value (GEV) distribution was used to

model the distribution of the annual maxima, and the three
parameters of the GEV distribution were determined using
the method of L moments. Here, we separated the analysis
for each calendar month, so we have 12 sets of extreme rain-
fall distributions corresponding to each gauge station. There-
fore, we produced each scatter plot of Fig. 13 based on 408
points (12 months gauge−1

× 34 gauges).
A linear regression line passing through the origin is

shown in each plot. In all cases, our hybrid model did not
show the tendency of underestimating extreme values, which
is one of the most widely discussed issues in Poisson cluster
rainfall modelling (Cowpertwait, 1998; Cross et al., 2018;
Furrer and Katz, 2008; Verhoest et al., 2010; Kim et al.,
2013a, 2016; Onof et al., 2013). This is a somewhat surpris-
ing result: our algorithm to incorporate large-scale variability
of the observed rainfall not only served its original purpose
but also enhanced the capability of the model to reproduce
extreme rainfall values.

Figure 14 shows the degree of bias of extreme-value re-
production (slope of the regression line in Fig. 13) varying
with the recurrence interval. The values corresponding to the
traditional MBLRP model are also shown. The degree of un-
derestimation of the traditional methods varies between 73 %
and 87 %, and it tends to increase as the recurrence interval
increases. A similar tendency was observed for our model,
but the degree of underestimation was significantly reduced.
For our model, the degree of underestimation is the greatest
for the 1 h extreme rainfall and tends to decrease as the dura-
tion of the rainfall increases. This tendency was not observed
with the traditional MBLRP model.

A good rainfall model should reproduce not only the
extreme values but also the distribution of the maxima
from which extreme values are derived. We performed the
two-sample Kolmogorov–Smirnov (K-S) test between the
monthly maxima of the synthetic rainfall and the observed
rainfall. A significance level of 5 % was used. Among all
408 calendar months (34 gauges×12 months), the null hy-
pothesis of assuming that two distributions are the same
could not be rejected at 384, 368, 317, 301, 323, and
333 months for the 1, 2, 4, 8, 16, and 24 h rainfall, respec-
tively (83 % of all gauges). On the contrary, the traditional
approach successfully reproduced the observed monthly
maxima distribution only at 292, 243, 219, 200, 220, and
219 months (57 % of all gauges).

Figure 15 shows the relative frequency and the fitted GEV
distribution of the monthly maxima of January, April, July,
and October at NCDC gauge 132203. The black, red, and
blue lines correspond to the result of observed rainfall, our
hybrid model, and the traditional MBLRP model, respec-
tively. The GEV distribution of the 1, 4, and 16 h rainfall du-
rations are shown in the plots of the first, third, and fifth row,
respectively. The plots in the second, fourth, and the sixth
row magnify the upper 10th percentile of the distribution of
the upper figures that is denoted as the dashed box. For all
months and durations, our hybrid model outperforms the tra-
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Figure 11. (a) Comparison of the large-scale rainfall variance of the rainfall generated by our hybrid model (x) and the observed rainfall (y).
(b) Comparison of the large-scale rainfall variance of the rainfall generated by the traditional MBLRP model (x) and the observed rainfall (y).
The different colours of the scatter correspond to the different aggregation interval of rainfall time series. Filled circles and hollow triangles
correspond to the calibration and validation periods respectively.

ditional MBLRP model in reproducing the head-to-tail part
of the distribution. The distribution of the traditional MBLRP
model was skewed toward the lower values. A similar ten-
dency was observed at most gauge locations while at some
of the gauges our hybrid model showed similar or slightly
degraded performance compared to the traditional MBLRP
model in reproducing the distribution of extreme values. We
discuss this finding further in Sect. 5.1.

Figure 16 compares the shape (ξ ), the scale (σ ), and the
location (µ) parameter of the fitted GEV distribution of the
monthly maxima of the observed rainfall (x) and of the syn-
thetic rainfall generated from our hybrid model (red scat-
ters) and from the traditional MBLRP model (blue scat-
ters). The results for 1, 4, and 16 h rainfall durations are
shown. Each scatter point represents the result of one cal-
endar month at one gauge. A total of 408 scatter points
(12 months gauge−1

× 34 gauges) are shown for each of the
plots. The traditional MBLRP model underestimates the lo-
cation parameters at all rainfall durations, and the degree of
underestimation increases with increased duration. Our hy-
brid model showed the opposite trend. The location param-
eters tend to be overestimated with an increase in the du-
ration, but the degree of overestimation was not as signifi-
cant as in the case of the traditional model. The traditional
model compensates for the underestimated location of the
distribution with the overestimated scale parameters, which
were observed for all three durations investigated. Our hy-
brid model also compensates for the overestimated location

of the distribution with the underestimated scale parameters,
but the degree of compensation was not as significant as in
the case of the traditional model. However, the shape pa-
rameter of the observed monthly maxima was not well re-
produced by either model. This result shows the difficulty
of precisely reproducing the rainfall extreme values. This is
mainly because the rainfall extreme values are indeed ex-
treme. For example, a 1 h 100-year rainfall value correspond-
ing to a 100-year rainfall record is theoretically the great-
est value of all 72 000 hourly rainfall records (24 h day−1

×

30 days month−1
× 100 years), and precisely reproducing a

value with such a low probability of occurrence can be a
daunting task using the models with only a limited number
of parameters.

5 Discussion

5.1 Variability of the parameters of the MBLRP model
and extreme values

Our model uses different parameter sets of the MBLRP
model to disaggregate different monthly rainfall values. This
means that one given calendar month can have many dif-
ferent parameter sets. By contrast, the traditional MBLRP
model uses one parameter set for each calendar month.
Therefore, if we look at the variability of each month’s pa-
rameters, we can see how the model of this study explains the
variability of rainfall unlike the MBLRP model. Figure 17

Hydrol. Earth Syst. Sci., 23, 989–1014, 2019 www.hydrol-earth-syst-sci.net/23/989/2019/



J. Park et al.: A hybrid rainfall model reproducing hourly through yearly statistics 1003

Figure 12.
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Figure 12. Comparison of the statistics of the synthetic (x) and observed (y) rainfall time series at sub-daily timescales. The colour of the
dots represents the statistics of each calendar month. The results of (a) the calibration period (1981–2010) and (b) the validation period
(1951–1980) are shown.
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Figure 13. Comparison of the extreme rainfall values estimated from the observed rainfall (x) and synthetic rainfall (y) generated by the
model of this study (red) and the MBLRP model (blue). The plots compare 20, 50, 100, and 200 year rainfall at hourly to daily aggregation
levels.
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Figure 14. Degree of over- or underestimation of extreme values by our model (red) and the traditional MBLRP model (blue). ERsyn and
ERobs are extreme rainfall values estimated from synthetic rainfall and observed rainfall, respectively.

shows a box plot of the parameters for each month at gauge
NCDC-460582. The parameters of the traditional MBLRP
model are shown together for reference (triangles). While
significant variability is observed for all six parameters, the
parameter µ, which represents the average rain cell inten-
sity, showed the greatest variability, ranging over 2 orders of
magnitude. This explains why our model is good at reproduc-
ing both large-scale rainfall variability and small-scale ex-
treme values: the variability of the rain cell intensity param-
eter has the effect of stretching out the distribution of rainfall
depths at a range of levels of aggregation, thereby increas-
ing the probability of very large values. And the variabil-
ity of this cell intensity parameter is also the most important
factor responsible for the increase in the large-scale rainfall
variance. Dimitriadis and Koutsoyiannis (2018) performed
a similar experiment where a given degree of stochastic-
ity was introduced to the parameter representing the rainfall
mean, which subsequently influenced the higher-order mo-
ments at large timescales. In addition, Zorzetto et al. (2016)
briefly discussed this matter. They introduced a novel frame-
work of meta-statistical extreme-value (MEV) analysis. In
this MEV formulation, one can show that interannual varia-
tion of exponential-type rainfall processes leads to a fat tail
for its extreme values.

The physical characteristics of rainfall can be estimated
using Eqs. (11) and (12) to (15). We repeated the same analy-
sis on these variables to compare the variability of the rainfall
characteristics of our hybrid mode and that of the MBLRP
model.

Average rainfall depth per storm (mm)=
(

1+
κ

φ

)( ν
α

)
µ (12)

Average number of rain cells per storm= 1+
κ

φ
(13)

Average rain cell arrival rate (h−1)= κ
α

υ
(14)

Average rain cell duration (h)=
ν

α
(15)

Figure 18 shows box plots of the various rainfall charac-
teristics for each month at gauge NCDC-460582. The values
were calculated using Eqs. (11) to (15). The rainfall charac-
teristics of the traditional MBLRP model are shown together
for reference (triangles). The variability of the average storm
depth, the average storm duration, and the average number
of rain cells per storm was significant, so the y axes of the
box plots were drawn in log scale. This result suggests that
the parameter variability that is incorporated in our model’s
distinct algorithm contributes to the highly variable external
(average storm depth, average storm duration) and internal
(average number of rain cells per storm, average rain cell du-
ration) properties of the generated rainfall.

5.2 An issue with model parsimoniousness: 6 versus 55

Our hybrid model uses 1 MBLRP model parameter set per 1
simulation month of 1 year while the MBLRP model needs
only 6 parameters regardless of the simulation length. How-
ever, this does not mean that our model requires 600 MBLRP
model parameters (6 per month×100 months) to generate
100 months of rainfall. This is because parameters are esti-
mated based on the sub-daily-scale rainfall statistics that are
synthetically generated through the process of the SARIMA
model and the regression analysis (see Fig. 5). Therefore, the
parameters of the SARIMA model and the parameters of the
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Figure 15. Relative frequency and the fitted GEV distribution of the 1, 4, and 16 h monthly maxima of January, April, July, and October
rainfall at NCDC gauge 132203. Results of observed rainfall (black), our hybrid model (red), and the traditional MBLRP model (blue) are
shown. The upper 10th percentile of the distribution (dashed box in the plots in the first, third, and fifth row) is magnified in the lower rows
(plots in the second, fourth, and sixth row).
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Figure 16. Comparison of the shape (ξ ), scale (σ ), and location (µ) parameters of the fitted GEV distribution of the monthly maxima. The
results based on the observed rainfall (x), our hybrid model (red), and the traditional model (blue) are shown. The results of 1, 4, and 16 h
rainfall durations are shown.

regression analyses shown in Fig. 5 should be considered as
the “true” parameters of this model because once these pa-
rameters are given, our model can generate infinite lengths
of rainfall records. The SARIMA model has 6 parameters,
and a set of regression analysis shown in Fig. 5 has 49 pa-
rameters (2 for each of 10 solid arrows in Fig. 5 equals 20, 3
per 8 bivariate normal distributions relating two subsequent
residual terms (εi) in Fig. 5 equals 24, and one for each of
5 normal distributions perturbing autocorrelation terms (ci)
equals 5). Therefore, our model has a total of 55 parame-
ters. This discrepancy in the number of parameters (6 for the
traditional of MBLRP model versus 55 of our hybrid model)
can be considered as a cost taken to reproduce the large-scale
rainfall variability that the traditional MBLRP model cannot.

We admit that this large discrepancy of model parsimo-
niousness is an issue to be resolved for our model to be
applied in practice. Regarding this, we are planning to ap-
ply our model to additional gauge locations across the world
and share the result through the website (http://www.letitrain.
info, last access: 15 February 2019). The work has been al-
ready initiated for the rainfall data of the Korean Peninsula.

5.3 Calibration versus validation

Our approach of separating the period of calibration and val-
idation adopted to some gauge locations may seem surpris-
ing because most stochastic rainfall generators are calibrated
based upon the statistics under an assumption of temporal
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Figure 17. Variability of the six parameters of the MBLRP model of this study (box plot) at gauge NCDC-460582 (star mark in Fig. 3). The
parameters of the traditional MBLRP model are shown together for reference (triangle).

Figure 18. Variability of the rainfall characteristics of the MBLRP
model of this study (box plot) at gauge NCDC-460582 (star mark in
Fig. 3). The rainfall characteristics of the traditional MBLRP model
are shown together for reference (triangle).

stationarity of the rainfall process. According to this assump-

tion, the statistics of the periods of calibration and the valida-
tion should be the same, which obviates the need for validat-
ing the model for separate periods. However, this assumption
often does not account for cases in which, for example, the
observation period is too short (e.g. a few extreme events are
included in only one part of the time period) or the time se-
ries is indeed non-stationary. For this reason, the discrepancy
of the model performance between the calibration and the
validation period should not only be attributed to the model’s
limitations but also to the difference between statistics from
the two periods. In view of these considerations, our primary
purpose of separating the period of calibration and valida-
tion should be understood as an assessment of the model’s
applicability to rainfall generation for a future period. From
the point of view of the calibration period, the validation pe-
riod is an ungauged period just as any future period, and our
model can be easily extended to the future period by adding a
term accounting for long-term rainfall non-stationarity to the
SARIMA model (first module). Our hybrid model assumes
not only the stationarity of the typical rainfall statistics such
as mean, variance, covariance and proportion of dry periods
but also the relationship between them (see Fig. 6). The lat-
ter has not been explicitly discussed by previous studies, so
it was also interesting to see whether such relationships be-
tween the statistics hold over different temporal periods and
how the discrepancy affects the final model performance, if
there is any. Figure 19 compares the slope of the regression
analysis between the statistics shown in Fig. 6 for the calibra-

www.hydrol-earth-syst-sci.net/23/989/2019/ Hydrol. Earth Syst. Sci., 23, 989–1014, 2019



1010 J. Park et al.: A hybrid rainfall model reproducing hourly through yearly statistics

Figure 19. Comparison of the slope of regression analysis between the statistics shown in Fig. 6 for the calibration (x) and validation (y)
period. The slopes of regression analysis (a) between the mean and standard deviation, (b) between the mean and proportion of dry periods,
and (c–f) between the proportion of dry periods at the different timescales were compared. Solid lines are 1 : 1 line and dashed lines represent
the regression lines.
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tion (x axis) and validation (y axis) periods. The plots cor-
responding to the variances at different scales are not shown
because there are theoretical reasons for having a solid slope
close to 2 (see Eq. 5 and the preceding equations). There is
no a significant discrepancy between slopes estimated using
statistics on calibration and validation periods, implying that
relationships between the fine-timescale statistics are station-
ary and that our model can be used for future or ungauged
periods.

6 Conclusions

The phenomena observed in hydrologic systems and the sub-
sequent effects on human and environmental systems are the
consequences of the complex interactions between the com-
ponents that are influenced by rainfall variability at various
ranges of timescales. Therefore, a good or realistic rainfall
model must properly reflect the rainfall variability at all hy-
drologically relevant timescales. Its importance will gather
more attention because of the recent trend in the hydrologic
societies of recognizing the hydrologic, human, and environ-
mental systems from a holistic view point and interpreting
them based on continuous and dynamic simulations as op-
posed to the event-based simulations (Wagener et al., 2010).

This study is one of many recent efforts in this regard
(Fatichi et al., 2011; Kim et al., 2013a; Paschalis et al., 2014).
First, we showed that the Poisson cluster rainfall model,
which is probably the most widely applied stochastic rain-
fall models cannot reproduce large-scale rainfall variability
due to in-built limitations that lie in the model assumptions.
Then, we showed that a combination of an autoregressive
model for monthly timescales and the “well-tuned” Poisson
cluster rainfall model for the finer ranges of timescales is
capable of reproducing not only the first- to the third-order
statistics of the rainfall depths, but also the intermittency
properties of the observed rainfall.

An additional model could be integrated to our hybrid
model to incorporate further rainfall variability, for exam-
ple, an approach based on random cascades (Lombardo et
al., 2012, 2017; Molnar and Burlando, 2005; Müller and
Haberlandt, 2016; Pohle et al., 2018) can be integrated to
our model to reproduce the rainfall variability at timescales
as fine as 5 min; a multivariate downscaling approach (Kout-
soyiannis et al., 2003; Moon et al., 2016) may be applied
to obtain spatially consistent rainfall at multiple sites. In ad-
dition, the SARIMA model that was adopted in this study
could be further modified to account for the coarser rain-
fall variability caused by the El Niño–Southern Oscillation
(ENSO) and North Atlantic Oscillation (NAO). Lastly, the
genuine structure of our model that is composed of a large-
scale rainfall generation module and a downscaling module
may be integrated to existing space–time rainfall generators
to enhance their ability to generate large-temporal-scale rain-
fall variability (Burton et al., 2008; Müller and Haberlandt,

2015; Paschalis et al., 2013; Peleg and Morin, 2014; Peleg et
al., 2017; Benoit et al., 2018).

Data availability. Our hybrid model is not easy to implement be-
cause it requires extensive analysis of the correlation structure of
the fine-scale rainfall statistics to fine-tune the MBLRP model and
downscale the generated monthly rainfall. For this reason, we shall
continue our work on all possible rain gauge locations across the
world and share the results (several hundred years of synthetic
rainfall data in text format) through the following website: http:
//letitrain.info (last access: 15 February 2019). We ask for coopera-
tion from the international community to share their rainfall data.
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