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Abstract. No synthesized global gridded runoff product,
derived from multiple sources, is available, despite such a
product being useful for meeting the needs of many global
water initiatives. We apply an optimal weighting approach
to merge runoff estimates from hydrological models con-
strained with observational streamflow records. The weight-
ing method is based on the ability of the models to match
observed streamflow data while accounting for error co-
variance between the participating products. To address the
lack of observed streamflow for many regions, a dissimilar-
ity method was applied to transfer the weights of the par-
ticipating products to the ungauged basins from the closest
gauged basins using dissimilarity between basins in physio-
graphic and climatic characteristics as a proxy for distance.
We perform out-of-sample tests to examine the success of
the dissimilarity approach, and we confirm that the weighted
product performs better than its 11 constituent products in
a range of metrics. Our resulting synthesized global grid-
ded runoff product is available at monthly timescales, and
includes time-variant uncertainty, for the period 1980–2012
on a 0.5◦ grid. The synthesized global gridded runoff prod-
uct broadly agrees with published runoff estimates at many
river basins, and represents the seasonal runoff cycle for
most of the globe well. The new product, called Linear Op-
timal Runoff Aggregate (LORA), is a valuable synthesis
of existing runoff products and will be freely available for
download on https://geonetwork.nci.org.au/geonetwork/srv/
eng/catalog.search#/metadata/f9617_9854_8096_5291 (last
access: 31 January 2019).

1 Introduction

Runoff is the horizontal flow of water on land or through
soil before it reaches a stream, river, lake, reservoir or other
channel. It has been widely used as a metric for droughts
(Shukla and Wood, 2008; van Huijgevoort et al., 2013; Bai
et al., 2014; Ling et al., 2016) and to understand the effects
of climate change on the hydrological cycle (Ukkola et al.,
2016; Zhai and Tao, 2017). Characterizing its dynamics and
magnitudes is a major research aim of hydrology and hy-
drometeorology and is of critical importance for improving
our understanding of the current conditions of the large-scale
water cycle and predicting its future states. More accurate es-
timates also provide additional constraint for climate model
evaluation, yet direct measurement of runoff at large scales
is simply not possible.

While runoff observations do not exist, direct stream-
flow or river discharge observations – basin-integrated runoff
– have been archived in many databases. The most com-
prehensive international streamflow database is the Global
Runoff Data Base (GRDB; https://www.bafg.de, last access:
1 June 2017), which consists of daily and monthly quality-
controlled streamflow records from more than 9500 gauges
across the globe. Geospatial Attributes of Gages for Evaluat-
ing Streamflow, version II (GAGES-II; Falcone et al., 2010),
represents another noteworthy streamflow database, consist-
ing of daily quality-controlled streamflow data from over
9000 US gauges.

Hydrological and land surface models are capable of pro-
ducing gridded runoff estimates for any region across the
globe (Sood and Smakhtin, 2015; Bierkens, 2015; Kauffeldt
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et al., 2016). However, these runoff estimates suffer from un-
certainties due to shortcomings in the model structure and pa-
rameterization and the meteorological forcing data (Beven,
1989; Beck, 2017a). There are various ways to use stream-
flow observations for improving the runoff outputs from
these models. The conventional approach consists of model
parameter calibration using locally observed streamflow data
(see review by Pechlivanidis et al., 2011). Another widely
used method is through regionalization; that is, the transfer of
knowledge (e.g. calibrated parameters) from gauged basins
to ungauged basins (see review by Beck et al., 2016). In
contrast, several other studies attempted to correct the runoff
outputs directly rather than the model parameters, for exam-
ple by bias-correcting model runoff outputs based on stream-
flow observations (Fekete et al., 2002; Ye et al., 2014) or by
combining or weighting ensembles of model outputs to ob-
tain improved runoff estimates (e.g. Aires, 2014). There are,
however, relatively few continental- and global-scale efforts
to improve model estimates using observed streamflow.

A broad array of gridded model-based runoff estimates are
freely available, including but not limited to ECMWF’s in-
terim reanalysis (ERA-Interim; Dee et al., 2011), NASA’s
Modern Era Retrospective-analysis for Research and Appli-
cations (MERRA) land dataset (Reichle et al., 2011), the Cli-
mate Forecast System Reanalysis (CFSR; Tomy and Sumam,
2016), the second Global Soil Wetness Project (GSWP2;
Dirmeyer et al., 2006), the Water Model Intercomparison
Project (WaterMIP; Haddeland et al., 2011), and the Global
Land Data Assimilation System (GLDAS; Rodell et al.,
2004). Recently, the eartH2Observe project has made two
ensembles (tier 1 and tier 2) of state-of-the-art global hy-
drological and land surface model outputs available (http:
//www.earth2observe.eu/, last access: 25 April 2018; Beck
et al., 2017a; Schellekens et al., 2017). Although model sim-
ulations represent the only time varying gridded estimates of
runoff at the global scale, they are subject to considerable
uncertainties, resulting in large differences in runoff simu-
lated by the models. Many studies have therefore evaluated
and compared the gridded runoff models (see overview in
Table 1 of Beck et al., 2017a).

Despite the demonstrated improved predictive capability
of multi-model ensemble approaches (Sahoo et al., 2011;
Pan et al., 2012; Bishop and Abramowitz, 2013; Mueller et
al., 2013; Munier et al., 2014; Aires, 2014; Rodell et al.,
2015; Jiménez et al., 2018; Hobeichi et al., 2018; Zhang et
al., 2018), very little has been done to utilize this range of
model simulations toward improved runoff estimates. This
paper implements the weighting and rescaling method intro-
duced in Bishop and Abramowitz (2013) and Abramowitz
and Bishop (2015) to derive a monthly 0.5◦ global synthesis
runoff product. Briefly summarized, we use a bias-correction
and weighting approach to merge 11 state-of-the-art gridded
runoff products from the eartH2Observe project, constrained
by observed streamflow from a variety of sources. This ap-
proach also provides us with corresponding uncertainty es-

timates that are better constrained than the simple range of
modelled values. For ungauged regions, we employ a dis-
similarity method to transfer the product weights to the un-
gauged basins from the closest basins using dissimilarity be-
tween basins as a proxy for distance. Such a synthesis prod-
uct is in line with the multi-source strategy of Global En-
ergy and Water Exchanges (GEWEX; Morel, 2001) and the
initiatives of NASA’s Making Earth System Data Records
for Use in Research Environments (MEaSUREs; Earthdata,
2017) and is particularly useful for studies that aim to close
the water budget at the grid scale.

Section 2.1 describes the observed streamflow data. Sec-
tion 2.2 presents the participating datasets used to derive the
weighted runoff product. Section 2.3 details the weighting
method implemented in the gauged basins, while Sect. 2.4
focuses on the ungauged basins. Section 2.5 examines the
approach used to derive the global runoff product. We then
present and discuss our results in Sects. 3 and 4 before con-
cluding.

2 Data and methods

2.1 Observed streamflow data

We used observed streamflow from the following four
sources: (i) the US Geological Survey (USGS) GAGES-II
database (Falcone et al., 2010), (ii) the GRDB (http://www.
bafg.de/GRDC/, last access: 1 June 2017), (iii) the Australian
Peel et al. (2000) database, and (iv) the global Dai (2016)
database. We discarded duplicates, and from the remaining
set of stations, we discarded those satisfying at least one
of the following criteria: (i) the basin area is<8000 km2

(fewer than three 0.5◦ grid cells), (ii) the record length is
<5 yr in the period 1980–2012 (not necessarily consecu-
tive), and (iii) there is a low observed streamflow (i.e. around
0) that does not represent the total runoff across the basins
due to significant anthropogenic activities. A river basin was
identified with significant anthropogenic activities if it has
>20 % irrigated area using the Global Map of Irrigation Ar-
eas (GMIA Version 4.0.2; Siebert et al., 2007) or has >20 %
classified as “Artificial surfaces and associated areas” accord-
ing to the Global Land Cover Map (GlobCover Version 2.3;
Bontemps et al., 2011). In total 596 stations (of which 20
are nested in the basins of other stations) were found to be
suitable for the analysis (Fig. 1).

2.2 Simulated runoff data

To derive the global monthly 0.5◦ synthesis runoff product,
we used 11 total runoff outputs (from eight different mod-
els) and seven streamflow outputs (from six different mod-
els) produced as part of tiers 1 and 2 of the eartH2Observe
project (available via ftp://wci.earth2observe.eu/, last access:
25 April 2018). The models and their available variables are
presented in Table 1. For tier 1 of eartH2Observe, the mod-
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Table 1. Model outputs from tiers 1 and 2 of the eartH2Observe project used to derive the synthesis runoff product.

Model Tier Our abbreviation Variables Spatial Reference
resolution

HTESSEL 1 HTESS1 Streamflow and 0.5◦ Balsamo et al. (2009, 2011)
total runoff

2 HTESS2 Streamflow and 0.25◦ Balsamo et al. (2009, 2011)
total runoff

JULES 1 JULES1 Total runoff 0.5◦ Clark et al. (2011)
Best et al. (2011)

2 JULES2 Total runoff 0.25◦ Clark et al. (2011)
Best et al. (2011)

LISFLOOD 1 LISF Streamflow and 0.5◦ Burek et al. (2013)
total runoff Van Der Knijff et al. (2010)

PCR-GLOBWB 1 PCRG Streamflow and 0.5◦ Van Beek and Bierkens (2008)
total runoff

SURFEX 1 SURF1 Streamflow and 0.5◦ Decharme et al. (2011, 2013)
total runoff

2 SURF2 Total runoff 0.25◦ Decharme et al. (2011, 2013)

W3RA 1 W3RA Streamflow and 0.5◦ Van Dijk et al. (2014)
total runoff Van Dijk and Warren (2010)

WaterGAP3 1 WGAP3 Streamflow and 0.5◦ Flörke et al. (2013)
total runoff

HBV-SIMREG 1 HBVS Total runoff 0.5◦ Beck et al. (2016)

Figure 1. Spatial coverage of gauged and ungauged river basins and location of stream gauges.

els were forced with the WATCH Forcing Data ERA-Interim
(WFDEI) meteorological dataset (Weedon et al., 2014) cor-
rected using the Climatic Research Unit Time-Series dataset
(CRU-TS3.1; Harris et al., 2014). For tier 2, the models were
forced using the Multi-Source Weighted-Ensemble Precipi-

tation (MSWEP) dataset (Beck et al., 2017b). The runoff and
streamflow values are provided in kg m−2 s−1 and m3 s−1,
respectively. For consistency, the runoff outputs with reso-
lution<0.5◦ were resampled to 0.5◦ using bilinear interpola-
tion. In some cases, the river network employed by the model

www.hydrol-earth-syst-sci.net/23/851/2019/ Hydrol. Earth Syst. Sci., 23, 851–870, 2019



854 S. Hobeichi et al.: Linear Optimal Runoff Aggregate (LORA)

did not correspond with the stream gauge location, in which
case we manually selected the grid cell that provided the best
match with the observed streamflow.

The runoff outputs were only used if no streamflow output
was available and only in basins smaller than 100 000 km2.
To make the runoff data consistent with the streamflow data,
we integrated the runoff over the basin areas (termed Ragg;
units – m3 s−1). Thus, for basins smaller than 100 000 km2

the synthesis product was derived from 11 model outputs,
whereas for basins larger than 100 000 km2 the synthesis
product was derived from seven outputs.

In Sect. 2.3 and 2.4 we detail our methods for deriving
the weighted runoff product for the global land. A flowchart
summarizing the process is provided in Fig. 2.

2.3 Implementing the weighting approach at the
gauged basins

At each gauged basin, we built a linear combination µq of
the participating modelled streamflow datasets x (i.e. Ragg
in small basins and modelled streamflow, q, in large basins)
that minimized the mean square difference with the observed
streamflowQ at that basin such thatµjq =

∑K
k=1wk(x

j
k−bk),

where j ∈ [1, J ] are the time steps, k ∈ [1, K] represents the
participating models, xjk (i.e. integrated runoff Raggjk over
the basin areas in small basins and modelled streamflow at
a gauge location qjk in large basins) is the value of the par-
ticipating dataset in m3 s−1 at the j th time step of the kth
participating model and the bias term bk is the mean error
of xk in m3 s−1. The set of weights wk provides an analyti-
cal solution to the minimization of

∑J
j=1(µ

j
q−Q

j )2 subject

to the constraint that
K∑
k=1

wk = 1, where Qj is the observed

streamflow at the j th time step. This minimization problem
can be solved using the method of Lagrange multipliers by
finding a minima for

F (w, λ)=
1
2

[
1

(J − 1)

∑J

j=1
(µ
j
q −Q

j )2
]

− λ
((∑K

k=1
wk

)
− 1

)
.

The solution to the minimization of F (w, λ) can be

expressed as w = A−11
1TA−11 , where 1T =

K elements︷ ︸︸ ︷
[1, 1 , . . . , 1]

and A is the K ×K error covariance matrix of
the participating datasets (after bias correction), i.e.

A=

 c1, 1 · · · c1,K
...

. . .
...

cK, 1 · · · cK,K

. A is symmetric, and the term

ca, b is the covariance of the ath and bth bias-corrected
dataset after subtracting the observed dataset, while each
diagonal term ck, k is the error variance of dataset k. We
note here that the solution presented here is based on the
performance of the participating products (diagonal terms of

A) and the dependence of their errors (accounted for by the
non-diagonal terms of A). For a derivation see Bishop and
Abramowitz (2013).

We then derived the weighted runoff dataset by applying
the computed weights on the bias-corrected runoff estimates
of the participating models. The weighted runoff dataset is
expressed as

µ
j
r =

K∑
k=1

wk(r
j
k − b

′
k),

where rjk is the value of the runoff estimate in kg m−2 s−1 of
the kth participating model at the j th time step and b′k is its
runoff bias in kg m−2 s−1.

To calculate the runoff bias b′k , we assumed that for each
model k and at each time j , the bias ratio of a model (defined
as the ratio of the model error to the simulated magnitude) is
the same for streamflow and runoff estimates of Eq. (1). In
small basins, the bias ratio of modelled streamflow was cal-
culated by using Raggjk instead of the modelled streamflow
q
j
k in Eq. (2):[
q
j
k −Q

j

q
j
k

=
b′k

r
j
k

]
basin

, (1)[
Raggjk −Q

j

Raggjk
=
b′k

r
j
k

]
basin

. (2)

We note that there is no empirical evidence in the literature
that the assumptions presented in Eqs. (1) and (2) are valid.
However, given that these assumptions constitute a part of
our overall approach that we tested and whose success we
proved later in this paper, the validity of these assumptions is
very likely to hold true.

To avoid over-fitting when applying the weighting ap-
proach, we limited the number of participating models so
that the ratio of number of records (i.e. total number of avail-
able monthly observations within the period of study) to the
number of models does not fall below 10. As a result of this,
when required, we discarded the models that had the high-
est bias (i.e. left terms in Eqs. 1 and 2) until the threshold
was met. Since the weighting and the bias correction oc-
casionally resulted in negative runoff values, we replaced
any negative values with zero. Table S1 in the Supplement
shows examples of weights and bias ratios calculated for the
participating models over a range of river basins. It shows
that HBVS, JULES1, JULES2 and SURF2 did not partici-
pate in the weighting over the large basins (i.e. Amur, In-
digirka, Mississippi, Murray–Darling, Olenek, Paraná, Pe-
chora and Yenisei), since these models do not have estimates
for streamflow which are needed to construct the weights
over large basins. For the smaller Copper River basin, how-
ever, runoff estimates from all models were used in deriving
weighted runoff estimates. Table S1 also shows that in many
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Figure 2. Flowchart summarizing the steps carried out to derive the weighted runoff product for the global land surface.

cases, models were assigned negative weights. While this
might not be expected in typical performance-based weight-
ing, it is possible when weighting is based on error covari-
ance as well as their performance differences in this formu-
lation. We show below how the weights can be modified to
non-negative weights.

We implemented the ensemble dependence transformation
process detailed in Bishop and Abramowitz (2013) to com-
pute the gridded time-variant uncertainty associated with the
derived runoff estimates. For any given gauged basin, we first
calculated the spatial aggregate of our weighted runoff esti-
mate Raggµ, then quantified s2

q , the error variance of Raggµ,
with respect to the observed streamflow Q over time as

s2
q =

∑J
j=1(Raggjµ− Qj )2

J − 1
.

Then, we wished to guarantee that the variance of the con-
stituent modelled estimate σ 2j

q about Raggjµ at a given time

step, averaged over all time steps where we have available
streamflow data, is equal to s2

q such that s2
q =

1
J

∑J
j=1σ

2j
q .

Since the variance of the existing constituent products
does not, in general, satisfy this equation, we transformed
them so that it does. This involved first modifying the set

of weights w to a new set w̃ such that w̃ = wT+(α−1) 1T
K

α
,

where α = 1−Kmin(wk) and min(wk) is the smallest neg-
ative weight (and α is set to 1 if all wk values are non-
negative). This ensures that all the modified weights w̃k are
positive. We then transform the individual estimates xjk to
x̃
j
k where x̃jk = Raggjµ+β(xj + α(x

j
k − x

j ) −Raggjµ) and

β =

√
s2
q

1
J

∑J
j=1

∑K
k=1w̃k(x

j
+α(x

j
k−x

j )−Raggjµ)2
.

The weighted variance estimate of the transformed ensem-
ble can be defined as σ 2j

q =
∑K
k=1w̃k (̃x

j
k −Raggjµ)2 and en-

sures that the equation 1
J

∑J
j=1σ

2j
q = s

2
q holds true. Further-

more,
√
σ

2j
q is the temporally varying estimate of the uncer-
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tainty standard deviation of the transformed ensemble that
(a) is varying in time and (b) accurately reflects our ability to
reproduce the observed streamflow.

We refer the reader to Bishop and Abramowitz (2013) for
proof.

In order to estimate
√
σ

2j
r , the uncertainty of the runoff

attributes µjr at each point in time and space, we first trans-
formed the runoff fields rjk to r̃jk by applying the same trans-
formation parameters α and β such that r̃jk = µ

j
r +β(r

j
+

α(r
j
k−r

j )−µ
j
r ). We then calculated the error variance σ 2j

r =∑K
k=1w̃k (̃r

j
k −µ

j
r )

2.

Finally, we used
√
σ

2j
r as the spatially and temporally

varying estimate of runoff uncertainty standard deviation,
which we will refer to below simply as “uncertainty”. It pro-
vides a much more defensible uncertainty estimate than sim-
ply calculating the standard deviation of the involved prod-
ucts.

We note that for a given basin,
√
σ

2j
q represents the uncer-

tainty of the modelled streamflow, i.e. Raggjµ, while
√
σ

2j
r

represents the uncertainty of modelled runoff at each grid cell
across the basin. This means that at every time step, there is

one value for
√
σ

2j
q per basin and one value for

√
σ 2
r per grid

across the basin.

2.4 Deriving runoff estimates at the ungauged river
basins

Implementing the weighting approach requires observed
streamflow to constrain the weighting, which we do not have
at ungauged river basins (defined in Sect. 2.1). To address
this, we used the modelled and observed streamflow from the
three most similar gauged river basins, based on predefined
physical and climatic characteristics, to derive model weights
at each ungauged basin. The selected gauged river basins
served as donor basins to the ungauged receptor basins. We
then implemented the weighting technique on the ensem-
ble of 11 (in small basins) or eight (in large basins) model
outputs by matching the Ragg calculated across the selected
donor basins with the observed streamflow. This resulted in
one set of weights and bias ratios obtained jointly from the
three donor basins. Finally, we transferred the weights and
bias ratios computed at the donor basins to the receptor basin
and subsequently computed the associated uncertainty val-
ues.

Most of the gauged river basins were classified as donor
basins. Some, however, were excluded from being donors
where we found (based on Ragg or modelled streamflow time
series and metric values) that none of the models were able to
simulate the streamflow dynamics. These basins are mainly
located in areas of natural lakes, in mountainous areas cov-
ered with snow or in wet regions with intense rainfall. We
therefore (subjectively) decided that those excluded basins

should be assigned to a “non–donor and non–receptor” cate-
gory.

We applied the method presented in Beck et al. (2016) to
calculate a similarity index S between a donor basin a and a
receptor basin b, expressed as

Sa, b =
∑7

p=1

|Zp, a −Zp, b|

IQRp
, (3)

where p denotes the climatic and physiographic characteris-
tics as in Table 4 of Beck et al. (2016). This includes the arid-
ity index, fractions of forest and snow cover, soil clay con-
tent, surface slope, and annual averages of precipitation and
potential evaporation. Zp, a and Zp, b are the values of the
characteristic p at donor and receptor basins, respectively.
IQRp is the interquartile range of characteristic p calculated
over the land surface, excluding deserts (defined by an aridity
index>5, see Table 4 of Beck et al., 2016) and areas covered
with ice during most of the year (defined by climate zones,
namely tundra, subarctic and ice cap) using a simplified cli-
mate zones map (Fig. S1) created by the Esri Education Team
for ArcGIS online (World Climate Zones – Simplified; Esri
Education Team, 2014). It follows from Eq. (3) that the most
similar donor a to a receptor b is the one that has the lowest
index value with basin b. We applied this approach to identify
the three most similar donors for every receptor basin. The
dissimilarity technique has been previously applied to find
10 donors for one receptor. Given that all the selected donors
must have very close similarity indices, we found by trial and
error that increasing the number of donor basins might intro-
duce donor basins that have a significantly different similar-
ity index and that setting the number of donor basins to three
seemed most appropriate.

In very large basins, physiographic and climatic hetero-
geneity can result in misleading basin-mean averages. We
therefore excluded highly heterogeneous basins from the
list of donors and classified them as non-donor and non-
receptor basins and also broke up large heterogeneous recep-
tor basins by climate groups into smaller basin zones and
then treated them as separate basins to effectively receive
sets of weights and bias ratios from the donor basins to the
separate parts. Here we defined large heterogeneous basins
as basins with areas greater than 1 000 000 km2 and cover-
ing climate zones that belong to at least two of the following
groups: (1) tropical wet; (2) humid continental, humid sub-
tropical, mediterranean and marine; (3) tropical dry, semi–
arid and arid; (4) tundra, subarctic and ice cap; and (5) high-
lands. Climate classification is based on the simplified cli-
mate zones map (World Climate Zones – climate zones map;
Esri Education Team, 2014) defined above. We used this
particular climate map because it comprises only 12 broad
climate groups (compared to more than 30 in other climate
maps, e.g. Köppen–Geiger). This reduced the divisions made
to large heterogenous basins while ensuring that the resul-
tant basin zones of individual basins have very distinct cli-
mate characteristics. Figure 3 shows the spatial coverage of
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Figure 3. Spatial coverage of donor basins, receptor basins, and non-donor and non-receptor basins.

the donor basins, receptor basins, and non-donor and non-
receptor basins.

2.5 Out-of-sample testing

To test that this approach produces a runoff estimate at
receptor basins (using transferred weights from the most
similar gauged basins) that is better than any of the in-
dividual models, we performed an out-of-sample test. In
this test, we selected a gauged basin and treated it as a
receptor basin, constructing model weights by using the
three most similar donor basins. We could then compare
(a) observed streamflow, (b) the in-sample weighted prod-
uct (WPin) derived by using observed streamflow for this
basin for weighting models, (c) an out-of-sample weighted
product (WPout) derived by constructing the weighting at the
three most similar basins, and (d) the individual model es-
timates at each basin. We calculated four metrics of perfor-
mance for the WPin, WPout and each of the 11 datasets: mean
square error MSE=mean(Ragg− observed streamflow)2,
mean bias=mean|Ragg−observed streamflow|, correlation
COR= corr(observed streamflow, Ragg) and standard de-
viation (SD) difference= σRagg− σobserved streamflow. We re-
peated the out-of-sample test for all the gauged basins (donor
basins and non-donor and non-receptor basins).

We displayed the results of the out-of-sample test by show-
ing the percentage of performance improvement of WPout
compared to WPin and each individual model, yielding 12
different values of performance improvement. If the ap-
proach is successful, we expect that both WPout and WPin
will perform better than any of the models used in this study,
and also WPin should be in better agreement with the ob-
served streamflow when compared to WPout.

We used box-and-whisker plots to show the results of per-
formance improvement of WPout calculated relative to WPin
and the 11 datasets across all the gauged basins. The lower

and upper hinges of a box plot represent the first (Q1) and
third (Q3) quartiles respectively of the performance improve-
ment results, and the line inside the box plot shows the me-
dian value. The extreme of the lower whisker represents
the maximum of (1) minimum(dataset) and (2) (Q1− IQR),
while the extreme of the upper whisker is the minimum of
(1) maximum(dataset) and (2) (Q3+ IQR), where IQR rep-
resents the interquartile range (i.e. Q3−Q1 ) of the perfor-
mance improvement results. A median line located above the
0 axis is an indication that the out-of-sample weighting offers
an improvement in more than half of the basins.

The uncertainty estimates computed at the gauged basins
represent the deviation of the spatial aggregate of our
weighted product (Raggµ) from the observed streamflow
well, since the in-sample uncertainty estimates are calculated
from the variance of the transformed ensemble, which by de-
sign equals MSE of Raggµ against the observation (i.e. error
variance of Raggµ). To test if the uncertainty estimates per-
form well out of sample (i.e. at the ungauged basins), we
performed another out-of-sample test. In this test, we took a
gauged basin, but instead of constraining the weighting using
observed streamflow from this basin, we constructed model
weights by using the three most similar donor basins. We
could then calculate the MSE of Raggµ against observation
from the three donor basins, and we denoted this as MSEin,
which represents the uncertainty estimates calculated in sam-
ple, since the observational data used in this case are the same
dataset that was used to train the weighting. We also calcu-
lated the MSE of the aggregated weighted product against the
actual observation of the gauged basin, and we denoted this
as MSEout. MSEout represents the uncertainty estimates com-
puted out of sample, since the comparison was performed
against observational data that have not been used to train
the weighting. We repeated the out-of-sample test for all the
gauged basins.
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We displayed the results of the out-of-sample test by show-
ing the ratios of MSEin to MSEout. If the approach is success-
ful, we expect that this ratio is around 1, indicating that the
values of MSEin and MSEout are close to each other. We used
a box-and-whisker plot to show the results.

3 Results

The results for the out-of-sample test are displayed in the
box-and-whisker plots presented in Fig. 4a–d.

The MSE and mean bias plots in Fig. 4a and d indicate that
across almost all the gauged basins, WPout performs better
than each of the individual models. Similarly, the COR plot
in Fig. 4c shows that the out-of-sample weighting has in fact
improved the correlation with observational data across al-
most all the gauged basins. The SD difference plot (Fig. 4b)
shows a significant improvement of WPout relative to the
models, but the number of basins that benefit from this im-
provement decreased, perhaps because the variability of the
individual members of the weighting ensemble is not neces-
sarily temporally coincident at all the basins, resulting in de-
creased variability. The negative performance improvement
of WPout relative to WPin across all metrics (first box plot,
Fig. 4a–d) indicates that the weighting performs better in
sample than out of sample, which is to be expected. Criti-
cally, though, the fact that the weighting delivers improve-
ment over all models when the weights are transferred from
similar basins indicate that the dissimilarity technique is suc-
cessful and can be effectively used at the ungauged basins
by feeding the weighting with data from the most similar
basins with streamflow observations. Furthermore, the box
plot in Fig. 5 shows that, overall, when the uncertainty esti-
mates are computed out of sample, they are very similar to
what they would have been if they were computed in sample.
Note however that the spread of results is large and that in
25 % of the cases, uncertainty estimates are less than half of
the in-sample results. This demonstrates that the dissimilar-
ity technique can be effectively used to derive not only the
weighting product but also its associated uncertainties at the
ungauged basin.

Based on the improvement that the weighting approach
implemented in both gauged and ungauged basins offers over
Ragg estimates computed for 11 individual model runoff es-
timates, in terms of the MSE, SD difference, COR and mean
bias against observed streamflow data, we now present de-
tails of the mosaic of the individual weighted runoff esti-
mates derived across all the basins, which we name LORA.
At the gauged basins, the weighting was trained with the
Ragg of the modelled runoff at the individual basins and con-
strained with the observed streamflow. At ungauged basins,
the dissimilarity approach was first implemented to find the
three most similar basins, then the weighting was trained on
the combined datasets from these three basins. Subsequently,

weights were transferred to the ungauged basins and applied
to combine the runoff estimates at the individual basins.

The eight modelled runoff datasets listed in Table 1 as part
of the tier 1 ensemble were recently included in a global eval-
uation by Beck et al. (2017a). In their analysis, they com-
puted a summary performance statistic that they termed OS
by incorporating several long-term runoff behavioural signa-
tures defined in Table 3 of Beck et al. (2017a) and found
that the mean of runoff estimates from only four models
(LISFLOOD, WaterGAP3, W3RA and HBV-SIMREG) per-
formed the best in terms of OS (i.e. mean of OS over all
the basins included in their study) relative to each individual
modelled runoff estimates and the mean of all the modelled
runoff estimates. In this study, we calculated the mean runoff
from the four best products found by Beck et al. (2017a; LIS-
FLOOD, WaterGAP3, W3RA and HBV-SIMREG). Here-
after, we refer to this as “Best4”, and we calculated four
statistics (RMSE, SD difference, COR and mean bias, de-
fined here as mean(dataset-obs)) for Ragg computed from
LORA, Best4 and each of the 11 runoff datasets across all
the gauged basins. The box plots in Fig. 6a–d display the re-
sults.

The RMSE plot in Fig. 6a shows that LORA has the low-
est RMSE values with the observed streamflow. All of the
component models exhibit a similar performance in regard
to RMSE. Similarly, LORA has, overall, the least SD differ-
ence with observations (Fig. 6b) across more than half of the
basins. The mean bias plot in Fig. 6d shows a non-significant
positive bias in LORA relative to the observation at the ma-
jority of the basins. Best4, HBV-SIMREG, PCR-GLOBWB
and particularly LISFLOOD exhibit a positive mean bias
across most of the basins but with much higher bias mag-
nitude compared to that of LORA. HTESSEL and SURFEX
estimates from both tiers (i.e tier 1 and tier 2) together with
JULES (tier 2) and WGAP3 show negative and positive bias
distributed evenly across the basins. LORA shows the highest
temporal correlation with the observed streamflow at more
than half of gauged basins (Fig. 6c). The low RMSE and
mean bias values relative to the other estimates are partly due
to the bias correction applied before the weighting. While
all the performance metrics calculated here show that LORA
outperforms Best4, these metrics do not allow us to assess
how well LORA performs in terms of bias in the runoff tim-
ing, replicating the peaks or representing quick runoff, with
the exception of the correlation metric. These aspects were
studied in more detail in Beck et al. (2017a) and showed that
Best4 performs well in these performance metrics.

All the models involved in deriving LORA, with the ex-
ception of HBV-SIMREG, were found in the study of Beck
et al. (2017a) to show early spring snowmelt peak and an
overall significant underestimation of runoff in the snow-
dominated basins. To see how well LORA performs at high
latitudes, we examined the gauged basins located at higher
latitudes (>60 ◦), and we calculated two statistics – COR
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Figure 4. Box-and-whisker plots displaying the percentage improvement that the weighted product (WPout) offers when tested out of sample,
using four metrics: MSE (a), SD difference (b), COR (c) and mean bias (d), when compared to the weighted product derived from in-sample
data (WPin) and each runoff product involved in this study. Box-and-whisker plots represent values calculated at 482 gauged basins. See
Table 1 for dataset abbreviations. The lower and upper hinges of a box plot represent the first (Q1) and third (Q3) quartiles respectively of
the performance improvement results, and the line inside the box plot shows the median value. The extreme of the lower whisker represents
the maximum of (1) min(dataset) and (2) (Q1− IQR), while the extreme of the upper whisker is the minimum of (1) max(dataset) and
(2) (Q3+ IQR), where IQR represents the interquartile range (i.e. Q3−Q1) of the performance improvement results. A median line located
above the 0 axis is an indication that the out-of-sample weighting offers an improvement in more than half of the basins.
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Figure 5. Box and whisker plots displaying the ratio of (1) the un-
certainties of the spatial aggregate of the weighted product com-
puted in sample to (2) the uncertainties of the spatial aggregate of
the weighted product computed out of sample.

and mean bias – as in Fig. 6c, d, but this time for the snow-
dominated basins only. We display the results in Fig. 7.

The temporal correlation plot in Fig. 7a shows that LORA
is in better agreement with observed streamflow at snow-
dominated basins compared to the ensemble of all the gauged
basins on the globe (Fig. 6c), with an overall average im-
provement of 7 %. Similarly, HBV-SIMREG shows an im-
proved correlation with the observed streamflow at snow-
dominated basins, with an average improvement of 14 %; this
agrees with the results reported by Beck et al. (2017a), who
attributed the improved performance of HBV-SIMREG in
snow-dominated regions to a snowfall gauge undercatch cor-
rection. The overall performance of Best4 and LISFLOOD
does not change in terms of spatial correlation; on the con-
trary, all the remaining products show a degraded perfor-
mance. Figure 7b shows that LORA exhibits a small bias
across snow-dominated basins relative to participating mod-
els. Conversely, with the exception of LISFLOOD, all the
tier 1 products including Best4 show a negative mean bias
across more than half of the snow-dominated basins, and HT-
ESSEL, JULES, SURFEX and W3RA particularly show a
large negative bias at most of these basins. This agrees with
the negative bias found in the study of Beck et al. (2017a)
in all tier 1 products except LISFLOOD. These results indi-
cate that LORA is likely to slightly overestimate runoff in
high latitudes, whereas all tier 1 products with the exception
of LISFLOOD tend to underestimate runoff in these regions
and that this underestimation is larger for HTESSEL, JULES,
SURFEX and W3RA. Tier 2 products show both positive and
negative bias across the basins. Their bias is of a lower mag-
nitude than that found in tier 1 products. That is probably
because the forcing precipitation used to derive tier 2 outputs
(i.e. MSWEP) has less bias than that used to derive tier 1 es-
timates (i.e. WFDEI corrected using CRU-TS3.1). We also
calculated the two metrics, SD difference and mean bias, as

in Fig. 6a, b, but we found no noticeable differences in the
performance of any of the products relative to that found
globally in Fig. 6a, b. The results displayed in Figs. 6 and
7 are discussed further below.

We calculated the seasonal relative uncertainty expressed
as the ratio of the seasonal average uncertainty to sea-
sonal mean runoff (i.e. mean runoff uncertainty

mean runoff ) over the period
1980–2012. This metric is intended to show some indica-
tion of the reliability of the derived runoff, with results dis-
played in Fig. 8. Regions in red show grid cells that satisfy
mean runoff uncertainty

mean runoff < 1, while those shown in yellow are re-
gions where the value of mean runoff uncertainty are larger
than the value of the associated mean runoff itself. Regions in
blue are grid cells that have a zero mean runoff and hence an
undetermined relative uncertainty. The global maps in Fig. 8
show a consistent low reliability in Sahel, the Indus basin,
Paraná, the semi-arid regions of eastern Argentina, Doring
basin in South Africa, the red river sub-basin of the Missis-
sippi, the Burdekin and Fitzroy basins in north-eastern Aus-
tralia, and many regions of the Arabian Peninsula. The ar-
eas at the higher latitudes in Asia and North America show
high reliability during June–July–August and low reliability
during the rest of the year. Parts of the Madeira sub-basin
– a major sub-basin of the Amazon – show low reliability
during June–November. The basins in Central America show
high reliability in all seasons except in March–May, while
river basins in Somalia show low reliability during the aus-
tral summer and winter. River basins in the Far East show
low reliability in spring and autumn and higher reliability in
winter and summer.

Figure 9 displays the seasonal cycles of Ragg for LORA
and Best4 and the observed streamflow over 11 major river
basins. To generate this plot, we calculated the average Ragg
for each month over the period of availability of observed
streamflow. The shaded regions represent the range of un-
certainty associated with the derived runoff. In the Amazon
basin, LORA overestimates runoff in the wet season and un-
derestimates it in the dry season, but the observed stream-
flow during the dry season still lies within the error bounds
of LORA. LORA shows good agreement with the observed
cycle in the Mississippi. In the Niger and Murray–Darling
basins, while LORA overestimates the observed streamflow,
it shows a much better agreement compared to Best4, which
strongly overestimates runoff. In the Paraná Basin, LORA
underestimates the observed streamflow in all seasons except
summer. In the subarctic basins, LORA shows different be-
haviour within the individual basins. In Pechora and Olenek,
LORA represents the seasonal cycle and the magnitude of
runoff well, whereas in the Amur, Lena and Yenisei basins,
LORA shows an early shift of the runoff peak and an overall
overestimation of runoff. In the Indigirka, LORA overesti-
mates the spring peak, but the observed seasonal cycle lies
within the error bounds.

We compared our mean annual runoff (mm year−1) with
those estimated by a well-known land surface hydrological
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Figure 6. Four statistics, (a) RMSE, (b) SD difference, (c) COR and (d) mean bias, calculated for LORA, Best4 (i.e. the simple average of
runoff estimates from LISFLOOD, WaterGAP3, W3RA and HBV-SIMREG) and each runoff product involved in this study at the gauged
basins. See Table 1 for dataset abbreviations.
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Figure 7. Two statistics, (a) COR and (b) mean bias, calculated for LORA, Best4 (i.e. the simple average of runoff estimates from LIS-
FLOOD, WaterGAP3, W3RA and HBV-SIMREG) and each runoff product involved in this study at the gauged basins located at the high
latitudes (>60 ◦). See Table 1 for dataset abbreviations.

Figure 8. Seasonal reliability, defined as high ( mean runoff uncertainty
mean runoff < 1, in red), low ( mean runoff uncertainty

mean runoff ≥ 1, in yellow) and undeter-
mined (mean runoff= 0, in blue).
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Figure 9. Seasonal cycle of runoff aggregates from LORA and Best4 compared with the observed streamflow over 11 major basins. Runoff
aggregates and the observed streamflow were averaged for each month across the period of availability of observation. The shaded regions
show the aggregated uncertainty derived for LORA.

model, the variable infiltration capacity (VIC; Liang et al.,
1994) model, and adjusted VIC estimates after enforcing the
physical constraints of the water budget in the study of Zhang
et al. (2018) over comparable temporal and spatial scales for
16 large basins chosen from different climate zones on the
globe. The mean annual runoff was computed over the period
1984–2010 instead of 1980–2012 to maximize the temporal
agreement with the study of Zhang et al. (2018). We also

showed the average annual volume of water that discharges
from these basins computed from LORA and the observa-
tional data.

Table 2 shows that for some basins, VIC and LORA agree
well in estimating mean annual runoff (i.e. difference be-
tween LORA and at least one of VIC and the VIC ad-
justed for budget closure that is <10 %). This threshold is
met in the Amazon, Columbia, Congo, Danube, Mackenzie
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Table 2. A comparison of mean annual runoff (mm yr−1) of 16 major basins covering different climate zones around the world for LORA
and VIC (Zhang et al., 2018), the yearly volume of LORA runoff aggregates (i.e. flow in km3), and observed annual flow (km3) over the
basins and mean annual uncertainty values associated with LORA runoff are shown, and the adjusted VIC annual runoff values within 5 %
error bounds for water budget closure are displayed. Observed annual flow is given only if data from all contributing stations are available
over a whole year over for at least 17 years out of the 33 years covered in this study.

Basin VIC VIC LORA LORA LORA Observed Dominant
mm yr−1 adjusted for (runoff) (uncertainty) yearly flow yearly climate

water budget mm yr−1 mm yr−1
± uncertainty flow

closure mm yr−1 km3 km3

Amazon 1048 1029 1151 360 6763± 2115 – Tropical wet

Amur 135 129 219 115 428± 225 325 Humid continental
and semi-arid

Columbia 318 293 333 101 218± 66 209 Semi-arid and high-
lands

Congo 407 404 358 147 1292± 532 1240 Tropical wet and
tropical dry

Danube 272 265 260 125 199± 95 205 Marine humid, con-
tinental and humid
subtropical

Indigirka 132 120 228 171 78± 59 53 Subarctic

Lena 142 134 301 137 731± 332 557 Subarctic

Mackenzie 189 173 191 110 323± 186 294 Subarctic

Mississippi 220 215 212 123 616± 359 581 Humid continental
and humid subtropi-
cal

Murray–Darling 42 41 15 6 12± 5 – Arid and semi-arid

Niger 198 194 106 41 239± 87 170 Arid, semi-arid and
tropical dry

Olenek 114 106 230 208 48± 43 40 Subarctic

Paraná 278 279 189 97 471± 247 600 Marine and humid
subtropical

Pechora 342 308 420 420 131± 131 153 Tundra and subarctic

Yenisei 217 195 324 203 828± 520 612 Subarctic

Yukon 149 139 229 102 188± 83 214 Subarctic

and Mississippi basins. The basins that show a larger dif-
ference between VIC and LORA but show that VIC esti-
mates lie within the uncertainty bounds of LORA (i.e. be-
tween LORA minus uncertainty and LORA plus uncertainty)
include the Indigirka, Olenek, Paraná, Pechora, Yenisei and
Yukon basins. Large discrepancies between VIC and LORA
are found in Lena and the Murray–Darling. Other global es-
timates of total runoff are also available such as the GLDAS
and Multi-scale Synthesis and Terrestrial Model Intercom-
parison Project (MsTMIP; Huntzinger et al., 2016), however
we have not compared LORA with these datasets, because

they either have a short common period with LORA or a
coarser resolution (i.e. 1◦) and showed a significant disagree-
ment with observation when interpolated to a 0.5◦ grid.

Finally, in Figs. S8 and S9 we provide an example of
runoff fields and the associated uncertainty estimates respec-
tively in an individual month (e.g. May 2003).

4 Discussion

The results of the out-of-sample test suggest that deriving
runoff estimates in an ungauged basin by training the weight-
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ing with streamflow data from similar basins – in terms of
climatic and physiographic characteristics – is successful.
While the runoff product derived by using weights from ex-
ternal basins outperforms the runoff estimates from the indi-
vidual models, the weighted runoff derived in sample offers
even more capable runoff estimates overall.

It follows from Fig. 8 that the runoff values computed
over dry climates tend to be less reliable than those in other
regimes. This is perhaps due to bias in the WFDEI precipi-
tation forcing that is propagated and intensified in the sim-
ulated runoff (Beck et al., 2017a). Another possible reason
is the reduced proficiency of models in representing runoff
dynamics in arid climates, where runoff tends to be highly
non-linearly related to rainfall and often evaporates locally
without reaching a river system (Ye et al., 1997). Also, due
the lower density of gauged basins in the arid and semi-arid
climates compared to other regimes, receptor basins are dom-
inant over dry climates, which reduces the skill of the weight-
ing to produce good runoff estimates. This is also in line with
our conclusions from Fig. 4 in that the weighting provides
more reliable results in the gauged basins.

All the tier 1 model outputs involved in this study with
the exception of HBV-SIMREG were found by Beck et
al. (2017a) to show early spring snowmelt in the snow-
dominated basins. Both the Yenisei and the Lena are large
basins (2.6 and 2.4 million km2, respectively); hence, as
noted in Sect. 2.2, only models that had estimates of
both streamflow and runoff were used to derive LORA at
these basins, therefore HBV-SIMREG – whose inclusion
would have improved the weighting – was excluded. Beck
et al. (2017a) also found that LISFLOOD has the best
square-root-transformed mean annual runoff among the tier
1 datasets and performs well in terms of temporal correlation
in all climates; this agrees with the high temporal correla-
tion of LISFLOOD seen in Figs. 6c and 7a and also explains
the highest weights attributed to LISFLOOD in the majority
of snow-dominated basins (Table S1). Because of this, and
because LISFLOOD tends to overestimate runoff across half
of the snow-dominated basins (as shown in Fig. 7b), LORA
exhibits a positive bias across half of the snow-dominated
basins (Fig. 7b), particularly in the Lena, Amur and Yenisei
basins (Fig. 9).

Further, in Fig. S2 we provide the spatial distribution of
correlation results from Fig. 6c. The basins are colour-coded
by their temporal correlation with the observed streamflow,
and the number of basins in each category is given. Basins in
yellow are those where LORA is highly correlated with the
observation, while dark blue basins are those where LORA
exhibits a negative correlation with the observation. It can
be noted from Fig. 6c that occurrence of negative correlation
is extremely unusual, which explains why these were con-
sidered outliers and were not shown in the box-and-whisker
plot. Likely, low correlation basins are unusual and constitute
less than 12 % of the number of basins (excluding basins with
negative correlation). Also, the median value is above 0.8,

which is higher than any constituent estimates. We selected
a basin from each correlation range and examined the time
series of LORA and the observed streamflow more closely
(Figs. S3–S7), particularly illustrating the uncertainty esti-
mate of LORA. In the Ganges, LORA captures the observed
time-series dynamic well, with a tendency to overestimate
the streamflow peak in August (Fig. S3). Over the Madeira
basin, LORA is able to represent most of the climatic vari-
ability found in the observation reasonably well (Fig. S4). In
Congo, the catchment has an irregular time-series dynamic,
and LORA is in principle able to capture a large part of the
climatic variability in the observation (Fig. S5). In the Lena
basin, the observation shows a peak in June and a second less
significant peak in September (Fig. S6). Both peaks are cap-
tured by LORA during most of the time series, with a ten-
dency to underestimate the late summer peak and overesti-
mate the early summer peak. In the upper Indus basin, LORA
does not capture the magnitudes of observed streamflow and
shows a reversed seasonal cycle, which explains why it ex-
hibits negative correlation with the observation (Fig. S7).
Zhang et al. (2018) found disagreement between simulated
runoff from three LSMs and observed streamflow over Indus
basin, which they expected to be due to errors in the obser-
vational data from the GRDB dataset. Pan et al. (2012) and
Sheffield et al. (2009) assumed that the errors in the mea-
sured streamflow are inversely proportional to the area of
the basins and range from 5 % to 10 %, whereas Di Bal-
dassarre and Montanari (2009) analysed the overall errors
affecting streamflow observations and found that these er-
rors range from 6 % to 42 %. In earlier studies, the errors in
streamflow measurement were estimated to range from 10 %
to 20 % (Rantz, 1982; Dingman, 1994). In the study of Zhang
et al. (2018), the error ratios of VIC were set to be 5 %. In this
study, we used the weighting approach to compute gridded
uncertainty values based on either the discrepancy between
the Ragg of the derived runoff and the associated observa-
tional dataset in each gauged basin or, alternatively, based
on the discrepancy between Ragg of the derived runoff and
the associated observational dataset from three similar basins
in the case of ungauged basins. The derived gridded uncer-
tainty changes in time and space. Our uncertainty estimates
show higher values than those set for VIC, and additionally
the estimated values and their reliability change with climate
and season (Fig. 8). It follows from Table 2 that in most of
the basins the mean annual runoff uncertainty exceeds 30 %
of the values of the associated runoff itself. In fact, when the
values of runoff approach zero (i.e. in arid and semi-arid re-
gions during the hot climate or in the snow-dominated basins
during winter), it is expected that the uncertainty values be-
come very close to the associated runoff estimates and that
eventually the error ratio becomes high. It is not surprising
that the estimated relative uncertainties exceed the error ra-
tios of the observations. Also the change of the uncertainty
values with time and space is consistent with the fact that
the individual datasets that were used to derive LORA ex-
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Figure 10. Mean seasonal runoff calculated for the period 1980–2012.

hibit performance differences in different climates and ter-
rains (Beck et al., 2017a).

Figure 10 shows the mean seasonal runoff (mm year−1)
calculated for the period 1980–2012. There is consistently
low runoff in arid regions and high runoff in wet regions
across all the seasons. High latitudes in America and Asia
exhibit no runoff during the snow season and high runoff
during March–August, when snow melts. Overall, there is a
clear agreement between the spatial distribution of runoff and
the different climate regimes. This is particularly reflected in
Madagascar, where the differences in runoff pattern match
the different climate regimes across the island. LORA cap-
tures the high wetness in the monsoonal seasons and ex-
hibits a shift in magnitude during the wet monsoon in the
lower Amazon in October–May; the upper Amazon in June–
August; southern Asia in June–November; central Sahel in
August; and Guinea coasts in June, July, September and Oc-
tober.

As discussed in Hobeichi et al. (2018), the weighting ap-
proach has its own advantages and drawbacks. One limita-
tion is that a common imperfection in all the individual prod-
ucts is likely to propagate into the derived product. The early
spring runoff peak found in both LORA and the datasets that
were used to derive it is an example of this limitation. In con-
trast, the seasonal runoff cycle of LORA in both Pechora and
Olenek basins (i.e. two snow-dominated basins) indicate that
LORA was able to capture the seasonal signal and the tim-
ing of the runoff peak very well as opposed to the constituent
products and Best4, which also suggests that the weighting
has the ability to overcome the weaknesses of the individual
products. Additionally, it was shown in Beck et al. (2017a)
that tier 1 products consistently overestimate runoff in arid

and semi-arid regions due to a bias in the WFDEI precip-
itation forcing; this appears in the massive overestimation
exhibited by Best4 in Niger and Murray–Darling (Fig. 9),
however the weighting was able to eliminate a large amount
of this overestimation, which also emphasizes the ability of
the weighting approach to mitigate limitations in individual
models. Another limitation arises from the scarcity of ob-
served streamflow, particularly in the arid regions and from
the quality of the observational data itself. As noted ear-
lier, the errors in GRDB dataset were reported to range from
10 % to 20 % and were found by Di Baldassarre and Mon-
tanari (2009) to have an average value that exceeds 25 %
across all the studied river basins. Also, given that there are
no direct observations for runoff, uncertainties were com-
puted from the discrepancy between the modelled runoff ag-
gregates and observed streamflow. This ignored the lag time
between LORA integrated runoff and observed streamflow at
the mouth of the river and induced bias that possibly led to
overestimated uncertainty over large gauged basins.

The weighting technique allows the addition of new runoff
estimates when they become available. This will be particu-
larly beneficial if the future estimates represent the runoff
peak in the snow-dominated regions reasonably.

5 Conclusions

In this study, we presented LORA, a new global monthly
runoff product with associated uncertainty. LORA was de-
rived for 1980–2012 with monthly temporal resolution at
0.5◦ spatial resolution by applying a weighting approach that

Hydrol. Earth Syst. Sci., 23, 851–870, 2019 www.hydrol-earth-syst-sci.net/23/851/2019/



S. Hobeichi et al.: Linear Optimal Runoff Aggregate (LORA) 867

accounts for both performance differences and error covari-
ance between the constituent products.

To ensure full global coverage, we used a similarity index
to transfer weights and bias ratios constructed from gauged
basins with similar climatic and physiographic characteris-
tics to ungauged basins. This allows the derivation of runoff
in areas where we do not have observed streamflow.

We showed that this approach is successful, and that
LORA performs better than any of its constituent modelled
products in a range of metrics, across basins globally and
especially in the higher latitudes. However, LORA tends to
overestimate runoff and shows an early snowmelt peak in
some snow-dominated basins. LORA was not found to sig-
nificantly overestimate runoff in arid and semi-arid regions
as opposed to the constituent products.

The approach and product detailed here offers the opportu-
nity for improvement as new streamflow and modelled runoff
datasets become available. It presents a new, relatively inde-
pendent estimate of a key component of the terrestrial wa-
ter budget, with a justifiable and well-constrained uncertainty
estimate.

Data availability. LORA v1.0 can be downloaded from
https://geonetwork.nci.org.au/geonetwork/srv/eng/catalog.
search\T1\textbackslash#/metadata/f9617_9854_8096_5291
(last access: 31 January 2019), and its DOI is
https://doi.org/10.25914/5b612e993d8ea (Hobeichi, 2018).

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/hess-23-851-2019-supplement.
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