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Abstract. Bias correction methods are used to calibrate cli-
mate model outputs with respect to observational records.
The goal is to ensure that statistical features (such as means
and variances) of climate simulations are coherent with ob-
servations. In this article, a multivariate stochastic bias cor-
rection method is developed based on optimal transport.
Bias correction methods are usually defined as transfer func-
tions between random variables. We show that such trans-
fer functions induce a joint probability distribution between
the biased random variable and its correction. The optimal
transport theory allows us to construct a joint distribution
that minimizes an energy spent in bias correction. This ex-
tends the classical univariate quantile mapping techniques in
the multivariate case. We also propose a definition of non-
stationary bias correction as a transfer of the model to the
observational world, and we extend our method in this con-
text. Those methodologies are first tested on an idealized
chaotic system with three variables. In those controlled ex-
periments, the correlations between variables appear almost
perfectly corrected by our method, as opposed to a univariate
correction. Our methodology is also tested on daily precipita-
tion and temperatures over 12 locations in southern France.
The correction of the inter-variable and inter-site structures
of temperatures and precipitation appears in agreement with
the multi-dimensional evolution of the model, hence satisfy-
ing our suggested definition of non-stationarity.

1 Introduction

Global climate models (GCMs) and regional climate models
(RCMs) are used to study the climate system. However, their
outputs often appear biased compared to observational refer-
ences (e.g., Randall et al., 2007). For example, the tempera-

ture means can be shifted. Thus, removing this bias is often
necessary to drive impact studies such as those based on crop
or hydrological models (Chen et al., 2013). The main goal of
bias correction (BC) is to match the statistical features of cli-
mate model outputs with observations (see, e.g., Ehret et al.,
2012; Gudmundsson et al., 2012). The most used method is
the quantile mapping (Panofsky and Brier, 1958; Wood et al.,
2004; Déqué, 2007), which adjusts the quantiles of the vari-
ables of interest in the stationary case (Shrestha et al., 2014).
The importance of the stationarity hypothesis has been dis-
cussed by a few studies (Christensen et al., 2008; Maraun,
2012; Nahar et al., 2017). Some extensions, like CDF-t (Cu-
mulative Distribution Function transfer, Michelangeli et al.,
2009), can take into account some of the non-stationarity in
GCMs or RCMs.

Most of those methods are univariate, and do not take
into account the spatial and inter-variable correlations, which
may alter the quality of the corrections (e.g., Wilcke et al.,
2013; Maraun, 2016). Maraun et al. (2017) have pointed out
that correcting model output could induce biases of physical
processes and that such procedures require an understanding
of the nature of the biases. In particular it is crucial to inves-
tigate the way key climate variables co-vary.

This shortcoming has led to the recent development of
multivariate techniques. As mentioned by Vrac (2018), two
kinds of methods are currently available. The first type
corrects separately each marginal and applies afterwards
a correction of the dependence structure (e.g., Vrac and
Friederichs, 2015; Vrac, 2018; Nahar et al., 2018; Cannon,
2018). The second kind performs recursive corrections: each
variable is corrected conditionally on the previously already
corrected variables (Bárdossy and Pegram, 2012; Dekens
et al., 2017). These last methods have two main limita-
tions. First, the correction depends on the ordering of the
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marginals. Second, each marginal is adjusted conditionally
on previously corrected marginals, which reduces the num-
ber of data at each step. Furthermore, the variability of ob-
servations is generally greater than that of the climate mod-
els. To increase the variability, von Storch (1999), Wong
et al. (2014) and Mao et al. (2015) suggested introducing a
stochastic component into the bias correction procedure. In
this paper, we develop a multivariate and stochastic bias cor-
rection method, different from the two categories presented,
based on elements from optimal transport theory.

Optimal transport theory is a natural way to measure the
dissimilarity between multivariate probability distributions
(Villani, 2008; Muskulus and Verduyn-Lunel, 2011; Robin
et al., 2017), especially in a multivariate case. For example,
this has already been successfully applied in image process-
ing to transfer colors between images (Rubner et al., 2000;
Ferradans et al., 2013). Here, our goal is to apply optimal
transport techniques to perform bias correction in estimating
a particular joint law (called a transport plan) that links the
probability distributions of a biased random variable and its
correction. This joint law minimizes a cost function, repre-
senting the energy needed to transform a multivariate prob-
ability distribution to another. In this optimal transport con-
text, any realization of the biased random variable induces
a conditional law of the transport plan, associating the real-
ization and its correction. As the corrections are randomly
drawn from these conditional laws, the suggested method is
stochastic by construction.

Moreover, Maraun et al. (2017) also stressed that BC
methods do not correct the physical processes of the model,
and errors can propagate into the corrections. However, one
key aspect of the present work is to highlight that, in a cli-
mate change context (or more generally, in a framework
where corrections are performed in conditions different from
the calibration dataset), a proper BC method should provide
changes – from calibration to projection periods – in agree-
ment with the modeled data to be corrected. Knowing the
quality of the raw modeled data (and of the underlying pro-
cesses) is therefore an important a priori step. Nevertheless,
this is beyond the scope of bias correction per se.

This paper is organized as follows. In Sect. 2, the devel-
oped theoretical framework to perform bias correction is pre-
sented. In particular, the classical definition of bias correc-
tion as transfer function is generalized with optimal transport
theory. Two methods are presented: optimal transport correc-
tion (OTC, stationary case) and dynamical optimal transport
correction (dOTC, non-stationary case). In Sect. 3, the pro-
posed methodology is tested on an idealized non-stationary
case based on chaotic attractors. In Sect. 4, a multivariate
bias correction is performed on a regional climate model
(RCM) simulation of temperatures and precipitation, in a
cross-validation case. Section 5 provides conclusions and
perspectives.

2 Theoretical framework

The general goal of this paper is the correction of a random
variable, denoted X (e.g., a biased climate model output) with
respect to a reference random variable, denoted Y. The ran-
dom variables X and Y live in dimension d. If d = 1, we
denote them X and Y . The probability law of X (or Y) is
denoted PX (or PY).

Following Piani et al. (2010), a bias correction method of
X with respect to Y is a map T : Rd→ Rd , called a trans-
fer function, such that the random variable T (X) (the cor-
rection) follows the same law as Y, i.e., PT (X) = PY. This
definition covers most of the practical cases, but we can con-
struct random variables where no deterministic transfer func-
tion exists, e.g., if X is constant and Y is not. Thus, beyond
a multivariate transfer function, it is necessary to extend the
definition of bias correction.

In the first part, we highlight our method of bias correction
with a univariate example starting from quantile mapping.
In the second part, the mathematical theory is explained. Fi-
nally, an extension of our method in a non-stationary context
is presented.

2.1 From quantile mapping to optimal transport

We start with the construction of a quantile mapping method
in the univariate case, i.e., with d = 1. In this context, the bi-
ased and reference random variables are denoted X and Y ,
respectively. A transfer function T between X and Y is con-
structed on the cumulative distribution functions (CDFs) of
X and Y , defined by

FX(x) := PX(X ≤ x), FY (y) := PY (Y ≤ y).

A realization y of Y is the correction of a realization x of X
if and only if FX(x)= FY (y). Under the assumption that FY
is invertible, the correction y of x is given by

y = (F−1
Y ◦FX)︸ ︷︷ ︸

T

(x).

Thus the transfer function is written T = F−1
Y ◦FX. This

method is called quantile mapping. Indeed, the quantiles of
X and Y are matched through the relation FX(x)= FY (y).

We illustrate the quantile mapping method with an exam-
ple in Fig. 1a. In this example, the random variables X and
Y are two Gaussian laws centered, respectively, on 0 and 10,
with a standard deviation of 1. We cut R into cells of length
1 and estimate the histograms. Fig. 1a shows the two his-
tograms of X and Y in red and blue, respectively. The x axis
gives the empirical quantiles of the edges of each cell. The
black arrows indicate how the quantile mapping connects a
cell of X to a cell of Y . For example, the realizations of X in
the first blue cell are corrected and transferred to realizations
in the first three red cells of Y .

The main point here is the following: in the univariate con-
text, we can perform a bias correction with only the black
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Figure 1. Histogram of two Gaussian laws X and Y in blue and red. (a) The x axis indicates the edges of each bar. The black arrows indicate
how the quantile mapping matches an element of X with its correction. (b) The x axis gives the center of each bar. The black arrows indicate
the possibilities for how the probability of obtaining the value x1 for X can be distributed among the possible values yj of Y . The γ1j
correspond to the number of realizations moved. These arrows can be generalized to each xi . (c) The x axis gives the center of each bar.
The black arrows indicate the non-zero γij estimated by the OTC method. (d) Bivariate histogram of two Gaussian laws. The black arrows
represent how the OTC method fits each xi with its correction. To facilitate readability, only 30 arrows are represented.

arrows. A realization in a cell of X is corrected to a realiza-
tion into a cell of Y connected by a black arrow. Because in
a multivariate context the quantile mapping can not be used
to estimate these arrows (CDFs are not invertible), our prob-
lem is the following: how to construct these black arrows in
a multivariate context.

For this, let xi (yj ) be the centers of each cell of the his-
togram of X (Y ). Let pxi be the number of realizations of X
in the interval xi , and let pyj be the number of realizations of
Y in the interval yj . We represent all possible black arrows
by a collection of coefficients γij . A γij value corresponds to
the number of realizations in the cell xi that are transferred

to realizations in the cell yj . We obtain the following two
equalities:

pxi =
∑
j

γij ,

representing how the cell xj is split into each cell yj ; and

pyj =
∑
i

γij ,

representing how cell yj received the realizations from each
cell xi . We depict the γ1j coefficients in Fig. 1b. The black
arrows represent the number of realizations γ1j that are trans-
ferred to each yj .
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The problem is to calculate the coefficients γij . For each
displacement γij , we can associate a cost, which is the square
of the length of the displacement, |xi − yj |2. This choice
comes from the optimal transport theory, and will be high-
lighted in the next section. To correct γij realizations, we
have a cost of γij |xi − yj |2. We thus obtain a global cost as-
sociated with the γij coefficients:

C(γ ) :=
∑
ij

|xi − yj |
2γij .

Our bias correction method is defined by the γij coefficients
minimizing the functional C. The γij obtained by minimiz-
ing C for our example are shown in Fig. 1c. Comparing with
the quantile mapping in Fig. 1a, we can see that the obtained
coefficients (the black arrows) are similar. Indeed, the coef-
ficients induced by the quantile mapping are precisely those
minimizing the functional C. Proofs of this statement can be
found in Farchi et al. (2016, Appendix A) and Santambro-
gio (2015, chap. 2). In other words, even in the absence of
CDF, a bias correction can be carried out by calculating the
minimum of the function C.

The advantage of this approach is that the functional C can
be written in the multivariate case by replacing |xi − yj | by
‖xi−yj‖, where xi and yj are the center of multivariate cells,
and ‖ · ‖ the Euclidean norm. We illustrate in Fig. 1d how
the displacements are carried out in the case of two bivariate
Gaussian distributions. The black arrows again represent the
non-zero coefficients estimated by the OTC method (we only
represent 30 arrows).

In the next section we present the mathematical theory be-
hind this example with probability measures of X and Y . If
we normalize the number of realizations of X and Y in each
bin by the total number of realizations of X and Y , we ob-
tain pxi and pyj . Therefore, the transport can be written as a
transport of a fraction of mass, instead of a transport of the
number of realizations.

2.2 Bias correction as a joint distribution

In the multivariate context we assume the existence of a
transfer function T between X and Y . By construction, the
random variables X and T (X) are dependent, and their asso-
ciated joint law can be summarized by the function κ : Rd→
Rd ×Rd

κ(x) := (x,T (x)) ∈ Rd ×Rd .

The map κ connects the random variable X with its correc-
tion T (X) on the space Rd×Rd . Furthermore, the map κ in-
duces a probability law on Rd ×Rd , denoted PT , and given
for all measurable sets A⊂ Rd ×Rd by

PT (A) : = PX(κ
−1(A))= PX({x ∈ Rd such that κ(x) ∈ A})

= P((x,T (x)) ∈ A).

The critical property here concerns the margins of PT : the
first (second) margin of PT is PX (PY). To understand why it

is critical, let 0(PX,PY) be the set of probability measures on
Rd ×Rd for which PX is the first margin and PY the second
one. By definition, PT ∈ 0(PX,PY). Thus, any bias correc-
tion method defined by a transfer function is an element of
0(PX,PY).

We argue that any probability distribution in 0(PX,PY)
induces a bias correction method. For γ ∈ 0(PX,PY),
γ (x,y) can be interpreted as the probability that y is the cor-
rection of x. Formally, the Jirina theorem (see, e.g., Strook,
1995, chap. 5) states that there exists a collection of probabil-
ity laws γx, x ∈ Rd , such that γx are the conditional laws of Y
given X. In other words, for B ⊂ Rd , γx(B) is the probability
that the correction y ∈ B, given X= x. The correction of x is
then sampled from the law γx. Thus, any γ ∈ 0(PX,PY) de-
fines a bias correction method, through the conditional laws
γx. This highlights the stochastic part of this approach: all
corrections are sampled from the laws γx, and the corrected
values follow the law PY (by definition of a conditional law).

We note that the problem where X is constant is easily
solved with this approach. The set 0(PX,PY) is reduced to
one element: the independent law δx×PY, where δx is the
Dirac mass in x. Thus, γx = PY, and the correction of X is
given by sampling each correction with the law PY.

We have defined a bias correction method as an element of
0(PX,PY). However, this set can be very large. The goal of
the next section is to present a criterion to select an element
of 0(PX,PY).

2.3 Selection of a joint law with optimal transport
theory

To select a probability law γ ∈ 0(PX,PY), we propose using
a cost function on this set. The minimum of this cost func-
tion corresponds to an optimal bias correction method. We
propose minimizing the energy needed to transform a real-
ization x of X to its correction y, i.e., minimizing ‖x− y‖2,
weighted by γ (x,y). Thus, the cost function C is given by

C :

{
0(PX,PY) −→ R+,

γ 7−→
∫
Rd×Rd‖x− y‖2 · dγ (x,y). (1)

This cost function minimizes the square of the distance be-
tween x and its correction y. Our bias correction method is
associated with the law γ that minimizes C. This cost func-
tion stems from optimal transport theory (Villani, 2008). The
choice of the square in Eq. (1) guarantees the uniqueness of
the solution. In the univariate case, it can be shown that the
joint law defined by the quantile mapping minimizes the cost
function C of Eq. (1). Proofs of this statement can be found
in Farchi et al. (2016, Appendix A) and Santambrogio (2015,
chap. 2).

Our next step is to explain how this minimization strategy
can be extended in the multivariate case.
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2.4 Multivariate bias correction with optimal transport
selection: the stationary case

We assume that (X1, . . .,Xn) and (Y1, . . .,Yn) are two in-
dependent and identically distributed (i.i.d.) samples of the
random variables X and Y. A first step is to estimate the
empirical distributions, P̂X and P̂Y. We denote ci a collec-
tion of regularly spaced cells that partition Rd and cover
(X1, . . .,Xn) and (Y1, . . .,Yn). The center of each cell is also
denoted ci . With this notation, P̂X and P̂Y can be written as
a sum of I and J Dirac masses:

P̂X(A)=
I∑
i=1

pX,iδci (A),

where pX,i =
1
n

n∑
l=1

1(Xl ∈ ci), andA⊂ Rd ,

P̂Y(B)=
J∑
j=1

pY,j δcj (B), B ⊂ Rd .

The scalar pX,i (or pY,j ) is the empirical weight around ci
(or cj ) and induced from the sampling of X (or Y). A natural
estimator of γ ∈ 0(PX,PY) can be written as

γ̂ (A×B)=

I,J∑
i,j=1

γi,j δ(ci ,cj )(A×B).

The coefficients γij are the probabilities to transform ci
(i.e., a x ∈ ci) to cj (i.e., a y ∈ cj ). They are unknown, and
they have to obey the marginal properties:

J∑
j=1

γij = pX,i, (2)

I∑
i=1

γij = pY,j . (3)

Finally, the cost function defined in Eq. (1) can be approxi-
mated by

Ĉ(γ̂ )=

I,J∑
i,j=1
‖ci − cj‖

2γij . (4)

Finding γij , i.e., solving the problem defined by constraints
of Eqs. (2)–(3) and minimization of Eq. (4), is called a lin-
ear programming problem. It can be solved (for example)
by the network simplex algorithm (see, e.g., Bazaraa et al.,
2009). We use the python implementation of Flamary and
Courty (2017). To correct X, we have to follow the plan of
γij . For a realization Xl of X, we take the cell ci that con-
tains Xl . Following γ̂ , ci is moved to cj with probability
γij/pX,i (applying Eq. (2), the sum over j is 1). To deter-
mine cj , we randomly draw it according to the conditional
law γ̂Xl = (γi1, . . .,γiJ )/pX,i . Finally, we draw uniformly y

Table 1. Representation of bias correction in the context of climate
change.

Present Future

Numerical model X0 X1

Observations Y0 unknown (Y1)

in cj . This methodology is summarized in Algorithm A1, and
we refer to it as optimal transport correction (OTC).

Note that the traditional one-dimensional quantile map-
ping preserves the ordering of quantiles. In the multivari-
ate case, this type of property can be viewed as the Monge–
Mather (1991) shortening principle (see, e.g., Villani, 2008,
chap. 8). The idea is that the extremes of a multivariate distri-
bution are moved to extremes, the boundary to the boundary,
the level lines to level lines, etc.

2.5 Non-stationary bias correction

Climate models offer a valuable tool to study future realis-
tic climate trajectories. Climate model outputs of the present
period need to be bias corrected with respect to current obser-
vations. Future climate simulations also need to be adjusted.
However, no observation is available for the future and clear
assumptions have to be made to correct simulations for future
periods. Table 1 displays the basic framework of bias correc-
tion. Future unobserved data, say Y1, should be inferred from
the current reference vector, Y0, and two numerical runs, one
in the present, say X0, and one in the future, say X1. Period
0 is called the calibration period, and period 1 the projection
period. In the univariate case, denoting F i (Gi) the CDF of
Xi (Y i), the CDF-t (CDF transform) method of Michelangeli
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Figure 2. Estimation of the unobserved random variable Y1. The
random variables X0, X1 and Y0 are known. Plans γ and ϕ are the
optimal joint laws in the sense of Eqs. (2)–(4). ϕ̃ is the evolution of
Y0 estimated from γ and ϕ. OTC is used to correct X1 with respect
to the estimation of Y1.

et al. (2009) assumes that

(G1)−1
◦G0
= TY 0,Y 1 = TX0,X1 = (F

1)−1
◦F 0. (5)

Recombining Eq. (5), the CDF of Y 1 is given by G1
=

G0
◦(F 0)−1

◦F 1, and can be used to perform a quantile map-
ping correction. Here, the fundamental hypothesis TY 0,Y 1 =

TX0,X1 means that the transfer functions to capture the tem-
poral changes are identical in the model and observational
worlds.

CDF-t learns the change between X0 and X1, and trans-
fers it to Y 0 to estimate Y 1. In the multivariate case, follow-
ing CDF-t , we want to learn the evolution (i.e., the change
or the temporal evolution) between X0 and X1, and apply
it to Y0. This generates Y1, and OTC can then be applied
between X1 and Y1. Note also that the reverse hypothesis
TY 1,X1 = TY 0,X0 could be considered, meaning that the bias
is learned, and transferred along the dynamic. In this case,
the correction of example given in Sect. 3 does not corre-
spond to the reference (not shown), so we rejected this as-
sumption. Thus, our definition of non-stationary bias correc-
tion assumes a transfer of the evolution of the model to the
observational world. Indeed, climate change is one of the
main signals that we want to account for in the projected
corrections. However, the change in the observations can be
different, and therefore the resulting corrections can also be
different from observations. Nevertheless, this methodology
is justified because different simulations can have different
evolutions; e.g., the four RCP scenarios provide four differ-
ent simulations, giving four different corrections. This is also
true for different climate models, which can show different
changes. This information is therefore kept in the corrections.

Using OTC, we define two optimal plans: the optimal plan
γ , between X0 and Y0, and the optimal plan ϕ, between X0

and X1. The law γ is the bias between X0 and Y0, whereas
ϕ is the evolution between X0 and X1. Our goal is to move
ϕ along γ , defining a plan ϕ̃, to estimate Y1 as the evolution
of Y0, i.e., Y1

= ϕ̃(Y0). Then, we correct X1 with respect to
Y1
= ϕ̃(Y0), with the OTC method. This is summarized in

Fig. 2.
The estimation of ϕ̃ is performed in three steps:

1. transformation of ϕ into a collection of vectors,

2. transferral of these vectors along γ and

3. adaptation of these vectors to Y0.

To illustrate our methodology, Fig. 3 shows an example
where the random variables X0, X1 and Y0 follow a bivari-
ate Gaussian law. They are, respectively, centered at (0,0),
(10,0) and (0,10), with covariance matrices 4× Id2, Id2/4
and Id2/4 (the matrix Idd is the d-dimensional identity ma-
trix). Without loss of generality, we write the empirical dis-
tribution of X0, X1 and Y0 as a sum of Dirac masses,

P̂X0 =

I∑
i=1

pX0,iδci ,

P̂Y0 =

J∑
j=1

pY0,j δcj ,

P̂X1 =

K∑
k=1

pX1,kδck .

– Step 1. Transformation of ϕ. Using the OTC method, ϕ
moves the bin ci of P̂X0 to the bin ck of P̂X1 . The vec-
tor vik := ck − ci represents the evolution from ci to ck
(i.e., the local evolution between X0 and X1). The col-
lection of vectors vik is an estimation of the process be-
tween X0 and X1. In Fig. 3, the red arrow is an example
of vector vik .

– Step 2. Transfer along γ . Using the OTC method, γ
moves the bin ci of P̂X0 to the bin cj of P̂Y0 . Thus, the
estimation of ϕ̃ could be defined by the vector vik ap-
plied to cj ; i.e., a realization of Y1 is given by cj + vik .
The grey arrow in Fig. 3a depicts this operation. But the
vik can cross, and the correction is not coherent. This
is due to normalizing issues and because the collection
of vectors vik applied to Y0 does not define an opti-
mal transport plan. The standard deviation decreases be-
tween X0 and X1, whereas it increases between Y0 and
Y1 in our example. Furthermore, the quantiles are in-
verted in this example (low values are moved to high
values). Consequently, we have to adapt the vectors vik
to P̂Y0 .

– Step 3. Adaptation of vik . To solve this problem, we
introduce a matrix factor D, which rescales the collec-
tion of vectors vik . In the univariate case, Bürger et al.
(2011) proposed a factor σY0σ

−1
X0 , where σ is the stan-

dard deviation. The idea is to remove the scale of X0

and to replace it by the scale of Y0. Bárdossy and Pe-
gram (2012) and Cannon (2016) proposed a multivariate
equivalent that uses the Cholesky decomposition of the
covariance matrix. Denoting 6 the covariance matrix,
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Figure 3. Bivariate histogram with bin size equal to 0.1. In each panel we have a Gaussian law centered on (0,0)with covariance 4Id2 (P̂X0 ),
a Gaussian law centered on (10,0) with covariance 1/4Id2 (P̂X1 ) and a Gaussian law centered on (0,10) with covariance 1/4Id2 (P̂X1 ). The
red arrow is the local evolution between P̂X0 and P̂X1 . (a) The probability distribution P̂Y1 is the correction with OTC-t and D= Id2. The
grey arrow is the estimation of the evolution of P̂Y0 . (b) The probability distribution P̂Y1 is the correction with dOTC and D given by Eq. (6).
The grey arrow is the estimation of the evolution of P̂Y0 .

Figure 4. Random variables generated by the Lorenz (1984) model, OTC, dOTC, quantile mapping and CDF-t . (a) Biased random variable
X0 (red) and references Y0 (blue) for time period 0. (b) Biased random variable X0 (red) and correction Z0 with OTC (green). (c) Biased
random variable X0 (red) and correction Q0 with quantile mapping (green). (d) Biased random variable X1 (red) and references Y1 (blue) for
time period 1. (e) Biased random variable X1 (red) and correction Z1 with dOTC (green). (f) Biased random variable X1 (red) and correction
Q1 with CDF-t (green).

and Cho(6) its Cholesky decomposition, we multiply
(in a matrix sense) vik by the following matrix:

D := Cho(6Y0) ·Cho(6X0)
−1. (6)

The Cholesky decomposition only exists if 6 is sym-
metric and positive-definite. Some covariance matrices
do not have this property, e.g., highly correlated random
variables. In such a case, 6 must be slightly perturbed

to be positive-definite (see, e.g., Higham, 1988; Knol
and ten Berge, 1989). Furthermore, the Cholesky de-
composition can be poorly estimated if the number of
available data is too small compared to the dimension.
Indeed, the inverse of a covariance matrix is highly bi-
ased. In this case, a pragmatic solution is to replace the
matrix D by the diagonal matrix of the standard devia-
tion, i.e., D= diag(σY0σ

−1
X0 ).
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Finally, a realization of Y1 is given by cj +D · vik . Fig-
ure 3b shows an estimation of Y1. Visually, the shape of Y1

appears coherent with the evolution between X0 and X1. The
mean of Y1 is (2.53,10). The standard deviation between X0

and X1 is divided by 4. The mean shift between X0 and X1 is
(10,0). This shift of 10 units is correctly taken into account
in the rescaling of Y0 by the standard deviation (equal to 4)
between X0 and X1:

(2.53,10)︸ ︷︷ ︸
Y1 mean

= (10,0)︸ ︷︷ ︸
mean shift between X0 and X1

/ 4︸︷︷︸
Rescaling

+ (0,10)︸ ︷︷ ︸
Y0 mean

.

The value of the covariance matrix of Y1 is 6Y1 ' 0.018×
Id2. It is close to the expected value (1/4)/16× Id2 '

0.015× Id2. The shift of 10 units of the model is not fol-
lowed. It is interpreted as a correction of the bias into the
evolution of the model. However, depending on the hypothe-
ses desired by the user, the dOTC method can easily provide
corrections whose mean evolutions and trends are in agree-
ment with those given by the simulations to be corrected,
like in the EDQM bias correction method (Li et al., 2010).
The complete method of correction is summarized in Algo-
rithm A2. We refer to it as dOTC (dynamical optimal trans-
port correction).

We first propose evaluating OTC and dOTC on an ideal-
ized case.

3 Bias correction on an idealized case

3.1 Model and methodology

To evaluate our bias correction method, we construct an
idealized biased case, based on the Lorenz (1984) model.
This three-dimensional system is generated by the differen-
tial equations

dx
dt
=

−x2
2 − x

2
3 − (x1−ψ(t))/4

x1x2− 4x1x3− x2+ 1
x1x3+ 4x1x2− x3

 . (7)

The function ψ(t) is a linear forcing proposed by Drótos
et al. (2015). Classically, ψ also contains a seasonal cycle
(Lorenz, 1990), where the length of a “year” is fixed at t = 73
time units. Here we integrate this equation for the following
forcing between 0 and 7× 73 (i.e., 7 “years” of integration):

ψ(t)= 9.5− 20
t − T

T
1{t>T }, T = 6× 73. (8)

The integration is performed with a Runge–Kutta (order 4)
scheme with a time step of size 0.005. All trajectories of
the Lorenz (1984) model converge on a unique subset of R3

(called an attractor), and remain trapped on it. According to
Drótos et al. (2015), the first 5 “years” correspond to the time
required to trap the trajectories.

One realization of random variable Y0 (Y1) is year 6 (year
7). Each year contains 14600 (= 73/0.005) elements. Ac-
cording to Eq. (8), the linear forcing is applied during year
7. The non-stationarity is induced by the change between the
two time periods.

We introduce a bias by multiplying each point of the
trajectories by a triangular matrix S, and add a vector m,
i.e., X= SY+m. The addition changes the mean, whereas
the multiplication alters the covariances. The matrix S is cho-
sen empirically such that the covariance matrices of X0, X1,
Y0 and Y1 differ. We fix

S=

 1.22 0 0
−0.41 1.04 0
−0.41 0.56 0.52

 , m=

1
2
3

 .
The random variables X and Y are plotted in Fig. 4a, d.

The blue (red) curve of Fig. 4a is the trajectory of Y0 (X0).
The mean is largely altered. We estimate the covariance ma-
trices as

ˆCovY0 =

 0.43 −0.37 −0.24
−0.37 0.93 0.17
−0.24 0.17 0.69

 ,
ˆCovX0 =

 0.64 −0.68 −0.62
−0.68 1.39 1.0
−0.62 1.0 0.92

 .
Similarly to Fig. 4a, d depicts in blue Y1 and in red X1. The
forcing of Eq. (8) has changed the properties of the trajecto-
ries, and they became chaotic. It is worthwhile noticing that
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Figure 5. (a) Map of the southeast of France. The 12 black squares are the locations where corrections are performed. (b–h) The x axis of
the panels is the evolution of the correction with dOTC. The y axis of panels (b)–(h) is the evolution of WRF in red and the evolution of
SAFRAN in blue. The red line is the linear regression between the evolution of correction and the evolution of WRF. The black cross markers
are the scatterplots between the evolution of correction with CDF-t and evolution of WRF. (b) Evolution of mean precipitation, i.e., difference
between the projection period and the calibration period. (c) Evolution of variance of precipitation. (d) Evolution of spatial covariance of
precipitation. (e) Evolution of covariance between precipitation and temperatures. (f) Evolution of mean temperatures. (g) Evolution of
variance of temperatures. (h) Evolution of spatial covariance of temperatures.

the dynamic of Y is comparable to the one of X. The covari-
ance matrices are largely affected:

ˆCovY1 =

 0.27 −0.09 −0.14
−0.09 0.81 0.08
−0.14 0.08 0.73

 ,
ˆCovX1 =

 0.4 −0.25 −0.29
−0.25 1.0 0.65
−0.29 0.65 0.64

 .
We estimate the empirical distributions PY0 , PY1 , PX0 and

PX1 with a three-dimensional histogram. We cut a large cube
around the trajectories into cells of size 0.2×0.2×0.2. Then
we count the number of points in each cell.

Finally, we evaluate the quality of the correction by com-
paring the covariance matrices of Y0 and X0, and the covari-
ance matrices of Y1 and X1.

3.2 Correction of the biased Lorenz (1984) model

We apply our method to correct X0 and X1. The random vari-
able X0 is corrected with respect to Y0 and using the OTC
method. The random variable X1 is corrected with respect to
the estimation of Y1, coming from the dOTC method. The
resulting random variables Z0 and Z1 are given in Fig. 4b, e.
We show in Fig. 4c, f a univariate correction with quantile
mapping for the period 0, generating the random variable Q0.

The same is shown for CDFt, period 1 and the random vari-
able Q1.

The correction Z0 is visually very similar to the reference
in blue in Fig. 4a. The covariance matrix is almost perfectly
reproduced:

ˆCovZ0 =

 0.42 −0.36 −0.24
−0.36 0.93 0.17
−0.24 0.17 0.69

 ,
sup

∣∣∣ ˆCovZ0 − ˆCovY0

∣∣∣= 0.004.

The correction Z1 is depicted in green in Fig. 4d. It is visu-
ally hard to compare to Fig. 4b, but we recognize Y1. The
covariance matrix is correctly rectified:

ˆCovZ1 =

 0.26 −0.11 −0.11
−0.11 0.82 0.08
−0.11 0.08 0.71

 ,
sup

∣∣∣ ˆCovZ1 − ˆCovY1

∣∣∣= 0.03.

Finally, the cost of transformation, given by Eq. (1), of Z1

into Y1 is 93 % smaller than the cost between Y1 and X1;
i.e., PZ1 is more similar to PY1 than PX1 . Furthermore, if we
replace the Cholesky matrix of dOTC by the matrix of stan-
dard deviation, the maximum difference between covariance
matrices increases to 0.22, but the cost is 85 % smaller. Thus,
using the standard deviation slightly degrades the correction.
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However, visually, it is very hard to distinguish the correc-
tions with the Cholesky matrix or the standard deviation ma-
trix. The figure corresponding to Fig. 4 with the standard de-
viation matrix is given in the Supplement.

By contrast, Q0 and Q1, depicted, respectively, in
Fig. 4c, f, do not reproduce Y0 and Y1. Thus, the multivari-
ate correction is largely better than the univariate correction.
This is confirmed by the covariance matrices, which repro-
duce exactly the covariances of X0 and X1:

ˆCovQ0 =

 0.42 −0.42 −0.42
−0.42 0.95 0.68
−0.42 0.68 0.69

 ,
sup

∣∣∣ ˆCovQ0 − ˆCovY0

∣∣∣= 0.51,

ˆCovQ1 =

 0.13 −0.1 −0.14
−0.1 0.59 0.39
−0.14 0.39 0.46

 ,
sup

∣∣∣ ˆCovQ1 − ˆCovY1

∣∣∣= 0.31.

We have performed a tri-variate correction on a nonlin-
ear system exhibiting non-standard probability measures
(i.e., non-Gaussian, non-exponential). In the stationary case,
the OTC method works almost perfectly. In the non-
stationary case, the dOTC method produces a probability dis-
tribution closed to the expected result. We propose now to
apply OTC and dOTC to climate model simulations.

4 Bias correction of an RCM simulation

4.1 Data

The dataset used as a reference for the bias correction (BC)
is the Systeme d’Analyse Fournissant des Renseignements
Atmospheriques a la Neige (SAFRAN, Vidal et al., 2010)
reanalysis. SAFRAN is a hourly reanalysis over France be-
tween 1958 and present, with a horizontal resolution of
8 km× 8 km. Quintana-Seguí et al. (2008) claimed that the
daily mean of the surface atmospheric temperature (tas) and
precipitation (pr) presents no bias compared to observations
from the climatological database of Météo-France. This jus-
tifies the use of SAFRAN as a reference.

We test our multivariate BC method on a simulation
of the Weather Research and Forecast (WRF) atmospheric
model (Skamarock et al., 2008) performed within the EURO-
CORDEX initiative (Vautard et al., 2013; Jacob et al., 2014)
with a 0.11◦× 0.11◦ horizontal resolution. The boundaries of
the simulation were forced by a historical simulation of the
Institut Pierre-Simon Laplace (IPSL) coupled model (Marti
et al., 2010; Dufresne et al., 2013). This EURO-CORDEX
historical simulation will be called “WRF” in the following.

SAFRAN and WRF data are re-mapped onto the
same grid, with a spatial resolution of 0.11◦× 0.11◦

(i.e., ∼ 12 km× 12 km). The nearest neighbor interpola-
tion is used. We only keep the land region comprised in
1.8–7.85◦ E× 41.8–45.2◦ N, i.e., covering the southeast of
France. This region is characterized by a complex topogra-
phy, which creates a strong spatial heterogeneity, especially
for precipitation. For the present application, we extract 12
grid points regularly spaced (see Fig. 5a), with a one-to-one
spatial correspondence between SAFRAN and WRF.

In both datasets, we will consider daily surface air temper-
atures and precipitation. The goal of this section is to cor-
rect the bias in tas and pr in the WRF data with respect to
SAFRAN.

4.2 Cross-validation protocol

We focus on the daily timescale over the 1970–2000 period.
We correct the warm season (May–September). The analy-
sis and conclusions are available for the cold season, and
the corresponding figure (i.e., Fig. 5) is given in the Sup-
plement. We split that period into two sub-periods, 1970–
1985 (2295 days) and 1985–2000 (2295 days), to perform a
cross-validation. The SAFRAN (WRF) values over the first
time period correspond to the random variable Y0 (X0), and
are called the calibration period. The SAFRAN (WRF) val-
ues over the second time period correspond to Y1 (X1), and
are called the projection period. SAFRAN during 1985–2000
(i.e., Y1) is assumed to be unknown, and is used for cross-
validation.

We perform two bias corrections: univariate and 24-variate
(12 grid points and 2 variables).

1. For univariate correction, quantile mapping is used for
the calibration period, and CDF-t for the projection pe-
riod.

2. For 24-variate correction, OTC is used for the calibra-
tion period, and dOTC for the projection period. The
spatial structure and the dependence between the two
variables are used. Due to the dimension, the Cholesky
matrix is poorly estimated. We replace it by the matrix
of standard deviation in the rescaling step.

We estimate the empirical distributions by computing his-
tograms with bins of size 0.1 in each dimension. Further-
more, CDF-t and dOTC can shift close to 0 values to nega-
tive values for precipitation. Thus, negative precipitation val-
ues are replaced by 0 after correction. We test the quality of
the correction by plotting the evolution of the mean, the stan-
dard deviation, and the spatial and inter-variable covariance,
i.e., the difference between the projection and calibration pe-
riods. These indicators are summarized in Fig. 5. During the
calibration period, the goal is that the probability distribution
of correction of the WRF simulation will be the probability
distribution of SAFRAN. By construction of OTC, the cor-
rection is almost perfect, and we focus on the projection pe-
riod. In the projection period, the goal is that the evolution of
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Table 2. r-value, p-value and standard error (SE) of linear regres-
sion between the evolution of correction and evolution of WRF.

r-value p-value SE

Mean evolution pr 0.98 10−8 0.08
Mean evolution tas 0.99 10−9 0.05
Variance evolution pr 0.71 10−2 0.37
Variance evolution tas 0.57 5× 10−2 0.25
Covariance pr/tas evolution 0.81 2× 10−3 0.24
Spatial covariance pr 0.59 10−14 0.08
Spatial covariance tas 0.76 10−29 0.05

corrections will be close to the evolution of the WRF simu-
lation.

4.3 Evolution analysis

As we have seen in the previous section, the corrections of
X1 and Y1 are identical only if the evolution of SAFRAN
is identical to the evolution of WRF. To analyze the evolu-
tion of WRF, SAFRAN and the corrections, we compute the
difference of statistical indicators between the projection and
the calibration period at each grid point. The indicators are
the mean (Fig. 5b, f), the variance (Fig. 5c, g), the covariance
between pr and tas (Fig. 5e) and the spatial covariance for
each variable (Fig. 5d, h).

The x axis of Fig. 5a–h is the evolution of the correction
(i.e., E(Z1)−E(Z0),. . . ). The y axis of Fig. 5a–h is the evo-
lution of WRF in red (i.e., E(X1)−E(X0),. . . ), and the evo-
lution of SAFRAN in blue (i.e., E(Y1)−E(Y0),. . . ). Further-
more, the red line is the linear regression between the evolu-
tion of the 24-variate correction and the evolution of WRF.
The correlation (r-value), p-value and standard error of each
linear regression are summarized in Table 2.

The linear regression between evolution of 24-variate cor-
rection and evolution of WRF (red line) shows a strong sta-
tistical link for all statistical indicators. The evolution of the
mean is almost perfectly reproduced for the two variables (r-
values is at least equal to 0.98, with a maximal p-value at
10−9). The evolution of variance of WRF is also reproduced,
the linear regression being significant (maximal p-value is
5× 10−2).

The evolution of dependence structure is given by the evo-
lution of spatial and inter-variables covariance. The minimal
r-value for linear regression is equal to 0.59 with a maximal
p-value equal to 2×10−3. This means that dOTC reproduces
the evolution of WRF between calibration and projection pe-
riod. Because the calibration period is perfectly corrected, the
correction during projection period appears as the evolution
of WRF, applied to SAFRAN.

A linear regression, the Spearman rank correlation be-
tween the evolution of SAFRAN, and the evolution of the
correction with WRF do not show a significant statistical link
(not shown). We conclude that the evolution of WRF is dif-

ferent of the evolution of SAFRAN. This indicates it is not
possible to reproduce SAFRAN during projection period us-
ing dOTC and WRF. For example, WRF predicts an increase
between 0.2 and 0.4 K of the mean temperature, whereas
SAFRAN gives an increase between 0.2 and 1 K.

The correction with CDF-t appears to be satisfactory for
the temperatures, and very similar to the correction with
dOTC. But for the precipitation, the structure is not co-
herent with WRF or SAFRAN. This dissimilarity is due
to the difference between the probability distribution of
temperatures (quasi-Gaussian) and precipitations (exponen-
tial/Gamma laws).

We conclude that the evolution of the 24-variate correc-
tion with dOTC between calibration and projection periods
is close to the evolution of WRF. Furthermore, the evolution
of SAFRAN is very different from the evolution of WRF.
In particular, this example illustrates how the classical cross-
validation methodology does not differentiate the variations
of SAFRAN and WRF, and that the correction can not be
compared to the reference during the projection period.

5 Conclusions

We have developed a new method for multivariate bias cor-
rection, generalizing the quantile mapping in the multivariate
case. To do so, we have developed a new theoretical frame-
work to understand any bias correction (BC) method: any
BC method is here characterized by a joint law between the
biased dataset and the correction. This joint probability dis-
tribution is estimated based on optimal transport techniques,
and the BC method is then referred to as optimal transport
correction (OTC). A definition of non-stationary bias correc-
tion is also proposed: the evolution of the model is learned
and transferred to the reference world. An extension of OTC
called dynamical OTC (dOTC) has been developed to ac-
count for temporal non-stationarities.

OTC and dOTC methods have been tested on an ideal-
ized three-dimensional case based on Lorenz (1984) time-
dependent attractors, which induced changes in the correla-
tion between variables. The bias correction appeared to per-
form very well in those idealized experiments.

Then, 12 grid points of a WRF simulation have been cor-
rected with respect to SAFRAN reanalyses for precipitation
and temperature in Southern France. A 24-variate correction
was performed. The correction in stationary context was al-
most perfect. In the non-stationary case, the evolutions of
WRF and SAFRAN were different, and, as expected, the
correction with dOTC differed from SAFRAN. However, the
correction presented a multidimensional evolution similar to
that of WRF. We can therefore conclude that the correction is
consistent with the definition proposed for the non-stationary
case.

This is consistent with the results of Maraun et al. (2017):
the fundamental errors of a model are not corrected, but
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transferred to the world of observations. The dOTC method
preserves the signal of climate change inferred from the
model simulations. As suggested by Maraun and Widmann
(2018), our cross-validation method does not compare the
correction to the observations on the validation period, which
can produce false positive or true negative due to internal
variability of model or observations, but assesses whether the
statistical evolution of the model is kept.

Furthermore, although the number of available data is very
small compared to the dimensions (2295 days and 24 dimen-
sions), the OTC and dOTC performed a correction without
numerical problems, and, moreover, only in a few minutes
on a personal computer.

The methods OTC and dOTC are able to correct the depen-
dence structure (i.e., the joint law), and not only the inter-
variable and spatial correlations. In particular, the copula
function (which contains the information about dependence)
is corrected. In addition, dOTC proposes a definition of non-
stationarity, and explicitly gives what the correction corre-
sponds to (the evolution of the model applied to observa-
tions). In the particular case of the temperatures/precipitation
correction, compared to, e.g., Piani and Haerter (2012) and
Räty et al. (2018), the correction is at least as good during
the calibration period, although the comparison is not done
over the projection period, because the indicators are differ-
ent.

As a perspective of improvement of the method, we note
that the optimal plan can only be used to correct data points
that are already known. If a new data point is obtained, and
alters the estimate of the probability density function, then
the plan needs to be recomputed. However, such a situa-
tion is relatively rare in bias correction. Indeed, the correc-
tions usually have to be performed on climate model simu-
lations that cover many years and decades. This means that
the whole time series are available at once and are not con-
tinuously updated. One possibility would be to “smooth” the
optimal plan that, thus, could be applied to new points with-
out recalculating the plan. Finally, a promising application of
this method is the post-processing of operational forecasts.
In such a case, the question of internal variability (Maraun
et al., 2017) would not affect the bias correction procedure
as climate dynamics is consistently represented between the
model and observations.

Code and data availability. OTC and dOTC are implemented in
two packages: ARyga (R) and Apyga (python3). These pack-
ages are available at https://github.com/yrobink/Ayga.git (Robin,
2019). The example of Sect. 3 is given in Apyga. SAFRAN and
EURO-CORDEX data are, respectively, available at: http://www.
drias-climat.fr (last access: 29 January 2019) and https://www.
euro-cordex.net (last access: 29 January 2019).

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/hess-23-773-2019-supplement.
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