
Hydrol. Earth Syst. Sci., 23, 723–739, 2019
https://doi.org/10.5194/hess-23-723-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Streamflow forecast sensitivity to air temperature forecast
calibration for 139 Norwegian catchments
Trine J. Hegdahl1, Kolbjørn Engeland1,2, Ingelin Steinsland3, and Lena M. Tallaksen2

1Department of Hydrology, Norwegian Water Resources and Energy Directorate, 0301 Oslo, Norway
2Department of Geosciences, University of Oslo, 0316 Oslo, Norway
3Department of Mathematical Sciences, Norwegian University of Science and Technology, 7034 Trondheim, Norway

Correspondence: Trine J. Hegdahl (tjh@nve.no)

Received: 5 July 2018 – Discussion started: 31 July 2018
Revised: 11 January 2019 – Accepted: 16 January 2019 – Published: 7 February 2019

Abstract. In this study, we used meteorological ensemble
forecasts as input to hydrological models to quantify the un-
certainty in forecasted streamflow, with a particular focus on
the effect of temperature forecast calibration on the stream-
flow ensemble forecast skill. In catchments with seasonal
snow cover, snowmelt is an important flood-generating pro-
cess. Hence, high-quality air temperature data are important
to accurately forecast streamflows. The sensitivity of stream-
flow ensemble forecasts to the calibration of temperature en-
semble forecasts was investigated using ensemble forecasts
of temperature from the European Centre for Medium-Range
Weather Forecasts (ECMWF) covering a period of nearly
3 years, from 1 March 2013 to 31 December 2015. To im-
prove the skill and reduce biases of the temperature ensem-
bles, the Norwegian Meteorological Institute (MET Norway)
provided parameters for ensemble calibration, derived us-
ing a standard quantile mapping method where HIRLAM, a
high-resolution regional weather prediction model, was used
as reference. A lumped HBV (Hydrologiska Byråns Vatten-
balansavdelning) model, distributed on 10 elevation zones,
was used to estimate the streamflow. The results show that
temperature ensemble calibration affected both temperature
and streamflow forecast skill, but differently depending on
season and region. We found a close to 1 : 1 relationship be-
tween temperature and streamflow skill change for the spring
season, whereas for autumn and winter large temperature
skill improvements were not reflected in the streamflow fore-
casts to the same degree. This can be explained by stream-
flow being less affected by subzero temperature improve-
ments, which accounted for the biggest temperature biases
and corrections during autumn and winter. The skill differs

between regions. In particular, there is a cold bias in the fore-
casted temperature during autumn and winter along the coast,
enabling a large improvement by calibration. The forecast
skill was partly related to elevation differences and catch-
ment area. Overall, it is evident that temperature forecasts are
important for streamflow forecasts in climates with seasonal
snow cover.

1 Introduction

Floods can severely damage infrastructure, buildings, and
farmland, and can have high economic impacts on society
(Dobrovičová et al., 2015). Early warnings based on hydro-
meteorological forecasts are an important flood mitigation
measure and provide time to reduce flood damage. A flood-
forecasting system consists of a hydro-meteorological fore-
casting chain with three main components, all affected by un-
certainties: (i) observations used to establish the initial con-
ditions for the catchment, (ii) meteorological forecasts used
as forcing, and (iii) the hydrological model.

The Norwegian flood-forecasting system, operated by the
Norwegian Water Resources and Energy Directorate (NVE),
uses deterministic forecasts of air temperature and precip-
itation as forcing for hydrological models in 145 catch-
ments across the country. Meteorological forecasts from the
AROME-MetCoOp operational weather prediction model
(Müller et al., 2017) are used for short-range forecasts
(day 1 and 2), whereas forecasts from the European Cen-
tre for Medium-Range Weather Forecasts (ECMWF, 2018a)
high-resolution model are used for medium-range forecasts
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(day 3 to 9). All forecasts are provided by the Norwegian
Meteorological Institute (MET Norway). The Hydrologiska
Byråns Vattenbalansavdelning model (HBV) (Bergström,
1976; Sælthun, 1996; Beldring, 2008) is used as the hydro-
logical forecasting model, which combined with statistical
uncertainty models (Langsrud et al., 1998, 1999) provides
probabilistic streamflow forecasts. The uncertainty model ac-
counts for the strong autocorrelation in forecast errors and
estimates an uncertainty band around the deterministic tem-
perature, precipitation, and streamflow forecasts.

An alternative approach to estimate probabilistic stream-
flow forecasts is to use meteorological ensemble forecasts
from numerical weather prediction models as a means to
account for uncertainty in the forcing. The meteorological
ensemble forecasts are created by perturbing both the ini-
tial states and the physics tendencies of the original deter-
ministic forecast. The spread of the ensemble members can
be interpreted as the uncertainty of the forecasts, where a
large spread indicates large uncertainty (Buizza et al., 1999;
Persson, 2015). Subsequently, the meteorological ensemble
is used as forcing for a hydrological model to produce an en-
semble of forecasted streamflow, referred to as a hydrological
ensemble prediction system (HEPS). HEPSs are increasingly
being used in flood forecasting (Cloke and Pappenberger,
2009; Wetterhall et al., 2013). A HEPS adds value to a flood
forecast by assessing the forecast uncertainty caused by un-
certainties in one or several parts of the modeling chain.

Raw (unprocessed) ensembles are rarely reliable in a sta-
tistical sense (Buizza, 1997; Wilson et al., 2007). Reliabil-
ity means that the observation behaves as if it belongs to
the forecast ensemble probability distribution (Leutbecher
and Palmer, 2008). To improve reliability, the ensemble fore-
casts can be calibrated by applying statistical techniques
correcting bias and under- or over-dispersion (Hamill and
Colucci, 1997; Persson, 2015). Examples of methods used to
calibrate meteorological ensembles include ensemble model
output statistics (EMOS) (Gneiting et al., 2005; Wilks and
Hamill, 2007), Bayesian model averaging (BMA) (Raftery
et al., 2005; Wilson et al., 2007), ensemble Kalman fil-
ters (Evensen, 2003; Verkade et al., 2013), non-homogenous
Gaussian regression (Gneiting et al., 2005; Wilks and Hamill,
2007), quantile mapping (Bremnes, 2007), and kernel dress-
ing (Wang and Bishop, 2005). These methods differ in their
sensitivity to length of training data and ensemble size and in
how the spread and bias are corrected. Preprocessing (from
a hydrological perspective) refers to all techniques used to
change the output from a meteorological model and includes
calibration (described above) and downscaling. Downscaling
implies resampling from the original forecast grid size to a
grid of higher resolution, and both statistical (e.g., interpola-
tion) and dynamical (e.g., a regional weather forecast model)
techniques can be used (Schaake et al., 2010). A recent re-
view of preprocessing methods is given in Li et al. (2017)
and the textbook edited by Vannitsem et al. (2018).

In climates with seasonal snow cover, snowmelt during
the spring season is an important flood-generating process.
In these climates, temperature is a key variable to classify
the precipitation phase and to estimate the snowmelt rate.
The sensitivity of daily streamflow to temperature is non-
linear since streamflow depends on temperature thresholds
for rain–snow partitioning and for snowmelt and freeze pro-
cesses. The snowmelt and freeze processes depend on the
state of the system; i.e., snow is needed to generate snowmelt.
For temperatures well below 0 ◦C, the streamflow is not sen-
sitive to temperature, whereas for temperatures around 0 ◦C
relatively small changes in temperature might control if pre-
cipitation falls as rain or snow, and consequently whether
streamflow is generated or not. Most Norwegian catchments
experience a seasonal snow cover, but are otherwise diverse
in terms of the length of the snow season and topographic
complexity (Rizzi et al., 2017).

Downscaling and interpolating air temperature in com-
plex topography are both challenging, mostly because tem-
perature lapse rates depend on several factors, i.e., altitude,
time, and place, as well as specific humidity and air temper-
ature (Aguado and Burt, 2010; Pagès and Miró, 2010; Sheri-
dan et al., 2010). Errors in forecasted temperature might re-
sult in a misclassification of precipitation phase and/or cause
the hydrological forecasting system either to miss a flood
event or provide a false alarm, caused by too-high or too-low
snowmelt rates. It is therefore important to assess the rela-
tionship between temperature and streamflow forecasts. The
importance of reliable temperature forecasts for streamflow
forecasts is demonstrated for two Alpine catchments during a
heavy precipitation event in Ceppi et al. (2013). An interest-
ing finding in this paper is that catchment elevation distribu-
tion, and by this area above the snowline, was important for
how streamflow forecasts were affected by temperature un-
certainty. Verkade et al. (2013), on the other hand, found only
modest effects of temperature calibration on streamflow fore-
cast skill as an average over several years for Rhine catch-
ments.

As far as the authors know, the isolated effect of the uncer-
tainties in temperature forecasts has not yet been systemati-
cally investigated for a larger number of catchments in a cold
climate. The large spatial and seasonal variations in snow ac-
cumulation and snowmelt processes found in cold regions
with complex terrain require that both spatial and seasonal
patterns in the performance of temperature and streamflow
forecasts are evaluated.

The main objective of this study is to investigate the ef-
fect of temperature forecast calibration on the streamflow
ensemble forecasts skill in catchments with seasonal snow
cover and to identify potential improvements in the forecast-
ing chain. In particular, we address the following research
questions:

– Are there seasonal effects of temperature calibration on
the temperature ensemble forecast skill?
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– Are there seasonal effects of temperature calibration on
the streamflow ensemble forecast skill?

– Are there spatial patterns in the temperature and stream-
flow ensemble forecast skill and, if so, can these be re-
lated to catchment characteristics?

To answer these questions, we applied temperature ensem-
ble forecasts from ECMWF combined with the preprocess-
ing setup from MET Norway to 139 catchments in Norway.
Three years of operational ECMWF forecasts from 2013 to
2015 were used to regenerate streamflow forecasts, and the
skill of temperature and streamflow forecasts was systemat-
ically evaluated for these catchments. To investigate the iso-
lated effect of the temperature ensembles on the streamflow
forecasts, the observed seNorge precipitation (Tveito et al.,
2005) was used instead of the precipitation ensemble fore-
casts to run the hydrological model. Finally, a case study
is presented, demonstrating the effect of temperature cali-
bration on a single snowmelt-induced flood event. We start
by presenting the study area, data, and hydrological model
(HBV) used (Sect. 2). In Sect. 3, methods used to establish
the hydro-meteorological forecasting chain, the skill metrics,
and evaluation strategy are presented. Section 4 contains the
results, followed by a discussion in Sect. 5. Finally, in Sect. 6,
the findings are summarized, conclusions are drawn, and fur-
ther research questions are discussed.

2 Study area, data, and model

2.1 Study area

In Norway there are spatial variations in climate and topog-
raphy, and a recent overview of past, current, and future cli-
mate is given in Hanssen-Bauer et al. (2017). The western
coast has steep mountains, high annual precipitation (4000–
5000 mm yr−1), and a temperate oceanic climate. Inland ar-
eas have less precipitation, larger differences between win-
ter and summer temperatures, and climatic zones from hu-
mid continental to subarctic and mild tundra (according to
the Köppen–Geiger system; see Peel et al., 2007). The mean
annual runoff follows to a large degree the spatial patterns of
precipitation. The two basic flood-generating processes are
snowmelt and rainfall (Vormoor et al., 2015). Most catch-
ments in Norway have prolonged periods of subzero tem-
peratures during winter, resulting in a seasonal snow stor-
age, winter low flow, and increased streamflow during spring
due to snowmelt. The relative importance of rainfall and
snowmelt processes is decided by the duration of the snow
accumulation season and the share of annual precipitation
stored as snow. Across Norway two basic runoff regimes can
be identified: (i) coastal regions with high flows during au-
tumn and winter due to heavy rainfall and (ii) inland regions
with high runoff during spring due to snowmelt (Vormoor et

al., 2015). However, there are many possible transitions be-
tween these two basic patterns (Gottschalk et al., 1979).

The national flood-forecasting system builds on hydro-
logical models providing streamflow forecasts in 145 catch-
ments, covering most parts of Norway, varying in size (∼ 3
to 15 447 km2) and elevation difference (103 to 2284 m).
The latter is calculated as the difference between the low-
est and highest point on the hypsographic curve, 1H =

(H100−H0). The flood-forecasting catchments are mostly
pristine, although some do have minor (hydropower) reg-
ulations. Fourteen catchments have a glacier coverage of
5 % or more. Of the 145 flood-forecasting catchments, 139
were chosen as the basis for the study (Fig. 1). The catch-
ments were grouped into five regions based on their loca-
tion: north (N), south (S), west (W), middle (M), and east
(E) following Hanssen-Bauer et al. (2017) and Vormoor et
al. (2016) (Fig. 1, right). These regions are defined by the
boundaries of the major watersheds and reflect major hydro-
climatological zones. Rainfall floods dominate in the south,
west, and middle, whereas snowmelt floods dominate in the
east and north. There is still a large variability in hydro-
logical regimes within individual regions. Figure 1 includes
the location of four catchments, for which results that are
more detailed will be presented. Gjuvaa (E), Foennerdals-
vatn (W), and Viksvatn (W) were used to visualize the chal-
lenges in temperature forecasts, and both uncalibrated and
calibrated ensemble values will be presented for these three
catchments. Viksvatn (W) and Foennerdalsvatn (W) are lo-
cated in western Norway and are both catchments with some
glaciers (∼ 3 % and 47 %, respectively). Gjuvaa (E) is non-
glaciered and located inland (Fig. 1, left). The Bulken (W)
catchment was chosen to demonstrate the effect of temper-
ature calibration on the streamflow forecast for a snowmelt-
driven flood event.

2.2 Observations, hydrological model, and forecasts

2.2.1 Interpolated precipitation and temperature
observations – seNorge data

In Norway, a network of about 400 precipitation stations
and 240 temperature stations provides daily temperature and
precipitation values. These in situ observations are inter-
polated to create a gridded (1 km× 1 km) product, referred
to as seNorge (available at http://www.seNorge.no/, last ac-
cess: 1 February 2019, Tveito et al., 2005). In this study,
we used version 1.1. For this version, gridded temperature
is calculated by kriging, where both the elevation and lo-
cation of temperature stations are accounted for. The ob-
served daily precipitation is corrected for under-catch at
the gauges, and triangulation is used for spatial interpola-
tion to a 1 km× 1 km grid. A constant gradient of 10 % per
100 m beneath 1000 m above sea level (m a.s.l.) and 5 % per
100 m above 1000 m a.s.l. is applied to account for elevation
gradients in precipitation (details can be found in Tveito,
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Figure 1. The maps for Norway indicate the 139 catchments used in this study. Panel (a) shows the catchment boundaries including the
location of four selected catchments. Please note that many catchments are relatively small and difficult to detect. The locations of the
catchment gauging stations are shown in (b). Norway was grouped into five regions (N: north, M: middle, W: west, S: south, and E: east); all
regions are marked with different colors and regional boundaries.

2002; Tveito et al., 2005; and Mohr, 2008). The seNorge
data are available from 1 January 1957, and in this study
we used data for the period 1 March 2013 to 31 Decem-
ber 2015 in the forecasting mode and 1 January 1958 to
31 December 2012 to calculate the temperature and stream-
flow climatology (Sect. 3.2). The seNorge precipitation sub-
stitutes the precipitation forecasts in the ensemble forecast-
ing chain, and hence the isolated effect of temperature cali-
bration on streamflow forecasts was obtained. We hereby de-
note seNorge temperature and precipitation, To[lat,long,t] and
Po[lat,long,t], respectively, where t is an index for observation
time. Latitude (lat) and longitude (long) represent the grid
indexing.

2.2.2 Hydrological model – HBV

The HBV model (Bergström, 1976) as presented in
Sælthun (1996) and Beldring (2008) constitutes the basis for
this study. The vertical structure of the HBV model consists
of a snow routine, a soil moisture routine, and a response
function that includes a nonlinear reservoir for quick runoff
and a linear reservoir for slow runoff. The model uses catch-
ment average temperature and precipitation as input. Each
catchment is divided into 10 elevation zones, each cover-
ing 10 % of the total catchment area. The catchment average
precipitation and temperature are elevation adjusted to each
elevation zone using catchment-specific lapse rates. In this
study, we used the operational model setup which has been
calibrated for each catchment individually. PEST, a soft-
ware for parameter estimation and uncertainty analysis (Do-
herty, 2015), was used to optimize the HBV parameters, with
the Nash–Sutcliffe efficiency (Nash and Sutcliffe, 1970) and
volume bias as calibration metrics. The calibration period,

1996–2012, gives a mean Nash–Sutcliffe efficiency value of
0.77, with zero volume bias for the 139 catchments. The
validation period, 1980–1995, shows a mean Nash–Sutcliffe
efficiency value of 0.73, with a mean volume bias of 5 %
(Ruan Gusong, personal communication, 15 June 2016). We
used one optimal parameter set for each catchment and there-
fore ignored uncertainty arising from parameter estimation
and the hydrological model.

2.2.3 Reference streamflow

Reference streamflow, Qo[c,t], where c is an index for catch-
ment, was derived using seNorge precipitation and temper-
ature, aggregated to the catchment scale, as forcing to the
HBV model (Fig. 2; see “Reference mode” in the green
frame). In order to isolate the effect of temperature calibra-
tion on forecasted streamflow and avoid effects of hydrologi-
cal model deficiencies, reference streamflow was used as a
benchmark when the streamflow forecasts were evaluated.
Similarly, operational flood warning levels (here demon-
strated for the case study basin, Bulken) are based on return
periods from reference streamflow.

2.2.4 Temperature ensemble forecasts

We used the ECMWF temperature forecast ensemble (ENS)
for the period 1 March 2013 to 31 December 2015 from an
original grid resolution of 0.25◦ (i.e., model cycles/versions
38r1/2, 40r1, and 41r1; ECMWF, 2018b). This period cov-
ers model cycles/versions for which temperature grid calibra-
tion parameters are trained (40r1 and 41r1; see Sect. 3.1.2)
plus spring 2013 (cycle 38r1/2) in order to include one more
snowmelt season. In short, 50 ensemble members of ENS
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Figure 2. Conceptual diagram of the ensemble forecasting chain. Panel (a) shows the reference mode that is the calculation of reference
streamflow using the HBV model with catchment aggregated daily mean values of seNorge temperature (To) and precipitation (Po). In the
forecasting mode (b), ECMWF temperature ensembles are downscaled to 1 km× 1 km prior to catchment aggregation. Calibrated temper-
ature (Tcal) is estimated from Tens, applying a grid calibration at 5 km× 5 km resolution. Daily average forecast values (Tens or Tcal) and
observed precipitation (Po) are used to force the hydrological model at the forecasting issue date (d), with internal states from the reference
mode.

are generated by adding small perturbations to the forecast
initial conditions and model physics schemes, subsequently
running the model with different perturbed conditions. The
ensemble represents the temperature forecast uncertainty. A
more detailed description of the ECMWF ENS system is pro-
vided in, for example, Buizza et al. (1999, 2005) and Pers-
son (2015). For each issue date d, 51 ensemble members
Tens[lat,long,m,l∗] are provided for a lead time of up to 246 h,
where m is the ensemble member and l∗ the lead time in
6 h intervals. In this study, we used the forecasts issued at
00:00 UTC and aggregated daily values for the meteorolog-
ical 24 h period defined as 06:00–06:00 to provide forecasts
for lead times of up to 9 days. The observational time t for a
forecast is d + l∗.

3 Methods

3.1 Ensemble forecasting chain

Figure 2 shows the forecasting modeling chain designed
for this study. The green frame presents the observational
reference mode that determines the internal states for the
forecasting issue date, d , in the red frame. This reference

mode was also used to estimate reference streamflow Qo[c,t]
(see Sect. 2.2.3). The seNorge temperature and precipitation
(To[c,t] and Po[c,t]), aggregated to each catchment c, were
used to force the hydrological model in the observational ref-
erence mode. The red frame illustrates the forecasting mode,
including the post-processing of temperature forecasts. The
hydrological ensemble forecasts were estimated using down-
scaled raw temperature ensemble forecasts (Tens[c,m,l]; see
Sect. 3.1.1) or downscaled and calibrated temperature en-
semble forecasts (Tcal[c,m,l]; see Sect. 3.1.2) and observed
precipitation (Po[c,d+1]) as forcing, where m is the ensem-
ble member and l is lead time in days. All temperature fore-
casts were aggregated to daily time steps since the opera-
tional HBV model runs on a daily time step and the seNorge
data used as a reference provide only daily values. In the fore-
casting mode, each temperature ensemble member was used
as input and run as a separate deterministic forecast. All hy-
drological forecasts were estimated for all nine lead times.
Note that for each issue date d , the same internal states of
the HBV model were used for all ensemble member runs.
Thus two sets of streamflow ensemble forecasts (Qens[c,m,l]

and Qcal[c,m,l]) that differ only by the applied temperature
calibration were derived. The following subsections provide
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details on the approach used for downscaling and calibration
of the ensemble temperature forecasts (ENS).

3.1.1 Temperature forecast downscaling

In this paper the term downscaling refers to the interpola-
tion of temperature from a low-resolution grid to a high-
resolution grid where vertical temperature gradients are ac-
counted for. The ECMWF grid temperature, which repre-
sent the average temperature for the grid cell, was inter-
polated from a horizontal resolution of 0.25◦ (∼ 30 km) to
the 1 km× 1 km seNorge grid, using the nearest-neighbor
method and aggregated to daily values to match the spatial
and temporal resolution of the seNorge data. Due to ele-
vation differences between the ECMWF and seNorge grid
elevations, we corrected the ensemble temperature at the
1 km× 1 km scale by applying a standard atmospheric lapse
rate of −0.65 ◦C 100 m−1. Finally, the downscaled temper-
ature ensemble was aggregated to daily values and averaged
over the catchment areas to provide Tens[c,m,l] for a given lead
time and ensemble member.

3.1.2 Temperature grid calibration

The grid temperature is calibrated using quantile mapping
(Seierstad et al., 2016; Bremnes, 2007) to remove biases by
moving the ENS forecast climatology closer to the observed
climatology. MET Norway provided temperature grid cali-
bration parameters used in this study. This grid calibration
was used in the operational post-processing chain for meteo-
rological forecasts including the forecasts published on http:
//yr.no (last access: 1 February 2019). MET Norway uses
HIRLAM (High Resolution Limited Area Model, Bengtsson
et al., 2017) temperature forecasts (on a 4 km× 4 km grid)
to provide a reference for parameter estimation (calibration).
HIRLAM is suitable as a reference since it provides a con-
tinuous field covering all of Norway at a sub-daily time step.
In addition, HIRLAM gives higher skill and is less biased
than ENS (Engdahl and Homleid, 2015). To establish the
calibration parameters, MET Norway used both ENS refore-
casts (Owens and Hewson, 2018) and HIRLAM data from
July 2006 to December 2011 interpolated to a 5 km× 5 km
grid. The ENS reforecast is a five-member ensemble gener-
ated from the same model cycle (40r1 and 41r1) as ENS.
For each grid cell, monthly unique quantile transformation
coefficients are determined by using data from a 3-month
window centered on the target month; e.g., the May analy-
sis consists of April, May, and June (Ivar Seierstad, personal
communication, 10 November 2017). The same coefficients,
based on mapping the first 24 h, were applied to all lead times
and members. For forecasts outside the observation range,
a 1 : 1 extrapolation was used. That is, if a forecast is 2 ◦C
higher than the highest mapped forecasted temperature, then
the calibrated forecast is 2 ◦C higher than the highest mapped
reference temperature.

For this study, we applied the calibration coefficients pro-
vided by MET Norway to the temperature forecasts for the
period 2013–2015. Accordingly, ENS was interpolated to
the 5 km× 5 km grid for which the quantile mapping coef-
ficients were used to obtain the calibrated temperature en-
sembles (Tcal). Subsequently, the calibrated ensembles on the
5 km× 5 km grid were downscaled to the 1 km× 1 km grid
following the same procedure as for the uncalibrated tem-
perature ensemble (Tens, Sect. 3.1.1). Finally, the calibrated
temperature ensemble was aggregated to daily values and av-
eraged over the catchment areas to provide Tcal[c,m,l].

3.2 Validation scores and evaluation strategy

The evaluation focused on the performance of the tempera-
ture forecast ensembles and the effect of both uncalibrated
and calibrated temperature forecasts on the performance
of the streamflow ensembles. A well-performing ensemble
forecast should be reliable and sharp, where reliability has
the first priority (Gneiting et al., 2007). A forecast is con-
sidered reliable if it is statistically consistent with the ob-
served uncertainty; i.e., 90 % of the observations should ver-
ify within the 90 % forecast interval. Rank histograms are
often used for visual evaluation of reliability and show the
frequencies of observations amongst ranked ensemble mem-
bers. For reliable ensemble forecasts, the rank histogram will
be uniform (horizontal). A bias in the ensemble forecast is
recognized as a slope in the rank histogram, where a neg-
ative slope indicates too-warm temperature forecasts and a
positive slope too-cold forecasts. A U shape indicates that
the ensemble forecast is under-dispersed, whereas a convex
shape indicates over-dispersion (Hamill, 2001). In order to
quantify the reliability, a decomposition of the chi-squared
test statistics for the rank histogram was used to describe the
rank-histograms slope (bias) and convexity (dispersion) (Jol-
liffe and Primo, 2008). Both rank-histogram slope and con-
vexity are negatively oriented; i.e., lower values are better,
with an optimal value of zero for unbiased and uniformly dis-
tributed data. The sharpness of a reliable forecast is described
by the spread between the ensemble members, where a sharp
forecast has a small spread and is the most useful (Hamill,
2007). In this study, the temperature sharpness was assessed
by first estimating the range between the 5th and the 95th per-
centile of the ordered ensemble forecasts for all issue dates,
lead times, and catchments. For streamflow, we estimated a
relative sharpness by dividing the 5th to 95th percentile range
by the ensemble mean. Thereafter, sharpness was determined
for each catchment and lead time as the average range of all
issue dates. The continuous rank probability score (CRPS) is
a summary of reliability, sharpness, and uncertainty (Hers-
bach, 2000). CRPS (denoted as SCRP in Eq. 1) measures the
distance between the observation xa and the ensemble fore-
cast, where the latter is expressed by the cumulative density
function Fx (x):
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Figure 3. Summary of temperature and streamflow scores for all lead times. Each box represents the 139 catchments values averaged over
all issue dates. Rank-histogram test decomposition for slope and convexity is shown in (a), (e), (b), and (f), respectively, and CRPSS in (c)
and (g). Panels (d) and (h) show sharpness for the uncalibrated forecasts. Temperature is shown in panels (a)–(d) and streamflow in (e)–(h).
Results are based on the full dataset and are shown for both uncalibrated (light blue) and calibrated (blue) ensembles at lead times of 1 to
9 days. For slope and convexity, 0 is the optimal value, and the scales are reversed so that the optimal value is on the top, corresponding to
the CRPSS optimal value at 1.0.

SCRP (Fx, xa)=

∞∫
−∞

[Fx (x)−H (x− xa)]2dx, (1)

where H is the Heaviside function that is zero when the
argument is less than zero, and one otherwise (Hersbach,
2000). CRPS was calculated as the average CRPS (SCRP)
over the study period (1 March 2013 to 31 January 2015).
CRPS is similar to the mean absolute error for determinis-
tic forecasts. The temperature CRPS was computed using the
seNorge temperature To as observations, whereas streamflow
CRPS used Qo[c,t] as observations. This evaluation approach
allowed us to evaluate the isolated effect of the uncertainties
in the temperature forecasts since we can then, to a large de-
gree, ignore uncertainties in the HBV model itself.

Skill scores are convenient for comparison between fore-
cast variables (e.g., temperature versus streamflow) and
catchments since these scores are dimensionless. To calcu-
late the continuous ranked probability skill score (CRPSS de-
noted as SCRPS in Eq. 2), a benchmark is needed. The bench-
mark is a reference forecast which a skillful forecast should
outperform. For both temperature and streamflow, ensembles
representing daily climatology were used as benchmarks.
Daily seNorge temperatures (To[c,t]) from 1958 to 2012 (i.e.,
55 years) were used to create a climatological temperature
ensemble of 55 members for each day of the year. Similarly, a
daily streamflow climatology was established from reference
streamflow (Qo[c,t]) calculated by the HBV model, forced

with the 55 years of temperature and precipitation (To[c,t] and
Po[c,t]) from the seNorge data.

CRPSS (SCRPS) was calculated for each catchment accord-
ing to Eq. (2) (Hersbach, 2000). CRPSS (SCRPS) was cal-
culated for each catchment according to Eq. (2) (Hersbach,
2000), where SB_CRP is the benchmark score and SF_CRP is
the forecast score (denoted as CRPS in the text, calculated
for the benchmark and forecast, respectively).

SCRPS =
SB_CRP− SF_CRP

SB_CRP
(2)

CRPSS varies from−∞ to 1, where 1 is a perfect score. Neg-
ative values mean that the forecast performs worse than cli-
matology, and CRPSS equal to 0 implies that it performs sim-
ilarly to the benchmark (climatology in this case). The sea-
sonal skill score was calculated by averaging the daily CRPS
only for the months belonging to the target season. The ef-
fect of the grid calibration on the temperature and stream-
flow forecast skill was evaluated by comparing the valida-
tion scores using both the uncalibrated (Tens) and the cali-
brated (Tcal) ensembles to generate the streamflow ensem-
bles. For readability, the abbreviations SCRP and SCRPS used
in the equation will be substituted with CRPS and CRPSS in
the text hereafter.

Spatial patterns in the forecast performance for all 139
catchments, i.e., CRPSS and differences in CRPSS between
calibrated and uncalibrated temperature, were mapped for
Norway. Further, box plots for the five regions (see Fig. 1)
were drawn to reveal potential regional patterns. Finally,
we used linear regression to identify relationships between
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catchment characteristics (elevation difference and catch-
ment area) and the skill score (Tcal and Qcal CRPSS). The lin-
ear regression analysis was done for combinations of seasons
and regions. Seasonal variations in skill score were assessed
by calculating CRPSS for the two seasons, spring (April to
June) and autumn (October to December). This definition of
seasons is used to better capture a snowmelt season, which
for most Norwegian catchments is in the period April to
June. For this paper, we chose to focus on the results for au-
tumn and spring. Summer (July to September) was excluded
due to the relatively small changes in CRPSS explained by
the following: (i) the skill of uncalibrated temperature fore-
casts is higher and the potential for improvement is lower;
and (ii) there is less or no snow in summer, resulting in a
reduced streamflow sensitivity to temperature. Winter (Jan-
uary to March) was excluded since it performs similarly to
autumn.

Finally, the effect of temperature calibration on the flood
warning level is illustrated for a snowmelt-induced flood
event in the Bulken catchment. In the operational flood warn-
ing system at NVE, the predefined flood thresholds are catch-
ment specific and calculated return periods are based on ref-
erence streamflow, which is also the approach used herein.

4 Results

Temperature and streamflow forecasts were estimated for
139 catchments, 1036 issue dates, and nine lead times. Fig-
ure 3 presents a summary of the validation scores, CRPSS,
and the rank-histogram decomposition, in addition to sharp-
ness, for all lead times. Each box plot shows the variations
in the validation scores between the catchments. The rank-
histogram slope and convexity describe bias and dispersion
in the forecasts, respectively; both can be considered a mea-
sure for the reliability. As shown in Fig. 3, temperature slope
and convexity improve with increasing lead time, whereas
CRPSS and sharpness get poorer. For streamflow, slope
and sharpness get poorer and convexity improves, whereas
CRPSS shows small changes with lead time. To reduce the
amount of presented results, the remaining part of this pa-
per focuses on CRPSS for a lead time of 5 days. CRPSS
was the chosen validation score since it contains informa-
tion on reliability, uncertainty, and sharpness and enables a
comparison between catchments. A lead time of 5 days was
chosen since reliability (convexity and slope) has improved
and some sharpness is maintained; i.e., a too-large ensemble
spread will increase the reliability but the forecast value will
be reduced.

4.1 Temperature forecasts

Time series of seNorge daily temperature To, the range of
raw (uncalibrated) temperature ensembles Tens (left panels),
and scatter plots of ensemble mean for both raw Tens and

calibrated Tcal versus To (right panels) are shown for three
selected catchments in Fig. 4. For Gjuvaa (E), a high-altitude
catchment (Fig. 1), To lies within the range of Tens for most
days, and temperature forecast Tcal was improved by the tem-
perature calibration. The well-performing raw temperature
forecasts for this catchment are representative for most catch-
ments in eastern Norway. Representing western Norway, raw
Tens in Viksvatn (W) has a seasonal cold bias that is reduced
by the temperature calibration. The cold bias is typical for
several catchments in the coastal west, middle, and north re-
gions. Another western catchment, Foennerdalsvatn (W), has
a similar cold bias in Tens to Viksvatn (W), but for Foen-
nerdalsvatn the bias is notable for all seasons and even in-
creases for Tcal (Fig. 4).

4.2 Skill – relations to season, spatial location, and
catchment characteristics

Scatter plots of the difference between CRPSS for calibrated
and uncalibrated forecasts for the temperature (Tcal and Tens)
and streamflow (Qcal and Qens) ensembles are shown in
Fig. 5. Each dot represents a catchment and the color in-
dicates the region. The two panels in Fig. 5 show how the
change in temperature CRPSS affects the change in stream-
flow CRPSS for spring and autumn. For spring, the relation-
ship is close to the 1 : 1 line, whereas for autumn streamflow
is less sensitive to the temperature calibration.

Catchment CRPSSs for spring and autumn were sorted ac-
cording to increasing CRPSS for Tens and Qens in Fig. 6. The
figure reveals that Tens is more skillful in spring than in au-
tumn when Tens has no skill (i.e., CRPSS < 0) for about half
of the catchments (i.e., they perform poorer than the climatol-
ogy). In spring, 97 % of catchments have skillful temperature
forecasts. Temperature calibration improved the temperature
skill for most catchments in autumn, whereas for many catch-
ments in spring, the skill worsened. For streamflow, Qens,
there are only small differences in CRPSS between spring
and autumn (Fig. 6 right panels). Calibration of temperature
improved the skill for streamflow, Qcal, in autumn. Whereas
for spring, the streamflow forecast skill followed the temper-
ature skill change and is both reduced and improved.

CRPSS for uncalibrated temperature and streamflow fore-
casts and the change in CRPSS, calculated as the difference
in CRPSS between calibrated and uncalibrated forecasts,
were mapped for all catchments. Figures 7 and 8 show the
CRPSS values for spring and autumn, respectively. The fig-
ures include box plots showing the variations in skill within
each region, for both calibrated and uncalibrated forecasts.
Neither Tens nor Qens skill show any clear spatial pattern in
spring (Fig. 7 left panel). For autumn, however, Tens has the
lowest skill for the coastal catchments (Fig. 8 left panel). A
coastal low CRPSS in autumn is also seen for Qens, even
though less distinct compared to Tens. Both temperature and
streamflow CRPSS were improved by calibration for the
coastal regions (Fig. 8 right panel).
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Figure 4. Time series of temperature for Gjuvaa (a), Viksvatn (b), and Foennerdalsvatn (c) showing the range of uncalibrated tempera-
ture ensemble forecast (Tens-range, light blue area) for the period 2013–2015; seNorge observations are shown as black lines. Scatter plots
show ensemble mean temperature for both calibrated (Tcal, blue) and uncalibrated (Tens, light blue) temperature plotted against seNorge
temperature (To). Lead time (lt) is 5 days.

Figure 5. Difference in CRPSS for uncalibrated and calibrated tem-
perature for spring and autumn. The difference in temperature skill
is plotted on the y axis and the difference in streamflow skill on the
x axis. The grey diagonal represent the 1 : 1 line. Catchment values
are color indexed by region. All plots are presented for a lead time
of 5 days.

Table 1 summarizes the result of the linear regression anal-
ysis between catchment characteristics (i.e., catchment area
and elevation difference) and skill. By indicating the signif-
icance and sign of the relationships, significant relationships
were found for 12 out of 40 regression equations (5 % sig-

nificance level). Elevation difference is negatively correlated
to streamflow CRPSS for the east and middle regions. The
east region also has a negative correlation between stream-
flow CRPSS and catchment area as opposed to the other re-
gions that have a positive correlation. The correlation does
not change sign between the seasons for any of the regions.
Calibrated temperature and streamflow CRPSS plotted as a
function of catchment area are presented for the east and
south in Fig. 9.

4.3 Snowmelt flood 2013

Forecasts and observations for a snowmelt-driven flood are
presented in Fig. 10 for Bulken (W), located in western Nor-
way. The figure shows forecasted streamflow for lead times
of 2, 5, and 9 days for the target dates 16–26 May 2013. Note
that for the lead times of 2, 5, and 9 days, the forecasts for
18 May are issued on 16, 13, and 9 May, respectively. The
horizontal grey dotted lines represent the mean annual, the 5-
year, and the 50-year floods (i.e., the operational flood warn-
ing levels) in this catchment. Figure 10 reveals how tempera-
ture calibration increases the streamflow for Bulken, leading
to a change in warning level for all lead times. In addition we
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Figure 6. Temperature (Tens and Tcal, a, c) and streamflow (Qens and Qcal, b, d) CRPSS for SPRING (a, b) and AUTUMN (c, d). The
catchments are ordered by increasing CRPSS for Tens and Qens (light blue dots); the catchment calibrated values (Tcal and Qcal) are plotted
as blue circles. All results are presented for a lead time of 5 days.

Table 1. Summary of significant correlations between CRPSS for
calibrated temperature (Tcal) and streamflow (Qcal) ensembles and
catchment characteristics, i.e., area and elevation difference (1H ),
for the five regions. “X” indicates a significant positive relationship,
“×” a significant negative relationship, and “ns” a non-significant
relationship. Results are for a lead time of 5 days.

Tcal Qcal Tcal Qcal

SPRING AUTUMN

Area (km2) East ns × ns ×

South X X ns X
West X ns ns ns
Middle X ns X ns
North ns ns X ns

1H (m) East ns × ns ×

South ns ns ns ns
West ns ns ns ns
Middle ns ns ns ×

North ns ns ns ns

see how the ensemble spread increases with lead time (from
lower to upper panel), from a narrow range around the en-
semble mean for the lead time of 2 days to a very wide range
for a lead time of 9 days.

5 Discussion

Box plots of validation scores for all catchments and lead
times in Fig. 3 show that, on average, both raw Tens and cal-
ibrated Tcal temperature ensembles were more skillful with a
higher CRPSS, for shorter as compared to longer lead times,
and that Tcal was more skillful than Tens. Even though both
bias and dispersion (i.e., reliability) as measured by rank-
histogram slope and convexity improved with longer lead
times, the reduced sharpness and increased uncertainty re-
sulted in a reduced skill (CRPSS). For streamflow, the bias
increased with longer lead times, while dispersion improved.
Further, Qcal was slightly more skillful than Qens. Overall,
the grid calibration of temperature had a positive effect on
both temperature and streamflow for most validation scores
and lead times. The calibration procedure applied in this
study involves many interpolations and downscaling steps
that increase the uncertainty in temperature forecasts. We be-
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Figure 7. Spring CRPSS for uncalibrated forecasts (a, c) and CRPSS difference between calibrated and uncalibrated forecasts (b, d) for
temperature (a, b) and streamflow (c, d). A darker blue color (a, c) indicates an optimal performance (maximum CRPSS= 1.0), pink a
CRPSS of zero, and red a negative value. A green color (b, d) indicates a positive effect of temperature calibration on the skill, yellow
means no effect, and an orange color indicates a negative effect. The box plots show temperature and streamflow CRPSSs grouped by region
(Fig. 1). All results are presented for a lead time of 5 days.

lieve that a catchment-specific temperature calibration, tai-
lored to the needs of hydrological forecasting, would solve
this challenge.

5.1 Effect of temperature calibration for the
temperature forecast skill

The skill for both raw (uncalibrated) Tens and calibrated Tcal
temperature ensembles varies with season (Figs. 5–8). The
relatively small temperature skill improvements in spring and
large skill improvements in autumn can be explained by the
skill of the raw ensembles Tens. The low skill for Tens in au-
tumn and winter is caused by a cold bias and lays the foun-
dation for the large improvements seen for Tcal. The sea-
sonal differences in skill and response to calibration show
the importance of using seasonal calibration parameters. It is
also apparent that the applied methods do not perform opti-
mally for all seasons. For spring, the results show that sev-
eral catchments have a reduction in the forecast skill after

calibration. By inspecting the forecasts in detail, we found
a too-extensive correction of temperature for some days and
catchments. Quantile mapping, as most statistical techniques,
is sensitive to forecasts outside the range of calibration values
and periods (Lafon et al., 2013), which can be an explanation
for too high a correction in the highest Tens quantile. The use
of forecasts from different model cycles might affect the con-
sistency in the forecasts. Moreover, the calibration parame-
ters are sensitive to the representativeness of the calibration
period.

The most pronounced spatial pattern is the low autumn
CRPSS for uncalibrated ensembles Tens in the coastal areas.
This is seen in the box plots for the west, middle, and north
regions (Fig. 8) and in the plots of the western catchments
Viksvatn and Foennerdalsvatn during winter months (Fig. 4).
This cold bias is documented for the Norwegian coastal areas
in the cold seasons by Seierstad et al. (2016) and is mainly
caused by the radiation calculations in the ECMWF model
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Figure 8. Autumn CRPSSs for uncalibrated forecasts are presented in panels (a) and (c), where the darker blue color indicates an optimal
performance (maximum CRPSS= 1.0), pink color represents a CRPSS of zero, and red a negative value. The differences in CRPSS between
calibrated and uncalibrated forecasts are presented in panels (b) and (d), where the green color indicates a positive effect of temperature
calibration on the skill, yellow zero, and orange color indicates a negative effect. Temperature CRPSS is presented in (a) and (b) and
streamflow CRPSS in (c) and (d). The box plots of both calibrated and uncalibrated temperature and streamflow CRPSS show catchments
grouped by region (Fig. 1). All results are presented for a lead time of 5 days.

(Hogan et al., 2017). The coarse radiation grid results in
warmer sea points being used to compute longwave fluxes
applied over colder land points, causing too much cooling.
This effect is seen for the temperature forecasts for winter
2014 and 2015 for the coastal catchments in Fig. 4b and c,
in contrast to the inland catchment (Fig. 4a) which is less
biased. The radiation resolution is improved in later model
cycles (Hogan et al., 2017; Seierstad et al., 2016). In ad-
dition, the challenging steep coastal topography is not well
represented by the spatial resolution in the ECMWF model
(Seierstad et al., 2016). For inland catchments and the south
and east regions, CRPSS shows that the uncalibrated Tens is
skillful for both autumn and spring; hence, the calibration has
a smaller effect in these catchments.

5.2 Effect of temperature calibration for the
streamflow forecast skill

The skill of the temperature-calibrated streamflow ensemble
forecasts, Qcal, improved for most of the catchments for au-
tumn, while both improved and reduced skill were seen for
spring (Figs. 5–8). Autumn streamflow skill was improved by
temperature calibration for all regions, the largest improve-
ment was seen for the coast and the west and middle regions.
Two possible explanations for this spatial pattern are (i) the
improvement in temperature forecast skill during autumn in
these regions and (ii) that many coastal catchments are more
sensitive to the calibration of temperatures since the tempera-
tures are more frequently around 0 ◦C compared to the colder
and dryer inland catchments. In spring, no clear spatial pat-
terns are seen, neither for Qens nor for the change in skill.

It is also evident that, independent of the sign of the tem-
perature skill change (Fig. 5), a change in temperature has a
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Figure 9. Temperature (row a) and streamflow (row b) CRPSS for the east (E) and south (S) regions, plotted as a function of catchment area
for both autumn and spring. The colored dots show the CRPSS for the respective regions whereas the grey circles show the CRPSS for all
139 catchments. The linear regression line is plotted along with its p value (significantly different from zero for p values < 0.05). All results
are presented for a lead time of 5 days.

larger impact on streamflow in spring than in autumn. Dur-
ing spring, temperatures are often close to the two threshold
temperatures that control the phase of precipitation and the
onset of snowmelt. Such periods are challenging to simu-
late correctly (Engeland et al., 2010). Of additional impor-
tance, for spring as opposed to autumn, is the snow storage
at the end of winter, as well as the snowmelt contribution to
streamflow. Hence, estimated streamflow has a high sensitiv-
ity to changes in temperature during spring, a sensitivity also
described for Alpine snow-covered catchments by Ceppi et
al. (2013). Verkade et al. (2013), on the other hand, found
only marginal effects of preprocessing temperature and pre-
cipitation for the streamflow skill in the Rhine catchments.
The results presented herein and in the cited papers indicate
that the effect of preprocessing depends on the hydrological
regime (i.e., sensitivity to temperature), the initial skill of the
forcing variables, and on which temporal periods (i.e., for
specific events, seasons, or the whole year) the sensitivity is
evaluated. The same lead time was used to relate improve-
ment in streamflow to temperature; we consider this robust
since most catchments in this study have a concentration time
of less than a day.

In summary, it can be concluded that, to further improve
streamflow forecasts during the snowmelt season, improved
temperature forecasts are essential. Streamflow forecasts dur-
ing spring have the highest potential for improvement since
the temperature forecasts were not, for a majority of the
catchments, improved by the applied calibration. For au-
tumn, the substantial improvement in temperature forecast
skill by grid calibration improves streamflow forecasts, but
the sensitivity is less than for spring.

5.3 Catchment characteristics and skill

Only a few significant relationships between the catchment
characteristics, e.g., catchment area and elevation gradient,
and skill were found (Table 1). We expected to find the
highest temperature skill in large catchments, due to averag-
ing, and in catchments with small elevation differences, due
to less elevation correction inaccuracy. No significant rela-
tionships between temperature skill and elevation difference
were found for any combination of region or season. A pos-
itive relationship between temperature skill and catchment
area was found for 5 out of 10 regression equations. This re-
sult is not conclusive, but indicates that (i) the smallest catch-
ments are smaller than the grid size of the ECMWF model
and therefore sensitive to the preprocessing and (ii) it is more
challenging to forecast weather on small spatial scales than
large spatial scales.

It was expected that streamflow skill would increase with
catchment area due to averaging effects. Significant linear re-
gression coefficients were found for east and south but with
different signs, the same tendencies for both spring and au-
tumn. The interpretation of this result is therefore ambigu-
ous. For elevation difference, a significant negative correla-
tion was found for 3 out of 10 datasets. This suggests that
the downscaling approach has the potential to improve the
streamflow forecasts. These results are not conclusive, and
studies that are more detailed are needed to determine any
significant relationships to catchment characteristics.

Forecasting in small catchments with particular character-
istics may be challenging since they may not be well rep-
resented, neither by the numerical weather prediction model
nor by the calibration methods. In our dataset, Foennerdals-
vatn (Fig. 4c) is such an example. The catchment area is only
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Figure 10. Forecasted streamflow for the Bulken catchment fort
lead times of 9, 5, and 2 days. Forecast target dates on the x axis,
and streamflow (m3 s−1) on the y axis. Reference streamflow with
seNorge observations Qo (black solid line), ensemble mean uncali-
brated temperature Qens (blue line), ensemble mean calibrated Qcal
(blue dotted line), ensemble range Qens (light violet area), and en-
semble range Qcal (light blue area). The grey dotted lines indicate
the thresholds for mean annual, 5-year, and 50-year floods.

7.1 km2, elevation is high, topography is steep, glaciers cover
47 % of the catchment area, and it is located close to the
coast.

5.4 Snowmelt flood 2013

The snowmelt flood event (Fig. 10) illustrates clearly how
temperature calibration affects forecasted ensemble stream-
flow. The increase in forecasted temperature by grid cal-
ibration results in additional snowmelt and thus increased
streamflow. The increased streamflow led to a change in the
warning level, from below to above the 5-year flood. For this
event, however, the use of calibrated temperature reduced the
performance of the forecasted streamflow, Qcal. The refer-

ence streamflow, Qo, is better captured by the streamflow
forecasts based on uncalibrated temperature forecasts, Qens.
The deterioration in the forecast performance using cali-
brated temperature is particular for this event. Other results
provided in this study show clearly that the calibrated tem-
perature ensembles improve the streamflow forecasts on av-
erage.

Figure 10 reveals how the ensemble range for the
snowmelt event clearly increases with increasing lead time.
For a lead time of 2 days (lower panel), the range is too nar-
row, while for a lead time of 9 days (upper panel), the wide
forecasting intervals capture the events, but there is little in-
formation left in the forecasts.

6 Summary and conclusion

The main objective of this study was to investigate the effect
of temperature forecast calibration on the streamflow ensem-
ble forecast skill, as well as to identify potential improve-
ments in the forecasting chain. We applied a gridded tem-
perature calibration method and evaluated its effect on both
temperature- and streamflow-forecasting skill. The seasonal-
ity in skill was evaluated and correlations to catchment char-
acteristics and spatial patterns were investigated. Supported
by the results presented in this paper, our answers to the re-
search questions listed in the introduction are summarized as
follows.

Are there seasonal effects of temperature calibration on the
temperature ensemble forecast skill?

– The largest temperature skill improvements by calibra-
tion were found for poorly performing coastal catch-
ments in autumn and winter.

– The effect of calibration on temperature skill was less
clear in spring. In spring, the calibrated temperature re-
sulted in reduced skill for many catchments.

– Smaller bias in spring explained a higher Tens skill and,
hence, less room for improvements by calibration.

Are there seasonal effects of temperature calibration on the
streamflow ensemble forecast skill?

– In autumn and winter, streamflow skill improved for
most catchments. For spring, the calibration resulted in
both better and worse skill.

– In spring, changes in temperature skill had a higher ef-
fect on streamflow skill, compared to autumn and win-
ter.

Are there spatial patterns in the ensemble forecast skill
and, if so, can these be related to catchment characteristics?

– The skill in temperature forecasts was the lowest in
coastal catchments along the coast in the west, middle,
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and north in autumn, caused by a cold bias in the fore-
casts (this was also the case for winter, although these
results are not shown).

– The largest improvement in skill for both temperature
and streamflow was found for catchments with a cold
bias in the temperature forecasts.

– A regional division seemed useful to identify spatial
patterns in temperature forecasts, whereas for stream-
flow the spatial patterns were not so obvious.

– It was not possible to conclude a relationship between
the catchment characteristics and skill.

Is streamflow affected by temperature calibration during a
snowmelt flood?

– Streamflow increased by temperature calibration,
changing the flood warning level, clearly showing the
importance of correct temperature calibration for catch-
ments with snow during snowmelt season.

This study showed that the applied gridded temperature cal-
ibration method improved the temperature skill for most
catchments in autumn and winter. Temperature forecasts
have an impact on streamflow and are important for seasons
where temperature determines snowmelt and discriminates
between rain and snowfall. The improvement in temperature
skill propagated to streamflow skill for some, but not all,
catchments. This was to a large degree dependent on region
and the skill of the uncalibrated ensemble.

The most obvious improvement in the forecasting chain is
to use the same temperature information, the seNorge tem-
perature, for calibrating the temperature forecast that is used
for calibrating the hydrological model, generating the initial
conditions for the hydrological system, and evaluating the
performance. In particular, the calibrated temperature fore-
cast could be improved during spring when the streamflow
forecasts are the most sensitive to temperature. The prepro-
cessing of temperature includes both an elevation correction
depending on lapse rate and the calibration method. Lapse
rate in this study is defined as a constant, but actually depends
on weather conditions, location, and elevation. In addition,
the calibration method, here the quantile mapping, is sensi-
tive to forecasted values outside the observation range, and
other methods should be considered. In this study, we have
investigated the isolated effect of uncertainties in tempera-
ture forecasts. For a more complete assessment of forecast
uncertainties, error in initial conditions, hydrological model
parameters, and structure need to be accounted for. In partic-
ular, we might expect a strong interaction between uncertain-
ties in temperature forecasts and model parameters control-
ling snow accumulation and snowmelt processes.

The conclusions in this study are based on a testing period
of almost 3 years. Even if this is a relatively short testing
period, we believe that the large number of catchments to a

large degree compensates for the short testing period and that
the results and conclusions are therefore relatively robust.
We suggest that some of the main conclusions can be valid
for regions with a similar climate. The most important gen-
eral conclusion is that streamflow forecasts are sensitive to
the skill of temperature forecasts, especially in the snowmelt
season. In addition, this study shows that reducing the cold
temperature bias in coastal areas results in improved stream-
flow forecasts and that the preprocessing needs to account for
seasonal differences in temperature forecasts (biases).
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