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Abstract. Land surface evaporation has considerable spatial
variability that is not captured by point-scale estimates calcu-
lated from meteorological data alone. Knowing how evapo-
ration varies spatially remains an important issue for improv-
ing parameterisations of land surface schemes and hydrologi-
cal models and various land management practices. Satellite-
based and aerial remote sensing has been crucial for captur-
ing moderate- to larger-scale surface variables to indirectly
estimate evaporative fluxes. However, more recent advances
for field research via unmanned aerial vehicles (UAVs) now
allow for the acquisition of more highly detailed surface data.

Integrating models that can estimate “actual” evaporation
from higher-resolution imagery and surface reference data
would be valuable to better examine potential impacts of
local variations in evaporation on upscaled estimates. This
study introduces a novel approach for computing a nor-
malised ratiometric index from surface variables that can be
used to obtain more-realistic distributed estimates of actual
evaporation. For demonstration purposes the Granger–Gray
evaporation model (Granger and Gray, 1989) was applied
at a rolling prairie agricultural site in central Saskatchewan,
Canada. Visible and thermal images and meteorological ref-
erence data required to parameterise the model were obtained
at midday.

Ratiometric indexes were computed for the key surface
variables albedo and net radiation at midday. This allowed
point observations of albedo and mean daily net radiation to
be scaled across high-resolution images over a large study
region. Albedo and net radiation estimates were within 5 %–
10 % of measured values. A daily evaporation estimate for a
grassed surface was 0.5 mm (23 %) larger than eddy covari-

ance measurements. Spatial variations in key factors driving
evaporation and their impacts on upscaled evaporation esti-
mates are also discussed. The methods applied have two key
advantages for estimating evaporation over previous remote-
sensing approaches: (1) detailed daily estimates of actual
evaporation can be directly obtained using a physically based
evaporation model, and (2) analysis of more-detailed and
more-reliable evaporation estimates may lead to improved
methods for upscaling evaporative fluxes to larger areas.

1 Background and introduction

“Actual” evaporation is the water vapour physically trans-
ferred from a surface (e.g. plants, soil, or water) to the at-
mosphere over a given time period (e.g. hourly or daily). Re-
liable estimates of actual evaporation are often needed over
large spatial scales for applications such as water resource
management, agriculture, ecology, and forecast modelling of
weather and climate. However, estimates (or measurements)
are often calculated at point scales with footprints that can
range from centimetres to several kilometres or more (Brut-
saert, 1982). Consequently, point-scale footprints in hetero-
geneous landscapes may contain large variability that needs
to be considered more appropriately.

From an ecological standpoint, heterogeneous landscapes
are comprised of distinct topographic features, land cover
types, biological attributes, and other physical properties that
exhibit observable patterns in the order of metres (e.g. Yates
et al., 2006; Zhang and Guo, 2007). Therefore, variable sur-
face properties and state conditions exert a strong control on
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local surface energy fluxes. As a result, “scaling” evapora-
tion estimates over large areas must consider a potential loss
of information due to upscaling processes. The potential im-
pacts of spatial variability on larger-scale estimates of evap-
oration are still not well understood, and previous estimation
and scaling methods have not examined this issue in detail.

For example, hydrologic and atmospheric modelling ap-
plications often require large- to regional-scale evaporation
estimates, but the underlying variability is difficult to exam-
ine practically (e.g. Avvisar and Pielke, 1989; Baldocchi et
al., 2005; Brutsaert, 1998; Claussen, 1991, 1995; Klaassen,
1992; Klaassen and Claussen, 1995). Courault et al. (2005)
and Gowda et al. (2007) have also reviewed remote-sensing
approaches which integrate surface images to derive key vari-
ables needed to parameterise various energy-balance-type
evaporation models. This generally results in estimates at
moderate scales of input images (e.g. Bisht et al., 2005).
Purely empirical methods have also correlated evaporation
with vegetation indices (e.g. Nagler et al., 2005).

A common remote-sensing method has been to calculate
evaporation indirectly as a residual of a simplified energy
balance (e.g. Jackson et al., 1977; Seguin et al., 1989; Bus-
sières et al., 1996). In such cases surface temperatures de-
rived from thermal imagery is a critical input. More com-
plex resistance-type formulations also exist based on devel-
opments by Monteith (1965), e.g. Norman et al. (1995), An-
derson et al. (1997, 2007), Boegh et al. (2002) and Houborg
and Soegaard (2004). However, such approaches are compu-
tationally intensive and parameterising the resistance terms
is difficult without detailed data.

Colaizzi et al. (2006) reviewed scaling approaches based
on an evaporative fraction determined through complex
solar-radiation modelling. Mu et al. (2007) and Fisher et
al. (2008) discuss advanced methods for deriving global-
scale estimates based on expert knowledge and detailed data
sets obtained from the AmeriFlux network in association
with the global FLUXNET (Baldocchi et al., 2001). As an
alternative to more complex methods, Granger (2000) inte-
grated a complementary feedback approach with Penman’s
combination model and remote-sensing imagery that can di-
rectly estimate actual evaporation, even in data-sparse re-
gions.

Previous remote-sensing methods have been valuable
for integrating generalised representations of moderate- to
larger-scale variability. However, most methods fail to in-
clude fundamental interactions governing the evaporation
process which can be more realistically captured with an en-
ergy balance and aerodynamic combination model approach.
More importantly, few (if any) have addressed the issue of
how detailed surface variability may impact upscaled evap-
oration estimates over larger areas. The acquisition of high-
resolution imagery from a plane (or even unmanned aerial
vehicles; UAVs) combined with new methods of obtaining
detailed surface information could be valuable for examining
the spatial variability of point-scale evaporation estimates.

Such analysis could then help advance understanding how
the underlying surface variability may impact upscaling of
point evaporation estimates to larger areas.

The goal of this study is to examine the spatial variability
of key surface variables driving point-scale evaporation esti-
mates and their impact on upscaled evaporation estimates to
larger areas, and this includes two objectives. The first is to
use the spatial variability captured from high-resolution one-
time-of-day visible and thermal images taken at midday to
scale (i.e. distribute) energy-balance factors that drive combi-
nation evaporation models. This objective required the devel-
opment of a scaling method that derives a ratiometric index
of surface variables from the midday images. The resulting
information can then be used to distribute a measured value
of mean daily net radiation which can be used as an input for
deriving detailed estimates of evaporation. The second ob-
jective is to examine impacts of variations of the key surface
variables on daily estimates of evaporation, including point-
scale and larger areal estimates.

Methods applied here integrated high-spatial-resolution
images with an initial pixel size of less than 5 m taken during
a flight on 5 August 2007 over a rolling prairie agricultural
landscape. It also included point measurements of surface
reference data, a physically based evaporation model, and
analysis using ArcGIS (v9.x) software. Estimates of mean
daily actual evaporation were calculated with the Granger–
Gray complementary feedback model (G–D) (1989). The
model is a useful alternative to more complex methods that
require resistance parameters and is well suited for a vari-
ety of Canadian environments (e.g. agricultural, prairie, and
boreal).

2 Study area

A case study was conducted on 5 August 2007 at St. De-
nis National Wildlife Area (SDNWA) located in the parkland
ecoregion of the Canadian Prairies in central Saskatchewan
(see Armstrong et al., 2008). Figure 1 shows a photo of
the study region taken during the study flight on 5 August
to capture visible and thermal images from handheld cam-
eras. The landscape was characterised by hummocky, gen-
tly rolling terrain and a few slopes of 1 %–10%. Elevations
ranged from 540 to 565 m, and the land use consisted of
mixed cool-season grasses, tall brome grass, cultivated land,
and wetlands surrounded by trees or dense grass; all grasses
and crops were C3 types. The soil region is classified as dark-
brown chernozem, and the soil texture is predominately silty
loam (van der Kamp et al., 2003).
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Figure 1. Photo of the study area at St. Denis National Wildlife
Area taken during the flight on 5 August 2007 and locations of mi-
crometeorological measurement stations.

3 Data and methods

3.1 Granger–Gray evaporation model (G–D model)

Granger and Gray (1989) developed the G–D model from
the complementary relationship of the combination model of
Bouchet (1963) and Penman (1948). The G–D model extends
the potential evaporation model to non-saturated surfaces us-
ing the relative evaporation term, G. This is defined as a ra-
tio of actual to potential evaporation which depends on the
relative drying power of the air, D. The underlying theory is
based on the reduction of water availability as a surface dries,
but the “potential” evaporation increases due to a subsequent
rise in surface temperature.

The development of G eliminated the need for obser-
vations of surface temperature and vapour pressure. As a
result, estimates of actual evaporation were obtainable for
non-saturated surfaces with atmospheric data alone (Granger,
1989). The general form of the equation is

E =
1G

(
Q∗−Qg

)
+ γGEA

1G+ γ
. (1)

The available energy term is driven by net radiation,
Q∗ (W m−2), calculated as a sum of the net shortwave and
longwave radiation components and the ground heat flux,
Qg (W m−2), and the slope of the saturation vapour pressure
curve, 1.

The aerodynamic term includes the psychrometric con-
stant, γ , and “drying power of the air”, EA, calculated using
a Dalton-type formula.

EA = f (u)
(
e∗a − ea

)
, (2)

where f (u) is a vapour transfer function, and the atmo-
spheric vapour pressure deficit at 2 m height is derived from

e∗a (saturated) and ea (actual). Pomeroy et al. (1997) empiri-
cally derived f (u) as a function of wind speed and aerody-
namic roughness length and Z0 (m) from extensive field data
collected for prairie, boreal forest, and northern cold-region
environments in western Canada.

f (u)= 8.19+ 22Z0+ (1.16+ 8Z0)u, (3)

where u is the mean daily wind speed (m s−1).
The G–D complementary feedback method is driven by

the non-linear relationship betweenG and the relative drying
power of the air, D.

G=
1

0.793+ 0.2e4.902D + 0.006D, (4)

where D is a function of the humidity deficit and available
energy is given by

D =
EA

EA+
(Q∗−Qg)

λ

, (5)

and λ is the latent heat of vaporisation (kJ kg−1).
The feedback model approach is generally applicable for

regions indicated above and can be used when detailed soil
moisture information is lacking, except under conditions
of severe moisture stress. Armstrong et al. (2008) evalu-
ated point-scale evaporation estimates obtained with the G–
D model over mixed grasses at the same study area under
conditions of non-limiting soil moisture using field data col-
lected during 2006. Estimates obtained with the G–D model
compared well with eddy covariance (EC) measurements and
was less data intensive than the Penman–Monteith model,
which also performed well in that study.

Armstrong et al. (2010), however, found that the use of
appropriate soil moisture constraints was required to obtain
reliable estimates with the G–D model when applied under
drought conditions to a mixed-prairie site at Lethbridge, Al-
berta, Canada.

3.2 Field observations

Inputs needed to parameterise Eqs. (1)–(5) included mean
daily net radiation, air temperature, humidity, wind speed,
and surface roughness length. Outgoing radiation compo-
nents were derived from high-resolution digital (Canon Pow-
erShot A70 camera) and thermal (FLIR ThermaCAM P20
imaging radiometer) images taken on 5 August 2007 dur-
ing a Cessna flight at midday. Meteorological and surface
observations (radiation components, temperature, humidity,
and wind speed) were recorded at two station locations. Fig-
ure 1 shows the relative locations, which included one ref-
erence site and one validation site. An independent station
operated by the National Water Research Institute (Environ-
ment Canada, Saskatoon) was also available which provided
a second validation site for estimates of daily net radiation.
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Air temperature, humidity, wind speed, incoming radiation,
and surface temperature were recorded as 15 min averages.
Incoming and outgoing shortwave and longwave radiation
were measured with a CNR1 net radiometer (Kipp & Zonen,
Delft, the Netherlands). Air temperature and humidity were
measured at 2 m height using a shielded Vaisala HMP45C
(Campbell Scientific, Inc., Logan, Utah, USA). A shielded
Exergen infrared (IR) temperature sensor (IRTC; Exergen,
Watertown, Massachusetts, USA) was used to measure sur-
face temperature.

Canopy spectral reflectance was independently sampled
on 21 August 2007 for validating albedo estimates derived
from the visible images taken on 5 August. Canopy re-
flectance was collected according to the methods of Disney et
al. (2004) and Zhang and Guo (2007). Samples were taken at
4.5 m intervals along a site transect at 1 m height at the nadir
(25◦ field of view) with an ASD FR Pro spectroradiometer
(Analytical Spectral Devices, Inc., Boulder, Colorado, USA);
the spectral range was 350–2500 nm with a 1 nm resolution.
Samples were taken between 12:00 LT (local time) and so-
lar noon. Reflectance was recalibrated every 10 min using
a white Spectralon reflectance panel (Labsphere Inc., North
Sutton, New Hampshire, USA).

Eddy covariance observations were sampled at approxi-
mately 2 m height with a CSAT3 three-dimensional sonic
anemometer (Campbell Scientific, Inc., Logan, Utah, USA)
and a KH20 ultraviolet krypton hygrometer (Campbell Sci-
entific, Inc., Logan, Utah, USA). The raw EC data were re-
ported as 15 min averages and post-processing was done with
MATLAB (Mathworks, Natick, Massachusetts, USA) which
included flux corrections using a standard planar-fit axis ro-
tation algorithm (Wilczak et al., 2001). Data filtering indi-
cated there were no missing or bad data values on the study
day, and station positioning was not considered to be an is-
sue. EC data collected at the validation site were used for a
comparison against a mean estimate obtained from the G–
D model upwind of the EC station.

Given the higher frequency of flux reporting (15 min aver-
ages), axis rotation, and data filtering applied, and a potential
mismatch in measurement footprints, no further corrections
were used to force an energy balance closure on the 15 min
averages.

3.3 Surface reference meteorological parameters

At midday, reference observations of the shortwave, K ↓
(835 W m−2), and longwave, L ↓ (320 W m−2), irradiance
and albedo (0.153 over grass) were obtained from the CNR1.
Both K ↓ and L ↓ were assumed to be uniform over the
field given the images used for calculations were cloud free.
The reference values were used in the calculation of midday
normalised ratiometric indexes for albedo and net radiation.
A mean daily reference value of 155 W m−2 was obtained
for Q∗ which was the input for distributing the final esti-

mates of the mean daily net radiation using the ratiometric
index (discussed in Sect. 3.4).

The daily ground heat flux measured at two locations was
relatively small, 8 and 2 W m−2, due to the continuous and
tall grass canopy cover. For this study the ground heat flux
was ignored, in part due to the small measured values, but
this was also to limit errors introduced from using a numer-
ical solution to estimate ground heat flux, which would re-
quire more-detailed cover information at each image pixel.
To standardise the parameterisation of the G–D model for
calculating the mean daily estimates of evaporation, the ref-
erence values of mean daily air temperature (19.6 ◦C), hu-
midity deficit (1.1 kPa), and wind speed (3 m s−1) were also
taken to be uniform. Differences in mean daily air tempera-
ture between the measurement locations were approximately
1 ◦C.

Potential impacts of assuming uniform humidity and wind
speed for parameterising the aerodynamic term was also con-
sidered. This was done by examining G–D evaporation es-
timates derived from 2006 field data collected over differ-
ent surfaces at the same study area (Armstrong et al., 2008).
During 2006 a fixed station obtained continuous measure-
ments over a mixed-grass upland, and a portable EC station
was moved periodically to obtain concurrent measurements
over different land covers. Meteorological observations from
the fixed station were initially used to estimate evaporation
with the G–D model. Another estimate was obtained after
substituting observations of humidity and wind speed taken
from the portable EC station. This resulted in only minor
variations in the respective evaporation estimates (root mean
square deviation (RMSD) of 0.02 mm) derived from the con-
current measurements of humidity and wind speed taken
from the different sites.

Implications of neglecting the ground heat flux and treat-
ment of the meteorological parameters (above) with respect
to modelling uncertainty are given in the discussion.

3.4 Deriving key surface variables from
one-time-of-day images

3.4.1 Theoretical basis for a normalised ratiometric
index for surface properties

Remotely sensed images contain valuable information that
characterise highly variable surface properties (e.g. re-
flectance, temperature, RGB (red–green–blue) and greyscale
digital numbers (DNs), etc.). Theoretically, relative varia-
tions in these properties can be quantified using a “nor-
malised” ratiometric index. For example, consider the “evap-
oration ratio” (ER), defined simply as the ratios of individual
evaporation rates at different spatial locations (Ei) to a refer-
ence rate obtained at a specified location (Eref).

ER =
Ei

Eref
(6)
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At the reference location ER is 1 and will be the same at any
other locations where Ei = Eref, but it will vary from unity
at all other spatial locations.

For obvious reasons the theory integrates well for compu-
tations with pixel-based images. Subsequently, an evapora-
tion rate measured at the reference pixel could be scaled to
all other pixels by multiplication with the value ofER at each
pixel. The concept may be extended to other surface variables
(e.g. albedo, net radiation, etc.) required to parameterise an
evaporation model.

3.4.2 Distributing surface variables using a normalised
index of relative surface ratios

Methods described here assume spatial variations in surface
variables driving net radiation (and driving evaporation) are
near their maximum around solar noon. This is likely to be
valid within 2 h from the actual time of solar noon (Colaizzi
et al., 2006). Net radiation is the major component needed
to determine available energy for the conversion of water to
an equivalent depth of water vapour. Net radiation is deter-
mined from the shortwave and longwave radiation compo-
nents measured in the electromagnetic spectrum between ap-
proximately 0.3 and 4 and 4 and 14 µm, respectively (Zoran
and Stefan, 2006).

Traditionally, radiative terms needed for estimating evapo-
ration are derived from satellite-based imagery, e.g. Landsat,
AVHRR (Advanced Very High Resolution Radiometer), and
MODIS (Moderate Resolution Imaging Spectroradiometer).
However, satellite-based methods are often limited by cloud
contamination, varying spatial and temporal resolutions, and
sensor footprint mismatches. Under clear skies it can be as-
sumed shortwave and longwave irradiance are uniform over
an agricultural field area. Very-high-resolution images taken
near the surface could be used to derive the much more vari-
able surface-reflected shortwave and emitted longwave radi-
ation components.

For example, normalised ratiometric indexes for albedo,
αR, emitted longwave, L↑R, and roughness length, Z0R , can
be calculated at every pixel location within visible and ther-
mal images using

αR =
αi

αref
, (7)

L↑R =
L↑i

L↑ref
, (8)

Z0R =
Z0i

Z0ref

, (9)

where the subscript “i” is an individual value at each pixel
and “ref” is the value at the reference pixel. Incoming short-
wave (K ↓) and longwave radiation (L ↓) components can
reasonably be assumed to be uniform over the field under
clear skies, so αR and L↑R can be further integrated to de-
rive a ratiometric index of the midday net radiation, Q∗R.

Q∗R =
Q∗i
Q∗ref
=K ↓ (1−αRαref)+L ↓ −L↑RL↑ref (10)

Subsequently, single measured values of albedo and mean
daily net radiation taken at a reference pixel can be scaled
(i.e. distributed) across all other pixels via multiplication
with the surface ratios derived for Q∗R. The next section il-
lustrates the indexing method for deriving accurate estimates
of albedo.

3.4.3 Ratiometric-index method for albedo estimates
from digital visible images

Surface albedo (α) represents a crucial radiation loss term for
radiative transfer calculations and surface–atmosphere en-
ergy and mass exchanges (Sellers et al., 1997; Liang, 2000;
Lucht et al., 2000; Roberts, 2001; Liang et al., 2003; Disney
et al., 2004). Its calculation can be complex and is typically
a major source of uncertainty (Yang et al., 2008).

In this case, a measured value of broadband albedo ob-
tained at a reference pixel location could be scaled to every
other pixel within a high-resolution visible image. In 2007,
digital photos were taken with a Canon PowerShot A70 cam-
era with a maximum resolution of 2048×1536 pixels, a CCD
(charge-coupled device) imager, and a DIGIC (Digital Imag-
ing Core) processor. This resulted in very-high-resolution
(< 1 m pixels) “visible images” without cloud cover issues.

While digital cameras may not cover the full visible and
near-infrared spectrum of advanced measurement sensors,
the imaging techniques are based on the same principles.
Corripio (2004) demonstrated how accurate estimates of
snow albedo could be obtained from digital images using
a linear scaling technique applied to a measured albedo at
a reference pixel location. A key step for our analysis was
to transform an RGB digital photo to a single-band 8 bit
greyscale image with DNs ranging from 0 to 255.

This resulted in higher DNs associated with more-
reflective surfaces (i.e. brighter) and lower DNs with less-
reflective surfaces (i.e. darker) in accordance with the prin-
ciples for calculating albedo. The resulting albedo map was
aggregated to a pixel size of 5 m for a practical analysis and
georectified to 100 GPS ground control points. The study
area included some dried wetlands and others containing
open water. This allowed for application of a simple dark-
object subtraction (DOS) method to correct potential atmo-
spheric effects (Song et al., 2001; Liang, 2000).

Applying Eq. (11) made it possible to accurately estimate
albedo at individual pixel locations, αi, from a measured
broadband value taken at the reference location, αref, and a
ratiometric index for DNs calculated at each pixel.

αi = αref
DNi

DNref
, (11)
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Figure 2. Reflectance spectra collected at four sample points over
mixed-grassland vegetation at the upland area on 5 August 2007.
Reflectance values affected by noise at corresponding wavelengths
were removed.

where DNi is the digital number of an individual pixel and
DNref is the reference pixel value.

Angular measurements of broadband albedo from 0.3 to
3.0 µm with a hemispherical CNR1 directly accounted for
bidirectional reflectance properties of the mixed grassed sur-
face. Therefore, the point observations satisfied the bidirec-
tional reflectance considerations related to albedo estima-
tion techniques (Nicodemus et al., 1977; Lucht et al., 2000;
Roberts, 2001).

Figure 2 shows a sample of measured reflectance values
from a grassed upland area. The spectral reflectance from
the mixed grasses was virtually identical to the response for
healthy (green) winter wheat (see Disney et al., 2004). For
wheat, they concluded reflectance was directionally invari-
ant and reasonably could be assumed to behave as a Lam-
bertian surface (i.e. scattering light equally in all directions).
The field-measured spectral reflectance over the grassed sur-
face was therefore treated similar to a Landsat-measured re-
flectance and divided into respective wavelengths for Landsat
wavebands 1, 3, 4, 5, and 7.

An empirical linear approximation for narrow-to-
broadband albedo conversion applicable to Landsat imagery
(see Liang, 2000) was then applied to the field-measured
spectral reflectance data. This allowed for a direct com-
parison of albedo estimates and measurements along the
sampling transect shown in Fig. 3. Due to the 4.5 m sampling
distance some pixels contained a single value, whilst others
contained two values, in which case the mean value was
used for comparison.

3.4.4 Surface temperature (emitted longwave
radiation)

For the case of surface temperatures the indexing method
was not needed because high-resolution observations were
obtained directly with a handheld forward-looking in-
frared (FLIR) ThermaCAM P20 imaging radiometer. The

Figure 3. Albedo map (5 m resolution) derived from visible im-
ages taken at midday. Also shown are the location of reference and
validation sites; letter codes indicate major land cover types: fal-
lowed (F), mixed grass (MG), brome grass (BG), cultivated (C),
and wetlands (W).

P20 used a focal plane array uncooled microbolometer with a
maximum image resolution of 320× 240 pixels, a 24◦× 18◦

field of view, and a spatial resolution of 1.3 mrad. The spec-
tral range was 7.5–13 µm, which is similar to traditional
satellite sensors (e.g. Landsat, MODIS, and AVHRR with
a spectral range of 10–12.5 µm and ASTER with a spectral
range of 8–12 µm).

A standard emissivity of 0.98 was assumed for the cover
types encountered, and ambient air temperature and humid-
ity and the distance between the surface and camera detec-
tor were set based on observations. The Stefan–Boltzmann
equation was applied to transform surface temperatures into
values of outgoing longwave radiation needed to estimate the
net radiation. For the flight height of approximately 1 km the
FLIR produced a surface pixel resolution of approximately
3 m. The longwave radiation map was then aggregated to a
5 m resolution and georectified using the resulting map of
albedo estimates as the reference.

3.4.5 Surface roughness length

The study area is characterised by a complex landscape with
rolling terrain covered by tall grasses, cultivated land, and
narrow rings of tall grasses, tall shrubs, or tall trees sur-
rounding ponds and dried wetlands (see Fig. 1). Such sur-
face characteristics (e.g. discontinuities and protrusions) are
expected to produce variations in wind speed and turbulent
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energy through interactions with the different surface types
and roughness.

Variations in the aerodynamic roughness length, Z0, and
wind speed are important factors considered in the turbulent
transfer function used for calculating the aerodynamic terms
of the G–D model (Eqs. 2 and 3). Previous developments
(e.g. Pomeroy et al., 1997) have considered boundary layer
(friction velocity) and surface parameters (roughness length)
estimated from EC measurements and wind profiles over bo-
real forests and Canadian Prairie land covers such as bare soil
and C3-type crop and grasses.

Due to the general surface complexity at the study area,
roughness classes for Z0 were needed to adjust the vapour
transfer function to reflect potential increases or decreases in
turbulent exchanges as result of variations in surface proper-
ties and local roughness. For example, lower values of Z0
associated with fallowed areas and crops would imply in-
creased wind speeds near the ground and a reduction in tur-
bulent energy. In contrast, larger Z0 values associated with
taller dense grasses, shrubs, and trees would effectively re-
duce wind speeds and increase turbulent exchanges.

For the purposes here, a roughness length classification
map for Z0 was derived from the 8 bit grayscale image used
for estimating surface albedo. This was achieved based on
knowledge of the various land covers at the site and seg-
mentation analysis using the IDRISI Kilimanjaro surface
analysis tool (Clark Labs, Clark University, Worcester, Mas-
sachusetts, USA). Greyscale DNs were initially classified
into 13 zones of similarity, and a segmentation analysis was
applied. The method computes a standard deviation for each
pixel using a 3× 3 moving window filter. The standard devi-
ation and associated DN for each pixel are then sorted (low
to high), and a bin range is assigned. A class width toler-
ance was set for pixels having similar standard deviations,
and all values within a specified range were assigned to the
same class. Where pixel values were outside the range, but
class boundaries overlapped, a midpoint was determined and
a new class was created.

The initial 13 classes were manually reclassified into three
general classes (fallowed/cropped, grass, and trees) based on
the extents of the dominant land cover types observed in
the original and classified images. Characteristic roughness
lengths,Z0, were then selected for each class based on values
reported for similar surface types (Brutsaert, 1982). In this
case, a value of 0.05 m was used for the fallowed/cropped
class, and 0.10 m was used for the taller- and denser-grass
class. Narrow rings of shrubs and trees around wetlands were
also dense and much taller than the surrounding cover with
heights varying from 3 to 10 m. Brutsaert (1982) reported
roughness lengths between 0.2 and 0.4 m for similar type sur-
face elements. The value of 0.40 m was chosen to reflect an
expected increase in roughness and turbulent exchange due
to a likely reduction in wind speed compared to the surround-
ing cover types.

3.5 Exploratory analysis of surface variables and
evaporation estimates

Exploratory analysis of key surface variables and evapora-
tion estimates was conducted using the R software environ-
ment (Grunsky, 2002). Data analysis consisted of boxplot
summaries giving the 25th and 75th quartiles (i.e. the in-
terquartile range) defined by the box, and an inner solid line
indicating the median value was also given. Data points were
plotted with jitter to reflect the density of outliers greater than
1.5 times larger or smaller than the interquartile range with
the upper and lower limits defined by box whiskers.

4 Results and discussion

Calculating detailed daily evaporation estimates and exam-
ining spatial scaling issues required the midday inputs and
temporal-scaling function to be computed first. Analysis of
midday inputs are described in Sect. 4.1–4.4. Section 4.5
and 4.6 discuss the sensitivity of the G–D model to the mid-
day evaporation ratio and the temporal transfer function re-
quired for scaling a single measured value of mean daily ra-
diation across a midday image. Section 4.7–4.9 discuss the
accuracy of the resulting evaporation estimates, variations in
statistical distributions of key driving components, and scal-
ing implications for larger-scale evaporation estimates.

4.1 Validation of albedo estimates

At midday on 5 August 2007 a reference albedo of αref =

0.153 was obtained from observed irradiance and the re-
flectance of shortwave radiation over the mix of green
grasses. The albedo map resulting from Eq. (11) and loca-
tions of reference and validation points is shown in Fig. 3.
Vegetation was similar at both EC station locations, and the
scaled albedo estimate (0.164) agreed well with the measured
value (0.167) at the validation site.

The validation of the mean and range of albedo estimates
obtained for major land covers in Fig. 3 is summarised in
Table 1. Estimates of albedo from the image compared well
with values expected for grasses, agricultural crops, decid-
uous trees, and bare soils reported in Brutsaert (1982). The
root mean square error (RMSE) of albedo estimates from the
pixels and measured albedo values was approximately 3.5 %,
which is within an expected error of 2 % to 5 % for research
purposes (Liang, 2000).

The 5 m resolution albedo map highlighted surface in-
formation within the landscape that would be more gener-
alised using coarser data. For example, the albedo map de-
picted distinct boundaries separating regions dominated by
brome (BG) and mixed grasses (MG), cultivated or crop
area (C), sparsely vegetated, fallow area (F), and wetland
fringe vegetation (W). Also, wetland extents and fringe veg-
etation were observable in areas surrounded by other vegeta-
tion types (see Fig. 1 for reference). The detailed variations
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Table 1. Approximate mean values and ranges of albedo for the
major land cover types.

Land cover Mean Range

Wetland vegetation (W) 0.11 0.05–0.16
Brome grass (BG) 0.15 0.13–0.17
Mixed grass (MG) 0.17 0.15–0.19
Cultivated (C) 0.18 0.17–0.20
Fallowed (F) 0.20 0.17–0.23

Figure 4. Surface-emitted longwave radiation (W m−2) map (5 m
resolution) derived from a thermal image taken at midday.

are expected to impact evaporation estimates through rela-
tive increases at pixels with relatively lower values of albedo,
which results in an increase in the available energy, whereas
relatively higher values will reduce the available energy and
estimates of evaporation.

4.2 Validation of longwave radiation estimates

Figure 4 shows the resulting map of emitted longwave
radiation, L ↑, derived from the image of observed sur-
face temperatures, with estimates ranging between 380 to
480 W m−2. At the two EC station locations a comparison
was made among the midday surface longwave measure-
ments from the P20 camera, a narrow-beam Exergen infrared
thermocouple (IRTC) radiometer, and surface-emitted long-
wave values obtained from the CNR1.

The P20 measurement compared well with the IRTC val-
ues with differences less than −12 W m−2. Compared with
the CNR1 values, the differences were slightly larger at

Figure 5. Classification map of aerodynamic surface roughness
length derived from a visible image taken at midday and typical
values found in Brutsaert (1982).

−30 W m−2 but was still within 8 % error. Generally, the dif-
ferences were small considering relative changes in midday
surface net radiation, and the magnitude of incoming radi-
ation components is considerably larger. The variable foot-
prints of the different measurements and absorption prop-
erties of water vapour, which can reduce the signal, are
likely sources of error. Also, dust and heating of the CNR1
downward-facing pyrgeometer may introduce another source
of error.

For estimating evaporation, the smaller emitted longwave
values resulting from lower surface temperatures will in-
crease the available energy relative to larger values which
imply reduced water availability and evaporative cooling.

4.3 Surface roughness length map

Figure 5 shows the resulting classified surface roughness
length, Z0, map. A visual comparison with the study area
map (Fig. 1) and albedo map (Fig. 3) suggests that the clas-
sification map provides a physically realistic representation
of variations in roughness over a large portion of the study
area. Notable changes in the reflected surface properties and
roughness length classification among the key land cover
types can be observed. This is particularly true where dis-
tinct boundaries separate the transition between the domi-
nant cover types such as where taller shrubs and trees sur-
round ponds, compared to more broad regions of the fallow,
cropped areas and grasses.
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Figure 6. Sensitivity of the evaporation ratio to key inputs at midday. The measured range of input values is shown to demonstrate potential
variation in this case study.

4.4 Sensitivity of the evaporation ratio to key variables
at midday

Normalised indexes for albedo, surface temperature, and
roughness were considered to examine the relationships of
variations in these variables compared to the evaporation ra-
tio. Figure 6 shows the expected physical behaviour of these
variables within the G–D model. Only the actual range of
values computed for the ratiometric index was considered so
that the physical variations could be shown more clearly. In
this case, the impacts of relative changes in the apparent in-
verse linear relationships between ER and αR and L↑R and
slight non-linear relationship between ER and Z0R on evapo-
ration estimates can be computed. The results can be used to
illustrate the impacts of required changes in key driving vari-
ables to produce notable changes in the evaporation ratio.

For example, a relative increase in the surface temperature
via L↑R of 0.18 (or 18 %) was shown to reduce ER by 10 %.
By comparison, an increase in reflected shortwave radiation
via αR of 0.30 (or 30 %) reduced ER by only 5 %. In the case
of surface roughness, an increase of 250 % was needed to re-
duce ER by 10 %. Consequently, a relative reduction in evap-
oration rates may be expected where albedo, surface temper-
ature, and surface roughness tend to be larger. In the latter
case, step changes in surface roughness would increase the
relative drying power, D, but the relative evaporation, G, re-
sults in a relative decrease due to the inverse non-linear re-
lationship. The increased sensitivity of ER to L↑R also in-
dicates that detailed spatial variations in surface longwave
radiation is an important factor for estimating evaporation.

4.5 Temporal transfer function: normalised
ratiometric radiation index

Net radiation is known to vary dynamically on a sub-daily
basis. Equation (10) shows how a radiation ratio, Q∗R, can
be used as a temporal transfer function to scale estimates of
mean daily net radiation over an image. In order to scale the
normalised net radiation ratios from a temporal “point” at

midday to a mean daily value, it was necessary to examine
whether a stable proportionality existed between measured
values at midday and mean daily net radiation. Verification of
a proportionality under clear skies would eliminate the need
for an empirical scaling function.

Historical records were examined for a period from 1 May
to 1 September at three Canadian Prairie locations at sim-
ilar latitudes (49–52.2◦). The analysis included two field
seasons at the SDNWA study site (2006–2007). Archived
data were also obtained at two short grass prairie loca-
tions, an AmeriFlux network site at Lethbridge, Alberta,
Canada (1999–2004), and Kernen Farm located at Saskatoon,
Saskatchewan, Canada (1999–2000). Figure 7 shows a mod-
erately strong relationship at each location even with the y
intercept set to 0, and r2 is equal to 0.54–0.62.

This result confirms that a general proportionality exists
and suggests that daily net radiation, Q∗d, could be scaled
to all pixels across an image from a single measured refer-
ence value, Q∗dref, as a function of the normalised ratio index
for Q∗R at midday, stated here as

Q∗d =Q
∗

drefQ
∗
R. (12)

Q∗dref was assigned a daily measured reference value of
155 W m−2, which was obtained from the CNR1 at the ref-
erence station. Q∗R was derived from Eq. (10) using the
measured reference values of incoming shortwave and long-
wave radiation components, and albedo and emitted long-
wave maps are used as inputs. The resulting mean daily
net radiation map and a comparison of estimated and mea-
sured Q∗d at two validation locations are shown in Fig. 8.
The main validation site was equipped with a CNR1 and a
second independent site maintained by Environment Canada
was equipped with an NR Lite radiometer (Kipp & Zonen,
Delft, the Netherlands).

The distributed estimates of daily net radiation ranged
from approximately 120 to 190 W m−2. The Q∗d estimates
at the validation sites were 6 W m−2 higher (4 % error) com-
pared to the CNR1 measurement and 11 W m−2 lower (8 %
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Figure 7. Relationship between the midday and mean daily net radiation for a range of years at two Canadian Prairie sites and one Parkland
site for the period 1 May through 1 September. R2 values shown for fitted line with the y intercept set to 0.

Figure 8. Resulting input map of mean daily net radiation derived
from the normalised index of midday net radiation and a single ref-
erence value of mean daily net radiation (155 W m−2). Also shown
are the location of validation sites for comparing measured and es-
timated values of mean daily net radiation.

error) compared to the NR Lite observation. These results in-
dicate that accurate estimates of net radiation can be scaled
across detailed midday images from a single measured value
of mean daily net radiation. More importantly, detailed accu-
rate estimates of net radiation would be valuable for improv-
ing point-scale evaporation estimates.

4.6 Calculating direct estimates of actual evaporation
with the G–D model

The mean daily net radiation map derived from Eq. (12) was
supplied as input to the G–D model to estimate the mean
daily actual evaporation at every land surface pixel. The ref-
erence humidity and wind speed values (discussed earlier)
and the surface roughness length map were used for calculat-
ing the aerodynamic terms in Eqs. (2) and (3). An estimate
of mean daily evaporation was then calculated at every pixel
location based on Eq. (1).

The resulting map of distributed actual evaporation esti-
mates is shown in Fig. 9. Due to the level of detail captured
in the net radiation map of Fig. 8, the map shows a physically
realistic pattern of evaporation for the range of land cover
types. For example, areas where vegetation was less dense
(e.g. fallowed/cropped) and soil surface conditions were drier
showed lower rates of mean daily evaporation, and higher
rates were associated with the more-densely grassed areas.
The highest evaporation estimates were obtained where wa-
ter availability is expected to be higher, e.g. among wetland
fringes and depressions where albedo and surface tempera-
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Figure 9. Map of distributed estimates of mean daily evaporation at
a 5 m pixel resolution.

tures were lower, which can be attributed to increased water
availability and evaporative cooling.

The prevailing wind direction for the day (Udir) was from
a north-northwest direction. A mean evaporation estimate of
2.7 mm was obtained along a linear transect for pixels con-
taining a brome grass surface immediately upwind of the
EC station (Fig. 9). The estimate of 2.7 mm was 0.5 mm or
23 % higher than the EC-measured mean evaporative flux of
2.2 mm d−1. Based on the cumulative flux model of Schuepp
et al. (1990), it is expected that 80 % of the cumulative flux
would come from within an upwind distance of 100 m from
the EC station along a similar path to the linear transect. The
estimate of 2.7 mm d−1 might be lower if ground heat flux
was found to be a factor for reducing the available energy.
However this would need to be reliably accounted for at ev-
ery 5 m pixel.

On the study day the mean daily energy fluxes in W m−2

(including latent (LE) and sensible heat (HE)), and the ra-
tio of the energy balance closure at the validation site was
(LE+HE)/(Q∗−Qg)= (63+55)/(144−2). This results in
an energy balance closure of approximately 83 %. The result-
ing Bowen ratio of 0.87 was reasonable for the drying con-
ditions and later timing in the growing season for the grasses
in this semi-arid region. In this case it is expected there will
be uncertainty in both estimated and measured EC fluxes due
to modelling and measurement errors and different footprint
scales. For instance, it is possible that LE and HE could be
under-measured or the ground heat flux could be more vari-
able upwind of the EC station than estimated.

Measured evaporation rates were not available for trees
(dominated by aspen) in 2007, but the G–D estimates were
compared against archived values from Boreal Ecosystem–
Atmosphere Study (BOREAS) data for an old-aspen site
from August 1996. The G–D mean daily values in the or-
der of 3 mm were reasonable compared to evaporation from
similar trees reported by Hogg et al. (2001).

In general, the results are instructive because the G–
D method has been demonstrated to provide a reasonable es-
timate of evaporation from the remote-sensing images taken
over a complex landscape. Armstrong et al. (2008) have also
shown similar accuracy for daily and multi-day periods from
meteorological data alone during the 2006 field season at
the same study area. More importantly, the ratiometric-index
method of scaling may be valid for distributing surface ra-
diation components across remote-sensing imagery obtained
from satellites, planes, or near-surface aerial platforms such
as UAVs.

4.7 Distributions of evaporation and driving surface
variables

The following sections briefly discuss the statistical distribu-
tions of the driving variables obtained from the images used
for estimating evaporation and their impacts on the result-
ing evaporation estimates. The benefit here is the statistical
distributions of evaporation and key driving factors are con-
sidered to be physically meaningful.

Figure 10 shows the frequency distributions of evapora-
tion estimates and relative contributions for the energy bal-
ance and aerodynamic components. G–D model evapora-
tion estimates appear normally distributed with a mean of
2.8 mm d−1 and a relatively low coefficient of variation (cv
of 0.07). Distributions for the energy and aerodynamic terms
were notably different due to interactions among the driv-
ing variables and different roughness classes. For the energy
component, the distribution was continuous with a mean of
1.1 mm and a cv of 0.11. The distribution mean for the aero-
dynamic term was 1.7 mm and was bimodal due to the differ-
ences in magnitude of the discrete roughness classes used.

Figure 11 shows boxplot summaries of distributions for
albedo (α), surface temperature (Ts), net radiation (Q∗),
relative evaporation (G), mean daily evaporation (E), and
G plotted against net radiation. In the case of α, values below
approximately 0.10 and lower “outliers” can be attributed to
uncertainty associated with the wetland vegetation and likely
where surface water was not completely masked out near the
edges of ponds. In general, the distributions for α and Ts
which drive the net radiation appear to show more notable
variability compared to Q∗ and the resulting estimates of E.
For example, the distributions of α and Ts showed opposite
skewness, −0.83 and 0.36, respectively. The variability for
α (cv of 0.19) was larger than Ts (cv of 0.14), which is also
much larger than apparent variability of bothQ∗ (cv of 0.65)
and E (cv of 0.66). Mean values of the distributions for α,
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Figure 10. Distribution of daily evaporation estimates over the field area and relative contributions of evaporation for the energy and aero-
dynamic terms.

Ts, Q∗, and E were close to the median values shown within
the boxes depicting the interquartile ranges.

The resulting boxplot for G and the plot of G against net
radiation reflects the interaction across the discrete rough-
ness length classes. The statistical distribution of G was not
continuous due to the larger step change in roughness length
from 10 to 40 cm. Plots of G against net radiation resulted in
three distinct linear relationships which can be attributed to
using a uniform mean daily wind speed and humidity deficit
for calculating the drying power of the air, EA. In this case,
the potential variability ofG associated with the relative dry-
ing power, D, is limited to variations in roughness length,
but this may vary more with changes in wind speed and the
humidity deficit.

Generally, despite the larger variability of key factors driv-
ing the energy component the complex interactions within
the G–D model appear to reduce the overall variability of
evaporation estimates.

Spatial variations within roughness length classes

Boxplots shown in Fig. 12 further characterise the spatial
variability of α, Ts, Q∗, G, and E within the three rough-
ness length classes. In general, the plots depict notable shifts
in the interquartile ranges of the distributions across the
classes. Results of paired Kolmogorov–Smirnov tests for

each variable showed statistical differences among the distri-
butions for each roughness class were highly significant (p
value< 0.001). General increases in albedo and surface tem-
perature are clearly shown across the 20 to 40 cm and 10 cm
roughness length classes.

Consequently, there was a notable reduction in net radia-
tion and similar reduction in evaporation estimates moving
from the higher to lower roughness length classes. Figure 12
also clearly shows evidence of a non-linear, inverse relation-
ship betweenG and net radiation across the roughness length
classes. In this case, the interaction between G and Q∗ ap-
pears to offset the potential increase in mean estimates of E
associated with increases in available energy. As a result, a
large reduction in the variability of the evaporation estimates
is clearly evident when compared to the same plot for net
radiation.

4.8 Scaling implications

There is a potential for areal estimates of evaporation to vary
depending on how upscaled estimates are calculated from
the underlying driving factors or the smaller point-scale es-
timates. For example, a mean areal estimate of evaporation
calculated from all image pixels was 2.8 mm d−1, which ac-
counts for all of the variability available from 5 m pixels. An
areal estimate may also be calculated as a weighted mean
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Figure 11. Distribution of key surface variables, mean daily evap-
oration estimates, and relative evaporation over the field area and
the relationship between G and net radiation within the roughness
classes.

of evaporation estimates obtained for each roughness length
class. This is similar to the mosaic approach used within
land surface schemes based on fractional land cover areas.
The mean daily evaporation rates for the 5, 10, and 40 cm
roughness length classes increased with each step change
in roughness class as 2.6, 2.8, and 3.0 mm d−1, respectively.
The distribution of land area associated with each roughness
class was 48 % (10 cm roughness), 30 % (5 cm roughness),
and 22 % (40 cm roughness). The weighted areal evapora-
tion (Eareal) can be obtained as

Eareal = (0.30 · 2.6)+ (0.48 · 2.8)+ (0.22 · 3.0)= 2.78mmd−1. (13)

In this case there was only a small difference in areal esti-
mates obtained based on the distribution mean or a weighted
mean based on fractional areas of each roughness class. This
may be partly due to the relatively small variation in evapo-
ration rates across the roughness length classes and the level
of detailed variability captured by the 5 m pixel resolution.
Eareal was recalculated using Eq. (13) with different combi-
nations of the fractional areas, which only produced a minor
difference of ±0.1 mm. In other words, in order for there to

Figure 12. Distributions of albedo, surface temperature, net radi-
ation, evaporation, and relative evaporation within each roughness
class.

be a larger difference between the areal estimates, greater
variability may either be required in the evaporation esti-
mates distributed over the field or among the mean rates for
each roughness class.

The mean areal estimate, Eareal of 2.8 mm d−1 for all pix-
els, was also 0.3 mm higher than a G–D model estimate of
2.5 mm d−1 obtained from station meteorological observa-
tions of net radiation, air temperature, humidity, and wind
speed. Variations among the estimates and measurements
vary by approximately 22 % to 27 %, which is not surprising
given the differences in calculation techniques and potential
mismatches in associated footprint scales.

An upscaled areal mean estimate of evaporation can also
be obtained from mean values of the key factors driving the
energy and aerodynamic terms. The general form of Eq. (1)
can be restated to derive the individual components more di-
rectly as

E =
1GQ∗

1G+ γ
+
γGEA

1G+ γ
. (14)

For the entire area and also each roughness length class,
mean values of the driving factors were derived and evap-
oration estimates were recalculated using Eq. (14). The rel-
ative evaporative contributions attributed to the energy and
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Table 2. Areal evaporation estimates within each roughness class from the G–D model and for the entire area based on mean values. E_energy
and E_aero are the contributions from the energy and aerodynamic components, and E_total is the combined total. The mean value of the
distributed estimates is given in the column “Expected”, and the difference between the total and expected is given in the column “Diff”.

Z0 1 G Q∗ γ EA D E_energy E_aero E_total Expected Diff
cm kPa mm d−1 kPa mm d−1 mm d−1 mm d−1 mm d−1 mm d−1 mm

5 0.134 0.132 4.88 0.063 12.99 0.73 1.07 1.34 2.40 2.59 −0.18
10 0.134 0.124 5.27 0.063 15.13 0.74 1.10 1.48 2.58 2.77 −0.19
40 0.134 0.085 5.69 0.063 27.97 0.83 0.87 2.01 2.88 3.02 −0.14
Eareal 0.134 0.113 5.28 0.063 18.70 0.77 1.03 1.71 2.73 2.77 −0.03

aerodynamic terms are provided in Table 2. For the differ-
ent roughness length classes, the range of evaporation es-
timates attributed to E_energy was only 0.2 mm d−1 and
nearly 0.7 mm d−1 for E_aero, and the difference in total
evaporation, E_total was 0.5 mm d−1. A bias toward larger
evaporation estimates might be expected given the increase
in energy availability and enhanced turbulence with an in-
crease in roughness. However, the potential bias was offset
by the interaction of G and Q∗ and also G and EA.

Table 2 also compares evaporation estimates calculated
from only mean values of G and Q∗, and EA to the “ex-
pected” rates for each roughness length class. Expected rates
were calculated from the mean values for all pixels assigned
within each roughness length class. Evaporation rates de-
rived from the mean input values alone were only between
0.14 and 0.2 mm less than the expected mean rates for each
roughness length class. Upscaling the driving factors to the
entire area also had no impact on the resulting estimate as the
difference was just 0.1 mm.

4.9 Examining spatial covariance among key variables

Whether evaporation estimates might be influenced by a spa-
tial covariance between driving factors was also examined.
The Pearson correlation coefficient, r , was used to evaluate
correlations among the driving factors distributed over the
field area. By definition, Pearson’s correlation is the ratio of
the covariance (the numerator) between two variables nor-
malised by the product of their standard deviations as fol-
lows:

r =

∑ (
Xi−X

)(
Yi−Y

)
n√∑(

Xi−X
)2

n

√∑(
Yi−Y

)2
n

, (15)

where Xi and Yi are the respective values of the variables,
the overbar denotes the mean value, and n is the number of
pairs. A strong correlation between two variables might sug-
gest the existence of covariance that could influence upscaled
estimates of evaporation. Given that the roughness classes
used represent discrete data and there is a lack of more de-
tailed meteorological data to parameterise the aerodynamic
term, further evaluation related to climate factors would not

be meaningful. Therefore only an examination of the factors
driving the energy term are considered here.

In this case, a potential covariance between G (dimen-
sionless) and Q∗ (expressed in mm d−1) can be consid-
ered directly. By rearranging Eq. (15) the covariance can be
obtained by multiplying the correlation coefficient and the
product of the standard deviations of Q∗ (0.34 mm d−1) and
G (0.021 mm d−1). The correlation between Q∗ and G over
the field area produced a coefficient, r =−0.67.

When multiplied in series (r =−0.67) · 0.34 · 0.02 this
results in a covariance of approximately −0.0049 mm d−1.
This suggests interactions between Q∗ and G for the meth-
ods applied here would have no further statistical influence
on upscaled evaporation estimates. Unfortunately, no com-
ment can be made regarding covariance between G and the
turbulent flux component in the G–D model. Such analysis
would require more detailed observations of air temperature,
humidity, and wind speed and possibly a more sensitive com-
bination model. Nevertheless, the impact of combined inter-
actions within the G–D model effectively reduced the overall
variability of point-scale evaporation estimates and also up-
scaled estimates derived from different computation methods
for parameterising the model.

4.10 General uncertainty of the methods applied

Implications of general modelling assumptions and the un-
certainty of the methods applied are briefly discussed here.
The daily ground heat flux was considered to be negligible
for the study day as the mean daily flux was relatively small
at the two stations where there was good canopy coverage.
Where local cover properties are similar (e.g. brome grass
and mixed-grass areas) the ground heat flux may be of a sim-
ilar magnitude, but it would be greater where surface cover
is less dense or where water availability is limited, due to
differences in the surface properties.

Further, the relative evaporation, G, which is based on the
relative drying power, D, integrates available energy which
in this case directly includes the spatial variability of surface
temperature. As such, evaporation might be overestimated in
areas with more ground exposure and higher surface tem-
peratures, where ground heat flux may be appreciably larger
(e.g. fallowed/crop area). This interaction could result in a
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further reduction in the energy available for the evaporation
estimate.

C3-type vegetation was at the study area, but the model
behaviour may differ for C4 plants and may require new
vapour transfer equations for surface types and plants other
than which the G–D model was developed on. In the current
study representative roughness lengths were selected based
on reported values for surfaces of a similar type and height. A
larger uncertainty in evaporation estimates may be expected
for the roughness length class associated with the shrub/tree
areas which could result in variable changes in wind speed
and enhanced turbulence associated with larger roughness
lengths.

5 Summary and conclusions

This study examined spatial associations and physical inter-
actions amongst key surface variables driving actual evap-
oration estimates and impacts of their variations on various
methods of upscaling estimates to a larger area. The meth-
ods applied demonstrate how measured reference values of
albedo and mean daily net radiation can be scaled accu-
rately across a large field area for the purpose of deriving
point-scale estimates of evaporation at each pixel. This was
achieved by computing a normalised ratiometric index of sur-
face radiation from highly detailed midday visible and ther-
mal images. At two validation sites estimates of daily net
radiation showed good agreement with measured values to
within 4 % and 8 % error.

Estimates of mean daily actual evaporation were calcu-
lated at 5 m resolution with the G–D model. The daily evap-
oration rate estimated for a transect upwind of the EC station
was 2.7 mm for 5 August 2007 which was 23 % larger than
the EC measured flux of 2.2 mm. Offsetting interactions be-
tween the relative evaporation term and key surface variables
effectively reduce the spatial variability of evaporation esti-
mates. As a result, differences amongst computed areal evap-
oration estimates were relatively small regardless of the dif-
ferent methods used to derive representative average values
of driving factors to parameterise the model or the average
evaporation rate derived from detailed estimates across the
field. There was no evidence of a spatial covariance between
the spatial distributions of net radiation and G, so no correc-
tion factor was identified for improving upscaled evaporation
estimates.

The scaling methods applied to the energy terms using ra-
tiometric indexes derived from detailed images could gen-
erate useful diagnostic information at other study locations
and potentially over much larger areas. The methods applied
here may also be instructive toward improving techniques
for upscaling evaporation estimates to larger areas via tradi-
tional remote sensing or climate modelling or using a differ-
ent combination model. It is expected that the methods can
be applied to visible and thermal images taken from cameras

and sensors on a variety of sensing platforms (e.g. satellites,
planes, and UAVs).
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