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Abstract. Stochastic rainfall modelling is a commonly used
technique for evaluating the impact of flooding, drought, or
climate change in a catchment. While considerable atten-
tion has been given to the development of stochastic rainfall
models (SRMs), significantly less attention has been paid to
developing methods to evaluate their performance. Typical
evaluation methods employ a wide range of rainfall statis-
tics. However, they give limited understanding about which
rainfall statistical characteristics are most important for re-
liable streamflow prediction. To address this issue a formal
evaluation framework is introduced, with three key features:
(i) streamflow-based, to give a direct evaluation of mod-
elled streamflow performance, (ii) virtual, to avoid the issue
of confounding errors in hydrological models or data, and
(iii) targeted, to isolate the source of errors according to spe-
cific sites and seasons. The virtual hydrological evaluation
framework uses two types of tests, integrated tests and unit
tests, to attribute deficiencies that impact on streamflow to
their original source in the SRM according to site and season.
The framework is applied to a case study of 22 sites in South
Australia with a strong seasonal cycle. In this case study, the
framework demonstrated the surprising result that apparently
“good” modelled rainfall can produce “poor” streamflow pre-
dictions, whilst “poor” modelled rainfall may lead to “good”
streamflow predictions. This is due to the representation of
highly seasonal catchment processes within the hydrological
model that can dampen or amplify rainfall errors when con-
verted to streamflow. The framework identified the impor-
tance of rainfall in the “wetting-up” months (months where
the rainfall is high but streamflow low) of the annual hydro-
logic cycle (May and June in this case study) for providing

reliable predictions of streamflow over the entire year despite
their low monthly flow volume. This insight would not have
been found using existing methods and highlights the impor-
tance of the virtual hydrological evaluation framework for
SRM evaluation.

1 Introduction

Stochastic rainfall model (SRM) simulations are used pri-
marily as inputs to a hydrological model, for simulating real-
isations of streamflow. Streamflow simulations are then used
to assess hydrological risks, such as floods (e.g. Camici et al.,
2011; Li et al., 2016) or droughts (e.g. Henley et al., 2013;
Mortazavi-Naeini et al., 2015; Paton et al., 2013). When eval-
uating the efficacy of SRMs, current approaches that make
comparisons to observed rainfall or streamflow have limited
diagnostic ability. They are unable to make a targeted eval-
uation of the SRM’s ability to reproduce streamflow charac-
teristics of practical interest. This paper introduces a new vir-
tual framework that enables targeted hydrological evaluation
of SRMs.

Observed-rainfall evaluation is the most common method
for SRM evaluation (Baxevani and Lennartsson, 2015; Ben-
nett et al., 2018; Evin et al., 2018; Rasmussen, 2013; Srikan-
than and Pegram, 2009; Wilks, 2008). As shown in Fig. 1a, it
involves comparisons between observed and simulated rain-
fall typically using a large number of evaluation statistics.
Often, this method shows “mixed” performance where many
statistics are reproduced well but some are poor. While these
assessments are useful, a drawback is that it is difficult to
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Figure 1. Schematic of (a) observed-rainfall evaluation where simulated rainfall is compared against observed rainfall and (b) observed-
streamflow evaluation where simulated streamflow is compared against observed streamflow. (c) Virtual hydrological evaluation framework
where simulated streamflow is compared against virtual-observed streamflow.

ascertain whether the SRM’s performance is sufficient in
terms of predictions of practical interest, which are typically
streamflow-based. This means it is unclear whether it is nec-
essary to invest time and effort to address instances of poor
performance, when the majority of statistics are well repro-
duced (Bennett et al., 2018; Evin et al., 2018).

To overcome limitations in observed-rainfall evaluation
methods, the conventional alternative is to evaluate the
rainfall model’s performance in terms of streamflow (e.g.
Blazkova and Beven, 2002, 2009; Camici et al., 2011;
McMillan and Brasington, 2008) and is referred to as
“observed-streamflow evaluation”. From Fig. 1b, observed-
streamflow evaluation typically involves (1) a SRM that pro-
duces simulations of rainfall that are (2) input to a hydrologi-
cal model to produce simulated streamflow, which is (3) con-

verted to the predictions of interest (e.g. the flood frequency
distribution) and (4) compared against the observed stream-
flow predictions of interest. A challenge with observed-
streamflow evaluation is that when there is poor predictive
performance (i.e. a significant discrepancy between the ob-
served and predicted streamflow), it is difficult to ascertain
whether the poor performance was caused by the hydrologi-
cal model or the SRM. Hydrological model predictive perfor-
mance can vary substantially from catchment to catchment
due to data errors (rainfall or streamflow) and model struc-
tural errors (Andreassian et al., 2001; Coxon et al., 2015;
Evin et al., 2014; Kuczera and Williams, 1992; McInerney
et al., 2017; Renard et al., 2011), which makes it difficult to
evaluate the performance of the SRM and identify opportu-
nities for improvement.
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Table 1. Comparison of the sources of error for observed-rainfall, observed-streamflow and virtual hydrological evaluation frameworks as
well as whether the evaluation is streamflow-based.

Source of error

Stochastic rainfall Hydrological Observed Streamflow-based
model model streamflow evaluation

Observed-rainfall evaluation Yes No No No
Observed-streamflow evaluation Yes Yes Yes Yes
Virtual hydrological evaluation Yes No No Yes

The focus of this paper is the development and appli-
cation of a virtual hydrological evaluation framework for
streamflow-based evaluation of SRMs. As shown in Fig. 1c,
a virtual hydrological evaluation involves the comparison
of simulated streamflow statistics (produced by the hydro-
logical model by inputting simulated rainfall from a SRM)
against virtual-observed streamflow statistics (produced by
the hydrological model by inputting observed rainfall). This
framework is designed to focus on streamflow predictions of
interest, similar to observed-streamflow evaluation, but to re-
duce the sources of error to only those introduced by the
SRM. To illustrate this, Table 1 gives an overview of the
sources of error for the three evaluation frameworks and in-
dicates whether the evaluations are streamflow-based. The
observed-rainfall evaluation framework is used to identify
errors in the SRM, but is not able to determine their impli-
cations for streamflow. The observed-streamflow framework
provides an absolute measure of performance, since ulti-
mately the goal is to match streamflow observations or statis-
tics. However, with this approach it is not possible to readily
identify whether discrepancies in the simulated streamflow
are attributed to the SRM, the streamflow observations, or
poor process representation within the hydrological model.
In contrast, the virtual hydrological evaluation framework is
a relative measure of performance, where the hydrological
model is a common factor in the production of simulated
streamflow and virtual-observed streamflow that is used as
a baseline for comparison. By using a virtual baseline, ob-
served streamflow is not directly required in the evaluation
as both simulated and observed rainfall undergo transforma-
tion by the same process representation (i.e. the hydrological
model). This enables discrepancies in the streamflow to be
identified in terms of features of the SRM.

To date, “virtual experiments”, that is, experiments that
focus on comparisons between streamflow simulated under
different conditions or inputs (i.e. virtual streamflow) with-
out relying on comparisons to observed streamflow, have
been used in a variety of contexts. Examples include (i) the
evaluation of hydrological model sensitivity (e.g. Ball, 1994;
Nicótina et al., 2008; Paschalis et al., 2013; Shah et al., 1996;
Wilson et al., 1979), including the identification of rainfall
features of interest in terms of hydrological behaviour (e.g.
Sikorska et al., 2018), (ii) the development of new techniques

for flood frequency analysis (e.g. Li et al., 2014, 2016), and
(iii) the calibration, validation, and selection of SRMs (e.g.
Kim and Olivera, 2011; Müller and Haberlandt, 2018).

The framework presented in this paper is a significant ad-
vance from previously reported virtual experiments because
it presents a formal framework to identify key deficiencies in
the SRM by (1) extending the comprehensive and systematic
evaluation (CASE) framework (developed by Bennett et al.,
2018, for observed-rainfall evaluation and used by Evin et al.,
2018, and Khedhaouiria et al., 2018) that systematically cat-
egorises performance at multiple spatial and temporal scales
using quantitative criteria for each statistic for use in virtual
hydrological evaluations and (2) utilising two types of virtual
experiments that are able to identify the source of key defi-
ciencies in the SRM at specific locations and time periods.

The key objectives of this paper are the following.

1. Introduce a formalised framework for the virtual hy-
drological evaluation of SRMs: the new framework is
a stepwise procedure that enables the identification of
poor performing sites, then poor performing time peri-
ods, and then the key deficiencies in the SRM for those
sites and time periods by drawing on the systematic ap-
plication of quantitative performance criteria.

2. Present two different tests which are part of the frame-
work: the integrated test and a new type of test, the unit
test. Combined use of these tests allows streamflow dis-
crepancies to be attributed to their original source in the
SRM according to site and season.

3. Demonstrate the framework on a daily SRM at multiple
sites to evaluate performance at daily, monthly, and an-
nual timescales and to contrast the outcomes with con-
ventional evaluation methods.

The virtual hydrological evaluation framework is explained
in Sect. 2 with the procedures for the integrated test and unit
test outlined in Sects. 2.2.2 and 2.4.1. Daily SRMs have been
developed for 22 sites in the Onkaparinga catchment, South
Australia (Sect. 3), and are used to illustrate the procedure
(Sect. 4). Discussion and conclusions emphasise the features
of the framework and the different recommendations it can
identify for improving the SRM (Sects. 5 and 6).
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2 Virtual hydrological evaluation framework

2.1 Overview

A virtual hydrological evaluation involves the comparison
of simulated streamflow statistics to virtual-observed stream-
flow statistics (Fig. 1c), defined as the following.

– Simulated streamflow is streamflow produced by the
hydrological model by inputting simulated rainfall at a
given site.

– Virtual-observed streamflow is streamflow produced by
the hydrological model by inputting observed rainfall at
the same given site.

The virtual framework undertakes a relative assessment of
the simulated and observed rainfall after its transformation
by the same hydrological model to provide insight into the
performance of the SRM. Because the hydrological evalua-
tion is a relative comparison of the observed and simulated
rainfall, it is important that all other model parameters and
extraneous variables (e.g. potential evapotranspiration) relat-
ing to the hydrological model are kept the same for the sim-
ulation of both virtual-observed and simulated streamflow.
It is also important that the selected hydrological model is fit
for purpose so that it can simulate the streamflow characteris-
tics of interest. This selection process should also ensure that
the hydrological model is compatible with the tested rainfall
model and the objectives of the test (i.e. a distributed hydro-
logical model would not be selected to evaluate a single-site
rainfall model for deficiencies).

The virtual hydrological evaluation framework is best used
to augment and complement existing evaluation methods,
rather than act as a replacement. The three evaluation frame-
works could work together as follows, where (i) observed-
rainfall evaluation identifies any deficiencies in the SRM
prior to any hydrological considerations; (ii) the virtual hy-
drological framework identifies which of these rainfall de-
ficiencies impact on the key predictions of interest, that is,
simulated streamflow; and (iii) observed-streamflow evalua-
tion provides a final validation. Therefore, together they en-
able a more focused approach to identify opportunities for
improvement of a SRM. This is because the ultimate goal
of the SRM modelling process remains the same: to match
observed streamflow for a catchment of interest.

The formal implementation of the virtual hydrological
evaluation framework is summarised in Fig. 2. It uses a series
of steps to identify poor performing sites (i.e. specific loca-
tions in space, for example, the location of a rainfall gauge),
then poor performing time periods, and then key deficiencies
in the SRM for those sites and time periods. It combines both
observed rainfall-evaluation and virtual hydrological evalua-
tion. The virtual hydrological evaluation includes two differ-
ent types of tests, an “integrated test” that isolates issues for a
given site and “unit tests” that isolate issues for specific time

periods. This enables the diagnosis of the key deficiencies
in the simulated rainfall. The following sections explain the
three steps in turn.

2.2 Step 1 – identify poor performing sites

The first step focuses on using integrated tests to identify
poor performing sites for further evaluation. Following the
selection of a primary streamflow characteristic of interest
and a suitable hydrological model, integrated tests are con-
ducted for each rainfall site (described below in Sect. 2.2.2).
The results of the integrated tests are then used to iden-
tify sites that are poor performing, according to the sys-
tematic application of quantitative performance criteria (see
Sect. 2.2.3), for the primary streamflow characteristic.

2.2.1 Selection of the primary streamflow
characteristic and relevant hydrological model

In order to undertake an integrated test, an appropriate hy-
drological model is required to simulate the streamflow. The
hydrological model should be selected on the basis that it is
capable of simulating streamflow for the timescales, magni-
tudes, and physical processes of interest to the intended ap-
plication. For example, a capability for simulating flow vol-
umes is important for yield. A streamflow characteristic of
interest, herein termed the “primary streamflow characteris-
tic”, is then selected to enable a method for filtering sites and
concentrating the investigation of the SRM on sites that per-
form poorly in terms of its intended application. For exam-
ple, the distribution of annual total flow would be a suitable
characteristic when investigating yield. Following the iden-
tification of the hydrological model and primary streamflow
characteristic, an integrated test is conducted for each rain-
fall site, which serves as an overall test of the SRM’s perfor-
mance.

2.2.2 Integrated test procedure

The integrated test proceeds for a single site by transform-
ing the time series of observed and simulated rainfall, via the
hydrological model (Fig. 1c). Consider the time series of ob-
served daily rainfall, Robs, for each year at a given site. This
rainfall time series is transformed according to a hydrolog-
ical model g [ ] to produce the virtual-observed streamflow,
denoted as Qvo, and “. . .” are additional inputs (e.g. poten-
tial evapotranspiration).

Qvo
= g

[
Robs, . . .

]
(1)

Likewise, all replicates of the simulated daily rainfall, Rsim,
for each year at a given site are transformed according to
the hydrological model g [ ] to produce simulated streamflow
replicates, Qsim.

Qsim
= g

[
Rsim, . . .

]
(2)
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Figure 2. Virtual hydrological evaluation procedure.

If there is a discrepancy between the simulated streamflow,
Qsim, and virtual-observed streamflow, Qvo, distributions,
this indicates that there is a deficiency in the simulated rain-
fall for that site.

The integrated test procedure is explained in terms of daily
rainfall and daily streamflow at a single site, as it is herein
applied to evaluate a daily rainfall model (see Sect. 3). This
test procedure can be extended to other timescales and spa-
tial scales (e.g. spatial rainfall, subdaily rainfall). These ex-
tensions are discussed in Sect. 5.4.

2.2.3 Identify poor performing sites using the CASE
framework

The integrated test results aim to identify the sites that are
poor performing for the primary streamflow characteristic.
Model performance is categorised using a CASE framework
approach as “good”, “fair”, or “poor” following Bennett et
al. (2018). The quantitative tests for each performance cat-
egory are provided in Table 2 alongside an illustration of
each in Fig. 3. The quantitative tests proceed by comparing
the statistics of the virtual-observed streamflow against those
calculated from replicates of the simulated streamflow. Per-
formance was categorised as “good” if the selected statistic
for the virtual-observed streamflow fell within the 90 % lim-
its of the statistic calculated from the simulated streamflow
replicates (Fig. 3, case i), as “fair” if the virtual-observed
statistic fell outside the 90 % limits of the simulated stream-
flow replicates but within the 99.7 % limits (Fig. 3, case ii),
and as “poor” if otherwise (Fig. 3, case iii).

2.3 Step 2 – identify poor performing time periods

The second framework step is to identify poor performing
time periods by conducting a detailed analysis of the in-
tegrated test results and comparing these results with an
observed-rainfall evaluation at the monthly scale.

Evaluating monthly total flows is a valuable test of SRM
performance as the production of monthly total flow volumes
relies on the integration of many daily rainfall characteris-
tics (amount, duration, persistence). For each of the poor
performing sites, each of these statistics for each month are
categorised as “good”, “fair”, and “poor” using the CASE

Figure 3. Illustration of performance classification: case (i) shows
“good” performance, case (ii) shows “fair” performance, and
case (iii) shows “poor” performance. Adapted from Bennett et
al. (2018).

framework. See Sect. 2.2.3 for further explanation of the cat-
egorisation procedure. This enables the identification of poor
performing time periods from the perspective of the virtual
hydrological evaluation.

Poor performance in reproducing virtual-observed stream-
flow is then contrasted against an observed-rainfall eval-
uation so that specific poor performing time periods can
be identified for further investigation in Step 3. By con-
trasting CASE performance categories (“good”, “fair”, and
“poor”) for observed-rainfall evaluation against virtual-
observed streamflow evaluation, poor performing time peri-
ods from both rainfall and streamflow perspectives can be
identified. This comparison between the observed-rainfall
evaluation and the virtual hydrological evaluation (inte-
grated test) can be summarised graphically (e.g. see Fig. 7,
Sect. 4.2).
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Table 2. CASE performance classification criteria. Adapted from Bennett et al. (2018).

Performance Test Key
classification

“good” Observation lies within the 90 % limits (case i)

“fair” Observation lies outside the 90 % limits but within the 99.7 % limits (case ii)

“poor” Otherwise (case iii)

2.4 Step 3 – identify sources of poor performance

The third step of the framework is to identify sources of
poor performance in streamflow according to deficiencies in
the simulated rainfall. Step 2 identifies the poor performing
time periods from a streamflow perspective. However, due to
catchment “memory”, the poor performance in streamflow
could be due to deficiencies in the simulated rainfall from a
range of potential influencing months during or prior to the
poor performing time period. For example, poor streamflow
performance in an evaluated month may be due to the in-
fluence of (i) rainfall deficiencies mostly in the same month
(i.e. concurrent influencing months), (ii) rainfall deficiencies
over a contiguous block of months including and preceding
the evaluated month (i.e. prior and concurrent influencing
months), or (iii) rainfall deficiencies in a preceding month
more so than in the evaluated month (i.e. prior influencing
months). The integrated test cannot isolate which influencing
months produce these deficiencies. Therefore, the unit test is
designed to enable the identification of sources of poor per-
formance in streamflow. The sources of poor performance are
described in terms of which influencing months exhibit key
deficiencies in simulated rainfall and therefore which SRM
components should be improved.

2.4.1 Unit test procedure

The unit test investigates the impact of simulated rainfall in
a given influencing month on the production of streamflow
in an evaluated month of interest. This is achieved by splic-
ing observed and simulated rainfall into a single time series
which is used to produce simulated streamflow.

Following Fig. 4a, consider the time series of observed,
Robs, and simulated, Rsim, daily rainfall for each year (and
replicate) at a given site. Figure 4a illustrates the embed-
ding of simulated rainfall Rsim

k in an influencing month,
k, within observed rainfall Robs

m for all other months m ∈

{1, . . .,12|m 6= k}. The resulting spliced rainfall time series
R

spl
(k) is denoted with respect to the influencing month, k, and

has the same length as the corresponding observed, Robs, and
simulated, Rsim, time series.

R
spl
(k) =

12⋃
m=1

{
Rsim

m ; m= k

Robs
m ; m 6= k

(3)

For example, if June (k = 6) is selected as the influencing
month, each year of the spliced time series, R

spl
(6), would be

composed as follows:

R
spl
(6) =

{
Robs

1 , . . .,Robs
5 ,Rsim

6 ,Robs
7 , . . .,Robs

12

}
. (4)

The ensemble of k = 1, . . .,12 spliced rainfall time series
R

spl
(k) for all influencing months and additional inputs (e.g. po-

tential evapotranspiration) indicated by “. . .” is transformed
according to a hydrological model g [ ] to produce an ensem-
ble of simulated streamflow, Qspl

(k). This procedure is repeated
for all simulated rainfall replicates.

Q
spl
(k) = g

[
R

spl
(k), . . .

]
(5)

By construction, the spliced rainfall is identical to the ob-
served rainfall for all months other than the influencing
month, so any errors in streamflow statistics can be attributed
to the influencing month free from other factors.

The full set of spliced rainfall (e.g. spliced rainfall for
each month designated as the influencing month R

spl
(k);k =

1, . . .,12) is input to the hydrological model. This step is re-
peated for all available replicates of the spliced time series.
The results of the unit test and the integrated test (Steps 1–2)
are then investigated and compared by selecting each month
as the evaluated time period in turn as well as other key time
periods (e.g. annual).

2.4.2 Compare unit tests and integrated tests

Side-by-side comparison of the results of the integrated test
and unit tests are given in terms of the errors for selected
monthly and annual statistics (see the illustration in Fig. 4b).
The comparison of errors from the unit test forms the basis of
interpretation for hydrological insights and their relationship
with the SRM.

A relative error metric, %Err, is used to enable a compar-
ison between the virtual-observed streamflow and the eval-
uated streamflow replicates from the integrated or unit tests
(Qsim or Q

spl
(k)) for time periods of interest (e.g. annual level

or particular season or month). In this way the targeted hy-
drological evaluation centres on a specific subset of stream-
flows relating to the evaluated time period, t . In this pa-
per, examples are provided for evaluated time periods at the
monthly and annual scales.

Hydrol. Earth Syst. Sci., 23, 4783–4801, 2019 www.hydrol-earth-syst-sci.net/23/4783/2019/



B. Bennett et al.: A virtual hydrological framework for evaluation of stochastic rainfall models 4789

Figure 4. Schematic of (a) the method of constructing a unit test by
embedding simulated months in an observed time series and (b) the
error profile produced when using the integrated and unit tests for
the evaluated time period of June (t = 6) (boxplot whiskers indicate
the 90 % limits of the simulated streamflow replicates). For the unit
test the errors in the evaluated period (t) are calculated as the differ-
ence between Q

spl
(k)

and Qvo
(t)

. For the integrated test the errors are

calculated as the difference between Qsim and Qvo
(t)

.

Using the function h [ ] to denote a calculated statistic of
interest (e.g. mean or standard deviation), the relative error in
an evaluated time period t (e.g. annual or particular month)
is given by

%Err(t) =
h
[
Qeval

(t)

]
−h

[
Qvo

(t)

]
h
[
Qvo

(t)

] × 100, (6)

where Qvo
(t) is the virtual-observed streamflow and Qeval

(t) is
the simulated streamflow from the selected virtual hydrologi-
cal test (i.e. Qsim if integrated test or Q

spl
(k) if unit test selected)

in the evaluated time period t . This procedure is repeated for
all replicates of the simulated streamflow such that a range
of errors is reported for each test for the target time period.

Following the calculation of this error metric for all repli-
cates of the integrated test and ensemble of unit tests (k =
1, . . .,12), it is possible to investigate deficiencies in the sim-
ulated streamflow in terms of which influencing month(s)
contribute more to the deficiencies in streamflow for the tar-
get time period based on that statistic of interest. Thus, for
each site, statistic, and evaluated time period there are 13 sets
of errors to compare.

A typical error profile from integrated and unit tests is
shown in Fig. 4b where mean monthly flow is selected as
the statistic of interest for the evaluated time period of June
(t = 6). In this figure the sets of errors from the integrated
and unit tests are summarised as boxplots with the boxplot
whiskers indicating the 90 % limits of the errors from the
evaluated streamflow replicates. Figure 4b shows the inte-
grated test produced a median error of 27 % (blue shaded
boxplot) from all simulated rainfall replicates indicating a
deficiency in the simulated streamflow for June. Examina-
tion of the unit tests (yellow and blue striped boxplots) for
the target time period (June) shows that the median error is
20 % when the influencing month is June (k = 6), the median
error is 10 % when the influencing month is May (k = 5) and
when the influencing month is April (k = 4) the median error
is negligible. Therefore, the bias in mean June streamflow is
primarily due to SRM deficiencies in June and May respec-
tively.

2.4.3 Identify types of key deficiencies

Following a side-by-side comparison of integrated test and
unit test results in terms of the relative errors, the sources of
poor performance should be classified in terms of in which
influencing months streamflow deficiencies originate (e.g.
poor streamflow arises from rainfall deficiencies mostly in
the same month, a prior month, or a contiguous block of
months). Differentiating between cases allows for SRM im-
provements to be targeted in terms of their ultimate impact on
streamflow statistics. To complement this analysis a compar-
ison of the virtual-observed flow duration curve for the evalu-
ated time period with the flow duration curves resulting from

www.hydrol-earth-syst-sci.net/23/4783/2019/ Hydrol. Earth Syst. Sci., 23, 4783–4801, 2019
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unit tests for key influencing months is also recommended.
Examples of each case are presented in Sect. 4.

3 Case study

The Onkaparinga catchment in South Australia is used as a
case study (Fig. 5). The 323 km2 catchment lies 25 km south
of the Adelaide metropolitan area and contains the largest
reservoir in the Adelaide Hills supplying the region (Mount
Bold Reservoir). The catchment has a strong seasonal cycle
(shown in Fig. 6) where the driest months (December, Jan-
uary and February) exhibit low rainfall and low streamflow,
the wettest months (July, August and September) have high
rainfall and high streamflow, and the “wetting-up” period
(April, May and June) has high rainfall and lower stream-
flow. There is a strong rainfall gradient (Fig. 5), with average
annual rainfall ranging from approximately 500 mm on the
coast (Site No. 19) to over 1000 mm in the region of highest
elevations (Site No. 20). A breakdown of the rainfall char-
acteristics (annual total, number of wet days, daily average
amounts, wet-spell and dry-spell durations) at each site on a
monthly basis is provided in the Supplement.

The evaluated daily rainfall was simulated using the la-
tent variable autoregressive daily rainfall model of Bennett
et al. (2018) using at-site calibrated parameters to simulate
daily rainfall independently at each of the 22 sites. This
rainfall model uses a latent variable concept, which relies
on sampling from a normally distributed “hidden” variable.
The latent variable can then be transformed to a rainfall
amount by truncating values below zero and by rescaling val-
ues above zero to match the observed rainfall’s distribution.
Here, the rainfall is rescaled using a power transformation.

To calibrate the model the rainfall data at a given site is
partitioned on a monthly basis and separate parameters are fit
for each month. The mean and standard deviation of rainfall
amounts, as well as the proportion of dry days is calculated.
These statistics are matched to the corresponding properties
of the truncated power transformed normal distribution. The
at-site lag-1 temporal correlation is then calculated based on
the observed wet-day periods for a given month. This statistic
is transformed to the equivalent correlation of the underlying
latent variable by accounting for the effects of truncation to
determine the autocorrelation parameter. Full details of the
calibration procedure are provided in Bennett et al. (2018). In
this study the daily rainfall model was calibrated and simu-
lated at 22 locations independently throughout the catchment
that have long, high-quality records (Fig. 5). 10 000 repli-
cates of simulated rainfall covering a 73 year period (1914–
1986) were used.

The hydrological model GR4J (Perrin et al., 2003) was
used to simulate streamflow (both virtual-observed and sim-
ulated) at a daily time step. GR4J is a daily lumped hy-
drological model that simulates daily streamflow in a par-
simonious manner using four parameters. The GR4J model

was calibrated according to the procedure set out in Wes-
tra et al. (2014b) for the stationary version of the GR4J
hydrological model. The details are provided in Westra et
al. (2014a) and a short summary is provided here. The ob-
served data from the multiple rainfall gauges in the Onka-
paringa catchment were Thiessen weighted to calculate the
catchment average rainfall, which was used purely for the
purposes of calibrating the hydrological model. The hydro-
logical model was calibrated to the daily streamflow data at
Houlgrave Weir (see Fig. 5) using a model calibration pe-
riod of 15 years (1985–1999). The model parameters were
estimated using a maximum likelihood estimation procedure
with a weighted least squares likelihood function. The set
of hydrological model parameters that maximised the likeli-
hood function were found using a multi-start quasi-Newton
optimisation procedure with 100 random starts. Overall, the
GR4J model was able to simulate streamflow with a good fit
to the observed daily streamflow, with a Nash-Sutcliffe effi-
ciency of 0.8. A similar type of hydrological model and cal-
ibration approach has been used for other virtual evaluation
studies (Li et al., 2014, 2016). The same set of hydrological
model parameters are used for both the unit and integrated
tests so that the same transformation of rainfall to flow is
used.

4 Results

4.1 Step 1 – identify poor performing sites

To undertake Step 1, annual total flow volumes were des-
ignated as the primary streamflow characteristic to narrow
the number of sites investigated. Following the selection of
the primary streamflow characteristic and selection of the hy-
drological model, GR4J, integrated tests were undertaken to
evaluate the simulated rainfall at the 22 sites. The annual total
flow distribution was used to give a broad indication of per-
formance. This step categorised 10 of the 22 sites as “poor”
and 12 as “good”, which is in strong contrast to earlier eval-
uation efforts using observed-rainfall evaluation (Bennett et
al., 2018) that categorised the majority of sites and statistics
as “good” (see Sect. 2.2.3 for category definitions).

The 10 sites categorised as “poor” are the focus of subse-
quent virtual hydrological evaluation framework steps. These
“poor” performing sites are indicated by the triangles in
Fig. 5.

4.2 Step 2 – identify poor performing time periods

The poor performing sites identified in Step 1 were then com-
pared in terms of both an observed-rainfall evaluation and
virtual hydrological evaluation via an integrated test. Fig-
ure 7 graphically summarises this comparison, with each row
presenting monthly or annual performance of the following
statistics:
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Figure 5. Onkaparinga catchment, South Australia. Sites indicated by triangles are explored in greater detail in this paper due to the relatively
poorer ability of simulated rainfall to reproduce virtual-observed annual streamflow totals at these sites.

Figure 6. Seasonal variation of catchment average rainfall and
flow at Houlgrave Weir. Boxplots show the variation across years.
“Wettest” indicates months with higher rainfall and higher flow.
“Driest” indicates months with lower rainfall and lower flow. “Wet-
ting up” indicates months with higher rainfall and lower flow.

– simulated daily rainfall statistics (mean (m) daily
amounts, standard deviation (SD) of daily amounts,
mean number of wet days (nwet) and the standard devi-
ation of the number of wet days);

– aggregate rainfall statistics (mean and standard devia-
tion of total rainfall); and

– aggregate streamflow statistics (mean and standard de-
viation of total flow).

The first to fourth columns of Fig. 7 summarise the observed-
rainfall evaluation and the fifth and sixth of Fig. 7 summarise
the virtual hydrological evaluation. The first column of Fig. 7
indicates that of the poor performing sites, the SRM exhib-
ited “good” performance in simulating daily rainfall means
and standard deviations as well as the mean number of wet
days for all sites and months and at an annual level according
to the observed-rainfall evaluation. Each of the three statis-
tics presented in the first column are assessed separately but
are presented together to avoid repetition. Whereas the sec-
ond column indicates that there is mixed performance across
sites and months in simulating the variability in the num-
ber of wet days (SD(nwet)). Likewise, the third and fourth
columns indicate overall “good” performance in simulating
mean monthly totals and mixed performance in simulating
the monthly or annual total standard deviations (SD(total)).
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Figure 7. Integrated test, comparing observed-rainfall evaluation (a) with the virtual hydrologic evaluation (b). Comparison of daily and
aggregate (“Agg.”) rainfall statistics against aggregate flow statistics for individual months and years, where means are denoted as “m” and
standard deviations as “SD”.

Whereas the virtual hydrological evaluation (fifth and sixth)
columns show mostly “good” performance in all months
other than those in the “wettest” or “wetting-up” periods.

A clear trend from Fig. 7 is the contrast in performance be-
tween the observed-rainfall evaluation and the virtual hydro-
logical evaluation. One contrast is that in the driest months
(December, January, February) “poor” performance in sim-
ulating rainfall (based on observed-rainfall evaluation) did
not necessarily translate to “poor” performance in simulat-
ing streamflow (based on virtual hydrological evaluation).
For example, examining the first row of Fig. 7, the observed-
rainfall evaluation shows that in January the SRM’s ability
to simulate variability in the number of wet days, SD(nwet),
was “poor” for all sites. However, in contrast the virtual hy-
drological evaluation shows that most sites had “good” per-
formance in simulating the January distribution of monthly
total flow (i.e. m(total) and SD(total)).

A second contrast is that “good” performance in the
observed-rainfall evaluation does not necessarily translate to
“good” performance for the virtual hydrological evaluation,
particularly for months in the “wettest” and “wetting-up” pe-
riods. For example, in Fig. 7 the rows summarising June and
August show large percentages of “poor” sites in the vir-
tual hydrological evaluation of monthly total flow. This defi-
ciency would have been difficult to infer using the observed-
rainfall evaluation due to the 100 % “good” performance of

m(total) rainfall and “good/fair” performance of SD(total)
rainfall in these months.

Likewise, by examining the bottom row of Fig. 7 that
summarises annual performance, it can be seen that the
observed-rainfall evaluation shows unbiased mean annual to-
tal, m(total), rainfall (100 % “good”) and yet the mean annual
total flows showed only 10 % of sites as “good”. Discussion
of the unit tests in the following section will investigate rea-
sons why apparently “good” rainfall can yield “poor” flow.

4.3 Step 3 – identify sources of poor performance

To undertake Step 3, unit tests were run to evaluate the source
of deficiencies in poor performing time periods. The results
of these test were compared against integrated tests in terms
of their relative errors. From this comparison the source and
type of key deficiencies in the simulated rainfall that lead to
poor performance in simulated streamflow were identified.
A comparison of the virtual-observed flow duration curve
for the poor performing time periods and the flow duration
curves resulting from unit tests for key influencing months
was also undertaken to illustrate the impact of these key de-
ficiencies on the daily flow duration curve.

Here, four examples of the different types of key deficien-
cies are illustrated using two locations, Site 12 and Site 10
(see Figs. 8 to 13). For completeness these results are pre-
sented together with the results of the observed-rainfall eval-
uation (panels a and b of Figs. 8 and 11).
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Figure 8. Lobethal, Site 12 (a) observed-rainfall evaluation mean monthly total rainfall, (b) observed-rainfall evaluation standard deviation of
monthly total rainfall, (c) virtual hydrological evaluation (integrated test) mean monthly total streamflow, (d) virtual hydrological evaluation
(integrated test) standard deviation of monthly total streamflow. Boxplot whiskers indicate the 90 % limits of the simulated streamflow or
rainfall replicates.

4.3.1 Streamflow errors mostly originate from rainfall
model deficiencies in the evaluated month

A common case for streamflow errors is that they originate
from rainfall in the same month. This case can be illustrated
using Site 12 in Fig. 8 where left-side panels show results for
the mean and right-side panels show the standard deviation
and where panels (a) and (b) summarise the observed-rainfall
evaluation, panels (c) and (d) summarise the integrated test.
From panels (a) and (b), the simulated monthly rainfall is
generally unbiased, but from panels (c) and (d) the mean
and standard deviation of the simulated streamflow is lower
than the virtual-observed flow from June to September. Here,
September is selected as an illustrative case for an application
of the unit test in Fig. 9 since it shows biased flow.

Taking September as the evaluated month (t = 9), Fig. 9a
and b compare the unit tests for all 12 influencing months
(yellow and blue striped boxplots) with the integrated test
(blue shaded boxplot) in terms of the error in the simu-
lated flow. When the influencing month is September (i.e.
the September rainfall is “spliced” into the observed record,
k = 9) the resultant error is greatest and closest to the er-
ror for the integrated test for both the mean monthly total
flow (Fig. 9a) and standard deviation of monthly total flow
(Fig. 9c). For the example of the standard deviation, when
the influencing month is July (i.e. July rainfall is spliced
into the observed record) the median error is less than 2 %,
whereas when September is taken as the influencing month
the median error is approximately 16 % (Fig. 9b). Therefore,
to improve September flows, September rainfall should be
improved in preference to all other months.

This need to improve September in preference to preced-
ing months is also illustrated via Fig. 9c where the September
daily flow duration curves are shown for the cases where Au-

gust (orange shading) and September (blue shading) are the
influencing months compared against the virtual-observed
September flow duration curve (purple dots). Where August
is selected as the influencing month, the virtual-observed
flow duration curve largely sits inside the 90 % limits of the
flow duration curves resulting from the unit testing proce-
dure. Whereas, the virtual-observed flow duration curve is
located outside the 90 % limits of the unit test flow dura-
tion curve when September is taken as the influencing month.
Thereby providing further evidence that, to improve Septem-
ber flows, September rainfall should be improved in prefer-
ence to other months.

Analysing other sites and months suggests that over 50 %
of the evaluations correspond to this case, and they typically
occur in spring and summer months when the catchment is
drying out.

4.3.2 Streamflow errors originate from rainfall model
deficiencies over a contiguous block of months

An illustration of the case where streamflow errors originate
from rainfall model deficiencies over a contiguous block of
months is provided by Site 12, where July is selected as the
evaluated month. Comparison of the July performance in the
integrated and unit tests (Fig. 10a and b) demonstrates that
the errors in July streamflow do not originate in the July rain-
fall alone (unlike the case for September – see Sect. 4.3.1).
Although the largest percentage error in flow is attributable
to July (a median error of 8 % in mean monthly total flow and
25 % in the standard deviation of monthly total flow when the
influencing month is July) a significant proportion of the er-
ror for July streamflow originates in prior months. June and
May rainfall have a significant influence on the July flow with
percentage errors of up to 15 % in July flow when June or
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Figure 9. Lobethal, Site 12 (a) unit test error in mean monthly flow (September), (b) unit test error in standard deviation of monthly flow
(September), (c) unit test September flow duration curve when August and September are selected as influencing months (top 10 % of flow
days shown). Boxplot whiskers indicate the 90 % limits of the simulated streamflow replicates.

May are the influencing month. Therefore, to improve July
flows, it is not just the July rainfall that should be improved,
but also the preceding 2 months.

This need to improve July and preceding months is also
illustrated via Fig. 10c where the July daily flow duration
curves are shown for the cases where June (orange shading)
and July (blue shading) are the influencing months compared
against the virtual-observed July flow duration curve (purple
dots). For both cases the virtual-observed flow duration curve
is located outside the 90 % limits of the flow duration curves
resulting from the unit testing procedure.

Typically, “wetting-up” and “wettest” months fall in this
case where streamflow errors originate from rainfall model
deficiencies over a contiguous block of months, approxi-
mately 40 % of the site/month combinations.

4.3.3 Streamflow errors originate from rainfall model
deficiencies in a preceding month more so than
evaluated month

An example of the case where the largest contribution to
streamflow errors arises from rainfall deficiencies in a pre-

ceding month is provided by Site 10, where July is selected
as the evaluated month. July is selected as an illustrative case
for application of the unit test since it shows biased flow (see
Fig. 11c and d), but did not show any bias in the simulated
rainfall (see Fig. 11a and b).

The largest contributor to error in July flow is not July rain-
fall but June rainfall (Fig. 12a and b). That is, the largest er-
rors occur when there is observed rainfall for July spliced
with simulated rainfall for June. In contrast, simulated July
rainfall spliced with observed rainfall in other months yields
a smaller median error. This deficiency in June rainfall can
also be seen in an examination of the July flow duration
curves (Fig. 12c) where the virtual-observed flow duration
curve sits within the 90 % limits of the simulated flow dura-
tion curve where July is designated as the influencing month,
whereas when June is designated as the influencing month
the virtual-observed flow duration curve sits outside the 90 %
limits for a number of the higher flow days.

While improving the July rainfall will improve the sim-
ulation of July flow, a more significant improvement will be
obtained by focusing on improving the June rainfall. The cat-
egory where streamflow errors originate from rainfall model
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Figure 10. Lobethal, Site 12 (a) unit test error in mean monthly total flow (July), and (b) unit test error in standard deviation of monthly total
flow (July), (c) July flow duration curve when June and July are selected as influencing months in unit test (top 10 % of flow days shown).
Boxplot whiskers indicate the 90 % limits of the simulated streamflow replicates.

Figure 11. Happy Valley, Site 10 (a) observed-rainfall evaluation mean monthly total rainfall, (b) observed-rainfall evaluation standard
deviation of monthly total rainfall, (c) virtual hydrological evaluation (integrated test) mean monthly total streamflow (d) virtual hydrological
evaluation (integrated test) standard deviation of monthly total streamflow. Boxplot whiskers indicate the 90 % limits of the simulated
streamflow or rainfall replicates.
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Figure 12. Happy Valley, Site 10 (a) unit test error in mean monthly flow (July), (b) unit test error in standard deviation of monthly flow
(July), and (c) July flow duration curve when June and July are selected as influencing months in the unit test (top 10 % of flow days shown).
Boxplot whiskers indicate the 90 % limits of the simulated streamflow replicates.

deficiencies in a preceding month represents about 10 % of
the evaluated site/month combinations (i.e. those identified
in Step 2).

4.3.4 Influence of monthly rainfall on annual flow
volumes

While annual simulated rainfall was unbiased, annual simu-
lated streamflow was biased. An illustration of how errors in
annual total streamflow arise from deficiencies in simulated
rainfall is shown for Site 10. Figure 13a and b show that when
the months of May to August are assessed as the influenc-
ing month they produce the largest errors in distribution of
annual total flow for Site 10. Splices of other months do not
significantly degrade the simulation of total annual flow. This
deficiency can also be seen via an examination of the flow du-
ration curve (Fig. 13c) in which the virtual-observed flow du-
ration curve is located outside portions of the simulated flow
duration curves where May or June are designated as the in-
fluencing month. Improvements to the simulation of annual
total flow will therefore come from improving the SRM in
the “wetting-up” and wettest months of the seasonal cycle

(May to August). This insight from the use of unit testing
would be difficult to obtain using other evaluation strategies
(further discussed in Sect. 5.2).

5 Discussion

5.1 The importance of streamflow-based evaluation

Streamflow arises from the integration of rainfall processes
(e.g. rainfall amounts, occurrences and wet-dry patterns)
over a catchment. Features of the catchment, such as catch-
ment storage, thresholds and nonlinearities in the rainfall–
streamflow response function, can either act to amplify or
dampen the rainfall errors at different times of the year.
These behaviours were clearly identified and demonstrated in
Step 2 of the virtual hydrological evaluation framework that
compares observed-rainfall evaluation and virtual hydrolog-
ical evaluation (see Sect. 4.2).

In terms of amplification, the elasticity of the rainfall–
streamflow response (Chiew, 2006) suggests that catchments
can have strong sensitivities to discrepancies in rainfall.
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Figure 13. Happy Valley, Site 10 (a) unit test error in mean annual total flow, and (b) unit test error in standard deviation of annual total
flow, and (c) annual flow duration curve when May and June are selected as influencing months in unit test (top 10 % of flow days shown).
Boxplot whiskers indicate the 90 % limits of the simulated streamflow replicates.

Given that the rainfall elasticity of streamflow to rainfall is
a factor of 2 to 3.5 (Chiew, 2006), using the principles of
error propagation (Ang and Tang, 2007), assuming linear-
ity it follows that a 10 % error in mean/standard deviation
of rainfall could potentially be amplified to 20 %–35 % error
in the mean/standard of streamflow. This estimate represents
a lower-bound of the potential amplification, since the non-
linear nature of the rainfall-runoff transformation will likely
produce a larger potential amplification of errors. This in-
dicates that streamflow-based evaluation of rainfall models
provides a stronger test than observed-rainfall evaluation in
terms of the sensitivity of the statistics. For example, Fig. 7
shows that July rainfall statistics were classified as “good”,
yet despite this, the streamflow response was “poor” (see
Sect. 4.2 for further discussion). It could be argued that the
rainfall results presented in Fig. 7 were classified as “good”
because the observed-rainfall evaluation was limited, but the
evaluation was methodical and used a comprehensive range
of daily and monthly statistics (Bennett et al., 2018). While
many rainfall statistics were preserved (means, standard de-
viation, extremes, marginal distributions of daily rainfall) the
rainfall–streamflow response of the catchment exposes that

there are deficiencies in the rainfall model not clearly identi-
fied by the observed-rainfall evaluation (Bennett et al., 2018).

In terms of dampened influence, catchment storages and
high evapotranspiration can also act to suppress errors in the
rainfall simulations. For example, Fig. 7 showed that the vari-
ability in the number of wet days, SD(nwet), was “poor” for
all sites in January, yet this did not result in “poor” stream-
flow. The high potential evapotranspiration in January indi-
cates that the majority of rainfall in January is converted into
actual evapotranspiration yielding little streamflow. Hence,
any errors in rainfall do not noticeably impact on January
streamflow.

It is clear that streamflow-based evaluation is beneficial in
addition to conventional observed-rainfall evaluation.

5.2 The benefits of the virtual evaluation framework

A benefit of virtual hydrological evaluation is that it is a rel-
ative measure of performance, where the hydrological model
is a common factor in the construction of virtual-observed
and simulated streamflow. This enables discrepancies in the
streamflow to be identified in terms of SRM features. In con-
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trast, observed-streamflow evaluation is typically hampered
by difficulties in separating the impact of data errors, hydro-
logical model predictive performance from the errors in the
SRM. A further benefit is the ability to undertake streamflow-
based evaluation at any site where rainfall is observed and
simulated. This enables insights into the SRM performance
for simulating streamflow on a site-by-site basis.

The use of a virtual hydrological framework for evalua-
tion provides the unique opportunity to develop innovative
tests that can target specific aspects of the SRM. This paper
introduces an innovative unit test that was used as a method
for isolating the influence of rainfall in a month (i.e. the in-
fluencing month) on streamflow in an evaluated month while
excluding the possibility of deficiencies from other rainfall
months. The test enables a procedure for targeting months
that are influential in terms of streamflow production rather
than interpreting model performance based on blunt evalua-
tion of rainfall or streamflow.

This unit test provides added value over and above the
integrated test because it identifies which are the influenc-
ing months that have deficiencies in the modelled rain-
fall that produce poor streamflow predictions. For example,
Sect. 4.3.2 illustrated that while the integrated test identi-
fied that there was poor streamflow in July for Site 12, the
unit test was able to identify that the simulated rainfall in
the prior influencing months of both May and June (Fig. 10)
made significant contributions (10 %–15 % errors) to July’s
poor streamflow. A second example is shown in the influence
of monthly rainfall on the errors in annual flow volumes in
Sect. 4.3.4. If the modeller had focussed on improving the
SRM by focusing on months with the highest contribution to
annual total flow, July to September would have been identi-
fied as important, whereas the unit test identifies a different
focus (May–August). The unit tests in Sect. 4.3.4 show that
May and June combined make up 13 % of the total annual
flow volume (Fig. 11c). However, they contribute to 11 % of
the error in the mean annual total flow (Fig. 13a) and 24 % er-
ror in the standard deviation (Fig. 13b). By contrast, Septem-
ber is a high-flow month contributing 21 % of the annual total
flow, but only 2 % error in the mean and 6 % error in the stan-
dard deviation. Without the unit test, it would have been less
clear that the “wetting-up” months such as May and June
were a more important focus for SRM improvement than a
high-flow month such as September.

5.3 Identifying key deficiencies in the rainfall
properties of the SRM

The previous section highlighted that simulated rainfall in the
“wetting-up” period May–June was a key cause of errors in
the streamflow. Returning to the observed-rainfall evaluation
of the SRM (see Fig. 7) enables identification of the rainfall
properties that are likely to be the cause of these errors in the
streamflow. In the May–June months, the mean and standard
deviation of rainfall amounts on wet days and the mean num-

ber of wet days show 100 % “good” performance, while the
standard deviation of the number of wet days shows a high
proportion of sites with “poor” performance (50 % of sites
in May and 40 % of sites in June). This identifies that rain-
fall amounts on wet days are reproduced well, but there is
not enough variability in the rainfall occurrences in the key
months of May–June. The observed-rainfall evaluation iden-
tifies that this is a common problem for this SRM, with 8
months having some proportion of “poor” sites for the stan-
dard deviation of the number of wet days – similar results
were found in Bennett et al. (2018). However, the virtual hy-
drological evaluation identified that it is the rainfall occur-
rences in 2 key months (May and June) that will provide the
most benefit in terms of virtual hydrological evaluation. This
provides clear guidance on the rainfall properties that need to
be improved for this SRM.

5.4 Limitations and future research

The virtual hydrological framework for SRM evaluation pro-
vides an opportunity for further improvements in the future
to substantially augment the framework’s diagnostic capabil-
ities, including the following.

i. Using multiple, well-tested hydrological models – a po-
tential limitation of the virtual hydrologic evaluation
framework is that it is reliant on the use of a single
hydrological model. Hydrological model structural er-
rors may potentially skew interpretation of the SRM
evaluation if the hydrological model poorly represents
the catchment processes. To reduce these impacts the
steps taken in this study included (a) using a well-tested
hydrological model that has demonstrated good perfor-
mance on a wide range of catchments (e.g. the GR4J
model has been widely tested – see Perrin et al., 2003
and Coron et al., 2012); and (b) calibrating and evalu-
ating the hydrological model on a catchment close to
the observed rainfall sites to ensure it provided suffi-
ciently good performance (e.g. GR4J was calibrated to
the Onkaparinga catchment – see Westra et al., 2014b,
a). Future research will use multiple, well-tested hydro-
logical models with sufficiently good performance to re-
duce the reliance on a single hydrological model and to
ensure the identification of SRM deficiencies is not de-
pendent on a single hydrological model.

ii. Comparison of SRMs – this framework can be extended
to provide more direct guidance on which rainfall fea-
tures (in terms of components of the SRM) should be
modified to improve streamflow performance. This can
be done by comparing multiple rainfall model variants
(parametrically, or via bootstrap techniques) which are
designed to have contrasting features of a key charac-
teristic (e.g. intermittency, rainfall correlation). Such an
approach was undertaken by Evin et al. (2018) using
an observed-rainfall evaluation approach. If the SRMs
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have monthly/seasonal autocorrelation (these were not
significant for the rainfall in the Onkaparinga catch-
ment), the unit testing approach would need to be ex-
tended by conditionally sampling the simulated rainfall
in a manner that preserves monthly correlations.

iii. Evaluation of temporal non-stationarity – this frame-
work can be extended to evaluate the impact of non-
stationarity on SRM model performance by applying
it on a selected non-stationary period. Care would be
needed in the selection of statistics to identify model
performance (since the performance in different sub-
periods could be masked when evaluating an overall
period). A related issue is that the hydrological model
should provide adequate performance across the range
of non-stationary climate forcings to which it is sub-
jected.

iv. Evaluation of spatial performance – there are multi-
ple opportunities to develop tests for spatial perfor-
mance, including (a) repeating the integrated test for
all sites, and for catchment average rainfall means it
would be possible to diagnose whether specific loca-
tions or the spatial dependence cause poor reproduc-
tion of streamflow statistics; (b) developing a spatial
unit test (which is analogous to the temporal unit test
but extended to space) where different combinations of
sites are “spliced” in the construction of catchment av-
erage rainfall – to evaluate the impact of “mixed” per-
formance in the SRMs between sites on the catchment
average rainfall; and (c) these spatial unit tests could
be used to evaluate stochastic weather generators more
generally as well as spatially distributed rainfall genera-
tors – though these would require a spatially distributed
hydrological model.

v. Evaluation of SRMs at subdaily timescales – this ex-
tension to evaluate SRMs at other timescales provides
opportunities for the development of further unit test
variants that focus on a range of different aspects of
subdaily rainfall (intensity, duration, persistence) and
its impact on streamflow characteristics of interest (e.g.
subdaily flow peaks). This extension would require the
use of a well-tested continuous subdaily hydrological
model capable of simulating the relevant streamflow
characteristics.

6 Conclusions

This paper has introduced a virtual hydrologic evaluation
framework that enables targeted hydrological evaluation of
SRMs. The framework formalises virtual streamflow investi-
gations by (1) using a comprehensive and systematic evalu-
ation approach to evaluate performance and (2) introducing
two key innovations, an integrated test and a unit test. The

integrated test compares simulated streamflow and virtual-
observed streamflow to detect overall deficiencies in the
ability of at-site simulated rainfall to reproduce streamflow
statistics. The unit test enables the attribution of detected
streamflow errors to specific months of simulated rainfall.
The integrated and unit tests enabled different conclusions
to be reached in terms of priorities for improving the SRM.
These conclusions would not otherwise have been possible
with conventional evaluation methods that focus either on
rainfall statistics or on high-streamflow months. The inte-
grated test demonstrated that while large discrepancies were
identified in low rainfall months, these did not translate to
deficiencies in streamflow due to the dry state of the catch-
ment. The test also indicated instances where simulated rain-
fall categorised as “good” translated to “poor” flow due to
the influence of catchment “memory” and rainfall from prior
months. The unit test identified the importance of the simu-
lated rainfall in the transition months of May and June (late
autumn/early winter) during the “wetting-up” phase of the
catchment cycle for producing low errors in subsequent high-
streamflow months (July/August/September) and the annual
streamflow distribution. The virtual hydrological evaluation
framework provides valuable additional diagnostic ability for
the development and application of SRMs not available by
using rainfall-based evaluation techniques alone.
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