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Abstract. In many countries, urban flooding due to local, in-
tense rainfall is expected to become more frequent because
of climate change and urbanization. Cities trying to adapt to
this growing risk are challenged by a chronic lack of surface
flooding data that are needed for flood risk assessment and
planning. In this work, we propose a new approach that ex-
ploits existing surveillance camera systems to provide qual-
itative flood level trend information at scale. The approach
uses a deep convolutional neural network (DCNN) to de-
tect floodwater in surveillance footage and a novel qualita-
tive flood index (namely, the static observer flooding index
– SOFI) as a proxy for water level fluctuations visible from
a surveillance camera’s viewpoint. To demonstrate the ap-
proach, we trained the DCNN on 1218 flooding images col-
lected from the Internet and applied it to six surveillance
videos representing different flooding and lighting condi-
tions. The SOFI signal obtained from the videos had a 75 %
correlation to the actual water level fluctuation on average.
By retraining the DCNN with a few frames from a given
video, the correlation is increased to 85 % on average. The
results confirm that the approach is versatile, with the poten-
tial to be applied to a variety of surveillance camera models
and flooding situations without the need for on-site camera
calibration. Thanks to this flexibility, this approach could be
a cheap and highly scalable alternative to conventional sens-
ing methods.

1 Introduction

1.1 The need for urban pluvial flood monitoring data

Urban pluvial floods are floods caused by intense local rain-
fall in urban catchments, where drainage systems are usu-
ally not designed to cope with storm events of more than
a 10-year return period. Although the full impact of such
flood events is difficult to gauge because of reporting and
knowledge gaps (Paprotny et al., 2018; van Riel, 2011), some
studies estimate the societal cost of small but frequent ur-
ban pluvial floods to be comparable to the cost of large, in-
frequent fluvial flooding events (Y. Jiang et al., 2018; ten
Veldhuis, 2011). Additionally, it is generally acknowledged
that the frequency of urban pluvial floods will increase under
the driving forces of climate change and urbanization (Sk-
ougaard Kaspersen et al., 2017; Zahnt et al., 2018).

To cope with urban pluvial flood risk, urban drainage man-
agers must understand long-term flooding trends, design ap-
propriate flood mitigation solutions in the medium term, and
provide flood alerts in the short term. Numerical flood mod-
eling is a widely used tool for all of these tasks, but a cer-
tain amount of data is needed for modeling. Data pertain-
ing to drainage infrastructure, land use, and elevation are re-
quired to construct a model, and rainfall data are required
to test the model on past rain events. Additionally, flood
monitoring data allow for model calibration, which is es-
sential for improving the accuracy of urban drainage mod-
els (Tscheikner-Gratl et al., 2016). However, conventional
sensors are ill-suited to urban environments, where vehicles
can disturb the flow and vandalism is a high risk. Similarly,
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remote sensing is not able to provide data with sufficient
spatiotemporal resolution. The lack of monitoring methods
and ensuing data scarcity are frequently decried in the ur-
ban pluvial flood modeling community (Gaitan et al., 2016;
Hunter et al., 2008; El Kadi Abderrezzak et al., 2009; Lean-
dro et al., 2009). In this context, researchers and practitioners
have turned to alternative sources of data such as surveillance
footage (Liu et al., 2015; Lv et al., 2018), ultrasonic–infrared
sensor combinations (Mousa et al., 2016), field surveys (Kim
et al., 2014), social media and apps (Wang et al., 2018), and
first-hand reports (Kim et al., 2014; Yu et al., 2016).

Although quantitative information (e.g., water level) is
commonly sought for, studies show that even qualitative data
are useful for calibrating hydraulic and hydrological models.
Van Meerveld et al. (2017) calibrated a bucket-type hydro-
logical model with stream level data transformed into sparse,
dimensionless class information, such as might be collected
by citizen scientists. To accomplish this, the authors used a
genetic algorithm (Seibert, 2000) for parameter estimation
and the Spearman rank correlation coefficient as an objec-
tive function. In doing so, they demonstrated that information
could be gained from water level trend data with a conven-
tional calibration toolset. Exploiting a different kind of quali-
tative information, Wani et al. (2017) showed that binary data
from a combined sewer overflow could be used to estimate
the parameter value distributions of an urban drainage model.
In their research, the Bayesian framework used allowed the
reduction of parameter and model uncertainty to be described
explicitly. Therefore, we also expect unconventional, quali-
tative monitoring data to be valuable for the estimation of
parameters in urban pluvial flood models.

1.2 Surveillance cameras as a data source

Surveillance footage has several advantages when used for
flood monitoring. First, many municipalities have already in-
vested in a network of surveillance cameras. In the cities
investigated by Goold et al. (2010), these networks usually
have fifty to several hundred cameras. In certain cities, how-
ever, camera systems operated by institutions are also inte-
grated in the municipal monitoring network. For example,
the command and control center for the City of London Po-
lice is reported to have access to 60 000 cameras (Goold et
al., 2010), and the police in Paris have access to 10 000 cam-
eras operated by partners (Sperber et al., 2013). The second
advantage of surveillance cameras is their high reliability, as
their utility for traffic surveillance and crime reduction de-
pends on continuous operation.

However, the use of surveillance footage for flood moni-
toring has complications. First, camera placement is gener-
ally controlled by outside parties for security purposes, thus
critical flooding locations may be only partially visible in the
footage or even completely missed. Second, the personal pri-
vacy of individuals visible in the footage must be protected.

Finally, the interpretation of surveillance footage into a sig-
nal that can be assimilated into a flood model is not trivial.

1.3 Automatic water level monitoring with surveillance
images

While manual reading of water levels from surveillance im-
ages is possible (e.g., in the study of Liu et al., 2015), it
is both prohibitively labor-intensive at scale and potentially
critical from a privacy perspective. Automatic image analy-
sis helps overcome these hurdles, and has already been the
subject of research. The following publications provide the
current state of the art of automatic water level estimation
from ground-level images.

In the work of Lo et al. (2015), video frames are seg-
mented into a number of visually distinct areas using a graph-
based approach. The area corresponding to water is iden-
tified thanks to an operator-provided “seed”, and the water
level is qualitatively assessed by comparing the water area to
virtual markers placed in the image by the operator. With a
more camera-specific solution, Sakaino (2016) estimates wa-
ter levels with a supervised histogram-based approach which
assumes a straight water line on a wall visible in the footage.
Similarly, Kim et al. (2011) used a ruler in the camera’s field
of view as a reference for the water level measurement. A
similar approach is used by Bhola et al. (2018), who used the
size of large objects like bridges to estimate the real height of
automatically detected water surface in the image. Although
these methods work well, they rely on in situ measurements
and site-specific calibration, and may be challenging to apply
to a large number of cameras.

A more modern approach for image-based flood level es-
timation has been proposed by J. Jiang et al. (2018). The
authors use a deep convolutional neural network to extract
image features and then apply a regression to infer water
level. Although the results are positive, the approach requires
that the neural network and regression be retrained for each
camera. Thus, the method is probably most valuable for pro-
viding redundancy to existing water level readings and not
as a scalable flood monitoring solution. Recently, a new ap-
proach has been proposed, which theoretically overcomes
this problem by estimating water depth from the immer-
sion of ubiquitous reference objects (e.g., bicycles) of known
height (Chaudhary et al., 2019; Jiang et al., 2019). How-
ever, this approach requires that such objects be visible in
the scene in order to provide information.

1.4 Objective of the present work

In this work, we propose a novel and highly scalable ap-
proach to automatically extract local flood level fluctuations
from surveillance footage. By proposing this approach, we
aim to provide a tool that can exploit existing surveillance
infrastructure to furnish much needed flood information to
urban flood modelers and decision-makers. By making scal-
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ability a priority, we hope to facilitate adoption of the tool
by practitioners, especially in cities where extensive surveil-
lance camera systems are already in place.

2 Materials and methods

Our approach consists in a two-step processing pipeline that
combines automatic image analysis with data aggregation
(Fig. 1). In a first step, floodwater is segmented in individual
video frames with a deep convolutional network (DCNN).
The segmented frames are then summarized with an index
(namely, SOFI) that qualifies the visible extent and, thereby,
the depth of the water over time. We evaluate the perfor-
mance of this approach using footage from surveillance cam-
eras during various flood events. Additionally, we investigate
how the data used to train the DCNN influence both segmen-
tation performance and the information content of the SOFI.

2.1 Flood water segmentation

2.1.1 Image segmentation with deep convolutional
neural networks

Semantic segmentation is the task of annotating each pixel
in an image according to a predefined taxonomy. The most
recent advances in image segmentation have been made with
DCNNs (He et al., 2017), so it is of value to apply this pow-
erful tool to the problem of flood segmentation. DCNNs are a
subset of artificial neural networks (ANN), machine learning
models with a structure that mimics the structure of neurons
in the brain. In the case of DCNNs, images are interpreted
through consecutive convolutional (matrix-like) layers that
extract and combine information at varying levels of abstrac-
tion.

Although the concept of DCNNs originated in the 1980s
(Fukushima, 1980), their success for nontrivial problems re-
quires large training sets and computational resources that
have only become available relatively recently. An impor-
tant breakthrough in DCNN development was the fully con-
voluted network (FCN) introduced by Long et al. (2015),
in which the fully connected layers responsible for gener-
ating class labels are also formulated as convolutional lay-
ers, thereby providing spatially explicit label maps. However,
FCN suffered an issue of resolution loss. To solve this issue,
Noh et al. (2015) combined FCN with a “deconvolution net-
work”, a network that predates FCN (Zeiler et al., 2011) and
consists in upsampling and unpooling layers.

2.1.2 Water segmentation with U-net

The DCNN architecture used for water segmentation in this
work is that of U-net (Ronneberger et al., 2015). U-net builds
on the FCN architecture, but differs in that the decoding lay-
ers have as many features as their respective encoding lay-
ers, which allows the network to propagate context and tex-

ture information to the final layers. Additionally, U-net im-
plements “skip” connections to preserve details and object
boundaries, by carrying information directly from the encod-
ing to the decoding layers. The U-net architecture is well-
suited to the water segmentation problem because of its rel-
atively compact size compared with more recent state-of-
the-art semantic segmentation architectures, such as Mask
R-CNN (He et al., 2017). The smaller size makes it both eas-
ier to train with small datasets (like the one available for this
study) and faster to run, which is useful for flood monitoring.
To code the DCNN, we built on an open-source implemen-
tation of U-net (Pröve, 2017) that uses Keras (Chollet et al.,
2015) to interface with the TensorFlow library (Abadi et al.,
2016).

After exploring a range of hyperparameter values (layer
depth, feature size, etc.), we found the following network
structure (Fig. 2) to have the best combination of perfor-
mance and generalization potential for the flood segmenta-
tion problem. As input, the network takes color images with
a resolution of 512 pixels × 512 pixels. The network is com-
posed of five encoding and five decoding blocks, each block
consisting of two convolutions with a kernel size of 3 pix-
els × 3 pixels. A residual connection around the two con-
volutions was added to improve the learning capacity of the
network (He et al., 2016). A batch normalization layer be-
tween each convolution accelerates the training and makes
the training performance less dependent on the initial weights
(Ioffe and Szegedy, 2015). On the encoding side, the blocks
end with a 2× 2 max pooling operation while on the de-
coding side, blocks start with a 2-D upsampling (or “up-
convolution”) operation. The skip connections between the
encoding and decoding blocks are implemented by taking the
final convoluted map of each encoding block and concatenat-
ing it to the first map of the corresponding decoding block.
The number of features in the first layer is 16, and the num-
ber of features is doubled with increasing layer depth. Ad-
ditionally, dropout regularization is added between the two
deepest convolution layers of the network in order to avoid
over-fitting.

2.1.3 Deep convolutional neural network training
strategies

The collection and labeling of training data is one of the most
costly and time-consuming aspects of training DCNNs. For
the specific application of flood detection in CCTV and web-
cam images, training images are particularly rare. Therefore,
in this study we evaluated the effectiveness of two strategies
for increasing segmentation performance with few training
images.

Given the relative rarity of flooding images from surveil-
lance cameras, we used a collection of 1218 labeled images
that were collected from the Internet and manually labeled
(Chaudhary, 2018). As almost all of the images in the dataset
are subject to copyright, we provide a sample of images in the
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Figure 1. As an alternative to conventional sensors (a), flood trend information is extracted from surveillance footage by computing the
fractional water-covered area (SOFI) over a series of video frames (b).

Figure 2. The deep convolutional neural network architecture used to perform water segmentation.

public domain that are representative of the dataset in Fig. 3.
These images have two differences compared with typical
surveillance camera images. First, the image quality is gen-
erally better in terms of resolution and color reproduction.
Second, the pictures almost only depict extensive flooding
where most of the ground is covered by water. To provide
examples of dry ground, 300 images of street scenery with-
out flooding from the Cityscapes dataset (Cordts et al., 2015)
were added to the 1218 Internet images, forming a pool of
reference images.

These reference images were used to train a “Basic” ver-
sion of the DCNN (80 % for training, 10 % for validation, and
10 % for testing). Conventional augmentation was applied to
the images as they were fed into the network: a random dis-

placement of up to 20 % and a random horizontal flip. In this
work, we considered two strategies for improving the flood
segmentation performance of the Basic training strategy (Ta-
ble 1).

In the “Augmented” strategy, the same images as for the
basic training strategy were used but with additional aug-
mentation steps that degraded image quality to the level of
typical surveillance footage. The following image transfor-
mations, implemented with the Keras library (Chollet et al.,
2015) were applied during augmentation:

– random horizontal mirroring,

– translate image horizontally and vertically by ±20 %,

– change in contrast by ±50 %,
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Figure 3. Public-domain images of flooding, representative of the dataset provided by Chaudhary (2018) that was used in this work.

Table 1. Training strategies for the deep convolutional neural network.

Strategy Images used for training Data augmentation steps Training steps

Basic 1214 images from Internet
(Chaudhary, 2018)
+300 images from Cityscapes
(Cordts et al., 2015)

Random displacement of up to
20 %, random horizontal flip

End-to-end training with 80 %
of images for up to 200 epochs

Augmented Same as Basic Same as Basic
+ random Gaussian blur, color
desaturation, contrast modification,
brightness alteration, reduction of
resolution

Same as Basic

Fine-tuned Same as Basic
+ seven frames taken from each
video

No augmentation is applied when
fine-tuning the network.

Retrain Augmented network
with seven manually labeled
video frames

– resolution deterioration by zooming into the image at
different locations up to 33 %,

– decreasing saturation by up to 80 %,

– alter image brightness between −80 and +20 units,

– blurring with random Gaussian filter.

Augmentation was applied with a 20 % probability each
time an image was fed into the network for training (up to
200 times, corresponding to the number of epochs).

In the “Fine-tuned” strategy, we performed transfer learn-
ing to adapt the DCNN to specific surveillance videos. This
was done by retraining the Augmented network with seven
manually labeled frames from each video.1 The retraining is
performed in two steps. First, only the weights of the last de-
convolution block are released and retrained. Then, the rest
of the weights are also released and the whole network is
retrained. This process resulted in a distinct and specialized
network for each footage sequence. In particular, it allowed
the networks to learn specific camera characteristics that may
not have been represented in the reference images. However,
the additional effort required by this training approach lim-
its its practical utility to situations where the increase in data
quality is of particularly high value.

To train the network, the adaptive moment estimation
(Adam) was chosen as the gradient descent optimizer be-

1Manual labeling takes around 2 min per image.

cause it shows good convergence properties (Kingma and
Ba, 2015). The dice coefficient served as the loss function,
defined after Zou et al. (2004). The DCNN was trained on
a Nvidia TITAN X (Pascal) 12 GB GPU. The Basic strategy
took approximately 120 min on average, whereas the Aug-
mented strategy required approximately 180 min for training.
The fine-tuning process required an additional 5 min of train-
ing per video.

2.2 Static observer flooding index

The static observer flooding index (SOFI) is introduced in
this work as a dimensionless proxy for water level fluctua-
tions that can be extracted from segmented images of sta-
tionary surveillance cameras. The SOFI signal is computed
as

SOFI=
#PixelsFlooded

#PixelsTotal
(1)

and corresponds to the visible area of the flooding as seen
by a stationary observer. Its value can vary between 0 % (no
flooding visible) and 100 % (only flooding visible). When
this index is evaluated at multiple consecutive moments in
time, the variation of its value provides information about
fluctuations of the actual water level under the assumption
that the camera remains static and that the view of the flood-
ing is not overly obstructed by moving objects or people. In
principle, objects and people will move in and out of the im-
age at a higher frequency than the water level fluctuations,
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so the influence of such obstructions should be limited to an
additional noise that can be filtered out. Nevertheless, situa-
tions may arise in which the assumption does not hold, for
example if an obstruction is permanently removed from the
scene during a flood event.

In certain cases, it may make sense to restrict the compu-
tation of the SOFI to a region of interest (ROI) of the image.
For example, if the image contains more than one hydraulic
process, such as accumulation in one part of the image and
flow in the other, a ROI can be defined so that the SOFI only
reflects the evolution of the accumulation process. The ROI
can also be defined to exclude areas in which water segmen-
tation is problematic due to, e.g., unfavorable lighting con-
ditions or visual obstructions. Finally, the ROI can also be
chosen over a region of the image in which changes of water
level are going to be most visible, e.g., over a vertical wall. In
this study, the ROI was implemented by means of a rectangu-
lar selection made by the authors according to these criteria.
To gauge the effectiveness of this measure, performance was
assessed both with and without a user-defined ROI.

2.3 Performance assessment

2.3.1 Surveillance footage

Six videos depicting flooding were used to assess the perfor-
mance of the proposed flood monitoring approach. Table 2
provides the characteristics of these videos, which provide a
diverse and realistic range of environmental conditions and
image qualities.

To assess the performance of the method in terms of flood
trend extraction, a reference for the water level trend was
established for each video. In the cases of the two FloodX
camera videos, a water level signal was available from ultra-
sonic rangefinders, as documented in (Moy de Vitry et al.,
2017). For the other four videos, a qualitative trend was vi-
sually estimated with an arbitrary scale. The qualitative trend
obtained in this manner was judged sufficient for the present
study as this study only investigates the ability of SOFI to
predict water level trend, and not the actual water level.

2.3.2 Flood segmentation performance

Three images from each video, representing low, medium,
and high flooding conditions, were used to assess segmenta-
tion performance. Image segmentation is a common classi-
fication task that is often evaluated with the mean intersec-
tion over union ratio (IoU), also known as the Jaccard index
(Levandowsky and Winter, 1971). This metric is applied by
running the DCNN on a series of testing images that were not
seen during training, and comparing the segmentation result
(S) to a manually annotated ground truth (G). The mean IoU
is then computed as

1
N

N∑
i

|Si ∩Gi |

|Si ∪Gi |
, (2)

where N is the number of testing images and Si or Gi is
the water-covered area in a segmented image or correspond-
ing ground truth image, respectively. The index varies be-
tween 0 % for complete misclassification and 100 % for per-
fect classification.

2.3.3 Performance of SOFI as a proxy for the water
level trend

To evaluate whether SOFI can be considered a proxy for real
water level trends, one can assess the extent to which the re-
lationship between the two signals is monotonic increasing.
This quality can be evaluated with the Spearman rank-order
correlation coefficient (Spearman, 1904), which is used to
measure the degree of association between two synchronous
signals. Importantly, it does not assume any other (e.g., lin-
ear) relationship between the two signals. To compute the
coefficient, the rank of each signal value must be computed
relative to its respective signal. For signals in which the same
value can appear multiple times (tied ranks), the Spearman
rank-order correlation coefficient ρ is given by

ρ =

∑
(xi − x)(yi − y)√∑
(xi − x)

2 ∑
(yi − y)

2
, (3)

where xi and yi are the ranks of the two signals for time
step i, and x and y are the average ranks of the SOFI and
water level signals, respectively. In the current study, the ref-
erence signal for the water level trend was obtained either
from an in situ sensor or by visual inspection of the surveil-
lance footage, as described in Sect. 2.3.1. The pandas Python
library (McKinney, 2010), which contains an implementa-
tion of the Spearman rank correlation coefficient, was used
for time series analysis.

3 Results

3.1 Automatic flood water segmentation

Image segmentation, with the setup described in Sect. 2.1.3,
takes around 50 ms per image. Figure 4 provides sample
frames from three of the six surveillance videos used in this
work. The other three videos are provided in Fig. S1 of the
Supplement. In each case, the human labels as well as au-
tomatic segmentations from the various DCNNs are drawn
in blue. Additionally, the ROIs are drawn in red for each
video, defined manually according to the criteria mentioned
in Sect. 2.2.

The basic DCNN was able to detect water in certain cases,
but also committed large segmentation errors in the cases of
the FloodXCam1, Garage, and Park videos. In the Parking lot
video, segmentation appears quite successful, which could
be due to the scene being visually similar to the images with
which the Basic network was trained.
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Table 2. Surveillance footage used in study.

Video Setting Flood Image Water Analysis Event Visual clarity of flooding Source
type resolution level frequency duration

trend (frames min−1)

FloodX
Cam1

Experimental
facility, weir

Artificial 1280× 720 Sensor 60 164 min High: wet surfaces Moy de Vitry et al.
(2017)

FloodX
Cam5

Experimental
facility, cellar

Artificial 1280× 720 Sensor 60 166 min Medium: wet surfaces, desaturated
image

Moy de Vitry et al.
(2017)

Garage Indoor, garage Extreme
rainfall

1280× 720 Visual 24 19.8 h High: moving objects floating in
water

Roisman (2017)

Park Outside, sport
field

River
flooding

640× 480 Visual 1 13.5 h Low: camera behind window with
reflections; camera is sometimes
jostled; many different lighting condi-
tions throughout the day.

Cityofchaska (2010)

River Outside, river
under concrete
bridge

Extreme
rainfall

1280× 720 Visual 30 6 h Low: camera sometimes submerged;
lens blurry due to water drops; high
image compression

Hurricanetrack (2015)

Parking
lot

Street scenery Extreme
rainfall

1280× 720 Visual 12 200 min Low: partially nighttime images; lens
blurry due to water drops

Blanchard (2017)

Figure 4. Sample frames taken from three of the six analyzed surveillance videos, shown with the human label or automatic flood segmen-
tation in blue and the regions of interest (ROI) in red. The samples show how the Augmented strategy improves segmentation in the Garage
and Park samples, but the segmentation for FloodXCam1 is only successful with the Fine-tuned training strategy. The sample frames from
the remaining three videos are provided in the Supplement.
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Figure 5. Automatic segmentation performance measured in terms of the intersection over union (IoU) for each video using the Basic (B),
Augmented (A), and Fine-tuned (F) DCNNs. On the right side, the overall performance for all videos is depicted, with the vertical segments
representing the standard deviation of values.

Compared to the Basic DCNN, the Augmented DCNN
provides a visible improvement in most cases. The case of
FloodXCam1 is an exception as the DCNN successfully seg-
mented the shallow water flowing on the ground (which was
not classified as flooding in the human labels), but did not de-
tect the water ponding in the upper right of the image. This
error is fixed in the Fine-tuned DCNN for this video thanks to
the use of additional training images from the FloodXCam1
video.

Figure 5 shows the segmentation performance of the DC-
NNs measured by the IoU, both for the full image and within
the defined ROI. The Augmented DCNN improves perfor-
mance for all videos except for the two FloodX videos. In the
case of the Park video, the improvement of IoU for the full
image is around 30 percentage points. For the two FloodX
videos, however, segmentation seems to suffer slightly un-
der the Augmented network, possibly because the augmen-
tation transformations increased dissimilarity of the training
images instead of vice versa. For these two videos, improve-
ment is only achieved thanks to fine-tuning, which proved
beneficial for all videos by providing IoUs higher than 90 %
on average.

Figure 5 also shows that within the “expert-defined” ROIs,
segmentation performance is generally worse. We conclude
that a human is generally not able to identify and exclude
“difficult” regions of the image a priori, which was one of
the original reasons for defining a ROI.

3.2 Flood level trend extraction

After the frames of a video are segmented, the SOFI is com-
puted for each frame, providing information about the tem-
poral evolution of the visible flood extent. In Fig. 6, the case
of video FloodXCam5 is a clear example of how the SOFI re-
flects changes in the actual water level. Comparing the SOFI
signals to the measured water level, it is evident that a corre-
lation exists, although the relationship does not appear linear.
For all DCNN training strategies, the trend of the SOFI sig-
nal from the ROI (in red) is easier to visually identify than
the trend of the SOFI computed from the whole image (in

black), which is advantageous if the signal is to be visually
interpreted. However, the SOFI signal from the ROI is also
noisier, and does not capture the first flood event occurring at
12:48 local time.

In Fig. 6, we also see that a systematic segmentation error
is committed in that water is always falsely detected on the
ground between the two events. This example illustrates why
our approach focuses on the trend of the SOFI signal and not
its absolute values, which are more sensitive to systematic
errors.

In Fig. 7, the relationship between the SOFI and the water
level is further explored for both FloodX videos. This fig-
ure shows how the relationship between SOFI and the wa-
ter level can be nonlinear, which is a consequence of the to-
pography in which the flooding occurred. For example, in
FloodXCam5 a large area of the image is rapidly segmented
as water starts covering the floor of the basement, causing
an almost vertical segment on the left side of the scatter plot
(especially visible for the Fine-tuned network). For the SOFI
computed from the full images, we also see systematic and
time-variant errors, resulting in portions of the data having a
larger internal correlation that are visible as strands of points
in Fig. 7.

Generally, it appears that the use of a ROI (red) leads to a
stronger association between water level and SOFI. However,
the SOFI signals from the ROIs also contain more noise than
the SOFI signal derived from the full image. Additionally,
in FloodXCam5, it seems that the ROI was poorly selected,
resulting in lower sensitivity of SOFI to the water level up to
a depth of around 100 mm.

Figure 8 shows the relationship between SOFI and the vi-
sually estimated flood intensity in the remaining videos, for
which no in situ water level measurement is available. In this
figure, the value of the Augmented and Fine-tuned networks
appears in the progressive reduction of noise in the SOFI sig-
nal.

Two exceptional cases in Fig. 8 need to be explained in
more detail. First, the SOFI signal for the River footage
suddenly appears to be arbitrary at the highest flood inten-
sity. This is due to intermittent submersion of the camera by
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Figure 6. Water level (blue) and SOFI signal for the whole image
(black) or the region of interest (ROI, red) for the FloodXCam5
video. With more advanced DCNN training strategies, noise and
outliers in SOFI are visibly reduced in the ROI. The time series for
the remaining videos can be found in the Supplement (Figs. S2–S6).
All time references on the x axis refer to local time.

the floodwater that leads to gross segmentation errors. The
Garage video is also exceptional; flooding caused objects to
float around in the garage causing constant changes in the
visible inundated area and, thus, noise in the SOFI signal.

Figure 9 shows the Spearman correlation coefficients be-
tween the SOFI and the flooding intensity for each video
and each training strategy. This figure shows that using the
Augmented training strategy, the Spearman correlation coef-
ficient for the full image reaches 75 % on average, while for
the Fine-tuned training strategy the average correlation coef-
ficient reaches around 85 %.

We draw two general conclusions from the results shown
in Fig. 9. First, defining a ROI does not consistently improve
the ability of the SOFI signal to reproduce flood trends. This
could be due to the poorer segmentation performance within
the ROIs (Fig. 5), which introduces noise in the water level–
SOFI relationship (Figs. 7 and 8). Second, the Fine-tuned
networks generally improve the correlation of SOFI with the

Figure 7. Videos with reference measurements: SOFI computed
from full images (black) or from a ROI (red) plotted against mea-
sured water level for different training strategies. The reduction of
noise and systematic errors with the Fine-tuned strategy is evident.

water level trend, with the exception of the River video. As
made visible in Fig. 8, the submersion of the camera leads
to frequent outliers that become more distinct from the rest
of the signal after fine-tuning, leading to a lower correlation
with the water level trend.

4 Discussion

4.1 SOFI as a scalable and robust approach for
qualitative water level sensing

Compared with alternative methods for water level moni-
toring, our approach is less ambitious in the type of infor-
mation it aims to provide, as it only attempts to communi-
cate water level fluctuation and not an absolute water level.
This weakness is at least partially compensated for by an in-
creased scope of applicability, as it is almost the only surveil-
lance image-based monitoring approach designed to provide
water level information without needing to be calibrated to
each camera. As described in Sect. 1.3, research has typi-
cally been focused on extracting absolute water levels from
images, mainly by identifying the water edge in relation to an
object that has been measured and manually identified in the
image (Bhola et al., 2018; Kim et al., 2011; Sakaino, 2016).
Although Lo et al (2015) present a method that does not nec-
essarily need reference measurements, human intervention is
still needed for each camera to define virtual markers and a
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Figure 8. Videos without reference measurements: SOFI computed from full images (black) or from a ROI (red) plotted against visually
estimated flood intensity, for different training strategies. There is a visible reduction of noise and increased correlation with the Augmented
and Fine-tuned strategies.

Figure 9. Spearman rank correlation coefficients for each video using the Basic (B), Augmented (A), and Fine-tuned (F) DCNNs. The final
category All videos excludes the River video which is an outlier because the camera is intermittently submerged. The vertical segments in the
All videos category represent the standard deviation of values. The results show that both the Augmented and Fine-tuned networks improve
the correlation of SOFI with the water level, although performance is still varied.

“seed” to inform water segmentation. The concept presented
by Jiang et al. (2019) is an exception, theoretically over-
coming the need for per-image calibration by taking ubiq-
uitous objects as scale references. Nonetheless, that method
assumes that such reference objects are visible in the flood-
ing scene, which is an assumption that may not always hold.
In comparison, SOFI does not need specific objects to be
present, nor does it need field measurements or manual set-
up of the image. The DCNN-based water segmentation ap-
proach used is flexible enough that given sufficient training
data, it can theoretically be applied to any situation. In this
study, the scalability of SOFI was demonstrated by applying
the Augmented DCNN to six videos not seen during train-

ing, from which information was extracted despite complex
environments, moving objects, and bad lighting conditions.

The simplicity of the SOFI approach also gives it robust-
ness. By using areal integration to quantify flood intensity,
the index is less sensitive to small segmentation errors, which
could be problematic if punctual virtual markers are used as
in the case of Lo et al. (2015). Also, as SOFI only claims
to provide trend information, systematic segmentation errors
(e.g., misclassification at the water–background boundary)
should only be of minor consequence. This aspect of SOFI
is well illustrated in this study by the Park video, for which
the SOFI signal had a high correlation with the water level
trend despite mediocre segmentation performance.
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Besides the advantages of SOFI, its use of a DCNN carries
a disadvantage due to its need for training data. Methods that
use heuristics to segment water, such as Lo et al. (2015), do
not require as much training data, although their application
is then often limited to visually similar situations.

4.2 Factors influencing the information quality of SOFI

Although SOFI is theoretically applicable at locations where
the extent of visible water correlates with flooding depth,
there are certain conditions that can negatively influence the
quality of information obtained.

First, floodwater can look very different from case to case.
For example, (i) water surface movement can cause a range
of different wave structures, (ii) the color of the water is vari-
able and in very agitated flows, bubbles can make the wa-
ter appear white, (iii) water reflects light that falls on it, at
times in a mirror-like fashion, and (iv) surveillance cameras
tend to have low color fidelity, dynamic range, resolution,
and sharpness. Due to the complexity of segmenting flood-
water, one can expect that more training images would be
required than for a typical segmentation problem. In our re-
sults, the high inter-video variability in segmentation perfor-
mance suggests that the number of training images should be
increased in future studies. In particular, the variability sug-
gests that the training images were not fully representative of
the testing images. Thus, it is probable that the segmentation
performance could be substantially improved if a larger and
more diverse training set were available.

Second, in situations where large quantities of manually
labeled images are required, it is inevitable that some la-
beling errors will occur. Looking into the implications of
such errors, Heller et al. (2018) showed that U-net is rela-
tively insensitive to jagged label boundaries. Regarding non-
boundary-localized errors, all DCNN architectures investi-
gated were found to be very robust.

Finally, the basic assumption that the extent of visible wa-
ter correlates with flooding depth may not fully hold for ev-
ery camera scene. For example, small floods may not be visi-
ble due to obstructions, and if the camera is oriented such that
the whole image can be covered by water, the highest stages
of flooding may be censored from the signal as well. These
situations will require special handling when the data are as-
similated for model calibration. The scene topography and
camera placement also affect the slope and linearity of the
SOFI–water depth relationship, and can make the trend more
difficult to determine if the correlation in the relationship is
small. Additionally, the entry and exit of objects in a flooding
scene can compromise the approach, especially if the objects
are large and occur with low frequency. The flooding itself
may increase the occurrence of such obstructions, for exam-
ple in the case of cars stuck in traffic or objects transported
by the water.

4.3 Degradation of training image quality improves
segmentation of surveillance images

In this study, the training images available were of higher
quality than typical images originating from surveillance
cameras, a discrepancy that was expected to limit the perfor-
mance of the DCNN on surveillance images. Therefore, in
the Augmented training strategy, the augmentation step in-
cluded transformations that lowered the quality of the train-
ing images, making them more similar to surveillance im-
ages.

The results from the six videos used in this study con-
firm that the artificial degradation of training image quality
not only improves segmentation performance in surveillance
footage but also increases the correlation of SOFI with the
actual water level trend. While in most videos the improve-
ment was clear, no improvement was observed for the two
FloodX videos. These two videos stand out in terms of low
image quality, location of water in the upper part of the im-
age, and a different setting surrounded by concrete walls.
Therefore, we see a need to investigate such failure cases in
order to improve the training data collection and augmenta-
tion steps.

4.4 Fine-tuning of the DCNN to specific cameras

In situations where segmentation performance is critical, one
can fine-tune a general DCNN to a specific surveillance cam-
era. Even with very few additional training images, we find
that the segmentation performance and correlation of SOFI
with water level trends both improve thanks to fine-tuning.
Despite this result, it should be kept in mind that the fine-
tuned DCNNs also lose some generality and may, for exam-
ple, have issues when lighting conditions are different from
those present in the images for fine-tuning.

Our recommendation for fine-tuning is that care should be
taken in creating a set of training images that is roughly as
diverse as situations in which the fine-tuned DCNN will be
used. Additionally, although we performed fine-tuning with
very small sets of seven images per video, fine-tuning perfor-
mance could be further increased by using more images.

4.5 Regions of interest (ROI) do not deliver the
expected value

The definition of ROIs for SOFI computation, motivated by
the possibility of omitting difficult portions of the images and
focusing on more information-rich portions, proved unsuc-
cessful. Not only was it difficult for the human “expert” to
foresee what area of the image met the above criteria, but a
systematic increase of noise in the SOFI signal was observed
within the ROI. Therefore, we do not recommend that ROIs
be defined systematically for all cameras, but only in cases
where multiple hydraulic processes are visible in the image
and need to be distinguished.
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4.6 Practical value of SOFI

As the qualitative nature and noisiness of SOFI might raise
questions about its practical value, two aspects must be re-
called. First, SOFI aims to provide information in the context
of urban pluvial flood events, for which monitoring data are
admittedly difficult to obtain. The studies cited in the intro-
duction have proven that in situations of data scarcity, even
qualitative information can be useful in improving model
accuracy. In particular, the sparse stream level class infor-
mation used by van Meerveld et al. (2017) is conceptually
equivalent to the flood level trend information contained in
SOFI. Second, thanks to the scalability of SOFI, one should
be able to apply it to large surveillance networks or retroac-
tively to archived footage at a reasonable cost. By provid-
ing data for model calibration and validation, the approach
we propose can help reduce modeling uncertainty for ur-
ban flood risk assessment and assist in the planning of flood
mitigation measures. In addition, the flood level trend in-
formation provided by SOFI could help direct the focus of
decision-makers and rescue personnel during flood events so
that resource use can be optimized. For insurance companies,
the flooding information can also help verify claims and es-
tablish fair insurance policy premiums.

4.7 Recommendations for future research

Future research should assess the actual value of the infor-
mation provided by SOFI for the validation and calibration
of urban flood models. For this, it would be of value to have
a large-scale, long-term case study of a flood-prone urban
area, in which surveillance footage and reference flood mea-
surements are available. Additionally, possible methods to
de-noise the SOFI signal and quantify its reliability should
be investigated. In particular, the issue of rapid changes in
the SOFI signal due to moving obstructions could be ad-
dressed by filtering changes that surpass a given threshold.
Another approach to this problem is through automatic def-
inition of ROIs that censor out noise-generating areas of the
video scene.

5 Conclusions

In this study, we explored the potential of using a deep con-
volutional neural network (DCNN) and a simple but novel
index (namely, SOFI) to obtain flood level trend information
from generic surveillance cameras. The results of our study
strongly suggest that qualitative flood level information can
indeed be extracted automatically and universally from any
static camera, although we see the need for many training
images to cover the range of appearances that floodwater can
take. To compensate for the limited number of training im-
ages available in this study, we found that degrading image
quality during training improved segmentation performance
by approximately 10 % (IoU) on low-quality surveillance im-

ages. Additionally, fine-tuning the DCNN to a specific video
with as few as seven manually labeled images further im-
proved performance. In our results, the SOFI signal from
the camera-independent DCNN correlated with water level
trends at a rate of 75 % on average (Spearman rank corre-
lation coefficient). The proof of concept presented in this
study has significant implications. Namely, it confirms that
footage from surveillance cameras, processed with artificial
intelligence, could provide urban flood monitoring data for
entire cities while preserving privacy. Without the need for
specialized instrumentation or field measurements, monitor-
ing could be conducted at a relatively low cost, which is es-
pecially attractive for cities with limited financial resources.
Previous research suggests that the qualitative information
contained in SOFI can easily be used to reduce parameter
uncertainty in urban flood models. Apart from modeling-
related applications, SOFI could also be useful for coordi-
nating flood response and verifying insurance claims.
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Comparison of 1D/1D and 1D/2D Coupled (Sewer/Surface)
Hydraulic Models for Urban Flood Simulation, J. Hydraul.
Eng., 135, 495–504, https://doi.org/10.1061/(ASCE)HY.1943-
7900.0000037, 2009.

www.hydrol-earth-syst-sci.net/23/4621/2019/ Hydrol. Earth Syst. Sci., 23, 4621–4634, 2019

https://doi.org/10.2166/hydro.2018.044
https://www.youtube.com/watch?v=__IBuu06URY
https://keras.io
https://keras.io
https://www.youtube.com/watch?v=7cnXTgpcnSo
https://www.youtube.com/watch?v=7cnXTgpcnSo
https://doi.org/10.1007/BF00344251
https://doi.org/10.1016/j.envsoft.2016.08.007
https://link.springer.com/chapter/10.1007/978-3-030-01364-6_13
https://link.springer.com/chapter/10.1007/978-3-030-01364-6_13
https://doi.org/10.1680/wama.2008.161.1.13
https://www.youtube.com/watch?v=y6jByqVX7PE
https://www.youtube.com/watch?v=y6jByqVX7PE
http://arxiv.org/abs/1502.03167
https://doi.org/10.3390/w10101485
https://doi.org/10.3390/rs11050587
https://doi.org/10.1016/j.envsci.2017.11.016
https://doi.org/10.1680/wama.12.00051
https://doi.org/10.1049/Iet-Cvi.2009.0144
https://doi.org/10.1061/(ASCE)HY.1943-7900.0000037
https://doi.org/10.1061/(ASCE)HY.1943-7900.0000037


4634 M. Moy de Vitry et al.: Scalable flood level trend monitoring with surveillance cameras

Levandowsky, M. and Winter, D.: Distance between Sets, Nature,
234, 34–35, https://doi.org/10.1038/234034a0, 1971.

Liu, L., Liu, Y., Wang, X., Yu, D., Liu, K., Huang, H., and
Hu, G.: Developing an effective 2-D urban flood inunda-
tion model for city emergency management based on cel-
lular automata, Nat. Hazards Earth Syst. Sci., 15, 381–391,
https://doi.org/10.5194/nhess-15-381-2015, 2015.

Lo, S. W., Wu, J. H., Lin, F. P., and Hsu, C. H.: Visual sensing
for urban flood monitoring, Sensors (Switzerland), 15, 20006–
20029, https://doi.org/10.3390/s150820006, 2015.

Long, J., Shelhamer, E., and Darrell, T.: Fully Convolutional Net-
works for Semantic Segmentation, in: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 7–
12 June 2015, Boston, MA, USA, 3431–3440, 2015.

Lv, Y., Gao, W., Yang, C., and Wang, N.: Inundated
Areas Extraction Based on Raindrop Photometric
Model (RPM) in Surveillance Video, Water, 10, 1332,
https://doi.org/10.3390/w10101332, 2018.

McKinney, W.: Data Structures for Statistical Computing in Python,
in: Proceedings of the 9th Python in Science Conference,
28 June–3 July 2010, Austin, Texas, USA, 2010.

Mousa, M., Zhang, X., and Claudel, C.: Flash Flood Detection in
Urban Cities Using Ultrasonic and Infrared Sensors, IEEE Sens.
J., 16, 7204–7216, https://doi.org/10.1109/JSEN.2016.2592359,
2016.

Moy de Vitry, M.: Data for: Scalable Flood Level Trend Monitoring
with Surveillance Cameras using a Deep Convolutional Neural
Network, Zenodo, https://doi.org/10.25678/000150, 2019.

Moy de Vitry, M. and Kramer, S.: Water level trend monitoring with
a surveillance camera using a deep convolutional neural network,
https://doi.org/10.5446/43637, 2019.

Moy de Vitry, M., Dicht, S., and Leitão, J. P.: floodX: ur-
ban flash flood experiments monitored with conventional
and alternative sensors, Earth Syst. Sci. Data, 9, 657–666,
https://doi.org/10.5194/essd-9-657-2017, 2017.

Noh, H., Hong, S., and Han, B.: Learning Deconvolution Network
for Semantic Segmentation, in: 2015 IEEE International Confer-
ence on Computer Vision (ICCV), 2015 Inter, Santiago, Chile,
7–13 December 2015, 1520–1528, 2015.

Paprotny, D., Sebastian, A., Morales-Nápoles, O., and Jonkman, S.
N.: Trends in flood losses in Europe over the past 150 years, Nat.
Commun., 9, 1985, https://doi.org/10.1038/s41467-018-04253-
1, 2018.

Pröve, P.-L.: Unet-keras, available at: https://github.com/pietz/
unet-keras (last access: 13 November 2019), 2017.

Roisman, D.: Houston Harvey Flood – Meyerland Neighborhood
– August 27 2017 – Garage Time Lapse, available at: https://
www.youtube.com/watch?v=ZOpWO7rJbtU (last access: 8 Oc-
tober 2018), 2017.

Ronneberger, O., Fischer, P., and Brox, T.: U-net: Convolutional
networks for biomedical image segmentation, Lect. Notes Com-
put. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes
Bioinformatics), 9351, 234–241, https://doi.org/10.1007/978-3-
319-24574-4_28, 2015.

Sakaino, H.: Camera-Vision-Based Water Level
Estimation, IEEE Sens. J., 16, 7564–7565,
https://doi.org/10.1109/JSEN.2016.2603524, 2016.

Seibert, J.: Multi-criteria calibration of a conceptual runoff model
using a genetic algorithm, Hydrol. Earth Syst. Sci., 4, 215–224,
https://doi.org/10.5194/hess-4-215-2000, 2000.

Skougaard Kaspersen, P., Høegh Ravn, N., Arnbjerg-Nielsen, K.,
Madsen, H., and Drews, M.: Comparison of the impacts of urban
development and climate change on exposing European cities
to pluvial flooding, Hydrol. Earth Syst. Sci., 21, 4131–4147,
https://doi.org/10.5194/hess-21-4131-2017, 2017.

Spearman, C.: The Proof and Measurement of Associa-
tion between Two Things, Am. J. Psychol., 15, 72–101,
https://doi.org/10.2307/1412159, 1904.

Sperber, S., Seck, M., and Johnston, E.: Surveille Deliver-
able 2.3: Paper by local authorities end-users, available
at: https://surveille.eui.eu/wp-content/uploads/sites/19/2015/04/
D2.3-Paper-by-Local-Authorities-End-Users.pdf (last access:
13 November 2019), 2013.

ten Veldhuis, J. A. E.: How the choice of flood damage metrics influ-
ences urban flood risk assessment, J. Flood Risk Manag., 4, 281–
287, https://doi.org/10.1111/j.1753-318X.2011.01112.x, 2011.

Tscheikner-Gratl, F., Zeisl, P., Kinzel, C., Leimgruber, J., Ertl, T.,
Rauch, W., and Kleidorfer, M.: Lost in calibration: why people
still don’t calibrate their models, and why they still should – a
case study from urban drainage modelling, Water Sci. Technol.,
395, 2337–2348, https://doi.org/10.2166/wst.2016.395, 2016.

van Meerveld, H. J. I., Vis, M. J. P., and Seibert, J.: Infor-
mation content of stream level class data for hydrological
model calibration, Hydrol. Earth Syst. Sci., 21, 4895–4905,
https://doi.org/10.5194/hess-21-4895-2017, 2017.

van Riel, W.: Exploratory study of pluvial flood impacts in Dutch
urban areas, Deltares, Delft, the Netherlands, 2011.

Wang, R. Q., Mao, H., Wang, Y., Rae, C., and Shaw, W.:
Hyper-resolution monitoring of urban flooding with social me-
dia and crowdsourcing data, Comput. Geosci., 111, 139–147,
https://doi.org/10.1016/j.cageo.2017.11.008, 2018.

Wani, O., Scheidegger, A., Carbajal, J. P., Rieckermann,
J., and Blumensaat, F.: Parameter estimation of hydro-
logic models using a likelihood function for censored
and binary observations, Water Res., 121, 290–301,
https://doi.org/10.1016/j.watres.2017.05.038, 2017.

Yu, D., Yin, J., and Liu, M.: Validating city-scale surface water flood
modelling using crowd-sourced data, Environ. Res. Lett., 11,
124011, https://doi.org/10.1088/1748-9326/11/12/124011, 2016.

Zahnt, N., Eder, M., and Habersack, H.: Herausforderungen durch
pluviale Überflutungen – Grundlagen, Schäden und Lösungsan-
sätze, Osterr. Wasser Abfallwirtsch., 70, 64–77, 2018.

Zeiler, M. D., Taylor, G. W., and Fergus, R.: Adaptive deconvolu-
tional networks for mid and high level feature learning, in: Pro-
ceedings of the IEEE International Conference on Computer Vi-
sion, 6–13 November 2011, Barcelona, Spain, 2018–2025, 2011.

Zou, K. H., Warfield, S. K., Bharatha, A., Tempany, C. M. C.,
Kaus, M. R., Haker, S. J., Wells, W. M., Jolesz, F. A., and Kiki-
nis, R.: Statistical Validation of Image Segmentation Quality
Based on a Spatial Overlap Index, Acad. Radiol., 11, 178–189,
https://doi.org/10.1016/S1076-6332(03)00671-8, 2004.

Hydrol. Earth Syst. Sci., 23, 4621–4634, 2019 www.hydrol-earth-syst-sci.net/23/4621/2019/

https://doi.org/10.1038/234034a0
https://doi.org/10.5194/nhess-15-381-2015
https://doi.org/10.3390/s150820006
https://doi.org/10.3390/w10101332
https://doi.org/10.1109/JSEN.2016.2592359
https://doi.org/10.25678/000150
https://doi.org/10.5446/43637
https://doi.org/10.5194/essd-9-657-2017
https://doi.org/10.1038/s41467-018-04253-1
https://doi.org/10.1038/s41467-018-04253-1
https://github.com/pietz/unet-keras
https://github.com/pietz/unet-keras
https://www.youtube.com/watch?v=ZOpWO7rJbtU
https://www.youtube.com/watch?v=ZOpWO7rJbtU
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1109/JSEN.2016.2603524
https://doi.org/10.5194/hess-4-215-2000
https://doi.org/10.5194/hess-21-4131-2017
https://doi.org/10.2307/1412159
https://surveille.eui.eu/wp-content/uploads/sites/19/2015/04/D2.3-Paper-by-Local-Authorities-End-Users.pdf
https://surveille.eui.eu/wp-content/uploads/sites/19/2015/04/D2.3-Paper-by-Local-Authorities-End-Users.pdf
https://doi.org/10.1111/j.1753-318X.2011.01112.x
https://doi.org/10.2166/wst.2016.395
https://doi.org/10.5194/hess-21-4895-2017
https://doi.org/10.1016/j.cageo.2017.11.008
https://doi.org/10.1016/j.watres.2017.05.038
https://doi.org/10.1088/1748-9326/11/12/124011
https://doi.org/10.1016/S1076-6332(03)00671-8

	Abstract
	Introduction
	The need for urban pluvial flood monitoring data
	Surveillance cameras as a data source
	Automatic water level monitoring with surveillance images
	Objective of the present work

	Materials and methods
	Flood water segmentation
	Image segmentation with deep convolutional neural networks
	Water segmentation with U-net
	Deep convolutional neural network training strategies

	Static observer flooding index
	Performance assessment
	Surveillance footage
	Flood segmentation performance
	Performance of SOFI as a proxy for the water level trend


	Results
	Automatic flood water segmentation
	Flood level trend extraction

	Discussion
	SOFI as a scalable and robust approach for qualitative water level sensing
	Factors influencing the information quality of SOFI
	Degradation of training image quality improves segmentation of surveillance images
	Fine-tuning of the DCNN to specific cameras
	Regions of interest (ROI) do not deliver the expected value
	Practical value of SOFI
	Recommendations for future research

	Conclusions
	Code availability
	Data availability
	Video supplement
	Supplement
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

