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Abstract. Machine learning provides great potential for
modelling hydrological variables at a spatial resolution be-
yond the capabilities of physically based modelling. This
study features an application of random forests (RF) to model
the depth to the shallow water table, for a wintertime mini-
mum event, at a 50 m resolution over a 15 000 km2 domain
in Denmark. In Denmark, the shallow groundwater poses se-
vere risks with respect to groundwater-induced flood events,
affecting both urban and agricultural areas. The risk is espe-
cially critical in wintertime, when the shallow groundwater is
close to terrain. In order to advance modelling capabilities of
the shallow groundwater system and to provide estimates at
the scales required for decision-making, this study introduces
a simple method to unify RF and physically based modelling.
Results from the national water resources model in Denmark
(DK-model) at a 500 m resolution are employed as covariates
in the RF model. Thus, RF ensures physical consistency at a
coarse scale and fully exhausts high-resolution information
from readily available environmental variables. The vertical
distance to the nearest water body was rated as the most im-
portant covariate in the trained RF model followed by the
DK-model. The evaluation test of the trained RF model was
very satisfying with a mean absolute error of 76 cm and a co-
efficient of determination of 0.56. The resulting map under-
lines the severity of groundwater flooding risk in Denmark,
as the average depth to the shallow groundwater is 1.9 m and
approximately 29 % of the area is characterized as having a
depth of less than 1 m during a typical wintertime minimum
event. This study brings forward a novel method for assess-
ing the spatial patterns of covariate importance of the RF pre-
dictions that contributes to an increased interpretability of the
RF model. Quantifying the uncertainty of RF models is still

rare for hydrological applications. Two approaches, namely
random forests regression kriging (RFRK) and quantile re-
gression forests (QRF), were tested to estimate uncertainties
related to the predicted groundwater levels.

1 Introduction

The shallow groundwater, defined as the uppermost water ta-
ble, is a key state variable of the hydrological cycle that has a
wide range of vital implications for human health, terrestrial
ecosystems, food security and energy production (Gleeson et
al., 2016). Following Fan et al. (2013), up to one-third of the
global land area is affected by shallow groundwater, being
either directly groundwater-fed or having the water table or
capillary fringe within plant rooting depths. In many regions
of the world, groundwater aquifers are being depleted ex-
tensively by unsustainable anthropogenic activities (Richey
et al., 2015). In addition, climate change affects groundwa-
ter recharge and storage, which, in many cases, impacts the
resilience of shallow groundwater systems (Ferguson and
Maxwell, 2010; Rodell et al., 2018).

Shallow groundwater has a broad relevance that ex-
pands beyond hydrological science. For instance, Kahlown
et al. (2005) and Zipper et al. (2015) studied the dependency
between crop yield and the water table. They concluded that
groundwater played an essential role in meeting the crop wa-
ter requirements in many agricultural settings. However, wa-
ter tables too close to the surface resulted in reduced yields,
and both studies identified an optimal water table height of
between 1 and 2 m below the surface. Moreover, several stud-
ies have highlighted the controlling mechanisms that the wa-
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ter table has on the energy balance at the land surface, infer-
ring a link to the latent heat flux and the delineation of water-
and energy-limited ecosystems (Kollet and Maxwell, 2008;
Maxwell and Condon, 2016). Other studies stressed the con-
nections between groundwater and the near-surface climate
via coupled numerical modelling experiments (Larsen et al.,
2016; Wang et al., 2018). Shallow groundwater is also of im-
portance in urban contexts (Bricker et al., 2017), with special
focus on urban flooding which can be directly induced or
indirectly intensified by high groundwater levels (Jankowf-
sky et al., 2014; Kreibich and Thieken, 2008; MacDonald
et al., 2012). Moreover, MacDonald et al. (2010) and Upton
and Jackson (2011) studied the underlying processes, esti-
mated return periods and mapped risk of groundwater flood-
ing events.

In Denmark, the quantitative status of shallow groundwa-
ter systems is challenged by climate change and groundwater
abstraction (Henriksen et al., 2008; Karlsson et al., 2016). In
more detail, Kidmose et al. (2013) demonstrated that ground-
water levels are expected to rise by up to 1.5 m for a 100-year
event relative to present average conditions. Similar findings
were presented by van Roosmalen et al. (2007), who quan-
tified regional differences across Denmark in the projected
change of groundwater levels depending on soil types with
more profound increases in highly permeable sandy soils.
Moreover, Henriksen et al. (2012) analysed climate change
effects on the shallow water table over Denmark for mean
and maximum conditions for nine different climate models
and identified changes of at least 0.5 m for 26 % of Denmark.
This finding represented the median change across the nine
applied climate models.

The above-mentioned problems call for comprehensive
modelling tools that can support environmental decision-
making aiming at tackling current and future challenges re-
lated to shallow groundwater. Spatial scales that are rele-
vant for society and required for adequate decision-making
can typically not be provided by numerical, physically based
models alone. This limitation is mainly related to the fact
that such models are computationally very expensive which
hinders thorough conduct calibration, sensitivity and uncer-
tainty analysis at high resolution (Asher et al., 2015; Stisen
et al., 2018). Furthermore, it is difficult to parameterize sub-
surface processes regardless the scale (Beven et al., 2015).
Moreover, the wealth and detail of hydrological data are un-
der continual growth (Chaney et al., 2018) and the resulting
big data are often not harnessed optimally in existing mod-
elling frameworks (Best et al., 2015; Nearing et al., 2016). As
outlined by Reichstein et al. (2019), machine learning will
play an essential role in advancing current modelling sys-
tems by integrating machine learning and numerical models.
The development and testing of such hybrid models, com-
plementing the benefits of physically based models and ma-
chine learning, have gradually gained more attention in re-
cent years in the hydrological community. A roadmap toward
machine-learning-facilitated discoveries of hydrological sys-

tems has been outlined by Shen at al. (2018) and will likely
play an eminent role in the future of hydrology. More gen-
erally, Karpatne et al. (2017) coined the paradigm “theory-
guided data science” which comprises a diverse list of ap-
proaches with which physically based models and machine
learning can be combined. All three of the above-mentioned
references focus on the coupling of physically based models
with the versatility of data-driven modelling frameworks. In
more detail, they have identified that the interpretability of
machine learning models is among the main challenges for
the successful adoption of big data technologies in hydrolog-
ical science.

This study highlights the applicability of machine learn-
ing, namely the random forests (RF) algorithm (Breiman,
2001), to model the depth to the shallow groundwater at a re-
gional scale at high spatial resolution. The aim is to produce
a map that captures an extreme wintertime condition, repre-
senting a minimum depth to the water table. Such an event
can potentially induce groundwater flooding that poses risks
related to infrastructure and agriculture. Thus, the resulting
high-resolution map will be a versatile screening resource for
environmental decision-making and climate change adaption
planning. The proposed RF model draws on the Danish na-
tional water resources model (Højberg et al., 2013) which
provides a coarse estimation of the depth to the shallow wa-
ter table. In this way, the RF model utilizes the coarse pre-
diction of the physically based model to ensure overall phys-
ical consistency, which may not be granted by the RF model
alone. Hence, this study tests a simple hybrid model integrat-
ing the output of a numerical model in a machine learning
framework. Before machine learning techniques can be con-
sidered as a standard tool for environmental decision-making
and planning, methods to conduct comprehensive sensitiv-
ity analysis and uncertainty assessment need to be developed
and tested thoroughly. In order to advance this field of hydro-
logical research, this study compares two different methods
for quantifying the uncertainty of a RF model, namely ran-
dom forests regression kriging (Hengl et al., 2015) and quan-
tile regression forests (Meinshausen, 2006). Furthermore,
this study features a novel methodology to quantify covariate
importance, and thereby the sensitivity of the model inputs,
which ultimately helps to better comprehend and interpret
the RF prediction.

Numerous studies have already successfully employed
machine learning techniques to predict the temporal dynam-
ics of the groundwater system based on artificial neural net-
works (Banerjee et al., 2009; Daliakopoulos et al., 2005;
Shiri et al., 2013; Yoon et al., 2011) or other machine learn-
ing methods (Fallah-Mehdipour et al., 2013). However, op-
portunities to utilize data-driven modelling to assess the spa-
tial dimension of the water table have not been fully ex-
hausted to date. Fienen et al. (2013) are among the few
that have utilized a machine learning technique to map the
depth to the groundwater in space (i.e. Bayesian network).
Machine learning has already been applied to model other
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groundwater-related variables, such as the nitrate concentra-
tion (Nolan et al., 2015; Tesoriero et al., 2015), arsenic con-
centrations (Erickson et al., 2018; Winkel et al., 2011) and
redox conditions in the subsurface (Close et al., 2016; Koch
et al., 2019), and the potential to map the depth to the water
table is tangible.

The four main objectives of this paper are as follows: (1) to
train a RF model that is capable of predicting the depth to the
shallow water table at a high spatial resolution, (2) to outline
a simple and generic method that unifies a physically based
model and machine learning, (3) to conduct a comprehensive
sensitivity analysis to better interpret the RF model predic-
tion and (4) to assess the uncertainty related to the RF model
based on two different approaches.

2 Methods

2.1 Study area

The study area encompasses a large part of the Jutland
Peninsula, which is located in Denmark in northern Europe
(54.5–57.8◦ N and 8.0–10.9◦ E). The extent of the study area
amounts to approximately 15 000 km2 and its general surfi-
cial geological setting is illustrated in Fig. 1. The landscape
of Jutland was formed by a sequence of Pleistocene glacia-
tions and postglacial processes. The geology of the east-
ern part of the study domain is dominated by Weichselian
moraine sediments with a moderate clay content, whereas
the west is characterized by moraine sediments originating
from the Saalian age, referred to as hill islands, intertwined
by sandy Weichselian outwash plains.

2.2 Data

This study aims at modelling the depth to the shallow water
table at a 50 m spatial resolution using a machine learning
modelling framework. Disregarding the prevailing temporal
variability of groundwater dynamics close to the surface, we
chose to model an extreme event that characterizes a mini-
mum depth which is expected to arise every year. Based on
the climate in Denmark, such an event normally occurs to-
wards the end of winter, when shallow aquifer systems are
replenished after several months of typically high rainfall
and low evapotranspiration. Applying machine learning to
model an extreme event of a highly dynamic variable poses
distinct challenges to the training dataset. Long time series
of groundwater head measurements are scarce, and shallow
groundwater time series are even more rare. In fact, many
shallow wells, with screens within the uppermost 10 m, pro-
vide just one to a few observations in total. In order to cap-
italize on these low-frequency sampled wells, we developed
a method to transform any given observations to an expected
high water table. For this transformation, sinus curves were
defined with varying amplitudes that captured the annual dy-

namics of the shallow groundwater for various hydrogeolog-
ical settings. The workflow is described in more detail below.

First, well data, covering the entire model domain, were
extracted from the national database, Jupiter (Hansen and
Pjetursson, 2011). Groundwater head observations from
wells with a maximum filter depth of 10 m were assorted
for a 20-year period between 1998 and 2017. Several con-
straints were applied to this initial extraction: (1) the mean
water level may not be below the filter depth, (2) the water
levels may not exceed 5 m above the surface, (3) the stan-
dard deviation of the head observations may not be greater
than 3 m and (4) the well may not be in operation. By ap-
plying these four constraints, 14 916 wells with one or more
head observations were selected which approximately corre-
sponds to a density of one well per square kilometre. Figure 1
shows the location of the wells.

Second, wells with more than five observations, of which
392 were present, were grouped according to their hydroge-
ological setting. Subsequently, their standard deviation was
studied in more detail in order to define the sinus curve am-
plitudes for each of the groups. In total, 27 combinations, de-
scribing the general hydrogeological setting of a well, were
assessed. These groups were based on three categories with
three subcategories each, (1) permeability (high, low or un-
known), (2) aquifer condition (confined, unconfined or un-
known) and (3) proximity (near the coastline, near stream or
other). The amplitude of the sinus curve was set to the 99 %
confidence interval and, under the assumption of normality,
calculated as 2.576 times the standard deviation. Based on
the analysis of the variability at 392 wells with long time se-
ries the average annual amplitude of the sinus curves varied
between 0.5 and 1.5 m depending on the hydrogeological set-
ting. The largest amplitude was associated with wells with
filters in sediment with low permeability, under unconfined
conditions and not in the vicinity of the coastline or streams.
Low amplitudes were generally connected with wells closer
than 100 m to streams, lakes or the coastline. The minimum
and maximum of the sinus curves was set to arise in mid-
February and mid-August respectively.

Third, the groundwater head value describing an extreme
wintertime condition at each well was defined twofold. At
wells with five or more observations, the recorded minimum
depth was used as input to the training dataset. Conversely,
at wells with fewer observations, the predefined sinus model
was applied to transform an observed minimum to an ex-
pected wintertime minimum. Using this approach, the ob-
served variability at wells with high-quality data was used
to infer a meaningful minimum value, describing an extreme
wintertime situation, at wells with few observations. Figure 2
exemplifies this approach in more detail. The first two exam-
ples express wells with long time series, used to define the
sinus amplitude corresponding to the well’s hydrogeological
setting. Here, the minimum observations were extracted as
input to the training dataset. The bottom two examples de-
pict cases with few observations where a sinus curve was
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Figure 1. The study site is located in central Denmark. The inset figure is an overview depicting the digital elevation model. The main
map shows the predominant geological landscape types. The training dataset contains observations at∼ 15000 wells. Additionally,∼ 16000
artificial observations, placed along major rivers, lakes and the coastline, are added to the analysis. The depth to the shallow groundwater is
set to zero for the additional data.

applied to transform the observed minimum depth to an ex-
pected winter minimum condition. In cases where the trans-
formation resulted in negative values, i.e. manifesting arte-
sian conditions, the value was set to zero. This correction was
considered meaningful as many of these wells were located
in unconfined conditions. The resulting training dataset con-
sisted of 14 916 wells; from these wells, 97 % were corrected
with sinus curves, and the observed minimum depth was used
at the remaining 3 %. Figure 2 indicates that the minimum
depths based on the measured values and sinus model may
deviate for the 392 wells with long time series. However, the
two examples in Fig. 2 imply a deviation of 10–20 cm, which
lies within the measurement uncertainty itself. This allows us
to conclude that the proposed sinus model-based correction
is robust enough for our application.

There are two sources of uncertainty that were not con-
sidered in this analysis. First, the observational uncertainty
related to the head values in the well database was not taken
into account. Second, the sinus model used to traverse any

given observation to an expected wintertime minimum ne-
glected seasonal and inter-annual variability.

Additional observations were placed along streams, the
coastline and the centre points of lakes. At the given loca-
tions, the depth to the shallow groundwater was set to zero.
This extension of the training dataset was found necessary
in order to provide critical information to the machine learn-
ing model which was otherwise not conveyed in the bore-
hole data alone. However, only a subset consisting of 1900
random samples of the 16 210 additional observations was
used for training of the machine learning model. This cor-
responds to approximately the same well density as found
in the original training dataset, taking the combined area of
streams, the coastline and lakes in 50 m grid resolution into
consideration. In this way, the information content of the
well data and the additional data was balanced. Including
all ∼ 16000 additional observations with a depth of zero in
the training dataset would result in a biased model, because
the average of the training dataset would not be represen-

Hydrol. Earth Syst. Sci., 23, 4603–4619, 2019 www.hydrol-earth-syst-sci.net/23/4603/2019/



J. Koch et al.: Modelling of the shallow water table at high spatial resolution using random forests 4607

Figure 2. Four examples showing how the training dataset was derived. At wells with more than four observations (a, b), the minimum
daily observation was chosen. Examples (a) and (b) represent long time series and sinus curves with amplitudes of 1 and 0.5 m respectively,
and were used to describe the annual variability. Examples (c) and (d) represent two cases with few observations. Here, sinus curves with
predefined amplitudes, 1.5 and 1 m respectively, corresponding to the well’s hydrogeological setting were applied to traverse the observed
minimum depth to an expected wintertime minimum.

tative for the study site. The complete dataset of additional
observations was, however, utilized in the uncertainty anal-
ysis. In Table 1, a list of the environmental covariates used
to model the depth of the shallow water table is found. In
total, 27 covariates were assembled as input to the machine
learning model. This list comprises information on soil tex-
ture, drainage conditions, geology, topography-based char-
acteristics, water body proximity, precipitation, land cover,
geographic location and outputs from a hydrological simu-
lation with the Danish national water resources model (DK-
model; Højberg et al., 2013). The native spatial resolution
of the covariates varied, but all covariates were resampled to
50 m to be in agreement with the defined output resolution.
The water body proximity was expressed as both the verti-
cal and horizontal distance to the nearest water body, which
contained rivers, lakes and the coastline. The covariates were
subdivided into six groups, i.e. geology, topography, water
body relation, precipitation, land cover, coordinates and hy-
drological model. This subdivision was implemented in the
sensitivity analysis of the machine learning model to elimi-
nate correlations between covariates.

2.3 Random forests

This study applied random forests (RF) regression to model
the depth to the shallow water table at high spatial res-
olution at the regional scale. RF was first proposed by
Breiman (2001) and has emerged as a prevalent modelling
tool covering a wide range of geophysical and environmen-

tal contexts. These include, among others, digital soil map-
ping (Hengl et al., 2015; Ließ et al., 2012), estimating ni-
trate pollution in aquifers (Rodriguez-Galiano et al., 2014;
Tesoriero et al., 2017), biomass estimation using satellite re-
mote sensing (Mutanga et al., 2012), landslide susceptibility
analysis (Youssef et al., 2016), mineral prospectivity map-
ping (Rodriguez-Galiano et al., 2015) or estimation of young
water fractions across catchments (Lutz et al., 2018). RF has
proven to provide high predictability for multivariate mod-
elling of complex, non-linear variables, and multiple bench-
marking studies have documented the capabilities of RF to
outperform other machine learning techniques (Nussbaum
et al., 2018; Rodriguez-Galiano et al., 2015; Youssef et al.,
2016). Like other data-driven modelling approaches, train-
ing is an essential step in the RF model-building process.
Based on the training dataset, RF learns linkages between
the covariates and the target variable at sampled locations,
which then are generalized to make predictions at unsampled
locations. The core of RF is an enhanced utilization of deci-
sion trees. More precisely, RF builds an ensemble of decision
trees, where each tree recursively splits the training data into
more homogenous groups. The formulation of the decision
trees contains two elements of randomness with the aim to
increase the diversity within the ensemble of decision trees.
First, the concept of “bagging” is applied. Bagging is an en-
semble technique that generates a unique bootstrap sample of
the original training dataset for each decision tree. Based on
sampling with replacement, each bootstrap sample contains
approximately 63.2 % of the original training data. The aver-
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Table 1. Overview of the covariates used to model the shallow water table using RF.

Variable Source Group

Clay content; a layer: 0–30 cm

Adhikari et al. (2013)

Geology

Clay content; b layer: 30–60 cm

Clay content; c layer: 60–100 cm

Clay content; d layer: 100–200 cm

Quaternary thickness Binzer and Stockmarr (1994)

Depth to clay occurrence Højberg et al. (2013)

Probability of artificial drainage Møller et al. (2018)

Soil drainage class Møller et al. (2017)

Lowland classification Aarhus University – Danish Centre for Environment
and Energy: The Danish SINKs project

Landscape typology Breuning-Madsen and Jensen (1992)

Geo-region classification Adhikari et al. (2014)

Soil type Geological Survey of Denmark and Greenland

Digital elevation model
Danish Agency for Data Supply and Efficiency (SDFE)

Topography

Detrended digital elevation model

Topographic wetness index
Böhner and Selige (2002)

Saga wetness index

Flow accumulation

SDFE

Slope

Vertical distance to nearest water body

Water body relationHorizontal distance to nearest water body

Water body (lake, river and the coastline)
classification

Degree of urbanization Danish climate change adaption portal
Land cover

Land cover CORINE Copernicus

Coordinates (utmx)
Not applicable Coordinates

Coordinates (utmy)

DK-model; depth to max groundwater level Henriksen et al. (2012) Hydro model

Precipitation Danish Meteorological Institute Precipitation

age across the entire ensemble represents the final RF predic-
tion. Second, only a subset of the covariates is drawn upon
when splitting the data during the process of decision tree
building. This subset, usually 33 % of the available covari-
ates, is selected randomly for each split. In combination, the
two elements of randomness decrease the accuracy of a sin-
gle tree; however, the diversity between the trees increases,

which results in a robust prediction when averaging across
all trees.

The bootstrapping procedure divides the training data into
an “in-bag” part, which is used for building the decision
trees, and an “out-of-bag” (oob) part, which is excluded from
the training. This partitioning is unique for each tree of the
ensemble and thereby provides a valuable internal cross-
validation test. In other terms, each tree can be evaluated with
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its own oob sample, and the average across all oob predic-
tions allows for the quantification of the overall accuracy of
the RF model. For the oob prediction, only samples retained
from the training, thus out-of-bag samples, are considered
when averaging. In this way, the entire ensemble of trees can
be evaluated by applying the oob approach. In order to quan-
tify the performance of the RF model, we have applied the
following metrics on the oob prediction: coefficient of deter-
mination (R2), mean absolute error (MAE) and root-mean-
squared error (RMSE). We applied the Scikit-learn Python
package (Pedregosa et al., 2012) to conduct the RF modelling
for this study.

2.4 Covariate sensitivity

The concept of covariate permutation allows one to assess
the importance of each covariate that acts as input to a RF
model (Biau and Scornet, 2016). This can be understood as a
sensitivity analysis which can help to better comprehend and
interpret the trained RF model and to gain physical insights
into the otherwise nontransparent black-box model. This is
achieved by permuting each covariate at a time, while leaving
the remaining covariates unchanged, and tracing the apparent
decrease in the oob evaluation metric. Typically, the coeffi-
cient of determination (R2) is used as a metric, but other met-
rics could also be consulted as the sensitivity may be metric
dependent. This concept is common practice to assess co-
variate importance for a trained RF model (Ließ et al., 2012;
Lutz et al., 2018). However, this analysis is limited to the
training dataset, and conclusions on which covariates dom-
inate the prediction and how this varies spatially cannot be
drawn. In order to gain insights into the spatial patterns of
covariates’ importance, we have developed a novel method,
which applies the above-mentioned concept of covariate per-
mutation on the prediction dataset instead of the training
dataset. The aim of the sensitivity analysis is to identify a
relative ranking of covariate importance for each simulation
grid, which can ultimately provide increased interpretability.
The starting point of the analysis is the trained RF model
and its prediction at all simulation grids. Sequentially, each
covariate is permuted, while leaving the remaining covari-
ates unchanged, and the trained RF model is used to make
a modified prediction. The difference between the modified
and original prediction is recorded. The cycle of permuta-
tion and prediction is repeated n times until the mean dif-
ference across n permutations converges for each simulation
grid. This is necessary, because a single permutation may
allegedly result in no or minor change in a covariate value
at specific grids. Once the mean difference has converged,
the covariates can be ranked with respect to their associated
mean absolute difference for each simulation grid. In order
to map the spatial covariate sensitivity it is essential that the
ranking is performed at each simulation grid. This ranking
expresses the relative covariate importance and is the key re-
sult of the proposed sensitivity analysis. Maps showing the

top ranks can be used to visualize the spatial patterns of the
sensitivity of the RF model.

Typically, strong correlations are found between covari-
ates, which may result in an alleged low importance when
being permuted individually (Koch et al., 2019). In order to
overcome this limitation, we suggest a supplementary anal-
ysis that collectively permutes groups of covariates that are
physically related.

2.5 Random forests regression kriging

Extending RF using geostatistical methods is gaining popu-
larity in the field of digital soil mapping (Guo et al., 2015;
Hengl et al., 2015) and related environmental modelling
studies (Ahmed et al., 2017; Li et al., 2011; Viscarra Rossel
et al., 2014). Regression kriging (RK) is a widely applied
approach that combines a multiple linear regression (MLR)
model with a geostatistical model of the MLR residuals
(Hengl et al., 2007; Odeh et al., 1995). In order to integrate
RF into RK, RF can simply replace the MLR model. In this
way, RF provides an overall data-driven trend and the RF
residuals can be interpolated using geostatistics. This results
in a hybrid model that is commonly referred to as random
forests regression kriging (RFRK). To our knowledge, RFRK
has not yet been applied with the purpose of predicting a hy-
drological state variable such as groundwater head. RFRK
can be expressed by

PRFRK (s0)= TRF (s0)+ êRF (s0) , (1)

where TRF(s0) is the RF prediction at location s0 and êRF(s0)

is the estimated residual at the same location. The sum of
trend (TRF) and residual (êRF) yields the final RFRK predic-
tion (PRFRK). This study utilizes kriging to interpolate the
oob residuals of the RF model. We use the oob prediction
instead of the overall RF prediction to compute the resid-
uals, because the oob procedure provides a more realistic
estimation of the generalization error. The overall RF pre-
diction naturally exhibits a lower error than the oob predic-
tions as the data were contained in the training. Therefore,
the resulting error variance would be biased and can not be
used to interpolate the error at unsampled locations. Kriging
is a popular geostatistical technique for spatial interpolation
that employs knowledge about the spatial autocorrelation of
a variable, which can be captured by a variogram model. For
the definition of a variogram model, the omnidirectional em-
pirical semivariance (γ ) is calculated by

γ (h)=
1

2n(h)

n(h)∑
i=1

[e (si)− e (si +h)]2, (2)

where n(h) marks the total number of data pairs at a given
lag distance h, e(si) represents the oob residual at location si
and e(si+h) is the residual separated by lag h from si (Math-
eron, 1963). A variogram model is fitted to γ to model the
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spatial autocorrelation structure of the oob residuals (Clay-
ton and Andre, 1998). The parameters defining a variogram
model are type, range, sill and nugget. The Gstat R package
(Pebesma, 2004) was applied for variogram modelling and
kriging interpolation.

The addition of residual kriging to RF results in high ac-
curacy at grids coinciding with observations. Furthermore,
kriging quantifies the prediction uncertainty following the
defined variogram model. Generally, the kriging variance is
low in the vicinity of data points and increases to the sill
value once the distance to the nearest data point is beyond
the range of the variogram model.

2.6 Quantile regression forests

Using RF, the prediction is obtained by averaging across the
ensemble of decisions trees. This disregards the distribution
of the target variable originating from several hundreds to
thousands of decision trees, which are typically necessary to
build a robust RF model. Meinshausen (2006) developed the
quantile regression forests (QRF) method that analyses the
quantiles of the distribution of the target variable at predic-
tion grids. This results in an estimation of prediction uncer-
tainty or prediction intervals. The latter is obtained by record-
ing specific quantiles which mark the lower and upper con-
fidence limits (Hengl et al., 2018). The adoption of QRF for
hydrological variables is still gradual and only a few studies
have documented its applicability (Francke et al., 2008; Zim-
mermann et al., 2014). To our knowledge QRF has not been
applied to quantify uncertainty of groundwater level predic-
tions. For this study, we utilized the RF functionalities from
Scikit-learn (Pedregosa et al., 2012) to implement QRF.

3 Results

3.1 Random forests model

For the purpose of modelling the depth to the shallow water
table at a 50 m spatial resolution for an extreme wintertime
minimum event, a RF model was trained using the 27 avail-
able covariates and groundwater head data. The training data
comprised ∼ 15000 wells and 1900 additional observations
placed along streams, the coastline and in lakes. After ini-
tial testing, the RF model was parameterized as follows: the
number of decision trees was set to 1000, bootstrapping with
replacement was applied to sample the training data, 33 % of
the covariates were considered to identify the optimal data
split, trees were fully expanded (and thus not pruned), the
mean squared error was selected as criterion to identify the
optimal data split and regression was chosen as the modelling
method.

Figure 3 depicts the internal cross-validation test based on
the oob samples of the well data. The oob prediction can be
considered as an independent evaluation test, and the three
performance metrics, i.e. coefficient of determination (R2),

Table 2. Comparison of the RF generalization error quantified by
the out-of-bag (oob) procedure and 10-fold cross-validation (cv)
based on three metrics, i.e. coefficient of determination (R2) root-
mean-squared error (RMSE) and mean absolute error (MAE). The
1900 additional observations were excluded for this evaluation.

R2 RMSE (m) MAE (m)

oob 0.56 1.13 0.76
10-fold cv 0.55 1.15 0.77

mean absolute error (MAE) and root-mean-squared error
(RMSE), indicated an overall good performance (Table 2).
More than half of the variance contained in the training data
was captured by the RF model, the MAE amounted to 76 cm
and the RMSE was 1.13 m. The density scatter plot in Fig. 3
zooms into the top 6 m, and it becomes apparent that very
shallow observations (< 0.5 m) were systematically biased
while deeper observations were estimated in good agreement
(close to the 1 : 1 line).

In order to investigate if the oob prediction is a reliable
source to quantify how generalizable a RF model is, we con-
ducted a 10-fold cross-validation (cv) test. For this test, the
dataset was randomly split into 10 sets of approximately the
same size. Then 10 RF models were trained on 90 % of the
data so that each set was left out once and could be used for
evaluation purposes. The cv results were strikingly similar to
the oob prediction (Table 2). The agreement was convincing
which qualified the oob prediction as an appropriate way to
quantify the generalization error of our RF model.

Post training, the RF model was utilized to predict the
depth to the shallow water table and the resulting map is
shown in Fig. 4. Regional patterns of the shallow water table
were estimated as expected with deeper water tables in parts
of the sandy meltwater plains in the western section of the
domain and a water table that was generally close to the sur-
face in the moraine landscape, as shown in Fig. 1. Areas with
low topography were usually exposed to a very shallow wa-
ter table, which also corresponded to the conceptual under-
standing of the system. The 50 m spatial resolution provided
a very detailed picture of the spatial patterns associated with
the water table and the complex interplay of the covariates
became apparent. This is shown on the basis of two zoomed-
in extents, highlighting urban areas, in Fig. 4. The stream
network and lakes are clearly visible with a depth of zero,
which indicates that appending the additional observations to
the training data resulted in the intended effect. The severity
of the risk of groundwater-induced flood events becomes ap-
parent through the statistics of the RF map. The mean depth
to the groundwater for a typical wintertime minimum event
constituted 1.9 m for the entire modelling domain. Around
29 % of the domain was characterized by a depth to the shal-
low groundwater of less than 1 m and a depth of 50 cm or less
for 14 % of the area.
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Figure 3. The RF accuracy assessment was performed based on the out-of-bag sample technique. The axes depict the simulated (Sim) and
observed (Obs) depth to the shallow water table. Panel (a) displays a standard scatter plot containing ∼ 15000 well data points. The 1900
additional observations are excluded. Panel (b) shows a zoom-in (extent indicators in red in panel a) and the data are visualized as a density
scatter plot. The colour bar represents the number of data points in each square.

Figure 4. The resulting map of the depth to the shallow water table at a 50 m grid resolution. The zoomed-in extents highlight two urban
areas. Panel (b) displays the city of Holstebro, and panel (c) depicts the city of Silkeborg. Urban areas are visualized using hatching.

3.2 Covariate sensitivity

Covariate sensitivity was analysed from two different per-
spectives, both using the concept of permutation accuracy.
First, sensitivity was assessed for the trained RF model based
on the decrease in the R2 of the oob prediction as a conse-
quence of permuting a covariate. For this, only the training
dataset was incorporated which resulted in an overall covari-
ate sensitivity score. Second, the sensitivity of the trained RF
model was estimated individually for each simulation grid
based on the absolute difference between the permuted pre-
diction and the original prediction. This approach gives the
relative ranking of the most sensitive covariates for each sim-

ulation grid. Figure 5 shows the results for the former. The
vertical distance to the nearest water body was the domi-
nant covariate for the simulation of the shallow water table.
A decrease of 60 % in performance was apparent when the
variable was permuted. We found a direct relationship be-
tween the two variables, which highlighted that the shallow
groundwater did not explicitly follow terrain variability. This
resulted in a relatively deep water table at locations where
the vertical distance is high and vice versa. The second-most
important variable in the trained RF model was the simu-
lated water table by the national water resources model (DK-
model), associated with a 15 % drop in performance when
being permuted. The DK-model provides a typical minimum
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Figure 5. Variable importance of the trained RF model. The concept
of permutation accuracy was implemented to quantify the decrease
in out-of-bag performance R2. Permutation was applied not only to
single covariates (orange) but also to groups of covariates (grey).
Covariates are further specified in Table 1.

depth to the shallow water table at a 500 m resolution for
a 20-year reference period (1991–2010). This indicated that
the DK-model could supply a valuable coarse trend to the RF
model.

Figure 5 also quantifies the importance of physically re-
lated covariates. When permuted collectively, covariates as-
sociated with the topography resulted in a decrease of nearly
100 % in performance; thus, the respective covariates formed
the most important group. They were followed by covariates
describing the water body relation (∼ 70 % drop in perfor-
mance) and geology-related variables (60 %). As the vertical
distance to the nearest water body relates to both, topography
and water body proximity, it was included in both groups.
The above-mentioned results are based on the relative de-
crease in the R2 caused by the permutation of the covariates.
In order to test if the resulting sensitivity ranking is metric
dependent, we conducted the same analysis based on the rel-
ative decrease in the RMSE. We concluded that, in spite of
varying absolute numbers, the same conclusion in terms of
relative covariate sensitivity could be drawn; therefore, the
results are not discussed further in this study.

The results from the spatial sensitivity analyses are pre-
sented in Fig. 6. Figure 6 depicts maps of the top two
most important covariates for the RF prediction. Covariates
were permuted collectively following the groups presented
in Table 1 and as applied in the sensitivity analysis of the
trained RF model (Fig. 5). Each covariate group was per-
muted 250 times to ensure that the difference to the original
RF prediction converged at the individual grids. The sim-
ulated water table in the moraine landscape in the eastern
part of the model domain was controlled by covariates re-
lated to the geology. Here topography is gently undulating
and sediments are clay rich, which, in combination, resulted
in a water table close to the surface with small-scale vari-

ability caused by geological heterogeneity. The second-most
important covariates in the moraine landscape were mainly
the DK-model or the UTM coordinates. This underlined the
complexity of the shallow water table in this landscape. The
DK-model includes a comprehensive analysis of the entire
system, taking the interplay between several factors (hydro-
geology, topography, climate and others) into consideration.
In the RF model, coordinates provided the only possibility to
assign uniqueness to a simulation grid, which was required
in the moraine landscape to capture the complexity of the
shallow water table. Topography was important at locations
close to sea level or areas that were generally plane. Water
body relations played an important role at locations that were
either very far away from or very close to a water body. Data
on the location of urban areas, which were contained in the
land cover group, were rated important for urban areas with
moraine soils. In such clayey conditions, the subsurface is
often drained resulting in a deeper water table. Overall, the
importance of the DK-model appeared to be very local and
generally scattered across the domain, which underlined the
relevance of this covariate, as it could provide coarse infor-
mation at locations where the standard covariates fail to pro-
vide a meaningful generalization.

3.3 Uncertainty analysis

For the uncertainty analysis, we employed two methods,
namely RFRK and QRF. For the first, the RF residuals were
interpolated using kriging. Figure 7 shows the variogram
model which was used in the kriging interpolation. The
nugget was set to 0.26 m2 and the sill was defined as 1.02 m2.
An exponential variogram with a range of 700 m gave the
most satisfying fit to the experimental semivariances calcu-
lated at a 200 m lag distance.

Figure 8 depicts the resulting uncertainty, which was ex-
pressed by the standard deviation for both of the methods
applied. The RFRK employed all available data, ∼ 15000
wells and ∼ 16000 additional observations along streams,
the coastline and in lakes, in the RF residual interpolation.
Conversely, the RF training dataset only contained 1900 ad-
ditional observations in order to have a balanced relation-
ship between well data and additional observations in terms
of data density. Following the predefined variogram, uncer-
tainty was low in the vicinity of an observation, which in-
creased with distance until the sill value was reached. In this
way, all grid cells with a distance to a well or an additional
observation larger than the correlation length of the vari-
ogram model exhibit no variation. Based on QRF, the derived
uncertainty shows a different picture. Here the uncertainty
was expressed as the standard deviation of the 1000 individ-
ual decision tree predictions at each grid cell. In general the
uncertainty estimated by RFRK was lower than QRF. In the
western section, high uncertainties were generally associated
with locations with a large depth to the shallow groundwater
and vice versa for the QRF-based assessment. However, the
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Figure 6. The results of the sensitivity analysis are shown for the most sensitive covariate group (Rank 1, a) and the second-most important
covariate group (Rank 2, b). The city of Holstebro is chosen as the zoomed-in region for both maps.

Figure 7. The computed semivariances for the RF residuals (cir-
cles), based on the oob prediction. The line expresses the fitted var-
iogram model.

moraine landscape in the eastern part was characterized by an
overall high uncertainty despite having an overall water table
that is close to the surface. Such physical dependencies that
relate to the structure of the RF model were not captured by
the RFRK approach, which purely reflected borehole prox-
imity. The mean uncertainty across the domain amounted to
0.92 m for RFRK and 1.68 m for QRF.

4 Discussion

4.1 Training dataset

In order to capitalize on undersampled wells, this study uti-
lized sinus curves with amplitudes fitted to observations at
wells with long time series according to their hydrogeologi-
cal setting. Even though this step introduced uncertainties, it
was essential to generate a training dataset large enough to
make robust predictions. Applying the same amplitude every
year did not distinguish between dry and wet years, which
was a clear limitation of the approach. The sinus curves de-
scribed an average seasonal variation within a hydrogeolog-
ical class of boreholes and were thus not designed to reflect
the variability of all boreholes within each class. Neverthe-
less, it was critical that the dataset used to train a RF model
contained a wide range of observations before the model was
able to generalize and make predictions. Along these lines,
a training dataset can be expanded based on expert domain
knowledge to capture otherwise underrepresented conditions
(Koch et al., 2019). In this study, additional observations
along streams, the coastline and in lakes were appended to
the training dataset with a depth to the water table of zero. In
regions where the connection between surface and ground-
water is generally good, like it is for this case in Denmark, the
extent of surface waters can be considered a reliable proxy
of the shallow water table. The additional observations used
in this study guided the RF model to produce more reliable
predictions. Initial tests without the additional observations
resulted in surface water bodies which were unconnected to
the shallow groundwater system.
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Figure 8. Two methods to quantify the uncertainty of a RF model are implemented: RFRK (a) and QRF (b). For all maps, uncertainty is
expressed as the standard deviation (SD).

In unconfined sandy aquifers, we assume the elevation of
the shallow water table to be more homogeneous than the
depth of the shallow water table. This assumption may not
apply for more complex geological settings, such as glacial
tills, which cover a majority of the study area, where a sec-
ondary water table often follows the surface elevation. This
motivated us to model the water table depth instead of the el-
evation, which was further supported by an initial test where
a RF model was trained to predict the water table elevation.
The resulting water table elevation could easily be converted
to depth via subtraction from the surface elevation, and re-
sults indicated poorer performance compared with the RF
model predicting the water table depth.

The RF model was trained to a single event and thus dis-
regards the temporal dynamics of the shallow groundwater
system. As the model was designed as a simple screening
tool, this can be considered an advantage; however, much of
the complexity is not considered which is a clear shortcom-
ing of the proposed method.

In the coming years, the Danish national water resources
model (DK-model) will be updated based on recent hydro-
geological interpretations and reconstructed at a 100 m spa-
tial resolution. This is expected to improve the predictability
of the shallow water table, and the DK-model output should
then be utilized to update the RF model.

4.2 Random forests model

This study utilized the oob prediction to validate the per-
formance of the RF model based on three metrics, namely
the coefficient of determination (R2), mean absolute error
(MAE) and root-mean-squared error (RMSE). The metric
scores were very satisfying overall and in the range of what
could be considered very acceptable in groundwater flow
modelling (Henriksen et al., 2003). These findings underpin
the applicability of RF to model complex, non-linear vari-

ables with an accuracy that is difficult to obtain with physi-
cally based models. In contrast, the accuracy assessment re-
vealed a systematic bias of the trained RF model that was af-
fecting wells with groundwater levels close to the terrain. The
biased wells were predominately located in clayey moraine
sediments, which indicated location-specific shortcomings of
the RF model. The geology of the moraine landscape is het-
erogeneous which impacts the hydrogeological setting and,
in turn, also the shallow groundwater (He et al., 2014, 2015).
At the current stage, the available national hydrogeological
data do not possess the required spatial resolution to resolve
the apparent heterogeneities adequately. Moreover, some of
the above-mentioned wells are placed in confined conditions,
which in combination with the heterogeneous geology may
hinder good performance of the RF model.

Studying the covariate importance identified the water ta-
ble simulated with the DK-model at a 500 m resolution as
the second-most important RF input. These results were very
promising as the applied RF framework forms a straightfor-
ward implementation of unifying machine learning and phys-
ically based models. More precisely, RF built upon the coarse
DK-model using high-resolution covariate information that
ensured physical consistency.

Some covariates, e.g. drainage characteristics and the to-
pographic wetness index, were assigned an unanticipated
low importance in the sensitivity analysis of the RF model
(Fig. 5). This may indicate covariate redundancy or the fact
that the metric to quantify covariate importance (the decrease
in the coefficient of determination) is not very sensitive to the
permutations that may result in changes in wells with a very
shallow water table. For comparison, the RMSE instead of
the R2 was applied to quantify covariate importance, but this
test did not provide any additional insights. Future work must
systematically address the issues related to the choice of met-
ric or the fact that certain parts of the distribution are more
sensitive to different covariates.
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The resulting spatial resolution of 50 m provides a valu-
able screening tool for water management purposes. The risk
of groundwater floods on agricultural fields or urban areas is
typically very local and driven by small-scale variations of
topography and geology. This makes high-resolution predic-
tions inevitable in order to reliably tackle the related chal-
lenges. At the regional scale, the 50 m resolution would not
be feasible with numerical modelling, which emphasizes the
versatile applicability of RF. Many covariates are available
at a finer resolution and, as computational power becomes
more and more dispensable, RF predictions at even higher
resolution are within reach. This development should also
build upon current improvements of physically based mod-
els, which are now already capable of providing results at
resolutions in the range of hundreds of metres (Ko et al.,
2019; Wood et al., 2011) and, thus, such models could pro-
vide valuable trends, used as covariates in machine learning
models.

This study proposed a novel approach to quantify the co-
variate sensitivity of the simulation dataset, which results in
a relative ranking of the most important covariates at the grid
level. This analysis provided physical insights into the driv-
ing mechanisms and, in general, the findings corresponded
to the conceptual understanding of the hydrogeology in the
study area. Such sensitivity maps are extremely valuable for
both the modeller and the stakeholders working with RF pre-
dictions. The former group can validate the physical consis-
tency of the otherwise nontransparent black-box model and
the latter will have a better understanding and ultimately also
a greater acceptance of the predictions.

4.3 Uncertainty assessment

This study assessed the capabilities of RFRK and QRF to es-
timate the uncertainties associated with a RF model that pre-
dicts water levels of the shallow groundwater system. Uncer-
tainty was expressed by the standard deviation; alternatively,
both methods could also be utilized to map upper and lower
uncertainty bounds that represent certain confidence inter-
vals. The key differences between the two proposed methods
were as follows: (1) the uncertainty estimation of RFRK was
generally lower than QRF and (2) the spatial patterns were
diverging; RFRK only reflected borehole proximity, whereas
QRF manifested a physical dependency of the uncertainty
estimation. These findings are in line with recent compari-
son studies focusing on QRF and RFRK from the digital soil
mapping literature (Szatmári and Pásztor, 2018; Vaysse and
Lagacherie, 2017). Szatmári and Pásztor (2018) argue that
RFRK-based uncertainty estimations are limited because re-
sults do not depend on the data value; therefore, the method
expresses an unconditional variance. This stringent assump-
tion of homoscedasticity, i.e. constant error variance, could
be unrealistic for variables where the variance behaves pro-
portionally to the measured value (Hengl et al., 2018). More-
over, RFRK assumes that the RF prediction, which is used

as a trend, is certain; thus, the kriging variance only reflects
the distance to the nearest observation. This assumption is
too optimistic, as the uncertainty in the RF prediction is ne-
glected. Once the training dataset is processed, RF disre-
gards any uncertainties associated with the values of the tar-
get variable. In this study, uncertainties could originate from
the applied sinus model used to transfer the observations to
a typical wintertime minimum depth as well as the obser-
vations itself. In contrast, a physically based hydrological
model allows more transparency, as biased observations will
be marked as outliers in the model evaluation. However, a
data-driven model, as flexible as RF, will incorporate such
outliers – thus biased predictions may arise.

As stated by Vaysse and Lagacherie (2017), QRF quanti-
fies information regarding where a simulation point is located
in the covariate space. In this way, QRF properly discrim-
inates groundwater conditions of contrasted physical com-
plexities, of which some are better constrained by the train-
ing dataset than others. We argue that the RFRK shortcom-
ings of assuming certainty in the trend prediction can be al-
leviated by the addition of QRF, which can capture the un-
certainty of the RF model structure. In summary, RFRK cap-
tures uncertainty related to the geographical space, whereas
QRF describes uncertainties related to the covariate space.
More work is needed to integrate these two sources of uncer-
tainty into a single uncertainty quantification.

Reducing uncertainties can be achieved by collecting more
observations and, thus, expanding the training dataset. Es-
pecially in the eastern part of the domain, which is char-
acterized by a high clay content and a heterogeneous sur-
ficial geology, additional data would likely reduce the un-
certainty. A measuring campaign in wintertime, when the
shallow groundwater system is fully replenished, would be
very beneficial to advancing the modelling capabilities. Ad-
ditionally, a higher spatial resolution may contribute to an un-
certainty reduction, as observations can be represented more
uniquely by the covariates.

In more general terms, as the numbers of hydrological ap-
plications based on machine learning are vastly expanding,
standards on how to conduct uncertainty analyses must be
formalized in the same fashion as was carried out for numer-
ical modelling (Refsgaard et al., 2007). Ultimately, such a
development determines the stakeholder acceptance of ma-
chine learning results.

5 Conclusions

This study focused on using RF to predict a map that depicts
the depth to the shallow groundwater at a 50 m resolution for
a typical wintertime minimum. More precisely, to predict a
minimum event that is expected to occur annually and poses
the risk of groundwater flooding affecting both urban areas
and agricultural fields. The regional map will be extremely
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valuable for water resources management. We draw the fol-
lowing main conclusions from our work:

1. RF is a versatile modelling tool with high accuracy that
enables spatial detail beyond the possibilities of (physi-
cally based) numerical modelling. The depth to the shal-
low water table was modelled with a mean absolute er-
ror of 76 cm for an independent evaluation test.

2. Predictions from a coarse physically based model that
represent an overall trend of the water table can be uti-
lized by RF as a covariate. In this way, RF ensures
physical consistency at coarse scale and exhausts high-
resolution information from topography, geology and
other relevant variables. The DK-model at 500 m res-
olution was rated the second-most important covariate
in the trained RF model, indicating that this simple form
of unifying machine learning and physically based mod-
elling has great potential.

3. The novel approach to assess covariate sensitivity for
the prediction dataset goes beyond the standard applica-
tions where covariate importance is solely quantified for
the training dataset. Results provide valuable insights
on the spatial pattern of covariate sensitivity and can
contribute to generating acceptability among end-users.
The increased interpretability of the RF predictions can
reassure modellers by comparing the derived sensitiv-
ity patterns with their conceptual understanding of the
system.

4. In the general context of hydrological machine learning
applications, more experience must be gained on how
to properly quantify uncertainty. RFRK was found use-
ful to assess observational proximity, but assuming cer-
tainty in the RF predications was regarded a shortcom-
ing. This can be compensated for by QRF, which is ca-
pable of addressing the uncertainty related to the struc-
ture of the RF model. However, methods to remove the
uncertainties related to the observations themselves and
possible preprocessing of the training dataset are still
lacking.
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