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Abstract. Many studies have shown that downstream flood
regimes have been significantly altered by upstream reser-
voir operation. Reservoir effects on the downstream flow
regime are normally performed by comparing the pre-dam
and post-dam frequencies of certain streamflow indicators,
such as floods and droughts. In this study, a rainfall–reservoir
composite index (RRCI) is developed to precisely quan-
tify reservoir impacts on downstream flood frequency under
a framework of a covariate-based nonstationary flood fre-
quency analysis using the Bayesian inference method. The
RRCI is derived from a combination of both a reservoir index
(RI) for measuring the effects of reservoir storage capacity
and a rainfall index. More precisely, the OR joint (the type of
possible joint events based on the OR operator) exceedance
probability (OR-JEP) of certain scheduling-related variables
selected out of five variables that describe the multiday an-
tecedent rainfall input (MARI) is used to measure the effects
of antecedent rainfall on reservoir operation. Then, the RI-
dependent or RRCI-dependent distribution parameters and
five distributions, the gamma, Weibull, lognormal, Gumbel,
and generalized extreme value, are used to analyze the annual
maximum daily flow (AMDF) of the Ankang, Huangjiagang,
and Huangzhuang gauging stations of the Han River, China.
A phenomenon is observed in which although most of the
floods that peak downstream of reservoirs have been reduced
in magnitude by upstream reservoirs, some relatively large
flood events have still occurred, such as at the Huangzhuang
station in 1983. The results of nonstationary flood frequency
analysis show that, in comparison to the RI, the RRCI that

combines both the RI and the OR-JEP resulted in a much
better explanation for such phenomena of flood occurrences
downstream of reservoirs. A Bayesian inference of the 100-
year return level of the AMDF shows that the optimal RRCI-
dependent distribution, compared to the RI-dependent one,
results in relatively smaller estimated values. However, ex-
ceptions exist due to some low OR-JEP values. In addition,
it provides a smaller uncertainty range. This study highlights
the necessity of including antecedent rainfall effects, in addi-
tion to the effects of reservoir storage capacity, on reservoir
operation to assess the reservoir effects on downstream flood
frequency. This analysis can provide a more comprehensive
approach for downstream flood risk management under the
impacts of reservoirs.

1 Introduction

River floods are generated by various complex nonlinear
processes involving physical factors, including “hydrologi-
cal pre-conditions (e.g., soil saturation, snow cover), meteo-
rological conditions (e.g., amount, intensity, and the spatial
and temporal distribution of rainfall), runoff generation pro-
cesses, and river routing (e.g., superposition of flood waves
in the main river and its tributaries)” (Wyżga et al., 2016). In
general, without reservoirs, the downstream flood extremes
of most rain-dominated basins are primarily related to ex-
treme rainfall events in the drainage area. However, with
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reservoirs, the downstream flood regimes should be totally
different due to upstream flood control scheduling. In the
literature, the significant hydrological alterations caused by
reservoirs have been demonstrated in the many areas of the
world. Graf (1999) showed that dams have more significant
effects on streamflow in America than global climate change.
Benito and Thorndycraft (2005) reported various significant
changes across the United States in pre-dam and post-dam
hydrologic regimes (e.g., minimum and maximum flows over
different durations). Batalla et al. (2004) demonstrated an ev-
ident reservoir-induced hydrologic alteration in northeastern
Spain. Yang et al. (2008) demonstrated the spatial variabil-
ity in hydrological regimes alterations caused by the reser-
voirs in the middle and lower Yellow River in China. Mei
et al. (2015) found that the Three Gorges Dam, the largest
dam in the world, has significantly changed downstream hy-
drological regimes. In recent years, the cause–effect mech-
anisms of downstream flood peak reductions were also in-
vestigated by some researchers (Ayalew et al., 2013, 2015;
Volpi et al., 2018). For example, Volpi et al. (2018) sug-
gested that for a single reservoir, the downstream flood peak
reduction was primarily dependent on its position along the
river, its spillway, and its storage capacity based on a parsi-
monious instantaneous unit-hydrograph-based model. These
studies have revealed that it is crucial to assess the impacts
of reservoirs on downstream flood regimes for the success of
downstream flood risk management.

Flood frequency analysis is the most common technique
used by hydrologists to gain knowledge of flood regimes. In
conventional or stationary frequency analyses, a basic hy-
pothesis is that hydrologic time series maintains stationar-
ity; i.e., it is “free of trends, shifts, or periodicity (cyclic-
ity)” (Salas, 1993). However, in many cases, observations
of changes in flood regimes have demonstrated that this
strict assumption is invalid (Kwon et al., 2008; Milly et al.,
2008). Nonstationarity in downstream flood regimes of dams
makes frequency analyses more complicated. Actually, the
frequency of downstream floods of dams is closely related
to upstream flood operations. In recent years, there have
been many attempts to link flood-generating mechanisms and
reservoir operations to the frequency of downstream floods
(Gilroy and Mccuen, 2012; Goel et al., 1997; Lee et al., 2017;
Liang et al., 2018; Su and Chen, 2019; Yan et al., 2017).

Previous studies have meaningfully increased the knowl-
edge about reservoir-induced nonstationarity of downstream
hydrological extreme frequencies (Ayalew et al., 2013;
López and Francés, 2013; Liang et al., 2018; Magilligan and
Nislow, 2005; Su and Chen, 2019; Wang et al., 2017; Zhang
et al., 2015). There are two main approaches to incorporate
reservoir effects into flood frequency analyses: the hydrolog-
ical model simulation approach and the nonstationary fre-
quency modeling approach. In the first approach, the regu-
lated flood time series can be simulated using three model
components: the stochastic rainfall generator, the rainfall-
runoff model, and the reservoir flood operation module,

which includes the reservoir storage capacity, the size of re-
lease structures, and the operation rules. The continuous sim-
ulation method can explicitly account for the reservoir effects
on floods in the hypothetical case. However, it is difficult
to apply this approach to a majority of real cases (Volpi et
al., 2018) because the simplifying assumptions of this ap-
proach are only satisfied in a few of basins with single small
reservoirs. Furthermore, even if the basins meet the simpli-
fying assumptions, the detailed information required in this
approach is likely unavailable. Thus, our attention is focused
on the second method, the nonstationary frequency model-
ing approach. Nonstationary distribution models have been
widely used to deal with the nonstationarity of extreme value
series. In nonstationary distribution models, the distribution
parameters are expressed as the functions of covariates to
determine the conditional distributions of extreme value se-
ries. According to extreme value theory, the maximum se-
ries can generally be described using the generalized extreme
value (GEV) distribution. Thus, previous studies (El Ad-
louni et al., 2007; Ouarda and El-Adlouni, 2011) have used
the nonstationary generalized extreme value distribution to
describe the nonstationary maximum series. Scarf (1992)
modeled the changes in the location and scale parameters
of the GEV over time using the power function relation-
ship. Coles (2001) introduced several time-dependent struc-
tures (e.g., trend, quadratic, and change point) into the loca-
tion, scale, and shape parameters of the GEV. El Adlouni et
al. (2007) provided a general nonstationary GEV model with
an improved parameter estimate method. In recent years,
“generalized additive models for location, scale, and shape”
(GAMLSSs) have been widely used in nonstationary hydro-
logical frequency analyses (Du et al., 2015; Jiang et al., 2014;
López and Francés, 2013; Rigby and Stasinopoulos, 2005;
Villarini et al., 2009). The GAMLSS provides various can-
didate distributions for frequency analysis, such as Weibull,
gamma, Gumbel, and lognormal distributions. However, the
GEV has rarely been involved in the candidate distributions
of GAMLSSs. In terms of a parameter estimation method
for the nonstationary distribution model, the maximum like-
lihood (ML) method is the most common parameter estimate
method. However, the ML method for a nonstationary distri-
bution model can lead to very high quantile estimator vari-
ances when using numerical techniques to solve the likeli-
hood function when using a small sample (El Adlouni et
al., 2007). El Adlouni et al. (2007) developed the general-
ized maximum likelihood (GML) method and demonstrated
that the GML method had better performance than the ML
method in all their cases. Ouarda and El-Adlouni (2011)
introduced the Bayesian nonstationary frequency analysis.
The Bayesian inference can obtain multiple estimates, form-
ing a posterior distribution of model parameters. Thus, the
Bayesian method is able to conveniently describe the uncer-
tainty of flood estimates associated with the uncertainty of
model parameters.
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In the nonstationary frequency modeling approach, a di-
mensionless reservoir index (RI) was proposed by López and
Francés (2013) as an indicator of reservoir effects, and it gen-
erally is used as a covariate for the expression of the dis-
tribution parameters (e.g., location parameter; Jiang et al.,
2014; López and Francés, 2013). Liang et al. (2018) modi-
fied the reservoir index by replacing the mean annual runoff
in the expression of the RI with the annual runoff. There-
fore, the modified reservoir index can reflect the impact of
reservoirs on downstream flood extremes under various to-
tal inflow conditions each year. However, the precision and
accuracy in the quantitative analysis of the reservoir effects
on downstream floods need to be further improved. In fact,
the effects of reservoirs may be closely related not only to
the static reservoir storage capacity but also to the dynamic
reservoir operations associated with multiple characteristics,
such as the peak, the intensity, and the total volume of the
multiday antecedent rainfall input (MARI) and not just an-
nual runoff.

Therefore, the aim of the study is to develop an indicator,
referred to as the rainfall–reservoir composite index (RRCI),
that combines the effects of reservoir storage capacity and
the MARI on reservoir operation. This indicator is then used
as a covariate to assess the reservoir effects on the down-
stream flood frequency. The specific objectives of this study
are (1) to develop the RRCI, (2) to compare the RRCI with
the RI using a covariate-based nonstationary flood frequency
analysis, and (3) to obtain the downstream flood estimation
and its uncertainty based on the optimal nonstationary distri-
bution using the Bayesian inference.

2 Methods

To quantify the effects of reservoirs on the frequency of
the annual maximum daily flow (AMDF) series downstream
of reservoirs, a three-step framework (Fig. 1), termed the
covariate-based flood frequency analysis using the RRCI as a
covariate, was established. In this section, the methods of this
framework are introduced. First, a RI is defined by addition-
ally considering the effects of reservoir sediment deposition
on the storage capacity. Second, the RRCI is developed by
combining the RI and a rainfall index. Next, the C-vine cop-
ula model is used to construct and calculate the rainfall index.
Finally, the nonstationary distribution models that utilize the
Bayesian estimation are explained.

2.1 Reservoir index (RI)

Intuitively, the larger the reservoir capacity relative to the
flow of a downstream gauging station, the greater the pos-
sible effects of the reservoir on the streamflow regime.
To quantify reservoir-induced alterations to the downstream
streamflow regime, Batalla et al. (2004) proposed an im-
pounded runoff index (IRI), which is a ratio of reservoir ca-

pacity (RC) to (unimpaired) mean annual runoff (Q) at the
gauge station, denoted as IRI= RC/Q. For a single reser-
voir, the IRI is a good indicator of the extent to which a
reservoir alters streamflow. To analyze the effects of a multi-
reservoir system on the downstream flood frequency, López
and Francés (2013) proposed a dimensionless reservoir in-
dex. In this study, we additionally considered the effects of
reservoir sediment deposition on the reservoir capacity. In ac-
cordance with López and Francés (2013), the RI for a down-
stream gauging station is defined as

RI=
N∑
i=1

(
Ai

AT

)
·

(
(1−LRi) ·RCi

Q

)
, (1)

where N is the total number of reservoirs upstream of the
gauge station, Ai is the total basin area upstream of the ith
reservoir,AT is the total basin area upstream of the gauge sta-
tion, RCi is the total storage capacity of the ith reservoir, and
LRi is the loss rate (%) of RCi due to the sediment deposi-
tion (Supplement). Equation (1) indicates that for a reservoir
system consisting of small- and middle-sized reservoirs, the
RI for the downstream gauging station is generally less than
1. However, for a system with some large reservoirs, such as
multi-year regulating storage reservoirs, the RI of the down-
stream gauging station near this system may be close to 1 or
higher.

2.2 Rainfall–reservoir composite index (RRCI)

In addition to the reservoir capacity, the MARI, which is an
event of continuous multiday multivariate rainfall that forms
the inflow event that will be regulated by the reservoir system
to become the downstream extreme flow, is a key constraint
for scheduling the reservoir system. In this study, to add the
antecedent rainfall effects into the new indicator of reservoir
effects, five variables were used to describe the MARI: the
maximum M (the maximum daily rainfall in the MARI), the
intensity I (the mean daily rainfall in the MARI), the volume
V (the total daily rainfall in the MARI), the timing T (the end
time of MARI during that year), and the distance L (the dis-
tance between the rainfall center and the outlet). The reason
that M , I , V , and L were selected is because these variables
will determine the peak, the total volume, and the peak ap-
pearance time of an inflow event. The variable T is utilized to
capture information regarding the remaining storage capacity
due to staged operation strategies during flood season used
in some reservoirs. For the operation strategy that consists of
increasing the flood limit water level in stages, it is expected
that if the timing of the MARI is near the end of the flood
season, the downstream AMDF will be less affected by reser-
voirs. This is because of the lesser remaining capacity during
this period. The MARI variables that are selected to construct
the new indicator are hereafter referred to as the scheduling-
related MARI variables (denoted asX1,X2, . . .,Xd ). The ex-
traction procedure of the MARI is detailed in Sect. 3.2.
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Figure 1. Flowchart of the nonstationary covariate-based flood frequency analysis using the rainfall–reservoir composite index (RRCI).

A new index is proposed in this study, the RRCI, to more
comprehensively assess the effects of reservoirs on floods by
incorporating the effects of the MARI. This index is defined
as

RRCI=


(
P∨MARI

(
d
∪
i=1
(Xi > xi)

))(1/RI−1)

,

0< RI≤ 1,
RI, RI> 1,

(2)

where P∨MARI is the OR joint exceedance probability (OR-
JEP), which is the probability that any one of the given set of
values (x1,x2, . . .,xd ) for the scheduling-related MARI vari-
ables will be exceeded. Here, the OR-JEP acts as a rainfall
index for measuring the MARI effects. The lower this prob-
ability, the greater effects the MARI has on reservoir opera-
tion. Then, it is expected that downstream floods could pos-
sibly obtain relatively large values and vice versa. Figure 2
illustrates the relationship in Eq. (2), which shows that the
RRCI is conditional on both the OR-JEP and the RI. Equa-
tion (2) can then be expressed as

RRCI=

 (1−F (x1,x2, . . .xd))
(1/RI−1),

0< RI≤ 1,
RI, RI> 1,

(3)

where F (·) is the cumulative distribution function (CDF)
that determines the dependence relationship of the variables.
The expectation of the RRCI is as follows:

E(RRCI)=
∫
Rd

(1−F (x1,x2, . . .xd))
(1/RI−1)

dF (x1,x2, . . .xd)= RI. (4)

In addition, for the OR case, the following is true:

P∨MARI

(
d
∪
i=1
(Xi > xi)

)
≥ P∨MARI (Xi > xi) . (5)

Equations (3) and (5) indicate that, in addition to the RI, the
RRCI is related to the number and the dependence relation-
ship of the scheduling-related MARI variables. To obtain a
reasonable RRCI, the unrelated MARI variables should not
be incorporated. In this study, the number of MARI variables
that were incorporated was no more than four to avoid a “di-
mension disaster” in modeling their dependence. To select
the scheduling-related MARI variables, a three-step selection
procedure was used that included the following: (1) selecting
four variables from the five MARI variables by testing the
significance of the Pearson correlation between the MARI
variables and the AMDF, (2) calculating the RRCI for all
possible subsets of the four variables using the d-dimensional
(d = 1,2,3,4) copulas, then finally (3) identifying the vari-
ables by using the highest rank correlation coefficient be-
tween the RRCI and the AMDF. The construction method of
the d-dimensional (d = 2,3,4) distribution F (x1,x2, . . .,xd)

is described in the following subsection.
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Figure 2. Relationship in Eq. (2). (a) The contour plot of the RRCI against both the RI and the OR-JEP; panel (b) is the function curves of
the RRCI against the OR-JEP under different values of RI.

2.3 C-vine Copula model

In this subsection, a C-vine Copula model for the con-
struction of the continuous d-dimensional distribution
F (x1,x2, . . .,xd) is clarified. Sklar’s theorem (Sklar, 1959)
showed that for a continuous d-dimensional distribution, the
one-dimensional marginals and dependence structure can be
separated, and the dependence can be represented using a
copula formula as follows:

F (x1,x2, . . .xd |θ )= C (u1,u2, . . .,ud |θc ) ,ui

= FXi (xi |θ i ) , (6)

where ui is the univariate marginal distribution of Xi , C (·)
is the copula function, θc is the copula parameter vector,
θ i is the parameter vector of the ith marginal distribution,
and θ = (θc,θ1,θ2, . . .,θd) is the parameter vector of the
entire d-dimensional distribution. Thus, the construction of
F (x1,x2, . . .xd) can be separated into two steps: the first is
the modeling of the univariate marginals, and the second is
the modeling of the dependence structure. For the first step,
the empirical distribution is used as the univariate marginal
distributions, and the change points of the variables are tested
using the Pettitt test (Pettitt, 1979). Then, if there are any, the
marginal distribution and the change point will be addressed
using the estimation method (Xiong et al., 2015). Then, for
the second step, the copula construction for the dependence
modeling is based on the pair-copula construction method,
which has been widely used in previous research (Aas et al.,
2009; Xiong et al., 2015). According to Aas et al. (2009), the
joint density function f (x1,x2, . . .,xd) is written as

f (x1,x2, . . .,xd |θ )

= c1...d (u1,u2, . . .,ud |θc )

d∏
i=1
fXi (xi |θ i ) ,ui

= FXi (xi |θ i ) . (7)

The d-dimensional copula density c1...d (u1,u2, . . .,ud),
which can be decomposed into d(d−1)/2 bivariate copulas,
corresponding to a C-vine structure, is given by

c1...d (u1,u2, . . .,ud |θ c)=

d−1∏
j=1

d−j∏
i=1

cj,i+j |1,...,j−1
(
F
(
uj
∣∣u1, . . .,uj−1

)
,

F
(
ui+j

∣∣u1, . . .,uj−1
) ∣∣θ j,i|1,...,j−1

)
, (8)

where cj,i+j |1,...,j−1 is the density function of a bivariate pair
copula, and θ j,i|1,...,j−1 is a parameter vector of the corre-
sponding bivariate pair copula. Therefore, the marginal con-
ditional distribution is

F
(
ui+j

∣∣u1, . . .,uj−1
)
=

∂Ci+j,j−1|1,...,j−2

(
F
(
ui+j

∣∣u1, . . .,uj−2
)
,F
(
uj−1

∣∣u1, . . .,uj−2
) ∣∣∣θ i+j,j−1|u1 ,...,uj−2

)
∂F

(
uj−1

∣∣u1, . . .,uj−2
) ,

j = 2, . . .,d − 1; i = 0, . . .,d − j, (9)

where Ci+j,j−1|1,...,j−2 is a bivariate copula distribution
function. The maximum dimensionality covered in this study
was four. Thus for a four-dimensional copula (of which the
decomposition is shown in Fig. 3), the general expression of
Eq. (8) is

c1234 (u1,u2,u3,u4|θ c)= c12 (u1,u2|θ 12) ·

c13 (u1,u3|θ 13)c14 (u1,u4|θ 14)c23|1 (F (u2 |u1 ) ,

F (u2 |u1 ) |θ 23|1
)
c24|1 (F (u2 |u1 ) ,

F (u4 |u1 ) |θ 24|1
)
c34|12 (F (u3 |u1,u2 ) ,

F (u4 |u1,u2 ) |θ 34|1
)
. (10)

2.4 Covariate-based nonstationary frequency analysis
using the Bayesian estimation

The covariate-based extreme frequency analysis has been
widely used (Villarini et al., 2009; Ouarda and El-Adlouni,
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Figure 3. Decomposition of a C-vine copula using four variables
and three trees (denoted by T1, T2, and T3).

2011; López and Francés, 2013; Xiong et al., 2018). Accord-
ing to these studies, five distributions, namely the gamma
(GA), Weibull (WEI), lognormal (LOGNO), Gumbel (GU),
and the generalized extreme value (GEV) distribution, were
used as candidate distributions in this study. In addition, their
density functions, the corresponding moments, and the used
link functions are shown in Table 1. In the following, the non-
stationary distribution models based on Bayesian estimation
are developed for a covariate-based flood frequency analysis.

Suppose that the flood variable, Yt , obeys the distribution
fYt

(
yt
∣∣ηt ) with the distribution parameters ηt = [µt ,σt ,ξ ].

In this study, only the distribution parameters µt and σt were
allowed to be dependent on covariates because the shape pa-
rameter of the GEV is sensitive to the quantile estimation
of rare events. According to the linear additive formulation
of the generalized additive models for location, scale, and
shape (GAMLSSs; Rigby and Stasinopoulos, 2005; Villarini
et al., 2009), seven nonstationary scenarios for the formu-
las of the two distribution parameters, µt and σt , were in-
vestigated, as shown in Table 2. The constant scenario (S0)
included one scenario (both µt and σt are constants). The
RI-dependent scenarios (S1) included three scenarios: S11
(µt is RI-dependent and σt is constant), S12 (µt is constant
and σt is RI-dependent), and S13 (both µt and σt are RI-
dependent). In addition, the RRCI-dependent scenarios (S2)
including S21, S22, and S23 are similar to S11, S12, and S13,
respectively.

In the following, the Bayesian inference is introduced. The
GEV_S23 (representing the nonstationary GEV distribution
with the S23 scenario) model was used as an example, and
the model parameter vector θGEV_S23 = [α0,α1,β0,β1,ξ ]
was used as the estimate. The Bayesian method was used to
estimate θGEV_S23. Let the prior probability distribution be
π
(
θGEV_S23

)
and the observations, D, have the likelihood

l
(
D
∣∣θGEV_S23

)
. Then the posterior probability distribution

p
(
θGEV_S23 |D

)
can be calculated using Bayes’ theorem as

follows:

p
(
θGEV_S23 |D

)
=

l
(
D
∣∣θGEV_S23

)
π
(
θGEV_S23

)∫
�l
(
D
∣∣θGEV_S23

)
π
(
θGEV_S23

)
dθGEV_S23

∝ l
(
D
∣∣θGEV_S23

)
π
(
θGEV_S23

)
, (11)

where the integral is the normalizing constant, and � is
the entire parameter space. The obvious difference between

the Bayesian method and the frequentist method is that the
Bayesian method considers the parameters θGEV_S23 to be
random variables. In addition, the desired distribution of the
random variables can be obtained using a Markov chain that
can be constructed using various Markov chain Monte Carlo
(MCMC) algorithms (Reis and Stedinger, 2005; Ribatet et
al., 2007) to process Eq. (11). In addition, in this study, the
Metropolis–Hastings algorithm was used (Chib and Green-
berg, 1995; Viglione et al., 2013), which was done with
the aid of the R package “MHadaptive” (Chivers, 2012).
A beta-distribution function was used with the parameters
u= 6 and v = 9 , which were suggested by Martins and Ste-
dinger (2000, 2001) as the prior distribution on the shape pa-
rameter ξ . For the other model parameters, α0,α1,β0 , and
β1, the prior distributions were set to non-informative (flat)
priors. There are two advantages of the Bayesian method.
First, as noted by El Adlouni et al. (2007), this method al-
lows the addition of other information, such as historical and
regional information, by defining the prior distribution. Sec-
ond, the Bayesian method can provide an explicit way to ac-
count for the uncertainty of parameters estimates. In the non-
stationary case in the t year, the 95 % credible interval for
the estimation of the flood quantile corresponding to a given
probability, p , can be obtained from a set of stable parame-
ters estimations, θ̂ iGEV_S23 (i = 1,2, . . .,Mc), in which Mc is
the length of the Markov chain.

The procedure of model selection can identify which of the
five distributions is optimal and which of the seven nonsta-
tionary scenarios is optimal. If all the distribution parameters
are identified as constants (S0), this process will be a sta-
tionary frequency analysis. To select the optimal model, the
Schwarz Bayesian criterion (SBC; Schwarz, 1978) for each
fitted model object is calculated by the following:

SBC=−2ln
(
l̂
)
+ ln(n)× df, (12)

where ln(l̂) is the maximized log likelihood of the model ob-
ject, df is the degrees of freedom, and n is the number of
data points. The SBC has a larger penalty on the overfitting
phenomenon than the Akaike information criterion (AIC;
Akaike, 1974). The model object with the lower SBC is pre-
ferred. The worm plot and the Q–Q plot were employed to
check whether the model represented the data well.

3 Study area and data

3.1 Study area

The Han River (Fig. 4), with the coordinates of 30◦30′–
34◦30′ N, 106◦00′–114◦00′ E, and a catchment area of
159 000 km2, is the largest tributary of the Yangtze River,
China. This area has a warm, temperate, semi-humid, conti-
nental monsoon climate. The temperature in the basin is not
much different from upstream to downstream. Although the
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Table 1. Summary of the probability density functions, the corresponding moments, and the used link functions for nonstationary flood
frequency analysis.

Distributions Probability density functions Moments Link functions

Gamma fY (y |µt ,σt )=
(y)1/σ

2
t −1

0
(
1/σ 2

t

)(
µσ 2

t
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exp
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E(Y )= µt g1 (µt )= ln(µt )
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Weibull fY (y |µt ,σt )=
(
σt
µt

)(
y
µt

)σt−1
exp

(
−

(
y
µt

)σt )
E(Y )= µt0(1+ 1/σt ) g1 (µt )= ln(µt )

(WEI) y > 0,µt > 0,σt > 0 Var(Y )= µ2
t

[
0(1+ 2/σt )−02 (1+ 1/σt )

]
g2 (σt )= ln(σt )

Lognormal fY (y |µt ,σt )=
1

yσt
√

2π
exp

{
−

[log(y)−µt ]2

2σ 2
t

}
E(Y )= w1/2 exp(µt ) g1 (µt )= ln(µt )

(LOGNO) y > 0,−∞< µt <∞,σt > 0 Var(Y )= w(w− 1)exp(2µt ) g2 (σt )= ln(σt )
w = exp(σ 2

t )

Gumbel fY (y |µt ,σt )=
1
σt

exp
{(

y−µt
σt

)
− exp

(
y−µt
σt

)}
E(Y )= µt − 0.57722σt g1 (µt )= µt

(GU) −∞< y <∞,−∞< µt <∞,σt > 0 Var(Y )=
(
π2/6

)
σ 2
t g2 (σt )= ln(σt )

Generalized fY (y |µt ,σt ,ξ )=
1
σt

[
1+ ξ

(
y−µt
σt

)]−1/ξ−1
E(Y )= µt −

σt
ξ +

σt
ξ η1 g1 (µt )= µt

extreme ×exp
{
−

[
1+ ξ

(
y−µt
σt

)]−1/ξ
}

Var(Y )= σ 2
t

(
η2− η

2
1

)
/ξ g2 (σt )= ln(σt )

value (GEV) y > µt − σt/ξ,−∞< µt <∞,σt > 0,−∞< ξ <∞ ηm = 0(1−mξ)

Table 2. Seven nonstationary scenarios for the formulas of the two
distribution parameters (i.e., µt and σt ).

Scenario Scenario The formulas of distribution
classification codes parameters

g1(µt ) g2(σt )

Stationary (S0) S0 α0 β0

RI-dependent S11 α0+α1RI β0
(S1) S12 α0 β0+β1RI

S13 α0+α1RI β0+β1RI

RRCI-dependent S21 α0+α1RRCI β0
(S2) S22 α0 β0+β1RRCI

S23 α0+α1RRCI β0+β1RRCI

elevation range of the study area is quite wide (13–3493 m),
the study area is a rainfall-dominated area, and the snowmelt
contribution is quite limited. The Ankang gauging station
was used as an example. The timing of the AMDF is pri-
marily during the major rainfall period from June to Septem-
ber (Fig. S3a, c, and d in the Supplement). In addition, the
winter is warm, with mean temperature values of more than
2 ◦C, as shown in Fig. S3b. Since 1960, many reservoirs have
been completed in the Han River basin. Information of the
five major reservoirs is shown in Table 3, including the lon-
gitude, latitude, control area, time for completion, and capa-
bility. The Danjiangkou Reservoir in central China’s Hubei
province is the largest one in this basin and was completed by

Table 3. Information of the five major reservoirs in the Han River
basin.

Reservoirs Longitude Latitude Area Year Capacity
(km2) (109 m3)

Shiquan 108.05 33.04 23 400 1974 0.566
Ankang 108.83 32.54 35 700 1992 3.21
Huanglongtan 110.53 32.68 10 688 1978 1.17
Danjiangkou 111.51 32.54 95 220 1967 34.0
Yahekou 112.49 33.38 3030 1960 1.32

1967. As a multi-purpose reservoir, it primarily aims to sup-
ply water and control floods, and it is also used for electricity
generation and irrigation. The reservoir has a total storage ca-
pacity of 21.0 billion m3, a dead storage capacity of 7.23 bil-
lion m3, an effective storage capacity of 10.2 billion m3, and
a flood control capacity of 7.72 billion m3. After the Dan-
jiangkou Dam Extension Project in 2010, the Danjiangkou
Reservoir gained an additional capacity of 13.0 billion m3

and an extra flood control storage capacity of 3.3 billion m3.
In addition, this reservoir is operated using the strategy of
staged increases in the flood limit water level during the flood
control season (Zhang et al., 2009).

3.2 Data

The assessment analysis of reservoir effects on flood fre-
quency utilized streamflow data, reservoir data, and rain-
fall data. The AMDF series was extracted from the daily
streamflow records of the three gauges in the Han River
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Figure 4. Geographic location of the reservoirs, gauging stations, and rainfall stations along the Han River.

basin; namely the Ankang (AK) station with a drainage
area of 38 600 km2, the Huangjiagang (HJG) station with
a drainage area of 90 491 km2, and the Huangzhuang (HZ)
station with a drainage area of 142 056 km2. The stream-
flow and reservoir data were provided by the Hydrology Bu-
reau of the Changjiang Water Resources Commission, China
(http://www.cjh.com.cn/en/index.html, last access: 9 August
2019). The annual series of the maximum (M), the inten-
sity (I ), volume (V ), the timing (T ), and the distance (L)
were extracted from the daily streamflow data to describe
the MARI. Note that the timing of the MARI is equal to the
occurrence time of the AMDF during the year. The MARI
is an event averaged for the real values, and any 2 con-
secutive days of areal rainfall values in the MARI required
more than 0.2 mm. Daily areal rainfall was calculated us-
ing the inverse distance weighting (IDW) method based on
rainfall records from 16 stations (shown in Fig. 4). These
rainfall data were downloaded from the National Climate
Center of the China Meteorological Administration (source:
http://www.cma.gov.cn/, last access: 9 August 2019). For the
AK and HZ gauging stations, all the records were available
from 1956 to 2015, while the HJG gauging station only had
records available that were from 1956 to 2013.

4 Results and discussion

4.1 Identification of reservoir effects

To confirm the impact of reservoirs on the AMDF in the
study area, the mean and standard deviation of the AMDF
before and after the construction of the two large reservoirs,
the Danjiangkou Reservoir (1967) upstream of the HJG and
HZ stations and the Ankang Reservoir (1992) upstream of
the AK, HJG, and HZ stations, were compared. According
to Table 4, the mean and standard deviation of the AMDF
of the AK, HJG, and HZ stations were significantly re-
duced. By using the HJG station as an example, the mean of
the AMDF (1992–2013) is 4139 m3 s−1, which is only 0.28
times 14 951 m3 s−1 (1956–1966), and the standard devia-
tion is 4074 m3 s−1, approximately 0.52 times 7896 m3 s−1

(1956–1966).
Figure 5 presents the linear correlation between the five

MARI variables (i.e., the maximum,M; the intensity, I ; vol-
ume, V ; the timing, T ; and the distance L) and the AMDF.
It was found that for M , I , V , and T , except for T in the AK
station, the Pearson correlation coefficients between these
four variables and the AMDF range from 0.27 to 0.71 (p
value< 0.05), indicating that these four variables are signifi-
cantly related to the AMDF. However, there is a Pearson cor-
relation coefficient of no more than 0.24 between L and the
AMDF for each of the stations. Thus, L was excluded from
the calculation of the RRCI. A further analysis of the reser-
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Table 4. Change in the mean and standard deviation of the AMDF after the construction of the two large reservoirs (Danjiangkou Reservoir,
completed by 1967, and the Ankang Reservoir, finished by 1992).

Stations Mean (m3 s−1) Standard deviation (m3 s−1)

1956–1966 1967–1991 1992–2015 1956–1966 1967–1991 1992–2015

AK 9451 10 468 6506 4341 4623 4454
HJG 14 951 7524 4139 7896 5482 4074
HZ 16 603 10 120 5958 8833 5420 4721

Figure 5. Linear correlation between the five MARI variables and the AMDF for (a) the AK station, (b) the HJG station, and (c) the HZ
station.
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voir effects on the downstream AMDF will be performed in
the following sections.

4.2 Results for the rainfall–reservoir composite index
(RRCI)

To obtain the annual values of the RRCI, the RI was esti-
mated first. The RI was affected by the loss of the reservoir
capacity but not to a great extent (Fig. S2). This happened
because the main reservoirs (Danjiangkou and Ankang reser-
voirs) had a small loss rate of no more than 15 % (Table S1
and Fig. S1).

The C-vine copula model was applied to calculate the OR-
JEP of the scheduling-related MARI variables. In the model-
ing of the univariate marginal, the marginals of the intensity
(I ) of the AK and the HJG stations and the volume (V ) of
the HJG station were revised to deal with their significant
change points (Table S2). To identify the scheduling-related
variables from M , I , V , and T , the RRCI for all the possi-
ble subsets of M , I , V , and T was calculated and compared.
The Pearson, Kendall, and Spearman correlation coefficients
between the RRCI and the AMDF are listed in Table 5. Note
that the entire decomposition structure of the C-vine copula
for each RRCI of the same station was determined by the
ordering of the variables of each subset (shown in the cells
of the first column in Table 5). Figure 3 shows an example
for the decomposition structure of the four-dimensional cop-
ula. As shown in the first row in Table 5, there is a negative
correlation between the AMDF and the RI for each station.
The values of the Pearson correlation coefficients between
the AMDF and the RI for the AK, HJG, and HZ stations are
−0.37, −0.55, and −0.53, respectively, demonstrating that
there is a significant relation between the reservoir storage
capacity and the reduction in the AMDF. For each station,
with the exception of the RRCI of the one-dimensional case,
the values of the Pearson, Kendall, and Spearman correla-
tion coefficients between the RRCI and the AMDF are higher
than between the RI and the AMDF. According to the highest
Kendall correlation, the scheduling-related variables for the
AK station were M , I , V , and T . Those for the HJG station
were I and T , and those for the HZ station were I , V , and T .

Table 6 shows the results of the copula modeling of the
scheduling-related variables using the aid of the R pack-
age “VineCopula” (https://CRAN.R-project.org/package=
VineCopula, last access: 9 August 2019). Note that for each
bivariate pair in the third column in Table 6, three one-
parameter bivariate Archimedean copula families (i.e., the
Gumbel, Frank, and Clayton copulas; Nelsen, 2007) were
used to select from. As shown in Table 6, the results of the
Cramér–von Mises test (Genest et al., 2009) shows that all
the C-vine copula models passed the test at a significance
level of 0.05. This result indicated that these models were ef-
fective for simulating the joint distribution of the scheduling-
related variables for the three stations. Finally, the variation
in the RI and the RRCI over time is displayed in Fig. 6. It can

be seen that for each station, after reservoir construction, in
most cases, the annual values of the RRCI are larger (close
to 1) than those of the RI. In contrast, in a few cases, such as
in 1983 at the HZ and HJG stations, the RRCI values were
lower than the RI values.

4.3 Flood frequency analysis

A nonstationary flood frequency analysis using the RRCI or
the RI as the covariate was performed to investigate how the
reservoirs affected the downstream flood frequency. A sum-
mary of results of fitting the nonstationary models to the
flood data is shown in Table 7. Based on the SBC, the low-
est values indicate that the best models for the AK, HJG, and
HZ stations are the nonstationary WEI distribution with S23,
the nonstationary GA distribution with S21, and the non-
stationary WEI distribution with S21, respectively, hereafter
referred to as WEI_S23, GA_S21, and WEI_S21, respec-
tively. Note that for any one of the five distributions (GA,
WEI, LOGNO, GU, and GEV), the RRCI-dependent sce-
nario had a lower SBC value than the RI-dependent scenario
for each gauging station. Furthermore, for the RI-dependent
and RRCI-dependent scenarios, using the HZ station as an
example, the optimal formulas of the two distribution param-
eters, µt and σt , are given as follows:

1. WEI_S11

µt = exp(9.94− 2.79RI) ,

σt = exp(0.49) , (13)

2. WEI_S21

µt = exp(9.92− 1.42RRCI) ,

σt = exp(0.73) . (14)

It was found that in Eqs. (13) and (14), there were negative
estimates of −2.79 and −1.42 for α1, respectively, reveal-
ing the decreasing degree of the frequency and magnitude of
downstream floods due to the reservoir effects.

Figure 7 compares the stationary scenario (S0), the RI-
dependent scenario (S1), and the RRCI-dependent scenario
(S2) of the same optimal distributions that explain all the
flood values and the several largest flood values for each
station. The Q–Q plots (Fig. 7a1–c1) show that overall, the
RRCI-dependent scenario more adequately captured the en-
tire empirical quantiles (particularly the smallest and largest
empirical quantiles) than the two other scenarios for each
station. Furthermore, as shown in Fig. 7a2–c2, for the
seven largest floods (observed) of each station, the RRCI-
dependent scenario produced lower quantile residuals than
the two other scenarios.

Figure 8 shows the performance of the best models:
WEI_S23 for the AK station, GA_S21 for the HJG station,
and WEI_S21 for the HZ station. The points in the worm
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Table 5. Correlation coefficients between the RRCI and the AMDF. The values in bold font are the highest absolute values of Pearson,
Kendall, or Spearman correlation coefficient for the station.

Subset of rainfall AK HJG HZ

variables Pearson Kendall Spearman Pearson Kendall Spearman Pearson Kendall Spearman

–∗ −0.37 −0.18 −0.28 −0.55 −0.37 −0.54 −0.53 −0.38 −0.55
M −0.27 −0.27 −0.37 −0.67 −0.53 −0.74 −0.45 −0.37 −0.51
I −0.26 −0.25 −0.34 −0.74 −0.57 −0.79 −0.54 −0.41 −0.56
V −0.32 −0.28 −0.39 −0.63 −0.49 −0.69 −0.57 −0.48 −0.65
T −0.11 −0.17 −0.24 −0.68 −0.55 −0.73 −0.48 −0.40 −0.57
M , I −0.37 −0.28 −0.38 −0.70 −0.56 −0.77 −0.56 −0.43 −0.58
M , V −0.42 −0.29 −0.40 −0.64 −0.50 −0.71 −0.56 −0.45 −0.60
M , T −0.37 −0.26 −0.36 −0.69 −0.57 −0.77 −0.64 −0.46 −0.63
I , V −0.46 −0.31 −0.42 −0.71 −0.54 −0.76 −0.65 −0.50 −0.67
I , T −0.34 −0.22 −0.31 −0.73 −0.60 −0.80 −0.68 −0.50 −0.66
V , T −0.43 −0.28 −0.39 −0.68 −0.55 −0.75 −0.69 −0.52 −0.71
M , I , V −0.49 −0.31 −0.42 −0.65 −0.53 −0.74 −0.63 −0.47 −0.63
M , I , T −0.41 −0.27 −0.37 −0.68 −0.57 −0.78 −0.67 −0.49 −0.66
M , V , T −0.50 −0.29 −0.40 −0.65 −0.56 −0.76 −0.67 −0.49 −0.67
I , V , T −0.51 −0.31 −0.41 −0.67 −0.58 −0.78 −0.71 −0.53 −0.70
M , I , V , T −0.53 −0.31 −0.42 −0.65 −0.57 −0.77 −0.69 −0.52 −0.69

∗ The values in the first row are the correlation coefficients between RI and flood series.

Table 6. Results of the copula models for scheduling-related rainfall variables.

Stations Scheduling-related Pairs Copula Parameters Kendall’s Goodness-of-fit test based
variables type θc tau on the empirical copula

CvM∗ p value

AK M , I , V , T 14 Clayton 0.16 0.08 0.169 0.860
13 Clayton 1.28 0.39
12 Clayton 1.01 0.33
24|1 Frank 1.21 0.17
23|1 Frank −2.24 −0.24
34|12 Clayton 0.96 0.11

HJG I , T 24 Clayton 1.37 0.41 0.473 0.425

HZ I , V , T 24 Gumbel 1.12 0.11 0.181 0.820
23 Clayton 1.31 0.40
34|2 Clayton 0.49 0.20

∗ CvM is the statistic of the Cramér–von Mises test. If the p value of the C-vine copula model is less than the significance level of 0.05, the
model is not considered to be consistent with the empirical copula.

plots in Fig. 8 are within the 95 % confidence interval, indi-
cating that the selected models are reasonable. In addition,
according to the centile-curve plots in Fig. 8, the AMDF
series is well fitted by the best models. Undoubtedly, with
the incorporation of the effects of the MARI, the RRCI-
dependent scenario captured the presence of nonstationarity
in the downstream flood frequency well. The case of the HZ
station was used for the analysis (Fig. 8c1). After the con-
struction of the Danjiangkou Reservoir (1967), due to reser-
voir operation, most of the values of the AMDF had been
reduced in magnitude by this reservoir. However, some rel-
atively large flood events still occurred several times, such

as 25 600 m3 s−1 in 1983 and 19 900 m3 s−1 in 1975. Obvi-
ously, this phenomenon of flood occurrences was explained
well by the RRCI.

The 100-year return levels at a 95 % credible interval from
WEI_S23 and WEI_S13 for the AK station, GA_S21 and
GA_S11 for the HJG station, and WEI_S21 and WEI_S11
for the HZ station are presented in Fig. 9. For each station,
compared to the optimal RI-dependent distribution, the opti-
mal RRCI-dependent distribution provided a lower 100-year
return level. However, exceptions existed. In addition, after
the construction of the main reservoir, the uncertainty range
of the AK station was larger than that of the HJG and HZ sta-
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Figure 6. Variation of the RI and the RRCI for (a) the AK station, (b) the HJG station, and (c) the HZ station.

tions. A possible explanation for the larger uncertainty range
was that the sample size (1993–2015) of the regulated floods
at the AK station was smaller. Furthermore, the dependent
relationship between the RRCI and the AMDF at the AK sta-
tion was weaker.

4.4 Discussion

The long-term variation in the AMDF series (Fig. 8) indi-
cates that the upstream reservoirs had evidently altered the
downstream flood regimes. As an example, since the com-
pletion of the Danjiangkou Reservoir in 1967, the flood
magnitude of the HZ station was evidently reduced over-
all. This is consistent with the results of the effects of reser-
voirs on the hydrological regime in this area found in pre-
vious studies (Cong et al., 2013; Guo et al., 2008; Jiang
et al., 2014; Lu et al., 2009). In this study, it was found
that there was a significant difference between downstream
floods affected by the same reservoir system (with the same
RI value). In most cases, relatively small downstream floods
were obtained. However, it is of interest to note that unex-
pected large downstream floods still occurred in a few cases
in spite of a large RI value. For example, most values of
the AMDF in the HZ station have been less 10 000 m3 s−1

since 1967, but the values of the AMDF in 1983 and in 1975
were 25 600 and 19 900 m3 s−1, respectively. These unex-
pected large downstream floods were probably related to the
MARI effects on reservoir operation. The five largest (un-
expected) floods since 1967 and the corresponding values
of the scheduling-related MARI variables in the HZ station
are shown in Table 8. It was found that the largest floods
from 1967 to 2015 occurred in 1983. For this flood event, the
MARI was a rare event (with an OR-JEP value of 0.435 rank-
ing second in 1967–2015) due to the largest mean intensity
(I = 20.2 mm) and the second latest occurrence (T = 281).
Surprisingly, all the timing values of the MARI for these five
unexpected downstream floods showed high rankings (sec-
ond to ninth). These timing values were near the end (ap-
proximately the 300th day of the year) of the flood control
period (July–October) in this area. Actually, near the end of
the major flood control period, the storage capacity should be
decreased. This is because according to the operation rules
of the Danjiangkou Reservoir (Zhang et al., 2009), there is a
staged increasing flood limit water level during the flood con-
trol season. One important cause for those unexpected large
downstream floods was probably that the remaining storage
capacity at the end of flood season was not sufficient to re-
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Table 7. Summary of the results of the nonstationary flood distribution models. The value in bold font is the lowest SBC value for the station.

Stations Covariates Distributions Selected The optimal formulas∗ of distribution parameters AIC SBC

models µt σt ξ

AK RI GA WEI_S23 exp(9.24− 2.64RI) exp(−0.769+ 2.9RI) – 1177.2 1185.5
RI WEI exp(9.36− 2.83RI) exp(0.882− 3.18RI) – 1176.9 1185.3
RI LOGNO exp(9.14− 3.86RI) exp(−0.716+ 3.28RI) – 1180.4 1188.8
RI GU 11875− 13093RI exp(8.5) – 1199.6 1205.9
RI GEV 7685− 15252RI exp(8.3) −0.043 1182.3 1190.6

RRCI GA exp(9.28− 1.11RRCI) exp(−0.825+ 0.689RRCI) – 1165.3 1173.7
RRCI WEI exp(9.4− 1.17RRCI) exp(0.982− 0.884RRCI) – 1163.8 1172.2
RRCI LOGNO exp(9.19− 1.33RRCI) exp(−0.749+ 0.677RRCI) – 1168.0 1176.4
RRCI GU 12555− 7535RRCI exp(8.4) – 1188.0 1194.2
RRCI GEV 8460− 6722RRCI exp(8.2) −0.096 1172.1 1180.5

HJG RI GA GA_S21 exp(9.7− 1.62RI) exp(−0.25) – 1139.9 1146.0
RI WEI exp(9.75− 1.56RI) exp(0.27) – 1141.4 1147.5
RI LOGNO exp(9.47− 1.8RI) exp(−0.17) – 1140.9 1147.1
RI GU 17955− 14399RI exp(8.8) – 1189.5 1195.7
RI GEV 6976− 5930RI exp(8.79− 1.49RI) 0.43 1149.9 1160.2

RRCI GA exp(9.99− 1.99RRCI) exp(−0.45) – 1112.5 1118.6
RRCI WEI exp(10.1− 1.97RRCI) exp(0.53) – 1113.2 1119.4
RRCI LOGNO exp(9.75− 1.94RRCI) exp(−0.38) – 1113.9 1120.1
RRCI GU 23067− 20871RRCI exp(9.2− 1.7RRCI) – 1121.3 1129.6
RRCI GEV 12113− 10683RRCI exp(9.2− 2.01RRCI) 0.051 1112.5 1122.8

HZ RI GA WEI_S21 exp(9.85− 2.87RI) exp(−0.42) – 1198.3 1204.9
RI WEI exp(9.94− 2.79RI) exp(0.49) – 1198.6 1204.9
RI LOGNO exp(9.63− 2.93RI) exp(−0.33) – 1201.1 1207.4
RI GU 18661− 23706RI exp(8.8) – 1237.5 1243.7
RI GEV 9605− 13545RI exp(9.03− 2.56RI) 0.099 1207.8 1218.3

RRCI GA exp(9.85− 1.52RRCI) exp(−0.61) – 1173.1 1179.4
RRCI WEI exp(9.92− 1.42RRCI) exp(0.73) – 1171.2 1177.5
RRCI LOGNO exp(9.72− 1.55RRCI) exp(−0.51) – 1178.7 1185.0
RRCI GU 19214− 14344RRCI exp(8.86− 0.881RRCI) – 1189.7 1198.1
RRCI GEV 12502− 9911RRCI exp(8.96− 1.37RRCI) −0.068 1176.0 1186.4

∗ The model parameters in the optimal formulas are the posterior mean from the Bayesian inference.

Table 8. Summary of the rainfall information for the five largest
floods after the construction (1967) of the Danjiangkou Reservoir
in the HZ station.

Year Values (ranking in 1967–2015)

AMDF OR_JEP I V T (day of
(m3 s−1) (–) (mm) (mm) the year)

1983 25 600 (1) 0.435 (2) 20.2 (1) 121.4 (19) 281 (2)
1975 19 900 (2) 0.557 (7) 9.6 (18) 163.6 (13) 277 (6)
1974 18 200 (3) 0.506 (4) 12.0 (7) 120.4 (20) 278 (4)
2005 16 800 (4) 0.651 (11) 8.2 (27) 179.7 (10) 278 (4)
1984 16 100 (5) 0.461 (3) 9.9 (15) 256.3 (4) 273 (9)

duce some late floods. Therefore, in addition to the storage
capacity of reservoirs, the MARI effects should be indispens-
ably considered when attempting to accurately quantify the
effects of the reservoir on downstream floods.

With the combination of both the RI and the OR-JEP, the
RRCI had a significant difference from RI (Fig. 6). With a
few exceptions, the RRCI values were higher than the RI
values. This indicates that the real reservoir impact may be
underestimated by the RI in most cases. Moreover, the RI
will also probably overestimate the real reservoir impact in a
few cases because of not considering special rainfall events
(i.e., the MARI with low values of the OR-JEP). The results
of the covariate-based nonstationary flood frequency analy-
sis (Table 7 and Figs. 7 and 8) demonstrate that, compared
to the RI-dependent scenario, the RRCI-dependent scenario
for the optimal nonstationary distribution more completely
captured the presence of nonstationarity in the downstream
flood frequency. Therefore, the RRCI might be a useful in-
dex for accessing the reservoir effects on downstream flood
frequency.
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Figure 7. Comparison of the stationary (S0), the RI-dependent (S1), and the RRCI-dependent (S2) scenarios of the same optimal distributions
for (a) the AK station, (b) the HJG station, and (c) the HZ station. The left panels (a1, b1, c1) are the Q–Q plots for the entire AMDF series
in each station. The right panels (a2, b2, c2) are the plots of the quantile residuals for the seven largest floods (their values and occurrence
years have been listed) in each station, and the means of their quantile residuals (points) and the corresponding standard errors are indicated
by the lines.

Finally, the estimation errors of the OR-JEP should be
noted. (1) Only those MARI samples that corresponded to
the timing of the AMDF were included to estimate the OR-
JEP. This means that some extreme MARI samples that cor-
responded to the non-maximum flow were not included, re-
sulting in an estimation error for the OR-JEP. To reduce this

error, it might be worth considering the use of the peaks-over-
threshold sampling method. (2) The areal-averaged MARI
was based on the records from 16 rainfall stations using
the IDW method. The estimation error of the areal-averaged
rainfall can be transferred to the OR-JEP estimation error.
Additional rainfall site data and spatial distribution infor-
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Figure 8. Performance of (a) WEI_S23 for the AK station, (b) GA_S21 for the HJG station, and (c) WEI_S21 for the HZ station. The left
panels (a1, b1, c1) are the centile-curve plots in each station (the 50th centile curves are indicated by the thick blue lines, the light grey-filled
areas are between the 5th and 95th centile curves, the dark grey-filled areas are between the 25th and 75th centile curves, and the filled red
points indicate the observed series). The right panels (a2, b2, c2) are the worm plots. In a reasonable model, the plotted points should be
within the 95 % confidence intervals (between the two blue dashed curves).

mation were needed to reduce the OR-JEP estimation error.
Nonetheless, the good performance of the downstream flood
frequency model results demonstrated that the MARI sam-
ples still remained representative in this study.

5 Conclusions

Accurately assessing the impact of reservoirs on down-
stream floods is an important issue for flood risk manage-
ment. In this study, to evaluate the effects of reservoirs
on the downstream flood frequency of the Han River, the
rainfall–reservoir composite index (RRCI) was derived from

Eq. (2), which considers the combination of the reservoir in-
dex (RI) and the OR joint exceedance probability (OR-JEP)
of scheduling-related rainfall variables. The main findings
are summarized as follows. (1) The magnitude of the down-
stream flood events has been reduced by the reservoir system
in the study area. However, the long-term variation in the ob-
served AMDF series showed that despite the large reservoirs,
unexpected large flood events still occurred several times,
such as at the Huangzhuang station in 1983. One important
cause of the unexpected large floods at the Huangzhuang sta-
tion may have been related to the operation strategy of staged
increases in the flood limit water level of the Danjiangkou
Reservoir. (2) According to the results of the covariate-based
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Figure 9. Statistical inference of the 100-year return levels with a 95 % uncertainty interval using the optimal RI-dependent and the RRCI-
dependent distributions: (a) WEI_S13 and WEI_S23 for the AK station, (b) GA_11 and GA_S21 for the HJG station, and (c) WEI_S11 and
WEI_S21 for the HZ station. In nonstationary case, the 95 % credible interval in the t year is calculated by a set of the (99th) percentile
estimations, which are obtained by the flood distribution functions determined by the values of both covariate in that year and posterior
parameter samples.

nonstationary flood frequency analysis for each station, com-
pared to the optimal RI-dependent distribution, the optimal
RRCI-dependent distribution more completely captured the
presence of nonstationarity in the downstream flood fre-
quency. (3) Furthermore, in estimating the 100-year return
level for each station, the optimal RRCI-dependent distribu-
tion provided a lower 100-year return level, but exceptions
existed. In addition, it provided a smaller uncertainty range
associated with the uncertainty of the model parameter.

Consequently, this study demonstrated the necessity of in-
cluding the antecedent rainfall effects, in addition to the ef-
fects of reservoir storage capacity, on reservoir operation to
assess the reservoir effects on downstream flood frequency.
This study provides a comprehensive approach for down-
stream flood risk management under the impacts of reser-
voirs.
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