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Abstract. Total terrestrial evaporation, also referred to as
evapotranspiration, is a key process for understanding the
hydrological impacts of climate change given that warmer
surface temperatures translate into an increase in the atmo-
spheric evaporative demand. To simulate this flux, many hy-
drological models rely on the concept of potential evapora-
tion (PET), although large differences have been observed
in the response of PET models to climate change. The maxi-
mum entropy production (MEP) model of land surface fluxes
offers an alternative approach for simulating terrestrial evap-
oration in a simple way while fulfilling the physical con-
straint of energy budget closure and providing a distinct es-
timation of evaporation and transpiration. The objective of
this work is to use the MEP model to integrate energy bud-
get modelling within a hydrological model. We coupled the
MEP model with HydroGeoSphere (HGS), an integrated sur-
face and subsurface hydrologic model. As a proof of con-
cept, we performed one-dimensional soil column simula-
tions at three sites of the AmeriFlux network. The cou-
pled model (HGS-MEP) produced realistic simulations of
soil water content (root-mean-square error — RMSE — be-
tween 0.03 and 0.05m>m~3; NSE — Nash-Sutcliffe effi-
ciency — between 0.30 and 0.92) and terrestrial evaporation
(RMSE between 0.31 and 0.71 mm d~!; NSE between 0.65
and 0.88) under semi-arid, Mediterranean and temperate cli-
mates. At the daily timescale, HGS-MEP outperformed the
stand-alone HGS model where total terrestrial evaporation
is derived from potential evaporation, which we computed
using the Penman—Monteith equation, although both mod-
els had comparable performance at the half-hourly timescale.
This research demonstrated the potential of the MEP model

to improve the simulation of total terrestrial evaporation in
hydrological models, including for hydrological projections
under climate change.

1 Introduction

Driven by climate change, warmer surface temperatures are
expected to increase the atmospheric evaporative demand
(Breshears et al., 2013; Ficklin and Novick, 2017). As such,
total terrestrial evaporation (hereinafter terrestrial evapora-
tion), or “evapotranspiration”, is a key process for assess-
ing the impacts of climate change on stream discharge. To
simulate this flux, many hydrological models rely on the
concept of potential evaporation (PET), which is defined
as the maximum evaporation that can occur under ambi-
ent meteorological conditions with an unlimited water sup-
ply. Two types of PET models are generally used in hy-
drological models: temperature-based models where PET is
estimated via air temperature (Thornthwaite, 1948; Hamon,
1963) and physically based models where PET estimation
is based on components of the surface energy budget (Mon-
teith, 1965; Priestley and Taylor, 1972). Various studies have
compared PET models to assess their suitable range of appli-
cation (Xu and Singh, 2001). While the performance of PET
models varies across regions, the choice of a PET model ap-
pears to have minimal influence on stream discharge simu-
lation under contemporary climate conditions (Andréassian
et al., 2004; Oudin et al., 2005; Isabelle et al., 2018). How-
ever, when future climate projections are incorporated in PET
models, the predicted PET varies significantly from model
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to model (McKenney and Rosenberg, 1993; Kingston et al.,
2009; Donohue et al., 2010; Lofgren et al., 2011; McAfee,
2013; Hosseinzadehtalaei et al., 2016). These differences of-
ten translate into large uncertainty in stream discharge pro-
jections (Kay and Davies, 2008; Bae et al., 2011; Milly and
Dunne, 2011; Prudhomme and Williamson, 2013; Seiller and
Anctil, 2016), although some studies have demonstrated op-
posite results with a relatively low sensitivity of discharge
projection to PET model selection (Thompson et al., 2014;
Koedyk and Kingston, 2016).

Among PET models, those that are based on temperature
tend to mainly reflect changes in mean air temperature, even
though temperature is not necessarily the strongest control
on PET (Donohue et al., 2010; Shaw and Riha, 2011). For
example, the oversensitivity of temperature-based models to
surface warming has been linked to an exaggerated assess-
ment of drought severity under climate change (Hoerling et
al., 2012). As a result, recent studies have recommended
the use of physically based PET models, such as the Pen-
man model, for simulating terrestrial evaporation in climate
change assessments (Hobbins et al., 2008; Sheffield et al.,
2012; McAfee, 2013). However, additional data inputs (e.g.
radiation, humidity and wind speed) are required to imple-
ment such models, and, as opposed to the high confidence
placed on temperature estimates from global climate mod-
els (McMahon et al., 2015), these variables usually suffer
from a lower reliability. For example, large differences per-
sist between observations, reanalysis products and global cli-
mate model projections of wind speed (McVicar et al., 2008;
Pryor et al., 2009). Overall, a dilemma emerges for the simu-
lation of PET under climate change, which involves choosing
between a reliable physically based model with greater in-
put data uncertainty versus an overly simplified temperature-
based model with reliable input data (Ekstrom et al., 2007;
Kay and Davies, 2008; Kingston et al., 2009).

Given these current limitations with PET models, alterna-
tive approaches are needed for the simulation of terrestrial
evaporation in climate change assessments. Energy budget
modelling offers a physically based approach for simulating
terrestrial evaporation (along with other components of the
surface energy budget), with the added benefit of conserva-
tion of energy that ensures a balance between incoming and
outgoing energy. Land surface models provide a means to
simulate both water and energy budgets, and they have been
used for hydrological modelling, either by (i) coupling hy-
drological and land surface models (Pietroniro et al., 2001;
Maxwell and Miller, 2005; Kunstmann et al., 2008; Zabel
and Mauser, 2013) or by (ii) coupling a land surface model
to a routing scheme (Gaborit et al., 2017). In land surface
models, terrestrial evaporation is generally estimated with a
bulk aerodynamic approach (Noilhan and Planton, 1989) that
relies on semi-empirical equations and requires information
on vertical gradients of air temperature and humidity that can
introduce substantial errors. The use of land surface models
can yield small gains in hydrological modelling performance
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(Livneh et al., 2011; Shi et al., 2014), but they remain com-
putationally heavy.

Optimality principles, which are derived from the idea that
nature organizes itself to ensure optimal functioning, provide
an alternative avenue for modelling terrestrial evaporation.
Maximum entropy production (MEP) is one of the optimal-
ity principles put forward, and although it has yet to become
an established principle, it offers a promising method to im-
prove hydrological modelling (Ehret et al., 2014; Westhoff
and Zehe, 2013). The MEP principle has been applied in
two ways in hydrology. In the first approach, MEP is de-
fined as a physical principle, which hypothesizes that an open
thermodynamic system far from equilibrium can achieve a
steady state at which, through self-organization, entropy is
produced at the maximum possible rate. Such a dynamic
equilibrium can be achieved because, as demonstrated by
Paltridge (1975), a gradient drives a flux that, in turn, de-
pletes the initial gradient and further reinforces it. Using this
approach, MEP has been used to constrain parameters of hy-
drological models (Kleidon and Schymanski, 2008; Porada
et al., 2011; Westhoff and Zehe, 2013). In the second ap-
proach, MEP is defined as a statistical principle and con-
stitutes the most probable state of an open system (Dewar,
2005, 2009). Using the MaxEnt statistical inference algo-
rithm (Jaynes, 1957), the state of MEP can be predicted by
maximizing Shannon information entropy while considering
constraints imposed by the available information. Both con-
cepts of entropy are linked: the maximization of Shannon in-
formation entropy can be used to assess the probability of
a given state for any kind of system, and as such, thermo-
dynamic entropy can be considered a special case of Shan-
non information theory. In hydrology, Wang and Bras (2009,
2011) have used the Shannon information entropy approach
to develop the MEP model of land surface fluxes, which is
the topic of the present article.

The MEP model of land surface fluxes (Wang and Bras,
2009, 2011) offers a simple approach for energy budget mod-
elling that ensures the closure of the surface energy balance.
In the MEP model developed by Wang and Bras, only three
input variables, net radiation, surface temperature and sur-
face specific humidity, are required to model surface heat
fluxes, with a different definition of the surface when assess-
ing evaporation (surface is soil) and transpiration (surface is
leaf). As it will be presented below, in practice, the following
six input variables are needed to operate MEP continuously
under all climate conditions: net radiation, soil surface tem-
perature and specific humidity, leaf surface temperature and
specific humidity, and a vegetation index. Overall, the MEP
model eliminates the need for wind speed and surface rough-
ness data (i.e. input data to the Penman model) as well as
the need for data on vertical gradients (i.e. temperature and
humidity, input data to the bulk aerodynamic model often im-
plemented in land surface models). Moreover, the predicted
surface heat fluxes are constrained by the available energy
(i.e. net radiation), which avoids the issue of oversensitiv-
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Table 1. Description of study sites.

US-Wkg

US-Ton

US-WBW

Semiarid
Bsk: steppe, warm winter

Climate
Koppen climate class

Vegetation class Grassland
Mean annual precipitation (mm) 407

Mean annual temperature (°C) 15.6

Data source Scott (2016)

Mediterranean

Csa: Mediterranean, mild with
dry, hot summer

Woody savanna

559 1372
15.8 13.7
Baldocchi (2016)

Temperate

Cfa: humid subtropical, mild
with no dry season, hot summer
Deciduous broadleaf forest

Meyers (2016)

ity to temperature and suggests that this approach should be
robust in climate change assessments. Recent studies also re-
ported improved performance of the MEP approach for the
simulation of terrestrial evaporation when compared against
the Penman—Monteith model (Hajji et al., 2018) or a mod-
ified Penman—Monteith approach driven by remote sensing
and reanalysis data (Xu et al., 2019). The MEP model also
had a performance comparable to a complex land surface
model (Canadian Land Surface Scheme — CLASS) at snow-
free sites at low latitudes (Alves et al., 2019). Overall, the
MEP model offers an attractive approach to improve the sim-
ulation of terrestrial evaporation in hydrological modelling
and to increase the robustness of streamflow projections un-
der climate change. The objective of this study is thus to
couple the MEP model of land surface fluxes with a hydro-
logical model and perform proof-of-concept simulations at
AmeriFlux sites spanning a range of climatic and vegetation
conditions.

2 Study area

We selected three sites of the AmeriFlux network (Baldoc-
chi et al., 2001) where the eddy covariance method is used
to measure vertical water and energy fluxes (Table 1; Fig. 1).
We selected sites using the following criteria: (i) measure-
ments of volumetric soil water content available at different
depths and for an extended period, (ii) absence of snow cover,
and (iii) diversity in climates (semi-arid, Mediterranean and
temperate) and types of vegetation (grassland, woody sa-
vanna and deciduous broadleaf forest).

The first site, US-Wkg, is characterized by a semi-arid cli-
mate where 60 % of precipitation is concentrated in July, Au-
gust and September. In 2006, a sharp transition occurred in
the vegetation and the native grassland species (assemblage
of grama grasses, genus Bouteloua) have been supplanted
by Lehman lovegrass (Eragrostis lehmanniana), an exotic
species spreading throughout the southwestern United States
(Moran et al., 2009; Scott et al., 2010). The second site, US-
Ton, is characterized by a Mediterranean climate, with dry
summers and most precipitation occurring from October to
May. The woody savanna is made up of two layers of veg-
etation, each reaching peak activity at different times of the
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Figure 1. Location of study sites across the conterminous United
States.

year (Baldocchi et al., 2004). Trees, mainly blue oaks (Quer-
cus douglasii), are dormant during winter months, reach peak
activity in the spring and then carefully regulate their water
use during the dry summer period. In contrast, the under-
story vegetation composed of grasses and forbs is mainly
active during the rainy winter period, when water is plenti-
ful. Finally, the US-WBW site is characterized by a temper-
ate climate, with precipitation relatively evenly distributed
throughout the year. The mixed deciduous forest is domi-
nated by oak and hickory, and vegetation is active from the
spring to early autumn (April to October), with peak activity
during the summer (Wilson and Baldocchi, 2000).

3 Methodology
3.1 Maximum entropy production (MEP) model

The MEP model of land surface fluxes uses the optimal-
ity principle of maximum entropy production (Dewar, 2005)
as an inference tool for nonequilibrium thermodynamic sys-
tems. In the MEP model, entropy refers to Shannon entropy,
the expected value of information (Shannon, 1948), which
is not related to thermodynamic entropy expressed as the ra-
tio of flux to temperature. Indeed, the MEP model is derived
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from the principle of maximum entropy (MaxEnt) developed
by Jaynes (1957) as a general inference tool for assigning
probability distributions in statistical mechanics. Wang and
Bras (2009) used this statistical approach to develop the MEP
model of land surface fluxes. Within the MEP model, land
surface fluxes are each expressed in terms of a dissipation or
entropy function, and under the constraint of conservation of
energy, a unique extremum solution is found.

Dissipation functions have been postulated for land sur-
face fluxes over a dry soil (Wang and Bras, 2009) and over
wet soil and vegetation surfaces (Wang and Bras, 2011). For
non-vegetated surfaces, bare soil evaporation (Es) is esti-
mated by solving Egs. (1) and (2) with the constraint of en-
ergy conservation at the surface (R, = G + Es + H; Wang
and Bras, 2011):

E,= B(o)H, (D
B (o) I 1
G = —H|H|"s, 2
o Iy

where R,, Es, H and G are the net radiation and latent, sen-
sible and ground heat fluxes at the soil surface (W m~2; pos-
itive values indicate a heat flux away from surface); B(o)
is the inverse of the Bowen ratio (see Eq. 7); and o is a di-
mensionless parameter (see Eq. 8). I is the soil thermal in-
ertia Jm~2K~!s~1/2), calculated with the empirically de-
rived equation from Huang and Wang (2016):

Iy= /I3 +012, 3

where Iy is the dry soil thermal inertia Jm—2K~!s~1/2) ¢
is the volumetric soil moisture (m> m~3) and I, is the ther-
mal inertia of liquid water (1557Im—2K~1s~1/2). Iy is the
“apparent thermal inertia of air” (Jm—2 K~ s~1/2) and was
calculated as

ng 1/6
Iy = PaCpV Cikz (C2 ) s “4)

PacpTo

where p, is the air density (1.22kgm™3), ¢p is specific heat
of air under constant pressure (1004 J kg_1 K‘l), Ci and Cy
are two constants in the empirical functions representing the
effects of stability on the mean profiles of wind speed and
temperature within the surface layer (Wang and Bras, 2009),
k is the von Karman constant (0.4), z is the height above
ground based on vegetation conditions (m), g is the gravita-
tional acceleration (9.81 ms~2), and Tj is a reference tem-
perature (300 K).

For vegetated surfaces, the MEP model of transpiration
considers the energy balance at the vegetation surface. As
such, the term G corresponds to the canopy heat flux (not
to be confused with the ground heat flux G in the MEP
model for non-vegetated surfaces; Eqs. 1-2) and is consid-
ered negligible compared with the sensible and latent heat
fluxes (Wang and Bras, 2011). Accordingly, the energy bal-
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ance is simplified, and transpiration (E;) is estimated by solv-
ing Egs. (5) and (6) under the constraint of energy conserva-
tion at the surface (R, = E; + H):

Ry
EESEY I ©
__Fa 6
H_1~|—B(U)' ©

The same definition of B(o') and o applies for non-vegetated
(Egs. 1-2) and vegetated (Eqgs. 5-6) surfaces, and the Bowen
reciprocal ratio is calculated as

B(U)=6(,/l+%o—l), @)

where o corresponds to a dimensionless parameter that char-
acterizes the phase change at the evaporating or transpiring
surface:

_ \/&)\2 qs

= >
cpRy T

®)

where « is the ratio of the eddy diffusivities for water vapour
and heat (assumed to be unity; Wang et al., 2014), X is the
latent heat of vaporization of liquid water (Jkg™1!), Cp is the
specific heat of air under constant pressure Jkg~! K~1), R,
is the gas constant of water vapour (461 Jkg=! K1), ¢ is
the surface specific humidity (kgkg™!), and 7 is the surface
temperature (K).

In the MEP model of evaporation (MEP-E; Egs. 1-2),
the surface specific humidity (gs) corresponds to the specific
humidity at the soil surface (gss), and the surface temperature
(Ty) corresponds to skin temperature at the soil surface (7).
Equation (8) can be modified accordingly:

22 qss
o = — .
cpRy TS%

€))

The specific humidity at the soil surface can be computed as
(Huang and Wang, 2016)

0\?
4ss = (_) gsat, (10)
0

where gy is the specific humidity at saturation (kgkg™!) at
Ty, which is calculated using the Clausius—Clapeyron equa-
tion, 6 is the soil water content (m> m~3), 6 is the soil poros-
ity (m3>m™3), and B is an empirical parameter that was set to
B = 2 based on Huang and Wang (2016).

In the MEP model of transpiration (MEP-E¢; Egs. 5-6),
the surface specific humidity (gs) corresponds to the specific
humidity at the leaf surface (gis), and the surface temperature
(Ty) corresponds to the leaf temperature (7j). A water stress
factor (7) that varies between 0 and 1 is added to the original
formulation of Eq. (8) presented by Wang and Bras (2011) to
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describe the reduction in plant transpiration under soil water
stress (Hajji et al., 2018). For MEP-E}, Eq. (8) thus translates
into
)‘2 qls

Tt (an
Various parameterizations of g exist in the literature based
on soil water potential (Verhoef and Egea, 2014; Ferguson et
al., 2016), volumetric soil water content (Feddes et al., 1978;
Porporato et al., 2001) or leaf water potential (Tuzet et al.,
2003). We used the Wang and Leuning (1998) parameteriza-
tion of 7 based on soil water content that Hajji et al. (2018)
successfully used to apply the MEP model of transpiration
under water-limiting conditions:

1 = min LM ’ (12)
3 (ch — pr)

where 600 is the weighted average soil water content over

the root zone, with weights set according to the vertical root

distribution (m?3 m’3), Owp is the soil water content at the

wilting point (m3 m™3) and 6y is the soil water content at

field capacity (m? m™3).

The MEP models have been formulated for the two lim-
iting cases of bare soil evaporation and transpiration from a
fully vegetated surface. In order to continuously simulate ter-
restrial evaporation, Hajji et al. (2018) proposed a method to
combine the MEP models of evaporation and transpiration
using a vegetation index ( fyeg) that corresponds to the frac-
tion of the soil covered by vegetation. Assuming that evapo-
ration from intercepted rainfall is negligible, as is the case in
this study, the MEP model of terrestrial evaporation (MEP-
E) is then defined as

E= (l_fveg) Es+fvegEt~ (13)

The vegetation index ( fyeg) can be derived from the normal-
ized difference vegetation index (NDVI; Gutman and Igna-
tov, 1998):

_ NDVI; — NDVIpin
" NDVIpax — NDVIpin

Sreg (14)
where NDVI, is the NDVI on day ¢, NDVI, is the NDVI
signal from bare soil and NDVI,,x is the NDVI signal from
a full vegetation cover.

3.2 Hydrological model

HydroGeoSphere (HGS) is an integrated surface and sub-
surface hydrologic model that has been used to simulate
soil water content at various AmeriFlux sites (Maheu et al.,
2018) as well as in a forested headwater catchment (Koch
et al., 2016). Maxwell et al. (2014) performed a formal ver-
ification of seven integrated surface and subsurface models,
and HGS showed good agreement with other models when
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simulating soil moisture in an idealized test case. HGS is
a control-volume finite-element model that simultaneously
solves the 2-D diffusion-wave approximation of the Saint-
Venant equations and the 3-D form of the Richards equation
(Aquanty, 2013). The surface and subsurface are coupled via
a first-order exchange coefficient. The commonly used van
Genuchten (1980) model is incorporated in HGS to describe
the water retention curve. HGS has an adaptive time-stepping
procedure where the time step length is controlled by the
maximum change allowed in a state variable during any time
step. In the present study, we allowed for a maximum change
of 0.05 in soil saturation. In the current version of HGS, tran-
spiration and evaporation are simulated as a function of po-
tential evaporation (Kristensen and Jensen, 1975):

Ei(z) = fi(LAD f2(0) (Ep — Ec) r(2), 5)

where E(z) is the transpiration rate (m s™1) at depth z, E,
is the potential evaporation rate (m s~') and E. is the wet
canopy evaporation rate (m sh. fi(LAI) is a function of
the leaf area index (LAI), representing changes in vegetation
over time (dimensionless):

f1(LAI) = max {0, min[1, C; + C;LAIl}, (16)

where C; and C, are dimensionless fitting parameters. f>(6)
is a function describing the water stress on vegetation (di-
mensionless), which is equivalent to ng (Eq. 12). r(z) is the
root distribution function, which follows a cubic decay dis-
tribution between the surface and the maximum root depth.
Soil evaporation is described as

Ey(z) = a*[1 = fi(LAD] (Ep — Ec) e(2), (17)

where E(z) is the soil evaporation rate (ms~!) at depth z,
and e(z) is the evaporation depth function which follows a
cubic decay distribution between the surface and the maxi-
mum evaporation depth. «* is a soil wetness factor (dimen-
sionless):

6—0,
. 9617952 for 962 < 0 =< 9611
a =11 for 0 > 6,1, (18)
0 for 6 < 6,7,

where 6, is the soil water content above which full evapo-
ration occurs and 6,; is the soil water content below which
evaporation is zero.

3.3 Coupling the HGS and MEP-E models

In the HGS model, the following modified form of Richards
equation is used to describe the temporal evolution of soil
moisture:

d
—Vg+ D Texk 0= — (0Sw), (19)
where ¢ is the specific volumetric (Darcy) flux (m3s71), Mex

is the source or sink term for exchange fluxes with other do-
mains (i.e. surface; m3s~! ), Q is the source or sink term for
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v
3]
E, = f(Rn:Tlsr qis, ns:fveg) Els = f(Rn'Tssv qssvﬁ;eg) -V-q+ E [0 = a(essw)
?

Figure 2. Coupling of the HydroGeoSphere (HGS) hydrological model and the maximum entropy production (MEP) model of land surface
fluxes. HGS supplies the MEP model with soil water saturations (Syw; in blue), which are used by the MEP model to compute the transpiration
(E¢) and evaporation (Es) rates. These rates are then passed on to HGS to compute the sink terms with the surface (I'ex; in red), and HGS
removes water from the soil reservoir based on the root and evaporation depth profiles.

Table 2. Soil and vegetation properties at each study site.

US-Wkg US-Ton  US-WBW
Sand — silt — clay* (%) 55-20-25 48-42-10 28-60-12
Saturated hydraulic conductivity (x 109 ms—1) 2.813 2.929 3.615
Residual saturation (m? m—3) 0.01 0.02 0.05
Wilting point (m3 m—3) 0.05 0.07 0.07
Field capacity (m3 m~3) 021 0.29 0.26
Porosity (m3 m~3) 0.44 0.56 0.38
Root depth (m) 1.2 0.7 0.6

* US-Wkg: Nearing et al. (2005). US-Ton: BADM from the AmeriFlux database. US-WBW: Miller et al. (2007).

the porous medium such as pumping or injection (m3s~1),
and S, is the subsurface water saturation (m>m™3). The
MEP-E; model requires soil moisture information to com-
pute three parameters: the soil thermal inertia (/s; Eq. 3) and
the surface specific humidity of the soil (gss; Eq. 9) and leaf
(q1s; Eq. 11) surfaces. At the beginning of a given time step,
HGS supplies the soil moisture information from the previ-
ous time step to the MEP-E model, which then computes the
evaporation and transpiration rates (Fig. 2). The transpiration
and evaporation rates computed with the MEP-E model are
then transferred to HGS and taken as sinks for the porous
medium (I'ex in Eq. 19). HGS removes water from the soil
reservoir based on the root and evaporation depth profiles,
which both follow a cubic decay distribution between the sur-
face and the maximum root or evaporation depth. At the end
of the given time step, HGS calculates the saturation through-
out the soil column. Given that the MEP-E; model was not
very sensitive to changes in soil thermal inertia, this parame-
ter was set as a constant equal to the dry soil thermal inertia
(as detailed in the next section) and was not involved in the
coupling procedure.

4 Model implementation
4.1 HGS-MEP

The coupled HGS-MEP model was not calibrated in the
present study. The soil and vegetation properties were there-
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fore not obtained from calibration but were rather defined
from pedotransfer functions, observations at AmeriFlux sites
or values taken from the literature. We derived soil hydraulic
characteristics (Table 2) using soil texture information as an
input to the Rosetta model implemented in Hydrus (Simtinek
et al., 2013) to derive the soil hydraulic characteristics. Soil
texture information was either taken from the AmeriFlux
database (US-Ton) or from the literature (US-Wkg in Near-
ing et al., 2005, and US-WBW in Miller et al., 2007). At
US-Wkg and US-Ton, the observed minimum soil water con-
tent was smaller than residual saturation computed by the
Rosetta model, and as such, we set the residual saturation in
HGS to the observed minimum soil water content. At each
site, we defined soil porosity as the observed maximum soil
water content closest to the surface, and we used the water
retention curve to compute the volumetric water content cor-
responding to the wilting point (—1.5 MPa) and field capac-
ity (—0.033 MPa). We defined the maximum root depth us-
ing site-specific information at US-Ton (Ichii et al., 2009)
and US-WBW (Wilson et al., 2001). Given that similar in-
formation was unavailable at US-Wkg, we set the maximum
root depth based on the root depth reported for Lehman love-
grass in the literature (Gibbens and Lenz, 2001), the main
grass species at the site. Given that only little information is
available on soil and root properties, parameter allocation for
these properties is often an important source of uncertainty in
hydrological models. However, previous modelling work at
the study sites has shown soil moisture modelling to be rela-
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Table 3. Implementation of the MEP model of total terrestrial evaporation in this study.

3849

Model Variable  Definition Implementation
MEP-Egy Ry Net radiation Net radiation measurements
Tss Surface temperature Soil temperature measurements nearest to the surface
gss Surface specific humidity  Eq. (10); computed from soil water content (supplied by HGS), porosity
(Table 2) and surface temperature measurements
Ig Soil thermal inertia Set as a constant in this study
MEP-E; Ry Net radiation Net radiation measurements
Tis Surface temperature Air temperature measurements at top of the tower
qis Surface specific humidity = Computed from air temperature and relative humidity measurements at the top
of the tower
s Water stress factor Eq. (12); computed from the soil water content (supplied by HGS) and the soil
water content at wilting point and field capacity (Table 2)
MEP-E Sveg Vegetation index Eq. (14); computed from NDVI data

tively robust to variations in saturated hydraulic conductivity
and vertical root distribution (Maheu et al., 2018).

Table 3 provides a summary of the implementation of the
MEP model of terrestrial evaporation in HGS. In the MEP
model of evaporation, skin temperature measurements would
ideally be used to set the soil surface temperature (7g), but
since those measurements were not available, we instead
used soil temperature measurements nearest to the surface,
which is at a depth of 5 cm at US-Wkg, 2 cm at US-Ton and
2 cm at US-WBW. The height above ground (z in Eq. 4) was
set to the flux tower height, which was 6.4m at US-Wkg,
23 m at US-Ton and 36.9m at US-WBW. At US-Wkg, the
dry soil thermal inertia (/g5 in Eq. 3) was computed according
to Wang et al. (2010) as the regression coefficient between
diurnal variations in the ground heat flux and surface tem-
perature (830Tm—2 K~ s~1/2), Because these data were un-
available at US-Ton and US-WBW and given that the model
showed little sensitivity to the soil thermal inertia, the dry
soil thermal inertia was set equal to 800 Jm~2K~! s=1/2 for
these two sites. In the MEP model of transpiration, the leaf
surface temperature was assumed to be equal to the air tem-
perature measured above the canopy. Since no measurements
of the leaf surface specific humidity were available, we used
the specific humidity of the air as a proxy and calculated it
from air temperature and relative humidity measurements us-
ing the Clausius—Clapeyron equation. To combine the MEP
models of evaporation and transpiration (Eq. 13), we com-
puted the vegetation index (Eq. 14) using the AVHRR 7d
composite NDVI (https:/Ita.cr.usgs.gov/NDVI, last access:
4 November 2016). NDVI time series are notoriously noisy
because of varying atmospheric conditions and sensor view-
ing angles (Hird and McDermid, 2009), and we therefore
smoothed the time series by applying a 60 d moving average.
Based on Montandon and Small (2008), the NDVI signal for
bare soil (NDVIj) was set to 0.2, and the NDVI signal for
full vegetation cover varied according to the land cover, with
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NDVIy, = 0.61 for grassland, NDVIy, = 0.69 for woody sa-
vanna and NDVI,, = 0.85 for deciduous broadleaf forest.

4.1.1 HGS with Penman-Monteith (HGS-PM)

We compared HGS-MEP to simulations of terrestrial evap-
oration and soil water content performed with the stand-
alone HGS model, in which the Kristensen and Jensen (1975)
model is implemented, as described in Sect. 3.2. We used
the same soil and root properties defined for the HGS-MEP
simulations (Table 2), and the only difference was the terres-
trial evaporation model. In HGS, transpiration and evapora-
tion are set to occur simultaneously. However, this approach
led to a large overestimation of terrestrial evaporation. In the
present study, we modified the implementation of the model,
and evaporation took place only when fi(LAI) =0. As for
the HGS-MEP model implementation, interception was not
considered and E. was set to zero. The maximum and mini-
mum evaporation limiting saturation (Eq. 18) were set to 0.1
(6.1 = 0.165) and 0.5 (6,2 = 0.565; Verbist et al., 2012). Po-
tential evaporation (E}), which is terrestrial evaporation from
a saturated land surface, was computed with the Penman—
Monteith equation, a physically based model where, simi-
lar to the MEP model, the predicted terrestrial evaporation is
constrained by available energy at the surface:

1 A(Ry — G) + 22le=e)

Ay (142) .

where A is the slope of the saturation vapour pressure
curve (kPaK™1), ¢ is the saturation vapour pressure (kPa),
e, is the actual vapour pressure (kPa), y is the psy-
chrometric constant (kPaK~1), rg is the surface resistance
(ms~1) and r, is the aerodynamic resistance (m s~1). When
f1(LAD > 0, the surface resistance (rs) was set according
to the vegetation lookup table in the Noah land surface
model (US—Wkg=4Osm’1, US-Ton=70sm™! and US-
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WBW =100sm~! in Kumar et al., 2011), and the canopy
aerodynamic resistance (r,c) was computed as (Thom, 1975)

1 —d —d
raC:T[ln(Z O)IH(Z O):|, (21)
K“Uu Z0m Z0v

where u is the wind speed (ms~!), z is the wind speed
measurement height (m), dp is the zero-plane displacement
height (m), zo,, is the roughness height for momentum trans-
fer (m) and zg, is the roughness height for water vapour
transfer (m). Equation (21) was derived for neutral atmo-
spheric conditions but has also been successfully used to
model terrestrial evaporation over a wide range of conditions
(Ershadi et al., 2014). Roughness heights were estimated as
a fraction of the vegetation height, 4 (m; Brutsaert, 1982):

dy = 0.66h, 22)
Zom = 0.1h, (23)
200 = 0.1z0p. 24

When fi(LAI) =0, the surface resistance (rs) was set to
999 s m~!, the value associated with a barren or sparsely veg-
etated land cover in the Noah lookup table (Kumar et al.,
2011), and the substrate aerodynamic resistance (r,s) was
computed as (Shuttleworth and Wallace, 1985)

1 d
o= gz (5 )m (252, 03)
K-u 70 <0

where 7'¢ is the roughness length of the soil (m), which was
set to 0.01 m (Shuttleworth and Wallace, 1985).

The f1(LAI) function used to describe temporal changes
in vegetation (Eq. 16) was computed by rescaling, between 0
and 1, the vegetation index fyeg, an input to the HGS-MEP
model.

4.2 Model setup

As a proof of concept, we set up the coupled HGS-MEP
and HGS-PM models to perform one-dimensional soil col-
umn simulations to evaluate the capability of both models
to simulate water fluxes (terrestrial evaporation) and storage
(soil moisture). We represented the soil column with a fine
(1 cm) vertical resolution and set the soil column depth to ei-
ther 1 or 1.5 m in order to capture the entire root zone at each
site. We assigned uniform soil properties throughout the soil
column, since there were no available data to describe the
vertical distribution of soil material with depth. Simulations
spanned 5 years at US-Wkg and US-Ton and 2.5 years at US-
WBW given that data were not available for a longer period.
We used soil water content measurement available at differ-
ent depths to set initial subsurface conditions, and we used
linear interpolation to assign initial conditions at depths with-
out measurements. As for initial surface water conditions,
we assumed an initial surface water depth of zero given that
the soil was not fully saturated. For boundary conditions, we
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supplied the model with gap-filled (REddyProc; Reichstein
et al., 2005) measurements of precipitation, net radiation,
air temperature, relative humidity and soil temperature at a
30 min time step. At the surface, we applied a critical depth
boundary condition that allows water to leave the model do-
main via overland flow. At the bottom of the soil column, we
applied a free drainage boundary condition.

4.3 Model performance

We evaluated the performance of models using a series of
metrics comparing observed and simulated values of terres-
trial evaporation and soil water content at the three sites.
First, we computed the root-mean-square error (RMSE) to
assess the mean difference between observed and simulated
values. Second, we computed the Nash—Sutcliffe efficiency
(NSE), where a value of 1 indicates a perfect agreement be-
tween the model and observations and a negative value in-
dicates that the average value of observations offers a better
predictor than the model. The RMSE and NSE are not inde-
pendent metrics of performance given that the NSE is a stan-
dardized measure of the mean square error. Still, we chose
to report the two commonly used metrics, as they provide
an assessment of performance in absolute (RMSE) and rela-
tive (NSE) terms. Third, we computed the normalized bench-
mark efficiency (BE), which is analogue to the NSE but com-
pares the model output to a simple benchmark model, in this
case being the interannual mean value for every calendar day
(Schaefli and Gupta, 2007). Fourth, we computed the coeffi-
cient of determination (R?) that describes the proportion of
the total variance in observations explained by the model. Fi-
nally, we computed the percent bias (PBIAS) to assess the
average tendency of simulated values to be larger (positive
bias) or smaller (negative bias) than observations. Equations
of performance metrics are listed in Table S1 in the Supple-
ment.

We calculated performance metrics at half-hourly and
daily timescales for terrestrial evaporation and at a daily
timescale for soil water content. When assessing the abil-
ity of the models to simulate terrestrial evaporation, we
first calculated performance metrics on the entire time series
and, second, assessed how well the models performed under
water-limited conditions. To do so, we computed the monthly
aridity index, which is the ratio between precipitation and
PET, where PET was calculated with the Penman—Monteith
equation (Eq. 20). Using monthly values of the aridity in-
dex, we then calculated performance metrics for dry periods
(P /PET < 0.4 at US-Wkg and P /PET < 1 at US-Ton and
US-WBW) and wet periods (P /PET > 0.4 at US-Wkg and
P /PET >1 at US-Ton and US-WBW). As US-Wkg is lo-
cated in a semi-arid climate, we used a different threshold
(0.4) to define water-limited conditions, as the monthly arid-
ity index remained below 1 for the entire study period.

www.hydrol-earth-syst-sci.net/23/3843/2019/



A. Maheu et al.: MEP energy budget model in a hydrological model 3851

80
(a) Precipitation

0.4 - -
(b) Soil moisture

0.1 o TS

7240:
Ezzwwwl il M m l. d

HGS-MEP
Observed

2013 2014 2015

Figure 3. (a) Precipitation as well as observed and modelled (b) daily mean soil water content at a depth of 15 cm, and (¢) 10d moving
average of terrestrial evaporation at US-Wkg (climate: semi-arid; vegetation: grassland).

5 Results

5.1 Model performance under a semi-arid climate
(US-Wkg)

During the study period (2010-2014), the mean annual pre-
cipitation at US-Wkg varied between 264 and 415 mm, with
2013 and 2014 being the driest and wettest years, respec-
tively (Fig. 3a). Between January and June, pre-monsoon
precipitation was relatively low (<35mm), with the ex-
ception of 2010, which saw 110mm of rain in the first
6 months of the year. Precipitation was concentrated dur-
ing the monsoon periods, and, with the exception of 2010,
nearly 80 % occurred between July and September. Figure 3b
shows that the HGS-MEP model provided a realistic simula-
tion of soil moisture at 15 cm depth (RMSE = 0.04 m* m~3;
NSE =0.30; Table 4) and was able to capture the sharp rise
in soil moisture at the start of the monsoon period in July
— note that soil moisture observations were missing between
5 May 2010 and 31 December 2011. Overall, soil moisture
at 15 cm depth was generally overestimated (PBIAS =19 %;
Table 4) with HGS-MEP, particularly for the lower values
outside the monsoon period. For example, the observed an-
nual minimum in soil water content was 0.06 m>m~3 be-
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tween 2012 and 2014, while modelled soil moisture did not
fall below 0.12m>m=3. A similar overestimation was also
observed for the upper (z = 5 cm) and lower (z = 30 cm) soil
layers (Fig. S1 in the Supplement).

Figure 3c shows that the HGS-MEP model also per-
formed well in simulating the daily mean terrestrial evap-
oration (RMSE=0.31mmd~'; NSE = 0.88; Table 4). The
HGS-MEP model reproduced the seasonal pattern in ter-
restrial evaporation and captured the sharp increase associ-
ated with the increased soil water availability from July to
September. Peak terrestrial evaporation was slightly under-
estimated by HGS-MEP (PBIAS = —10 %; Table 4). For ex-
ample, the observed annual maximum ranged between 4.8
and 5.8mmd~!, while the modelled annual maximum did
not exceed 4.0 mmd~!. The HGS-MEP model was also able
to simulate the increase in terrestrial evaporation following
precipitation events outside the monsoon months. However,
the pre-monsoon months were particularly wet in 2010, and
terrestrial evaporation simulated by HGS-MEP was under-
estimated, with a modelled average of 0.5 mm d~! between
January and May compared with an observed average of
0.9mmd~!. At US-Wkg, terrestrial evaporation was domi-
nated by evaporation, particularly during the dry season, dur-
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Table 4. Performance of the HGS-MEP and HGS with Penman—-Monteith (HGS-PM) models when simulating (a) daily mean soil water
content (SWC) at a 15 or 20cm depth and (b) daily mean total terrestrial evaporation (E) as represented by the root-mean-square error

(RMSE), Nash-Sutcliffe efficiency (NSE), benchmark efficiency (BE), coefficient of determination (R2) and percentage bias (PBIAS).

RMSE \ NSE \ BE \ R? \ PBIAS

HGS-MEP HGS-PM | HGS-MEP HGS-PM | HGS-MEP HGS-PM | HGS-MEP HGS-PM | HGS-MEP  HGS-PM
(a) SWC (m3m~3) (%)
US-Wkg 0.04 0.05 030  —0.10 —035  —1.13 0.62 0.54 19 27
US-Ton 0.03 0.04 0.92 0.88 0.60 0.46 0.94 0.89 -5 0
US-WBW 0.05 0.05 0.61 051 022 —054 0.74 0.66 -6 -1
M) E (mmd~") | (%)
US-Wkg 031 0.58 0.88 0.57 048  —0.86 0.89 0.65 -10 ~14
US-Ton 0.43 0.55 0.73 0.56 0.1 -045 0.77 0.70 ~14 -25
US-WBW 0.71 0.74 0.65 0.62 ~-170  -1.93 0.68 0.69 11 -23

Table 5. Performance of the HGS-MEP and HGS with Penman—Monteith (HGS-PM) models when simulating daily mean total terrestrial
evaporation (E) during dry and wet periods, as represented by the root-mean-square error (RMSE), Nash—Sutcliffe efficiency (NSE), coeffi-

cient of determination (Rz) and percentage bias (PBIAS). n represents the number of days.

RMSE \ NSE \ R? PBIAS
n  HGS-MEP HGS-PM | HGS-MEP HGS-PM | HGS-MEP HGS-PM | HGS-MEP HGS-PM
(mmd~") (%)

US-Wkg
Dry (P /PET <04) 1518 0.29 0.46 0.86 0.64 0.87 0.68 ~11 —15
Wet (P /PET>04) 308 0.39 0.98 0.85 0.04 0.83 047 -9 -12
US-Ton
Dry (P/PET<1) 1340 0.43 0.56 0.76 0.59 0.81 0.72 ~14 —24
Wet (P /PET>1) 486 0.4 0.49 0.37 0.20 0.58 0.61 -10 -27
US-WBW
Dry (P/PET<1) 489 0.78 0.87 0.54 0.42 0.57 0.57 6 -23
Wet (P /PET>1) 425 0.61 0.54 0.57 0.66 0.65 0.71 26 —24

ing which it represented 69 % of the terrestrial evaporation
simulated by HGS-MEP (Fig. 4a). During the monsoon pe-
riod when vegetation activity is concentrated (July—October),
evaporation decreased in importance and, on average, ac-
counted for 60 % of the total terrestrial evaporation simulated
by HGS-MEP, while transpiration represented 40 % of total
terrestrial evaporation. These proportions varied from year
to year. For example, 2014 was the wettest year during the
study period, and modelled transpiration represented 46 % of
total terrestrial evaporation during the monsoon period.

In contrast, modelled transpiration represented 28 % of
total terrestrial evaporation during the monsoon period in
2012, although terrestrial evaporation was overall under-
estimated by the HGS-MEP model that year. Overall, the
HGS-MEP model outperformed the HGS-PM model for the
simulation of daily terrestrial evaporation and soil moisture
(Fig. 3b). Indeed, performance metrics at the daily timescale
show a large decline in the performance of HGS-PM dur-
ing wet periods (NSE =0.04) compared with dry periods
(NSE =0.64; Table 5). In contrast, the performance of HGS-
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MEP was comparable for dry (NSE=0.86) and wet pe-
riods (NSE =0.85). Moreover, in between monsoon peri-
ods, terrestrial evaporation was underestimated by HGS-PM
(PBIAS = —14 %; Table 4), and the model was unable to
catch terrestrial evaporation pulses following rain events (e.g.
2013; Fig. 3c). As a result, soil moisture was generally over-
estimated (PBIAS =27 %) throughout the simulation period.
At the diurnal scale, the HGS-MEP model reproduced sub-
daily variations in terrestrial evaporation at US-Wkg well,
with an increase in the morning, peak value around 12:00 LT,
a decrease in the afternoon, and values close to zero during
the night (Fig. 5a). In the HGS-MEP simulation, the daily
maximum was generally overestimated, with an average of
0.12mmh~! at 12:00 LT compared with an observed average
of 0.10mmh~!. On the other hand, morning and afternoon
values were slightly underestimated by about 0.01 mmh~!
(Fig. 5a). While the HGS-PM did not overestimate the daily
maximum (Fig. 5a), the HGS-MEP model overall outper-
formed HGS-PM for the simulation of half-hourly terres-
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Figure 4. 10d moving average of observed terrestrial evaporation and modelled terrestrial evaporation partitioned as transpiration and
evaporation at (a) US-Wkg (climate: semi-arid; vegetation: grassland), (b) US-Ton (climate: Mediterranean; vegetation: woody savanna) and
(c) US-WBW (climate: temperate; vegetation: deciduous broadleaf forest).
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Figure 5. Observed and modelled hourly average terrestrial evaporation at (a) US-Wkg (climate: semi-arid; vegetation: grassland), (b) US-
Ton (climate: Mediterranean; vegetation: woody savanna) and (¢) US-WBW (climate: temperate; vegetation: deciduous broadleaf forest).
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Table 6. Performance of the HGS-MEP and HGS with Penman—Monteith (HGS-PM) models when simulating half-hourly mean total terres-
trial evaporation, as represented by the root-mean-square error (RMSE), Nash—Sutcliffe efficiency (NSE), coefficient of determination (R2)

and percentage bias (PBIAS).

RMSE \ NSE \ R? \ PBIAS
HGS-MEP HGS-PM | HGS-MEP HGS-PM | HGS-MEP HGS-PM | HGS-MEP  HGS-PM
(mmh~") (%)
US-Wkg 0.05 0.06 0.65 0.48 0.72 0.58 3 -9
US-Ton 0.06 0.06 0.53 0.55 0.61 0.60 -3 —18
US-WBW 0.10 0.08 0.47 0.62 0.57 0.64 23 -18

trial evaporation, as shown by the four performance metrics
(RMSE, NSE, R? and PBIAS:; Table 6).

5.2 Model performance under a Mediterranean
climate (US-Ton)

During the study period (2004-2008), mean annual precip-
itation at US-Ton ranged between 371 and 782 mm, with
most precipitation concentrated during winter months, from
October to May (Fig. 6a). The first two winters (2004—
2005 and 2005-2006) of the study period were particularly
wet (precipitation is 717 and 882 mm), while the follow-
ing years experienced near-normal precipitation (385 and
392 mm). As shown in Fig. 6b, the HGS-MEP model sim-
ulated soil moisture exceptionally well at a 20cm depth
(RMSE =0.03 m3 m~3; NSE =0.92; Table 4) and was able
to reproduce the decrease in soil moisture as precipitation
stops in summer (Fig. 6b). During the wet winter months,
the HGS-MEP model slightly underestimated soil mois-
ture (PBIAS = —5 %) but still captured the increase in soil
moisture during this period. Near the surface (z =0cm;
Fig. S2a), soil moisture was generally underestimated by
HGS-MEP during the dry summer months: observed soil
water content slowly decreased until it generally reached
a minimum of 0.04—0.05 m® m™3 at the end of the season,
while modelled soil moisture dropped rapidly to reach a
minimum value (0.03 m?® m~3) close to the residual water
content (0.02m> m~3; Table 2). For the deeper soil layers
(z=50cm), the HGS-MEP model generally overestimated
soil moisture during dry summer months, with a modelled
minimum of 0.17m3m™3 compared to an observed mini-
mum of 0.14 m> m~3 (Fig. S2c).

When simulating terrestrial evaporation, the HGS-
MEP model performed well (RMSE=0.43mmd!;
NSE =0.73), although terrestrial evaporation was underes-
timated (PBIAS = —14 %; Table 4). The HGS-MEP model
performed particularly well for winter months and was
able to capture the increase in terrestrial evaporation from
about 0.4mmd~! (modelled average terrestrial evaporation
in September) to 3.3mmd~! (modelled average annual
maximum terrestrial evaporation) as water became more
available. However, following those winter months, as
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precipitation stopped, terrestrial evaporation simulated by
HGS-MEP was underestimated during the first half of the
dry period (June—July). For example, the underestimation
in terrestrial evaporation during the summer of 2005 and
2006 (i.e. from the last day of precipitation in May or
June to the end of September) amounted respectively
to a cumulative difference of 8.1 and 6.8 mm between
observed and modelled terrestrial evaporation. During
the dry summer months, low soil moisture availability
near the surface (Fig. S2a) limited evaporation simulated
by HGS-MEP, and modelled transpiration accounted on
average for 94 % of total terrestrial evaporation (Fig. 4b).
Evaporation increased during the monsoon period, and on
average, terrestrial evaporation simulated by HGS-MEP was
made up of 17 % of evaporation and 83 % of transpiration.
Overall, the HGS-PM model performed well at US-Ton
at a daily timescale, although the HGS-MEP performed
slightly better. As opposed to HGS-MEP, the HGS-PM had
difficulties capturing the onset of the wet winter period,
and the increase in soil moisture occurred ahead of time
(Fig. 6b). Indeed, we observed a decline in the performance
of HGS-PM during wet periods (NSE=0.20) compared
with dry periods (NSE=0.59; Table 5). We observed a
similar pattern with HGS-MEP, but it was not as marked,
with a NSE of 0.37 during wet periods compared with 0.76
during dry periods (Table 5). With HGS-MEP and HGS-PM,
terrestrial evaporation was underestimated, both during wet
and dry periods (—27 % < PBIAS < —10 %; Table 5). This
underestimation was particularly important in June and
July, when precipitation stopped (Fig. 6¢). At the diurnal
scale, both models performed similarly well (NSE =0.53
for HGS-MEP and NSE=0.55 for HGS-PM), although
HGS-PM led to a more important bias (PBIAS = —18 %)
than HGS-MEP (PBIAS = —3 %; Table 6). Throughout
the day, both models underestimated terrestrial evaporation
in the morning and afternoon, while the daily maximum
was generally overestimated by HGS-MEP and slightly
underestimated by HGS-PM (Fig. 5b).
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Figure 6. (a) Precipitation as well as observed and modelled (b) daily mean soil water content at a depth of 20 cm, and (¢) 10d moving
average of terrestrial evaporation at US-Ton (climate: Mediterranean; vegetation: woody savanna).

5.3 Model performance under a temperate climate
(US-WBW)

In the simulation period, 2004 was a relatively wet year
(annual precipitation = 1600 mm), while 2005 was relatively
dry (annual precipitation =995 mm; Fig. 7a). In Fig. 7b,
the HGS-MEP model provided a realistic simulation of soil
moisture (RMSE =0.05 m? m—3; NSE = 0.61; Table 4) and
captured the decrease in soil moisture associated with in-
creased vegetation activity during the summer. However,
soil moisture at a 20 cm depth was generally overestimated
by HGS-MEP during the summer, and modelled soil water
content did not fall below 0.1 m3 m—3, while the observed
soil water content reached an annual minimum of 0.08 and
0.05m3 m~3 in 2004 and 2005. In contrast, soil moisture dur-
ing the winter was generally underestimated by HGS-MEP,
with a modelled average soil water content of 0.21 m? m—3
between January and April in comparison with an observed
average of 0.26 m3 m3. Overall, a similar pattern (overes-
timation of soil moisture in the summer and underestima-
tion in the winter) was observed in soil moisture simulations
near the surface (z = 5 cm; Fig. S3a). As for deeper soil lay-
ers (z =60 cm), soil moisture was systematically underesti-
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mated, although this could be due to changes in soil proper-
ties given that there is an upper shift in observed soil moisture
values compared with upper soil layers (Fig. S3c).

In Fig. 7c, the HGS-MEP model performed well and
reproduced the seasonal pattern in terrestrial evaporation
(RMSE =0.71 mmd~!; NSE = 0.65; Table 4). Capturing the
onset of vegetation activity was, however, challenging for
the model, and early in the summer, terrestrial evaporation
was generally overestimated (PBIAS =11 %). On two oc-
casions, terrestrial evaporation was considerably underesti-
mated by the HGS-MEP model: in June 2005, observed ter-
restrial evaporation reached a peak of 3.9mmd~!, while
modelled terrestrial evaporation was about 2.5 mm d-!, and
in September 2005, observed terrestrial evaporation reached
2.8 mmd~!, while modelled terrestrial evaporation went be-
low 1mmd~! (values refer to the 10d moving average
presented in Fig. 4c). This underestimation in terrestrial
evaporation is linked to the water stress factor. In both
cases, the water stress factor fell below 0.5 for a few days,
which largely reduced modelled transpiration. Evaporation
simulated by HGS-MEP was relatively constant through-
out the year, with an average of 0.4mmd~', although in
the fall 2005, following a particularly dry summer, mod-

Hydrol. Earth Syst. Sci., 23, 3843-3863, 2019



3856 A. Maheu et al.: MEP energy budget model in a hydrological model

elled evaporation dropped to less than 0.1 mmd~!. Tran-
spiration simulated by HGS-MEP accounted on average
for 57 % of total terrestrial evaporation between October
and April, but this proportion increased considerably dur-
ing the summer. Indeed, between May and September, mod-
elled transpiration represented on average 87 % of total ter-
restrial evaporation. Overall, the HGS-MEP model outper-
formed HGS-PM, although, as shown by negative BE val-
ues, both models had less explanatory power than a sim-
ple benchmark model that captures seasonality. The two
models performed similarly during dry and wet periods,
with only a slight decline in performance at HGS-PM dur-
ing dry periods in the summer (NSE=0.42) compared
with wet periods in the winter (NSE = 0.66; Table 5). Dur-
ing summer months, the HGS-PM largely underestimated
terrestrial evaporation (PBIAS = —23 %), particularly dur-
ing the dry 2005 year (Fig. 7c). As a result, soil mois-
ture was overestimated by HGS-PM much more so than
with HGS-MEP (Fig. 7b). During winter months, soil mois-
ture was generally underestimated, although a similar pat-
tern was observed for HGS-MEP. At the diurnal scale, the
HGS-PM (NSE =0.62) performed better than HGS-MEP
(NSE =0.47) when simulating half-hourly terrestrial evapo-
ration, although both models had an important bias, which
was positive for HGS-MEP (PBIAS =23 %) and negative
for HGS-PM (PBIAS = —18 %; Table 6). This bias is par-
ticularly reflected in the simulation of the daily maximum,
which was overestimated by HGS-MEP and largely under-
estimated by HGS-PM (Fig. 5c¢). Indeed, the daily maxi-
mum observed mid-day at US-WBW is 0.18 mmh™!, while
it reached 0.22mmh~! with HGS-MEP and 0.13mmh™!
with HGS-PM.

6 Discussion
6.1 Performance of the HGS-MEP model
6.1.1 HGS-MEP vs. HGS-PM

At the daily timescale, the HGS-MEP model outperformed
HGS-PM when simulating terrestrial evaporation at the three
study sites, which translated into improved performance for
soil moisture modelling as well (Table 4). Notably, we ob-
served a weak performance of HGS-PM during wet periods
at US-Wkg (P /PET > 0.4) and US-Ton (P /PET > 1; Ta-
ble 5). At US-Wkg, this meant that HGS-PM failed to cap-
ture the annual maximum terrestrial evaporation, which has
important implications for the water budget. In contrast, the
weaker performance at US-Ton by HGS-PM, and to a lesser
degree by HGS-MEP, meant that the two models struggle
to describe the minimum rates of terrestrial evaporation. At
US-WBW, both models had a comparable performance, with
consistent results for HGS-MEP for wet (P /PET > 1) and
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(a) Precipitation

04r
(b) Soil moisture

2004 2005 2006

Figure 7. (a) Precipitation as well as observed and modelled
(b) daily mean soil water content at a depth of 20 cm, and (¢) 10d
moving average of terrestrial evaporation at US-WBW (climate:
temperate; vegetation: deciduous broadleaf forest).

dry periods, while HGS-PM performed better during wet pe-
riods than dry periods (Table 5).

At the semi-arid site US-Wkg (Fig. 3), a better handling
of terrestrial evaporation partitioning can explain the supe-
rior performance of HGS-MEP compared with HGS-PM at
both daily and half-hourly timescales. Indeed, the HGS-MEP
model assesses transpiration and evaporation independently
of one another. In the Kristensen and Jensen (1975) model
in HGS, transpiration and evaporation are instead derived
from a single PET value, although we could realistically ex-
pect potential transpiration and evaporation to differ from
one another. In fact, Shuttleworth and Wallace (1985) have
proposed a two-layer configuration of the Penman—Monteith
model which allows the definition of different resistance val-
ues for the soil and canopy layers. However, HGS remains
limited to the definition of a single PET value at the moment.
We encountered a large overestimation of terrestrial evap-
oration when deriving transpiration and evaporation from a
single PET value, and we set up the HGS model to only al-
low bare soil evaporation in the absence of active vegetation
(f1(LAI) =0). As a result, the HGS-PM model performed
weakly at US-Wkg, where soil evaporation makes up more
than 50 % of terrestrial evaporation according to observa-
tions (Moran et al., 2009). Soil moisture modelling by HGS-
MEP also proved to be somewhat challenging at US-Wkg
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(NSE =0.30, BE = —0.35; Table 4). However, in the absence
of parameter calibration, we consider this performance to be
more than acceptable given the challenges of modelling wa-
ter fluxes under arid climates. Soil moisture was generally
overestimated by HGS-MEP during dry periods (Fig. 3), and
further work on the definition of the wilting point in arid cli-
mates could help improve the performance of the model. In-
deed, wilting can occur at a lower threshold than —1.5 MPa
(—4 to —2 MPa; Baldocchi et al., 2004) for vegetation having
evolved under an arid climate.

At the Mediterranean site US-Ton, daily terrestrial evapo-
ration was underestimated by HGS-MEP (PBIAS = —14 %;
Table 4), particularly during the second half of the year, as re-
duced water supply led to a decline in terrestrial evaporation
(Fig. 5). While the HGS-MEP model simulates soil moisture
very well at a depth of 20 cm (Fig. 6), it tended to underesti-
mate soil moisture close to the surface (Fig. S2a), where the
largest proportion of roots is found according to the vertical
root distribution defined by HGS (cubic decay distribution
between the surface and the maximum root depth). Given that
the water stress factor (7)s) is computed from the weighted av-
erage soil water content over the root zone (Eq. 12), this un-
derestimation of soil moisture near the surface translated into
an overestimation of the reduction in transpiration resulting
from water stress. We also investigated if the issue of water
stress overestimation could be due to a mis-definition of the
maximum rooting depth, as trees under a Mediterranean cli-
mate have been found to access water from deep soil layers
or groundwater (Miller et al., 2010). However, we also simu-
lated terrestrial evaporation with the stand-alone MEP model
using soil moisture observations, thus avoiding the overesti-
mation of water stress near the surface, and instead found
a large overestimation of terrestrial evaporation (Fig. S4).
These results suggest that increasing the rooting depth to in-
crease access to water resources would likely not improve
the simulation of terrestrial evaporation. Instead, uncertainty
relative to the definition of the vertical root distribution (as
opposed to the maximum rooting depth) or, as previously
discussed, with the definition of water stress points (wilting
point and field capacity) may explain the challenge of simu-
lating terrestrial evaporation under water-limited conditions
at US-Ton.

At the half-hourly timescale, both HGS-MEP and HGS-
PM showed lower performance than at a daily timescale
when simulating terrestrial evaporation. For example, the
NSE varied between 0.56 and 0.88 at a daily timescale (Ta-
ble 4), while it varied between 0.47 and 0.65 at a half-hourly
timescale (Table 6). At a half-hourly timescale, no model is
distinctly superior to another: HGS-MEP performed better at
US-Wkg, HGS-PM performed better at US-WBW and both
models performed similarly at US-Ton (Table 6). Still, we
observed a distinct pattern where peak terrestrial evaporation
during the day was generally overestimated by HGS-MEP
and underestimated by HGS-PM (Fig. 5). A known issue of
energy imbalance, particularly at subdaily timescales, is as-
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sociated with eddy covariance measurements (Leuning et al.,
2012). This issue typically leads to an underestimation in ob-
servations of terrestrial evaporation and could in part explain
the apparent issue of overestimation of peak values by HGS-
MEP. On the other hand, the negative bias of HGS-PM at
the half-hourly timescale (—18 % < PBIAS < —9 %; Table 6)
may actually be even more important when taking the energy
imbalance issue into account.

Overall, the predictive ability of the MEP model is partic-
ularly noteworthy given that we did not rely on calibration
and instead used a priori estimation of parameters describ-
ing the soil and vegetation. The MEP model thus offers a
promising alternative to model hydrologic fluxes without re-
lying on calibration (Wagener, 2007). We chose the Penman—
Monteith model as a benchmark against which to compare
the MEP model, as it is a physically based model that al-
lows for a detailed parameterization of vegetation. How-
ever, studies have shown that the Penman—Monteith model
leads to an underestimation of terrestrial evaporation under
a contemporary climate (Ershadi et al., 2014) and an over-
estimation under climate change (Milly and Dunne, 2016).
Other models could have been considered, although Hajji
et al. (2018) demonstrated the superior performance of the
MEP model compared with other models such as the modi-
fied Priestley—Taylor Jet Propulsion Laboratory (PT-JPL) and
the air-relative-humidity-based two-source model (ARTS).

6.1.2 HGS-MEP vs. HGS using observed terrestrial
evaporation as a forcing

Mabheu et al. (2018) assessed HGS’ skills to model soil mois-
ture at the same AmeriFlux sites used in the present study.
In Maheu et al. (2018) and the present study, the same in-
put values were used to define soil and vegetation proper-
ties. Both studies also considered the same periods, with the
exception of the Mediterranean site (US-Ton), where simu-
lations were performed for different periods (2004—2008 in
the present study vs. 2008-2012 in Maheu et al., 2018) due
to data availability. When modelling soil moisture with HGS,
Maheu et al. (2018) used observed terrestrial evaporation as a
forcing, thus reducing the uncertainty of simulating this flux
and focusing the assessment of the model on subsurface pro-
cesses and properties that control soil water content. These
simulations thus offer a benchmark against which to compare
the results of the present study and assess how much uncer-
tainty is introduced by the simulation of terrestrial evapora-
tion by the MEP model. At the three sites, the HGS simula-
tions of soil moisture that used observed terrestrial evapora-
tion as a forcing performed slightly better than simulations
with HGS-MEP. Still, the performance was overall com-
parable between HGS with observed terrestrial evaporation
(RMSE = 0.04 m® m~3 and NSE between 0.39 and 0.86) and
HGS-MEP (RMSE between 0.03 and 0.05m* m~ and NSE
between 0.30 and 0.92). At the semi-arid site (US-Wkg), the
HGS-MEP simulation of soil moisture had a greater overesti-
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mation bias (19 %; Table 4) than the HGS simulation (10 %;
Table 4 in Maheu et al., 2018), which could be due to the
underestimation of peak (2011 and 2012) or pre-monsoon
(2010, 2012 and 2013) terrestrial evaporation (Fig. 3). At the
temperate site (US-WBW), simulations with HGS-MEP and
HGS in Maheu et al. (2018) both showed the same pattern
of underestimation of soil moisture in the winter and overes-
timation in the summer. This suggests that these biases are
in good part associated with the definition of soil (hydraulic
parameters) or vegetation (root distribution) properties rather
than with the MEP model itself.

6.1.3 Partitioning of total terrestrial evaporation by
HGS-MEP

In the present study, evaporation simulated by HGS-MEP
represented on average 60 % of total terrestrial evaporation
at the semi-arid site (US-Wkg) during the monsoon period
(Fig. 4a). These results are in line with experimental results
from Moran et al. (2009), who estimated that, following the
Lehmann lovegrass invasion, evaporation accounted for 55 %
of the total terrestrial evaporation during the growing season
of a year with average precipitation. Results from the present
study are also concordant with those of Scott and Bieder-
man (2017), who found that, on average, evaporation rep-
resented 54 % of growing-season total terrestrial evaporation
at US-Wkg between 2004 and 2015. Using overstory and un-
derstory flux tower measurements at the Mediterranean site
US-Ton, Miller et al. (2010) found that transpiration from
trees dominate during the dry summer months and that un-
derstory evaporation (i.e. bare soil evaporation and transpi-
ration from grasses and forbs) is close to zero. Our results
are consistent with these observations, and according to the
HGS-MEP simulation, transpiration accounted on average
for 94 % of total terrestrial evaporation (Fig. 4b). At the tem-
perate site (US-WBW), soil evaporation, as measured by an
understory flux tower, accounted for 16 % of total terrestrial
evaporation on an annual basis and for generally less than
8 % of total terrestrial evaporation during the growing sea-
son (Wilson et al., 2001). In the present study, soil evapora-
tion simulated by HGS-MEP amounted to 13 % of total ter-
restrial evaporation during the growing season between May
and September (Fig. 4c), which agrees with these experimen-
tal estimates. Overall, the HGS-MEP model showed a good
capability for the partitioning of total terrestrial evaporation
under various climates (semi-arid, Mediterranean and tem-
perate); this is a conclusion that was also reached for a hu-
mid, energy-limited environment (Wang et al., 2017).

6.2 Using the MEP model to integrate the energy
budget in hydrological modelling: strengths and

limitations

The MEP model of land surface fluxes offers an effective
means to implement coupled water and energy budget mod-
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elling for hydrological applications. First, the MEP model
of terrestrial evaporation requires six input variables: net ra-
diation, soil surface temperature, leaf surface temperature
and specific humidity, vegetation index and soil water con-
tent, the last of which can be supplied by a hydrological
model. Thus, the MEP model eliminates the need for wind
speed and surface roughness (input to the Penman model)
or for vertical gradients of temperature and humidity (inputs
to the aerodynamic method often implemented in land sur-
face models). Second, the MEP model ensures, by design,
the closure of the energy balance. As such, terrestrial evapo-
ration simulated by the MEP model is constrained by avail-
able energy, which avoids issues of overestimation associated
with the use of temperature-based PET models for hydrolog-
ical projection. Third, the MEP model relies on a small set
of equations, making it straightforward to implement, with
minimal computational needs. Land surface models also of-
fer a means of implementing coupled water and energy bud-
get modelling, but contrary to the MEP model, these models
are generally complex and computationally heavy. Last, the
explicit partitioning of total terrestrial evaporation into evap-
oration and transpiration is also a strength of the MEP model
given that the water feeding these two fluxes is drawn from
different pools. Partitioning has particularly important im-
plications for terrestrial evaporation modelling under water-
limiting conditions (e.g. arid environments; Kurc and Small,
2004) or under changing land cover conditions (Huxman et
al., 2005), and the MEP model thus offers a tool for better
representing these conditions in hydrological modelling.
While these four highlighted features make the MEP
model a promising approach for coupling water and energy
budget modelling, certain limitations also need to be con-
sidered. First, the MEP model has mainly been tested with
input data at a half-hourly time step. Although meteorologi-
cal and climate data are increasingly available at a subdaily
time step, with the continuing increase in the temporal res-
olution of reanalysis and climate projection datasets, addi-
tional tests would be needed to assess the applicability of the
MEP model at a daily timescale. Second, soil water content
is the key coupling variable between the MEP and hydrolog-
ical models, which limits the choice of hydrological mod-
els which the MEP model can be coupled to. For the mo-
ment, the choice of a hydrological model appears to be lim-
ited to physical models, with the drawback being that these
models are often computationally intensive as well as chal-
lenging in terms of parameterization. Indeed, the simulation
time for the one-dimensional soil columns in this study was
greater than an hour with the HGS-MEP model. HGS is a
relatively complex model, and the MEP model has also been
coupled to a soil moisture force-restore model with satis-
fying results (Huang and Wang, 2016; bias < 0.01 m3 m—3
and R? = 0.81). As for conceptual hydrological models, fur-
ther investigation is needed to assess the possibility of a cou-
pling with the MEP model. In the absence of information
on soil water content, a method would be needed to derive
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the specific humidity at the soil surface (gss) as well as the
water stress factor (7,) from the subsurface storage compo-
nent of the conceptual model. Third, in its current form, the
HGS-MEP model is still driven by dependent variables. For
example, both net radiation and surface temperature are in-
puts to the model, although incoming long-wave radiation,
a component of net radiation, is largely dependent on air
temperature (used as a proxy for surface temperature 7).
Moreover, soil surface temperature (7g) is an input to the
model even though it is a function of the heat fluxes pre-
dicted by the model. In the present project, we have focused
on the coupling of water fluxes between HGS and MEP, al-
though in the future, the two models could also be more
closely coupled, since thermal transport modelling is imple-
mented within HGS (Brookfield et al., 2009). In addition to
soil moisture information, the HGS model could supply in-
formation on soil surface temperature to the MEP model and
thus eliminate its need as an input variable. For example,
Huang and Wang (2016) simulated surface soil temperature
and moisture using a force-restore model that relies on the
MEP model to simulate the heat budget.

7 Conclusion

Using the MEP model of land surface fluxes, we proposed
a simple approach to integrate energy budget modelling in
hydrological models in order to improve the simulation of
terrestrial evaporation. The MEP model requires six input
variables (net radiation, soil surface temperature and specific
humidity, leaf surface temperature and specific humidity and
vegetation index) and ensures energy budget closure, which
imparts a strong physical basis and avoids issues of oversen-
sitivity to air temperature associated with certain PET mod-
els. We coupled the MEP model to HGS, an integrated sur-
face and subsurface hydrologic model. Without calibration,
the coupled HGS-MEP model performed well in simulating
soil water content and terrestrial evaporation at three Amer-
iFlux sites with varying climates (semi-arid, Mediterranean
and temperate). For both the simulation of daily soil mois-
ture and terrestrial evaporation, HGS-MEP outperformed the
stand-alone HGS model where, as defined by the Kristensen
and Jensen (1975) model, terrestrial evaporation is derived
from potential evaporation, which we computed using the
Penman—Monteith equation. Overall, results indicate that,
through a simple coupling procedure, the MEP model of-
fers a physically constrained approach to simulate terrestrial
evaporation in hydrological models. This approach may offer
a tool for better assessing climate change impacts on water
resources, although the predictive ability of the MEP model
under environmental change, may it be natural (e.g. wild-
fires) or anthropogenic (e.g. land cover change and climate
change), still needs to be assessed. This study focused on
the simulation of vertical water fluxes, but to use HGS-MEP
for flow simulation and projection, lateral fluxes will need
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to be considered in further work. Various routing models are
available and could be used in conjunction with HGS-MEP
to simulate lateral fluxes in a computationally efficient way.
Finally, the present study focused on the application of the
HGS-MEP model at snow-free sites, and the MEP model has
undergone little testing in cold regions, with tests limited to
the snow-free period (Wang et al., 2017). An MEP model for
snow surfaces (Wang et al., 2014) is available and could also
be integrated to hydrological models to allow energy budget
modelling throughout the year in northern environments.
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