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Abstract. Forecasting flash floods some hours in advance is
still a challenge, especially in environments made up of many
small catchments. Hydrometeorological forecasting systems
generally allow for predicting the possibility of having very
intense rainfall events on quite large areas with good perfor-
mances, even with 12–24 h of anticipation. However, they are
not able to predict the exact rainfall location if we consider
portions of a territory of 10 to 1000 km2 as the order of mag-
nitude. The scope of this work is to exploit both observations
and modelling sources to improve the discharge prediction in
small catchments with a lead time of 2–8 h.

The models used to achieve the goal are essentially
(i) a probabilistic rainfall nowcasting model able to ex-
trapolate the rainfall evolution from observations, (ii) a
non-hydrostatic high-resolution numerical weather predic-
tion (NWP) model and (iii) a distributed hydrological model
able to provide a streamflow prediction in each pixel of the
studied domain. These tools are used, together with radar ob-
servations, in a synergistic way, exploiting the information of
each element in order to complement each other. For this pur-
pose observations are used in a frequently updated data as-
similation framework to drive the NWP system, whose out-
put is in turn used to improve the information as input to
the nowcasting technique in terms of a predicted rainfall vol-
ume trend; finally nowcasting and NWP outputs are blended,
generating an ensemble of rainfall scenarios used to feed
the hydrological model and produce a prediction in terms of
streamflow.

The flood prediction system is applied to three major
events that occurred in the Liguria region (Italy) first to pro-
duce a standard analysis on predefined basin control sections

and then using a distributed approach that exploits the ca-
pabilities of the employed hydrological model. The results
obtained for these three analysed events show that the use
of the present approach is promising. Even if not in all the
cases, the blending technique clearly enhances the prediction
capacity of the hydrological nowcasting chain with respect to
the use of input coming only from the nowcasting technique;
moreover, a worsening of the performance is observed less,
and it is nevertheless ascribable to the critical transition be-
tween the nowcasting and the NWP model rainfall field.

1 Introduction

The Liguria region, located in north-western Italy, has been
recurrently affected in the last century by severe rainfall
events that produced flash floods and landslides (Acquaotta
et al., 2018). This type of event causes severe damage to the
coastal urbanized areas and sometimes also human casual-
ties, not only in the Liguria region (Faccini et al., 2009, 2012;
Silvestro et al., 2012, 2016; Davolio et al., 2015) but also in
other areas of the Mediterranean (Drobinski, 2014; Delrieu
et al., 2004; Ducrocq et al., 2008). All the aforementioned
events were associated with well-organized, very intense and
localized convective systems affecting the same area of a few
square kilometres for several hours (Parodi et al., 2012; Reb-
ora et al., 2013; Fiori et al., 2014; Buzzi et al., 2014). A fore-
cast suitable for the small spatial and short temporal scales of
these events is needed, but these scales are hardly predictable
by meteorological models. Nowcasting models can predict
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the evolution of the rainfall pattern at a regional scale, start-
ing from the last observed radar rainfall images (i.e. radar-
based rainfall nowcasting) and merging different sources of
information to provide a short-term forecast (usually a few
hours).

Radar-based rainfall nowcasting can be achieved by ex-
trapolating the future rainfall distribution from a sequence
of radar images; it has been found that the radar-based rain-
fall nowcast has good skill for forecasting with a short lead
time. The basic techniques to produce quantitative precip-
itation forecasts (QPFs) from radar echoes are based on
cross-correlation or individual radar echo-tracking (Collier,
1981). Progress in the nowcasting procedure was the devel-
opment of nowcasting methods operating in the Fourier do-
main (Seed, 2003; Xu and Chandrasekar, 2005) to take into
account the fact that the predictability of rainfall depends on
the spatial scale of the precipitation structures (Wilson et al.,
1998; Germann and Zawadzki, 2002). Among the techniques
that follow a probabilistic approach, Metta et al. (2009) de-
veloped a stochastic spectral-based nowcasting technique
that predicts the future rainfall scenarios starting from the
rainfall fields observed by radar and evolving them through
Fourier decomposition. Also, Berenguer et al. (2011) pre-
sented a method based on the String of Beads model, while
Foresti et al. (2016) analysed the performance of a nowcast-
ing algorithm that accounts stochastically for the process of
growth and decay of rainfall cells.

The main limit of such nowcasting procedures is that the
accuracy of rainfall prediction is quite high for very short
lead times (20–120 min), but, since it is based only on the ex-
trapolation of the observed rainfall field, it rapidly decreases
for longer ranges. As a consequence, the hydrological fore-
cast is also useful from a hydrological nowcasting perspec-
tive for limited lead times (Silvestro et al., 2015a), with ap-
plications also to urban hydrology (Thorndahl et al., 2017).
One of the reasons why the accuracy rapidly decreases with
increasing lead times is that radar nowcasting techniques do
not model (or models them stochastically) processes such as
growth and decay of precipitation (Golding, 1998) that be-
come important for longer lead times. So, for a very short
range (0–3 h), radar nowcasting performs best, whereas for
longer lead times, forecasts based on NWP are better (Kil-
ambi and Zawadzki, 2005; Lin et al., 2005; Kober et al.,
2012; Wang et al., 2015). On the other hand, NWP does not
allow rainfall predictions with sufficient spatial and time de-
tail (Davolio et al., 2015; Silvestro et al., 2016).

Therefore, after the very first hours (usually 0–3 h) of
radar-based nowcasting, NWP forecasts can be merged to
generate a seamless 0–6 h prediction with higher skill. This
procedure requires an accurate QPF in the very short term
from the meteorological model, at a high resolution of a few
kilometres, since the tolerance for timing or location errors
is very limited, especially in case of severe storms (Sun et
al., 2014). In fact, a correct forecast allows a smooth transi-
tion from radar extrapolation to model prediction. To meet

the nowcasting requirements, NWP models have to be run at
convection-permitting resolution (1-4 km; Kain et al., 2006;
Weisman et al., 2008), starting from a better initial condi-
tion that also reduces the spin-up period. Therefore, several
methodologies for rapid data assimilation have been devel-
oped in order to be suitable for nowcasting application. rapid
update cycle procedures have been widely used in an oper-
ational framework (Wilson and Roberts, 2006; Benjamin et
al., 2004) to provide a “warm start” and, hence, reduce the
model spin-up. Also, radar reflectivity has been employed
to improve the initial condition, e.g. exploiting the informa-
tion on latent heating through the application of the nudging
technique (Sokol and Zacharov, 2012; Dow and Macpherson,
2013; Bick et al., 2016; Davolio et al., 2017a), eventually re-
ducing the intensity or position error in rainfall prediction.
Also other studies attempted to improve the hydrological
forecast by improving the rainfall prediction using both ob-
servations and models. Rossa et al. (2010) assimilated radar
data in an NWP system; Davolio et al. (2017a) assimilated
the rainfall field derived from both radar and gauge observa-
tions (Sinclair and Pegram, 2005) in a convection-permitting
NWP model and used the rainfall prediction in a probabilistic
hydrometeorological forecasting chain. Liechti et al. (2013)
and Liechti and Zappa (2019) explored the impact on hy-
drological prediction of different techniques of the rainfall
forecast based on both NWP and radar data (Panziera et al.,
2011). Kyznarova et al. (2012, 2013) tried to use the Inte-
grated Nowcasting through Comprehensive Analysis (INCA)
system (Haiden et al., 2011) precipitation products as input
to a hydrological model, evaluating the benefit with respect
to extrapolation techniques.

Within this framework, the present study attempts to use,
in an integrated way, a nowcasting model (PhaSt), a high-
resolution NWP model (MOLOCH) and rainfall observa-
tions. Rainfall estimates derived from both radar and rain
gauges (Sinclair and Pegram, 2005) are used for frequent
(60 min) data assimilation by the NWP model in order to bet-
ter reproduce observations in terms of the spatial and time lo-
cation, on the one hand, and to improve QPF (Davolio et al.,
2017a), on the other hand. A probabilistic nowcasting model
is adapted in order to use the QPF provided by NWP models.
A blending technique based on previous studies (Kilambi and
Zawadzki, 2005; Kober et al., 2012; Bowler et al., 2006) is
finally applied to smoothly mix nowcasting rainfall scenarios
and the NWP QPF. The use of forecast rainfall fields in now-
casting can effectively extend the lead time by several hours,
making it suitable for issuing flood and flash flood warnings.
The possibility to predict, with more accuracy, the rainfall
fields as input to the hydrological model can improve signifi-
cantly the accuracy of the hydrological forecast applied with
short lead times (Berenguer et al., 2005; Silvestro and Reb-
ora, 2012). The last module of the present nowcasting chain
is represented by the distributed hydrological model Con-
tinuum (Silvestro et al., 2013; Silvestro et al., 2015b; Cenci
et al., 2016), which is used to transform QPF in streamflow
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predictions in a frequently updated flood forecasting system
(20 min). Using the forecast rainfall as described above as
input, it provides a probabilistic output, with many predicted
discharge scenarios, which useful in real-time management
operations in an emergency.

Although the elements of the chain are not innovative by
themselves, some new elements are introduced within this
study. First, the blending is performed not only by combin-
ing the rainfall fields forecasted by the nowcasting and the
NWP model in its spatial distribution, as in more standard
approaches (Kilambi and Zawadzki, 2005), but also by mod-
ifying the nowcasting rainfall fields along the forecast win-
dow according to the information related to the time variation
in rainfall volume derived from the NWP model, and this
could be considered to be a matter of fact, a sort of blend-
ing of the rainfall volume. Second, the NWP model forecast
is frequently “updated” with observations through a data as-
similation technique before its information content is used to
trigger the nowcasting model. Finally, verification is done in
a hydrological perspective following both a point approach
and a distributed approach in order to enhance the sample
of data. The system is applied to three major flood events
that occurred in the Liguria region in autumn 2014; results
are presented, comparing streamflow forecasts obtained us-
ing rainfall predictions from different configurations of the
system in order to evaluate the benefit of using some mod-
ules rather than others.

The paper is organized as follows: in Sect. 2 the area of
study and the data used are introduced. In Sect. 3 the mod-
els, the methods and the type of analysis performed are ex-
plained. The results of the work are presented in Sect. 4,
while the conclusions are drawn and final considerations are
made in Sect. 5.

2 Study area and input data

The area of study is the Liguria region, which is located in
north-western Italy (Fig. 1a) and is mainly mountainous; it
faces the Ligurian Sea, and most of its urban areas were
developed along the coast. The presence of a large number
of catchments, characterized by a small drainage area (often
less than 100 km2) and short response time (a few hours at
most), with outlet to the Ligurian Sea, represents a critical
factor that increases the risk of floods. Therefore, it is clear
that high-resolution precipitation and hydrological measure-
ments are crucial in urban areas like Genoa and that new ap-
proaches to modelling urban catchment properties and hy-
drological and hydraulic response are needed.

The main input for the hydrological forecasting chain is
the observed rainfall. This observed rainfall field comes from
the Doppler polarimetric C-band radar, located on Mount
Settepani (Fig. 1a) at an altitude of 1386 m, that works oper-
ationally with a 10 min scansion time and 1 km×1 km spatial
resolution. The rainfall field is estimated through the algo-

rithm described in Silvestro et al. (2009), currently used by
the Meteorological Weather Service in the Italian regions of
Piedmont and Liguria and by the Italian Civil Protection De-
partment. The observed rainfall field is also the input for the
nowcasting model, and it is used in the assimilation scheme,
as described in the following section.

The analysis has been performed according to a distributed
approach all over the Liguria region domain, considering
all the points with a drainage area larger than 15 km2. In
addition, some control sections have been used for a de-
tailed analysis. The relevant sections analysed belong to three
basins (highlighted in Fig. 1c) mainly affected by the anal-
ysed events of 2014: in particular, results for 9 October, at
the Bisagno creek (drained area 97 km2), which flooded the
municipality of Genoa during that event; for 11 November, at
Graveglia (42 km2), a tributary of Entella; and for 15 Novem-
ber, at Polcevera (140 km2), are shown.

3 Model and algorithms

3.1 The meteorological model and the assimilation
scheme

The NWP model used in this work is MOLOCH (de-
tails in Malguzzi et al., 2006; Buzzi et al., 2014; Davolio
et al., 2017b), which integrates the non-hydrostatic, fully
compressible equations for the atmosphere on a latitude–
longitude rotated Arakawa C grid, with a resolution of 0.02◦,
equivalent to about 2.2 km, and on 60 vertical levels (hy-
brid terrain-following coordinates). The integration domain
(Fig. 1b) covers northern and central Italy, and initial and
boundary conditions are provided at a 1 h interval by the BO-
LAM model forecasts, as in the current operational practice
at CNR ISAC. BOLAM is a limited-area hydrostatic model
(Buzzi et al., 2004) based on primitive equations, with a
convective parameterization derived from Kain (2004). Ini-
tial and boundary conditions for BOLAM (domain shown
in Fig. 1b) are defined with ECMWF (European Centre for
Medium-Range Weather Forecasts) analyses. MOLOCH is
nested in a 3 h forecast of BOLAM to avoid direct downscal-
ing from the global analysis to the high-resolution grid and
runs for 21 h. BOLAM and MOLOCH differ mainly in the
dynamical core, including the fact that MOLOCH resolves
explicitly deep convection, while the following parameteri-
zation schemes are common in the two models: atmospheric
radiation, the atmospheric boundary layer and surface layer,
soil processes, and, to a large extent, microphysical pro-
cesses.

The assimilation method, whose implementation in
MOLOCH is shown in Fig. 2, is based on nudging. Dur-
ing the assimilation window, model-specific humidity pro-
files at each grid point are progressively modified depending
on the comparison between observed and forecasted rainfall.
To attain this aim, hourly precipitation estimates provided by
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Figure 1. Area of interest. (a) Location of the radar in the Liguria region and its covered area. (b) BOLAM and MOLOCH (blue shapes)
integration domains. (c) The Liguria region and the drained area of the analysed basins for the three events: Polcevera and Bisagno, flowing
inside the urban area of Genoa, and Graveglia, one of the main tributaries of Entella basin, the biggest basin of the Liguria region.

the Settepani radar are used as observations. The assimila-
tion scheme is explained in detail in Davolio et al. (2017a).
The set-up conceived for the present application takes into
account the time requirements for an operational implemen-
tation. Considering the timing for global data availability and
radar estimates of delivery and processing, the first assimila-
tion windows covers the first 6 h of the forecast. At the end
of this period, the model state is stored and a free forecast
is run to cover the following hours. In this way, once a new
hourly rainfall observation is available, an additional 1 h as-
similation is performed, restarting the model from the stored
condition. This procedure can proceed for several hours, at
least until the following global analysis is available, and al-
lows for updating and improving forecasts, as a consequence
of a longer assimilation period. In the present application, an
appropriate time window for frequent assimilation was cho-

Figure 2. MOLOCH forecasts and data assimilation implementa-
tion. The first assimilation (MOLOCH CNTR; on the top) is per-
formed during the first 6 h of forecast, while after that a 1 h assimi-
lation is conducted, restarting the model from the stored conditions
of the previous run (dots).

sen for each event in order to minimize the amount of com-
putational resources.
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3.2 The nowcasting technique

The nowcasting technique used in this paper is a radar-based
probabilistic technique, PhaSt (Metta et al., 2009). PhaSt is a
“phase stochastic” spectral-based nowcasting procedure that,
starting from two following rainfall fields observed by radar,
realizes a nonlinear–empirical transformation and stochasti-
cally evolves the fields within the spectral space. The use
of the spectral space allows for preserving the spatial cor-
relation within the rainfall fields. The evolution of Fourier
phases through the stochastic process generates many real-
izations to be used as members of an ensemble of precipita-
tion nowcasts. All the ensemble members are characterized
by the same amplitude distribution and very similar power
spectra. However, the phase evolution (i.e. the positioning of
rainfall structures) evolves differently in the altered realiza-
tions, providing an estimate of the probability of occurrence
of precipitation at a given point in space and a given instant
in time. The main equations of the algorithm are reported
below (Eq. 1):
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where ks is the spectral phase, dependent on the wave num-
bers kx and ky . Through this relation, it is possible to give
more weight to the smaller scales and less weight to the larger
ones; T is the decorrelation time after which the rainfall field
is assumed to stop, σ 2 is the variance in the process, and dW
is a random increment drawn from a normal distribution with
a zero mean and second-order moment (W is a Wiener pro-
cess).

To allow for the presence of time correlations in the an-
gular frequencies, a Langevin-type model is used: the tem-
poral evolution of the Fourier phase φ (kx , ky) at a given
wave number (kx , ky) is written in terms of a linear Ornstein–
Uhlenbeck stochastic process for the angular frequency. The
Ornstein–Uhlenbeck process generates angular frequencies
that have a Gaussian distribution with a zero mean and vari-
ance σ 2 and an exponentially decaying temporal autocorre-
lation. The representation of the noise of the forecast rain-
fall field is disentangled into two components, one related to
a noise constant in time and the other to a noise changing
in time and space in order to have different forecast rainfall
fields, but is coherent with the initial observed rainfall.

3.3 Modification of nowcasting technique with NWP
information

To improve the nowcasting algorithm, its original formula-
tion (Metta et al., 2009) is modified in a constraint regarding
the spectral amplitude of the rainfall field. This spectral am-
plitude was previously kept constant along the forecast hori-

Figure 3. Volume trend for rainfall field modification (example for
10 November 2014 at 12:00 UTC). The total volume on the domain
considered is summed for each time step of MOLOCH forecast with
data assimilation (DA). The trend volume is applied to the first rain-
fall forecast by the nowcasting technique.

zon, which means fixing, in the real space, the total volume
of the forecast rainfall fields equal to that of the last observed
radar image. This hypothesis of constant volume is relaxed.
Therefore, the volume is modified according to the informa-
tion provided by the NWP model corrected through the data
assimilation technique. The volume trend is calculated for
the hours of the forecast, using the information about the to-
tal volume of precipitation on the radar domain (Fig. 3), ac-
cording to the following formula (Eq. 2):

Rainfall fieldVol Mod (x,y,en,T )=

Rainfall fieldPhaSt Forec (x,y,en,T )×Volume Trend(T ), (2)

where x and y are the coordinates in the radar rainfall field,
en identifies the ensemble member (20 members in this ap-
plication), and T is the lead time of the forecast (from 10 min
to 6 h).

In this way, the information about the potential growth and
decay of the rainfall structures is provided as additional infor-
mation to the nowcasting rainfall field. The idea is to make
the forecast able to include, in a simple way, the tendency
of decreasing or increasing precipitation volume, leaving the
task of describing the spatial and temporal distribution of the
rainfall field to the original scheme.

3.4 Blending method

The nowcasting models have shown a predictability limit af-
ter several hours of forecasting. This limit is also valid for
the nowcasting model PhaSt according to previous studies
(Metta et al., 2009). This behaviour is mainly due to the fact
that in the nowcasting model the evolution of the precipi-
tation systems is not included: the physics that represents
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growth and decay of the precipitation systems becomes pro-
gressively more important with an increasing lead time (Ger-
mann et al., 2006). These physical processes are represented
in the NWP model so that it is worth connecting the nowcast-
ing and the meteorological model in a resulting rainfall fore-
cast that is possibly more accurate. The blending technique
tries to overcome this limit, connecting these two compo-
nents. Blending has been previously analysed in some studies
with the purpose of improving the rainfall forecast (Golding,
1998; Kober et al.,2012; Atencia et al., 2010; Kilambi and
Zawadzky, 2005; Nerini et al., 2018). In this application, a
blending function is written in order to balance the forecast
reliability of the two models.

Many of the previous methodologies to estimate the blend-
ing function started from the statistical indices computed on
the forecast rainfall field for the two models. These indices
allow the calculation of the weight for the two different fore-
cast rainfall fields. This strategy cannot be applied in this case
due to the scarcity of the rainfall events considered: having
only three case studies, it is not possible to have representa-
tive scores for the two methodologies. In this work, while be-
ing aware of the blending functions already presented in the
literature and according to the arguments presented before
concerning the capacity of the model to represent the physi-
cal processes after the first hours of forecasting, a first guess
of the blending functions is selected, as shown in Fig. 4.

It is worth noting that the weight of the NWP model
forecast rainfall is calculated as the complementary function
(Eq. 3)

WeightNWP = 1−WeightNOWC. (3)

The first function, which will be hereinafter referred to as the
“step function”, gives all the weight to the nowcasting rain-
fall field for the first 2 h and then, up to the end of the fore-
cast, gives it to the NWP model as an on–off switch between
the two models. The other three functions are a progressive
smoothing of this step function, trying to produce an inter-
mediate forecast rainfall field between the nowcasting and
the NWP through a linear combination of them.

At first glance it could seem that all blending functions
give too much weight in the first time steps to the nowcast-
ing model. However, it must be kept in mind that the now-
casting rainfall field is obtained by exploiting the informa-
tion from the NWP model corrected with data assimilation to
modify the radar rainfall volume (as described in Sect. 3.3).
Moreover we expect that forecasts derived by extrapolation
from observation can capture the spatio-temporal pattern bet-
ter than NWP during the first 2 h of the forecast (Metta et
al., 2009; Collier, 1981; Seed, 2003; Xu and Chandrasekar,
2005; Berenguer et al., 2011). In this way more weight is
given to the information of the nowcasting model regarding
the positioning of the rainfall structures, and a first correc-
tion of the forecast is done through the modification of the
volume. Then, for longer forecast times, less weight is given
to the nowcasting rainfall field in favour of the NWP model

forecast. The latter gains progressively more importance up
to almost 5 h ahead of the event. After this, the rainfall field
is entirely provided by the meteorological model. Hence, the
blended rainfall field at a certain forecast time T results from
the linear combination as follows (Eq. 4):

Rainfall fieldblended(T )=(
weightNOWC(T )× rainNOWC(T )

)
+
(
weightNWP(T )× rainNWP(T )

)
, (4)

and it is used as input for the hydrological model for 6 h of
the forecast.

Since the forecast of the NWP model is deterministic
(rainNWP), the rainfall field that is combined with the 20
members generated with PhaSt (rainNOWC) is always the
same. As a consequence, for a short forecast time (values of
weightnowc close to 1), PhaSt leads to different rainfall sce-
narios, while, as long as the forecast time increases (values
of weightnowc close to 0), each rainfall scenario will tend to
be equal to the only one NWP QPF.

3.5 The hydrological model

Continuum is a continuously distributed hydrological model
that relies on a morphological approach that identifies the
drainage network components from a digital elevation model
(DEM; Giannoni et al., 2000, 2005). The DEM resolution
generally coincides with the model spatial resolution. Flow
in the soil is divided into a sub-surface flow component that
is based on a Horton schematization (Gabellani et al., 2008)
and that follows the drainage network directions and a deep
flow component that moves based on the hydraulic head ob-
tained by the water-table modelling. The energy balance is
solved explicitly at the cell scale by using the force–restore
equation. A complete description of the model is reported in
Silvestro et al. (2013).

The hydrological model is implemented at a spatial reso-
lution of 0.005◦ (about 480 m) and with a time resolution of
10 min. The implementation and calibration of the model in
the testing area is described in detail in Davolio et al. (2017a)
and Silvestro et al. (2018); the latter work evidenced good
values of the employed statistics during the calibration and
validation process.

It is worth noting for the scope of the present study that
the model is distributed so that the streamflow is available
in each point of the modelled drainage network; this char-
acteristic is exploited for the verification (presented in the
Sect. 4). Due to the limited horizontal resolution of the model
in this application, the grid points, and, as a consequence, the
basins with drainage area lower than 15 km2, are not consid-
ered (Silvestro et al., 2018).

3.6 The hydrological nowcasting chain

Within the hydrological nowcasting chain, all the elements
presented in the previous sections are connected together.
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Figure 4. Different blending functions analysed: in panel (a) is the weighting function applied to the nowcasting rainfall field, and in panel (b)
is the complementary function, used to weight the NWP model forecast. The first weighting function (red line) is a step function, while the
other functions are increasingly smoother.

The main input is the observed radar rainfall, which is used
up to the “now” as is; then it is used to evolve the last radar
image within the nowcasting phase, and it is used in the data
assimilation process of the NWP model. Then, for the rain-
fall forecasting time window, three configurations are con-
sidered and compared. These configurations differ for the 6 h
forecast rainfall field that is provided as input to the same
hydrological model (Fig. 5), which is computed as follows:

1. Nowcasting is done with PhaSt without volume varia-
tion (as described in Sect. 3.2) and no blending with the
NWP model (Fig. 5a). This is hereinafter referred to as
NOWC.

2. Nowcasting is done with PhaSt with volume variation
according to the NWP model with data assimilation (as
described in Sect. 3.3); there is no blending with the
NWP model (Fig. 5b). This is hereinafter referred to as
NOWC VOL.

3. Blending occurs between rainfall fields from nowcast-
ing with volume variation (as in step 2) and from the
NWP model (deterministic forecast), using a blend-
ing function varying in time, as presented in Sect. 3.4
(Fig. 5c). This is hereinafter referred to as NOWC
BLEND; specifically, it uses the observed rainfall fields
to build the rainfall scenarios in the recent past and the
nowcasting model with volume correction for the first
2 h of forecast. Then, from the second to the sixth hour,
the rainfall field is a linear combination between now-
casting and NWP model outputs according to the blend-
ing function.

For all the configurations, the hydrological model takes,
as input, the rainfall scenarios and produces the forecast in

terms of streamflow. The output of the chain is an ensemble
of possible discharge scenarios (20 ensembles) for the fol-
lowing 12 h.

3.7 Methodology of analysis

The comparison against observations is done in terms of the
final output of the chain, namely the discharge forecast. This
comparison is performed, taking, as a reference, the dis-
charge forecast obtained using the radar rainfall estimates
as input to the distributed hydrological model (hereinafter
referred to as the “reference hydrograph”). This approach
does not consider errors in the hydrological model, since it
is aimed at evaluating possible improvements in the rainfall
forecast (Borga, 2002; Vieux and Bedient, 2004; Berenguer
et al., 2005).

Before comparing the three configurations described in
Sect. 3.6, a preliminary analysis is performed to evaluate dif-
ferent blending functions (as described in Sect. 3.4). This al-
lows us to identify the best function for every event and an
overall (on average) best function. Then the comparison is
made between the three configurations in order to investigate
the importance of each element used to build the rainfall sce-
narios in the streamflow prediction.

A first analysis evaluates the performances of the hydro-
logical forecast in three control sections, with one for each
considered event. In this analysis, three scores are used: the
Nash–Sutcliffe (NS) coefficient (Nash and Sutcliffe, 1970),
the variance of the discharge (Var) and the continuous rank
probability score (CRPS).

The Nash–Sutcliffe (see Eq. 5) coefficient is chosen, since
it is one of the widely used measures to evaluate model per-
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Figure 5. The hydrological nowcasting chain in its three configurations: the first one, which is used only the nowcasted rainfall field without
volume modification (a), the second one with the nowcasted rainfall field modified with the trend retrieved by the NWP model (b), and the
last one in which the nowcasted rainfall fields with volume modification are combined through blending with the fields forecasted by NWP
model corrected with DA (c).

formance, especially for streamflow reproduction:

NS= 1−

T∑
t=1
(Qm(t)−Qobs(t))

2

T∑
t=1

(
Qobs−Qobs

)2 , (5)

where Qm(t) and Qobs(t) are the modelled and reference
streamflow at time t . In order to compare the discharge fore-
cast at different lead times, we used the approach presented
in Berenguer et al. (2005). Using a probabilistic forecast, the
index is calculated for each of the 20 realizations, and then a
mean value is considered.

To relate this index to the spread of the ensemble of the
discharge forecast, the variance is calculated for the analysis
on the punctual section (Eq. 6):

Var(X)= E
[
(X−µ)2

]
, (6)

where X is the forecasted discharge and µ is the mean of the
forecast.

The reduced continuous rank probability score (RCRPS;
Eq. 7; Trinh et al., 2013) is computed as the CRPS (Brown,
1974; Matheson and Winkler, 1976; Unger, 1985; Stanki et
al., 1989; Hersbach, 2000), reduced with the standard devia-
tion of the observed discharge over the analysed time period

(hereafter σ 2):

RCRPS(F,x)=
1
σ 2

∞∫
−∞

(F (y)−1(y− x))2dy, (7)

where F(y) is the probability cumulative distribution func-
tion (CDF) for the forecast and 1 is the step function of the
observed value. A value of RCRPS that equals zero means a
perfect forecast: observations and the forecast coincide. In-
creasing values correspond to a bigger distance between ob-
servations and the forecast.

The NS coefficient and Var(X) are applied to the mean of
the streamflow ensemble following a deterministic approach
in the comparison, while the RCRPS is used to evaluate re-
sults in a probabilistic perspective (Trinh et al., 2013; Davo-
lio et al., 2017a). The values of all the scores are expressed
as function of lead time; to cope with the large number of
values of the RCRPS, its visualization was done using a box
plot, as shown in Sect. 4.

The distributed analysis is carried out by exploiting the
distributed maps of discharge produced by Continuum. This
allows us to use several sampling points for the comparison
even if only three events are analysed. In this case distinction
is done by grouping all the relevant points according to their
upstream drained area into three classes (see Fig. 6):

Hydrol. Earth Syst. Sci., 23, 3823–3841, 2019 www.hydrol-earth-syst-sci.net/23/3823/2019/



M. L. Poletti et al.: Nowcasting and data assimilation for hydrological forecasts 3831

Figure 6. River network grid points divided in three classes of drained area for the Continuum computational domain: small catchments of
15–50 km2, medium size catchments of 50–150 km2 and big catchments > 150 km2.

– points with an upstream drainage area in the range of 15
to 50 km2 (small catchments),

– points with an upstream drainage area in the range of 50
to 150 km2 (medium-sized catchments),

– points with an upstream drainage area in the range of
150 to 500 km2 (big catchments).

This distinction is made by the concentration time related to
the different size of catchments: a longer-lasting influence of
the forecast rain can be found for the basins with a greater
drained area and a bigger concentration time. Hence, when
analysing the performance indices and relating them to the
lead time, a longer lead time will be considered in calculat-
ing the indices for the bigger catchments. In particular, be-
yond the 6 h of lead time corresponding to the rainfall fore-
cast, a further window of forecast discharge is considered: 1
additional hour for the first class of catchments, 2 additional
hours for the second class and 3 additional hours for the third
class.

The distributed analysis, executed on the entire domain on
which the hydrological model is run, provides more general
information about the performance of the hydrological now-
casting chain. The score used for the distributed analysis is
the RCRPS, calculated for each point of the domain inter-
ested by the event (a filter on the pixel in which the forecast
discharge does not exceed a threshold is performed). Also

the RCRPS is expressed as a function of lead time and for
the three classes of drained areas.

4 Results

4.1 Impact of the blending function on hydrological
forecasts

A first analysis is performed to evaluate the performance of
the complete chain implemented using four different blend-
ing functions to linearly combine nowcasting and NWP rain-
fall fields. This analysis is done by evaluating the discharge
forecast using the RCRPS score; the distributed approach is
applied, and hence the predictions in all the points of the do-
main are considered. The results are then analysed for the
three classes of drainage area presented in Sect. 3.7.

Figure 7 presents a summary of the results concerning the
entire sample of data for the three events; in fact, for each
grid point, for each time of the forecast and for each lead
time, it is possible to estimate a value of the RCRPS. The
box plot represents the RCRPS’s variability (y axis) as a
function of the lead time (x axis). Each box indicates the
values of the 25 % and 75 % quantiles, and the horizontal
line inside the box represents the median value, while the
circle indicates the mean. The whiskers extend to the most
extreme values of RCRPSs that are not considered outliers,
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Figure 7. RCRPS for all the events: analysis of the discharge output with the four different blending functions. The red column represents
the results obtained by applying the step function, and the other three columns refer to the other three smoothed blending functions (see
Sect. 3.4). Inside each box, the circle indicates the mean value, while the line indicates the median. The results are presented in the form of a
box plot for the three classes of drainage area (15–20 km2, 50–150 km2 and 150–500 km2).

and the outliers are plotted individually with points. The four
columns represent the results related to the use of the dif-
ferent blending functions: the first column (dark red) is re-
lated to the step blending function, the second (green; here-
after defined as f1) and the third (yellow; f2) refer to the use
of intermediate functions, and the last column (blue; f3) is
related to the smoothest blending functions, as presented in
Sect. 3.4. Results show clearly that there are no large dif-
ferences among the four configurations of the blending func-
tions, but in general it seems ideal to rapidly move from now-
casting to the NWP model forecast, avoiding long smoothing
periods. In fact the scores for all the classes of the drainage
area indicate a worse performance (large values of RCRPS)
around 4–5 h of lead time. This result is probably due to the
fact that, even if data assimilation in the NWP model is per-
formed with hourly updating, often PhaSt rainfall scenarios
and NWP rainfall fields are not seamless (Fig. 8). These dis-
continuities can affect the blending process, generating a fi-
nal rainfall scenario which may result in rather different re-
sults from both PhaSt and NWP rainfall fields.

In general, the best score is obtained with the step function.
However, this is an average behaviour for the three events;
each event has its own best blending function, as shown in
Sect. 4.2 and 4.3.

4.2 Basin-scale analysis at river sections

The results regarding the discharge forecasts for the main
basins struck by the analysed events are examined starting
from a first qualitative visualization of the comparison be-
tween the hydrographs for each configuration at every time
step (every 20 min). Two examples are shown in Fig. 9. The
first one is the forecast at 20:10 UTC on 9 October 2014 at the
Bisagno creek, which was mainly responsible for the flood
of the municipality of Genoa during this event. The second
one is the forecast at 19:40 UTC on 11 November 2014 for
the Entella basin, mainly interesting during this event for its
tributaries Graveglia and Lavagna. The figures show the en-
velopes of the discharge forecasts for one time step during
the considered time window of the event. The black thick
line is the reference hydrograph, the black stars are the ob-
served discharge, and the dashed lines represent the mean
of the discharge ensemble forecast for each lead time. The
first hydrograph envelope (light blue) refers to the configu-
ration NOWC obtained with 6 h of nowcasting without vol-
ume modification. For the second hydrograph (orange), 6 h
of rainfall is predicted by the configuration NOWC VOL.
For the last hydrograph (red) the input rainfall field results
from the blending (configuration NOWC BLEND), using the
mean best function for the three events identified in Sect. 4.1,
which is the blending step function.
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Figure 8. Example of transition from a rainfall field forecast through nowcasting (a) and another forecast by the NWP model corrected
with DA (c) through the linear combination of the field obtained by applying a blending function. Since the two forecast rainfall fields show
relevant differences between each other, the rainfall field resulting from blending (b) is rather different with respect to the other two fields.

Results clearly indicate that the spread of the discharge
forecast ensemble is markedly smaller when input rainfall
is provided by blending, instead of nowcasting alone (with
or without volume trend modification). This is possibly as-
cribable to the fact that, while nowcasting provides a prob-
abilistic forecast (20 ensembles) of different rainfall scenar-
ios, blending connects a deterministic forecast from the NWP
model with the nowcasting ensemble. Since each member of
this ensemble is blended with the same NWP model forecast,
the spread of the final ensemble is smaller.

Figure 10 summarizes the results for some representative
basins for each event, using the statistical scores described in
Sect. 3.7. The three configurations of the hydrological chain
presented in Sect. 3.7 are compared; for the blending con-
figuration, the best blending function (for the blending step,
see Sect. 4.1) and the local best blending function, which is
different for each event, are applied.

The event of 9 October is sadly known for the flood that
affected the municipality of Genoa during the evening. The
main creek interested by the flood was the Bisagno creek,
and the results at the Passerella Firpo section (A≈ 97 km2)
are shown in Fig. 10a, b and c. While for the NS the per-
formances of the hydrological nowcasting chain are really
similar among each other, the variance in the forecast ob-
tained using the blending is smaller than that obtained using
nowcasting, thus providing a forecast with less variability,
which could be an advantage because it theoretically reduces
false alarms or a disadvantage because it can increase the
missed warning, depending on the single case. The RCRPS
shows variable behaviour for different lead times: in the be-
ginning, the best performing configuration is NOWC VOL.
In the intermediate phase, when nowcasting and the NWP
model forecast are combined with blending, there is no con-
figuration overperforming the others; for longer lead times,
the configuration NOWC produces the best performance. For
this event, the forecast of the meteorological model, even cor-
rected with data assimilation, is not able to improve the QPF.

Although the event on 11 November affected the whole re-
gion of Liguria, the main effects on the ground were caused
by the Entella river, which flooded the urban area of Chiavari,
and by its tributaries Lavagna and Graveglia. The scores for
the Graveglia basin at the Caminata section (A≈ 42 km2) are
shown in Fig. 10d, e and f. Unlike the previous case, here
the use of the NWP model has a clearly positive impact.
In this event the rainfall fields from nowcasting techniques
lead to an overestimation of the discharge, while the rainfall
fields obtained through the blending improve markedly the
discharge forecast.

For the event of 15 November, the performance of the
system is evaluated for Polcevera at the Rivarolo section
(140 km2) and shown in Fig. 10g, h and i. It is worth not-
ing that the RCRPS box plot shows that the performance of
the system fed with blending becomes worse between 4 and
6 h lead time. As already explained, this can be related to
the unrealistic rainfall field produced by the blending when
the nowcasting and the NWP model forecast differ too much
between each other.

4.3 Distributed analysis

While in the previous section the scores were computed for
single punctual sections of the basins, here the distributed
analysis is carried out, aimed at giving a more general pic-
ture of the performance of the hydrological nowcasting chain
fed with different rainfall inputs. In fact, with the distributed
analysis, it is possible to compute the score, in this case the
RCRPS, over all the points of the domain, increasing the data
sample used for the analysis.

4.3.1 9 October 2014 event

For this event the best blending function (Sect. 3.4) is f3. Fig-
ure 11 shows the general behaviour during the entire event:
the use of the information retrieved by the NWP model in
the rain forecast worsens the hydrological forecast. This can
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Figure 9. Example of hydrographs for 9 October and 11 November events, for Bisagno and Entella outlet sections, respectively. In both
figures, discharges are obtained using, as input, the 6 h rainfall field from NOWC (light blue), NOWC VOL (orange) and NOWC BLEND
(pink).
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Figure 10. Analysis at basin scale for the three events, namely 9 October 2014 at Bisagno creek (a–c), 11 November 2014 at Graveglia (d–f)
and 15 November 2014 at Polcevera (g–i). The following scores are shown: Nash–Sutcliffe (NS) efficiency (a, d, g), variance (b, e, h) and
RCRPS (c, f, i). Four configurations of the system are evaluated (Phast 6 h no vol var – PhaSt no-volume variation; Phast 6 h no vol nud –
PhaSt no-volume nudged; blending step function; blending local best function; see text).

be due to the peculiar type of event characterized by station-
ary and persistent heavy precipitation on the same portion of
territory that was not forecasted precisely by the NWP model
but reproduced well by the nowcasting model. However, even
if the information regarding the location of the rainfall, com-
ing from the meteorological model, is misleading for the hy-
drological forecast, the information about the total volume
on the domain adds value to the nowcasting rainfall field.

4.3.2 11 November 2014 event

For this event the best blending function is f2. As al-
ready pointed out in the previous basin-scale analysis, the
distributed analysis (Fig. 12) confirms, even more clearly,
that for this event the system using the blending performs
markedly better. Especially for the bigger basins, due to their
response time, the effects of a proper rainfall forecast pro-
vided with blending are beneficial for longer lead times,
probably due to the slow response of the basins.

4.3.3 15 November 2014

For this event the best blending function coincides with the
best on average for all the three events, which is the step func-
tion. In this case (Fig. 13) the differences among the config-
urations can be noticed mostly in the first two classes of the
area, where the use of the blending technique improves the

rainfall forecast: the column related to the NOWC BLEND
configuration is always lower and presents less spread with
respect to NOWC and NOWC VOL configurations. In the
last class of the area (larger basin) the behaviour is different,
especially at the lead time corresponding to the transition in
the blending between the rainfall field from nowcasting and
from the NWP model. This transition is confirmed to be the
most critical phase for the blending, as it can produce unre-
alistic rainfall fields.

5 Conclusions

A hydrological nowcasting chain is a useful instrument for
flood and flash flood warnings. The use of an accurate QPF
for input to the hydrological model is essential in extending
the lead time of the hydrological forecast. The aim of this
study is to improve the single elements in order to provide,
in real time, an accurate forecast of the rainfall field which is
able to improve the performance of the hydrological predic-
tion at a temporal scale of up to 6–8 h.

The elements involved in the chain are the convection-
permitting NWP model MOLOCH, which is able to provide
high-resolution rainfall forecasts and to assimilate rainfall
estimates with rapid updates, the probabilistic nowcasting
model PhaSt, which extrapolates the rainfall evolution from
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Figure 11. 9 October 2014 event: RCRPS for three distinct classes of area. Each column refers to a different configuration of the forecasting
system: NOWC (light blue), NOWC VOL (orange), NOWC BLEND using the step blending function (red) and NOWC BLEND using the
best local blending function (blue), which in this case is the function f3.

Figure 12. 11 November 2014 event: RCRPS for three distinct classes of area. Each column refers to a different configuration of the
forecasting system: NOWC (light blue), NOWC VOL (orange), NOWC BLEND using the step blending function (red) and NOWC BLEND
using the best local blending function (yellow), which in this case is the function f2.
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Figure 13. 15 November 2014 event: RCRPS for three distinct classes of area. Each column refers to a different configuration of the
forecasting system: NOWC (light blue), NOWC VOL (orange), NOWC BLEND using the step blending function (red) and NOWC BLEND
using the best local blending function, which in this case coincides with the step function (red).

observations, and the hydrological distributed model Contin-
uum, which predicts the ground effects of the precipitation in
terms of streamflow over all the basins of the studied region.
The way in which these elements are combined with each
other and integrated with observations from radar and avail-
able rain gauges represents the major novelty of the present
study with respect to similar existing nowcasting procedures.
Instead of just combining the spatial distribution of two rain-
fall fields, obtained independently of a nowcasting algorithm
and an NWP model, first the nowcasting fields are modified
according to information provided by the NWP. This can be
considered to be a first blending step, during which the pre-
dicted rainfall fields produced by PhaSt are modified along
the forecast horizon according to the predicted variation in
rainfall volume from the NWP model corrected with assim-
ilation. Specifically the rainfall volume trend by the NWP
model is used to overcome the current limitation of the PhaSt
algorithm, which is based on the hypothesis that the most re-
cent observed rainfall volume is kept constant along the pre-
diction. This first blending is aimed at better taking into ac-
count the processes of growth and decay of the precipitation
structures as described by the NWP model that progressively
gain importance at increasing lead times and cannot be re-
alistically reproduced by nowcasting alone. Then a standard
blending technique is applied to linearly combine the rain-
fall fields from nowcasting and the NWP model, based on
a blending function that gives different weight to the QPF,

depending on the lead time. The probabilistic QPF obtained
(20 rainfall ensembles) is the input of the distributed hydro-
logical model Continuum, which produces an ensemble of
discharge forecasts in a frequently updated flood forecasting
system (every 20 min).

The meteo-hydrological chain is tested for three main
floods occurred during the autumn of 2014 that affected
different areas of the Liguria region: the 9 October event
with the flood of the Bisagno creek that hit the municipality
of Genoa, the 11 November event, involving the Graveglia
catchment, and the 15 November event, in which the flood of
Polcevera occurred. Even if the number of analysed events is
restricted, the resulting distributed maps produced by Con-
tinuum allow us to verify the performance of the chain on a
large data sample.

A first analysis compared the results of the application of
various blending functions to combine the forecast fields,
highlighting the presence of a best function on average for
the three events and a best function for each single event.
This evaluation, however, suffers from the limited statistics
due to the low number of analysed events. In order to iden-
tify the best blending function with more confidence, a larger
sample of events is needed. In any case, using the best func-
tion for any single event, a comparison between three config-
urations of the hydrological nowcasting chains is performed.
In the first two configurations, rainfall input is provided by
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nowcasting, with or without volume modification, while in
the third one the blended rainfall fields are used.

Statistical scores show that in various cases the use of the
rainfall fields resulting from the blending process leads to an
improvement in the performances of the whole chain with re-
spect to the use of nowcasting alone. In other cases, the bene-
fit gained using the complete configuration with the blending
is not so evident, and the performances results are similar
to the use of the nowcasting for the whole lead time. How-
ever, a worsening of the performance is rarely observed and
occurs in the time window corresponding to the transition be-
tween nowcasting and the NWP model forecast rainfall field.
Hence, there is added value in the use of the blending be-
tween nowcasting and the NWP model, as it produces bet-
ter or equal scores with respect to the use of the nowcasting
alone.

A limitation of the presented study is related to the reduced
number of considered events, which is mainly due to compu-
tational costs. A direct consequence is that it is not possible to
provide a complete and exhaustive evaluation of the system
performances, especially in terms of false alarms (Antonetti
et al., 2019). In any case, this study can be considered to be
a first step in the implementation and evaluation of a novel
nowcasting procedure, which provides positive and encour-
aging results but still requires a much more robust validation,
already planned for the future. However, it is worth noticing
that the distributed analysis tries to partially overcome this
issue because it considers a large number of grid points, in-
creasing the sample size for the analysis, although in many
cases the sample elements are evidently not independent, so
it should be desirable in any case to increase the number of
events for further analysis.

Future works and improvements to the chain presented in
this work will be always explored in terms of improvement of
the elements that compose it. Other techniques of data assim-
ilation with increasing degrees of complexity can be used to
assimilate not only the observed precipitation field but also
other variables in the NWP model. Following recent works
(Atencia et al., 2010), further investigations can be carried
out using another type of blending, called spatial blending,
which introduces spatial dependence of weights as a distance
function to rainfall structures.
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