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Abstract. Reservoirs significantly affect flow regimes in
watershed systems by changing the magnitude and timing
of streamflows. Failure to represent these effects limits the
performance of hydrological and land-surface models (H-
LSMs) in the many highly regulated basins across the globe
and limits the applicability of such models to investigate
the futures of watershed systems through scenario analysis
(e.g., scenarios of climate, land use, or reservoir regulation
changes). An adequate representation of reservoirs and their
operation in an H-LSM is therefore essential for a realis-
tic representation of the downstream flow regime. In this
paper, we present a general parametric reservoir operation
model based on piecewise-linear relationships between reser-
voir storage, inflow, and release to approximate actual reser-
voir operations. For the identification of the model parame-
ters, we propose two strategies: (a) a “generalized” parame-
terization that requires a relatively limited amount of data and
(b) direct calibration via multi-objective optimization when
more data on historical storage and release are available.
We use data from 37 reservoir case studies located in sev-
eral regions across the globe for developing and testing the
model. We further build this reservoir operation model into
the MESH (Modélisation Environmentale-Surface et Hy-
drologie) modeling system, which is a large-scale H-LSM.
Our results across the case studies show that the proposed
reservoir model with both parameter-identification strategies
leads to improved simulation accuracy compared with the
other widely used approaches for reservoir operation simu-
lation. We further show the significance of enabling MESH
with this reservoir model and discuss the interdependent ef-

fects of the simulation accuracy of natural processes and that
of reservoir operations on the overall model performance.
The reservoir operation model is generic and can be inte-
grated into any H-LSM.

1 Introduction

1.1 Background and motivation

Human interventions in natural hydrologic systems, through
damming and storing water, diversion, surface and ground-
water abstraction, irrigation, and land use change, have sig-
nificantly altered the natural river flow regimes and the ter-
restrial water cycle of many river basins (Vörösmarty et al.,
1997, 2003; Oki and Kanae, 2006; Wisser et al., 2010; Had-
deland et al., 2014; Biemans et al., 2011). These interven-
tions are to fulfill different types of demands such as do-
mestic, industrial, irrigation, and hydropower demands and
to meet other needs, such as flood control and conservation
of aquatic habitats. With a total storage volume of more than
8000 km3 (ICOLD, 2003; Vörösmarty et al., 2003; Hanasaki
et al., 2006), more than 50 000 dams have been constructed
globally to regulate more than half of the world’s large river
systems (Nilsson et al., 2005). The aggregate storage volume
of these dams is greater than 20 % of the global mean annual
runoff (Vörösmarty et al., 1997) and is 3 times the annual
average water storage in world’s river channels (Hanasaki et
al., 2006).
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Despite the benefits in terms of enhancing water avail-
ability in support of food security, power supply, etc., dams
result in several negative environmental and social conse-
quences. Adverse environmental effects include changes in
natural river dynamics in terms of water temperature, sedi-
ment and nutrient transport, etc., and the fragmentation and
loss of biodiversity (Vörösmarty et al., 2010). Reservoirs can
also intensify evaporation by increasing the surface area of
water exposed to direct sunlight and air and through water
supply for irrigation (de Rosnay, 2003; Pokhrel et al., 2012).
Other environmental impacts of dams include the alteration
of landscape due to dam construction and changes to land–
atmosphere interaction that can have a profound impact on
local and regional climate (Hossain et al., 2012; Degu et
al., 2011). Adverse social effects include the displacement of
people living near the dam site, changes to fishing patterns,
and downstream erosion (Strobl and Strobl, 2011, p. 449).
There are research gaps remaining in evaluating both posi-
tive and negative social impacts of dams (Kirchherr et al.,
2016). Such gaps have been the subject of many studies in
both academia and industry for years and, recently, have led
to the formalization of the study area of “socio-hydrology”
(Sivapalan et al., 2012; Sivakumar, 2012).

Dams and reservoirs change the natural flow regimes in
rivers both in terms of magnitude and timing of flows. As a
result, for rivers that contain large or small dams and reser-
voirs, flow regimes are a combination of natural and managed
flows. Various modeling communities manage this mix of
natural and managed flows differently. Archfield et al. (2015)
compare three families of models that can be used at con-
tinental scales: catchment models (CMs), global water se-
curity models (GWSMs), and land-surface models (LSMs).
CMs generally ignore water management and focus on un-
managed headwater catchments. GWSMs have been utilized
in global-scale streamflow simulations and generally focus
on large-scale water management issues, which are hindered
by a lack of data on large-scale water management and opera-
tional decisions. LSMs have traditionally focused on provid-
ing lower boundary conditions for atmospheric models but
are increasingly being used for hydrological applications in
which they are referred to as hydrologic land-surface mod-
els (H-LSMs). LSMs generally ignore water management
(Clark et al., 2015; Davison et al., 2016), with a few excep-
tions (e.g., Voisin et al., 2013a, b). A fourth family of water
models, which is relevant to the work presented here, are wa-
ter management models (WMMs; Labadie, 1995; Yates et al.,
2005). Water modelers who know how the water is managed
within their basins of interest generally use WMMs (Lund
and Guzman, 1999; Labadie, 2004; Kasprzyk et al., 2013).
These models contain very detailed representations of water
management decisions but often consider natural flow pro-
cesses in a much more rudimentary fashion than CMs.

Modeling the many managed basins around the world us-
ing the current generation of CMs or LSMs can result in
models with limited fidelity, questions the credibility of their
predictions of future water resources in basins with dams
and reservoirs. Therefore, there is a pressing need for bet-
ter characterization and integration of the operation of dams
and reservoirs into hydrological modeling frameworks us-
ing CMs and LSMs (Nazemi and Wheater, 2015a, b; Pokhrel
et al., 2016; Wada et al., 2017). This need motivated the ob-
jectives of this study, described in Sect. 1.2, and some previ-
ous research, outlined in Sect. 2. The integration of reservoir
regulation into hydrological modeling frameworks will im-
prove our ability to simulate highly regulated basins around
the globe, leading to better understanding of historical con-
ditions of water resource systems and improved assessment
and prediction of their future vulnerability to climate and en-
vironmental change.

1.2 Objectives

Building upon previous research, this study aims to do the
following:

– Develop and test an improved reservoir operation
model that can be integrated into any CM and LSM at
any scale but in particular at large scales. Of interest is
a simple but effective parameterization that can be ad-
justed to varying levels of data availability.

– Integrate the developed reservoir operation model into
an LSM and evaluate its performance when working in
combination of other processes in the model. Also of in-
terest is assessing the potential conceptual and technical
issues in this integration.

Another potentially very fruitful but largely unexplored ap-
proach would be to couple CMs and LSMs with WMMs,
but that approach is not examined here due to the fact that
WMMs generally require extensive information on how wa-
ter is managed within a basin, whereas we are particularly
interested in the more generic case when this information is
likely to be limited or unavailable.

The organization of the remainder of the paper is as fol-
lows. Section 2 reviews different existing approaches in the
literature for the representation of reservoir operations in hy-
drologic models. Section 3 presents the proposed reservoir
operation model and the metrics used to evaluate it in com-
parison with other existing models. Section 4 provides a de-
scription of the reservoir dataset used for the developments
and testing. Section 5 presents the assessment results and
comparisons. Section 6 ends the paper with a summary of
the main findings and conclusions.
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2 Existing reservoir models in catchment models and
land-surface models

An adequate representation of human interventions in Earth
system models is a major challenge. Systematic approaches
towards full integration are needed, as outlined in the re-
cent studies of Nazemi and Wheater (2015a, b), Wada et
al. (2017), and Pokhrel et al. (2016). In this work, our fo-
cus is on the representation of dam and reservoir operations
in CMs and LSMs, particularly when used at large scales.
While there has been tremendous progress in the last decades
in modeling the operation and management of reservoir sys-
tems at local to regional scales (e.g., Castelletti et al., 2010;
Chang et al., 2010; Fraternali et al., 2012; Razavi et al., 2012;
Asadzadeh et al., 2014; Guo et al., 2013), a gap still exists
between the methodologies applied for local- and regional-
scale reservoir operations and management and the repre-
sentation of reservoir operation in Earth system models, par-
ticularly in LSMs. This gap is due to a twofold challenge.
First, the upscaling of methodologies used at smaller scales
to larger scales is non-trivial; second, the availability of data
on reservoir operation and water use is often limited in many
parts of the world. For example, the reservoir purpose and op-
erational details are not always known, and large reservoirs
typically serve several purposes (Wisser et al., 2010). As a re-
sult, most current hydrological modeling activities with CMs
and LSMs, if not all, offer only a limited capability in sim-
ulating reservoir operations, whereas reservoir operation in
practice involves a complex set of human-driven processes
and decisions.

The existing reservoir operation methods in hydrologic
models can be categorized roughly into three groups based
on their level of complexity in representing flow regula-
tion: (1) natural lake methods, (2) inflow- and demand-based
methods, (3) artificial neural-network (NN) techniques, and
(4) target storage-and-release-based methods.

2.1 Natural lake methods

The most primitive methods use formulations developed for
the simulation of natural lakes or uncontrolled reservoirs.
In these methods, the downstream release is calculated as a
function of reservoir storage characterized by some empirical
parameters (Meigh et al., 1999; Döll et al., 2003; Pietroniro et
al., 2007; Rost et al., 2008). For instance, Meigh et al. (1999)
calculate the release by Qt = S

1.5
t , where Qt and St are re-

lease and reservoir storage, respectively. Their method was
later modified by Döll et al. (2003) such that Qt = b1(St −

Smin)
(

St−Smin
Smax−Smin

)b2
, where b1 and b2 are release coefficients,

and Smin and Smax are minimum and maximum allowable
reservoir storages. The advantage of this method, as shown
in Döll et al. (2003), is its minimal data requirement, which
supports its global applicability to model lakes, reservoirs,
and wetlands. However, it has limited functionality in ade-

quately representing managed reservoirs due to not account-
ing for reservoir operation policies to constrain or increase
releases at different phases of reservoir storage dynamics.
Such simplistic methods ignore the fact that the operation of
a reservoir depends on the reservoir purpose and the seasonal
pattern of the mismatch between the demands it supports and
the inflow it receives.

2.2 Inflow-and-demand-based methods

The inflow- and demand-based methods include reservoir
water balance models that determine reservoir release using
a function that accounts for inflow or a combination of in-
flow and demands. The simplified method in this group is the
method used in Wisser et al. (2010); it estimates the release
as a function of mean annual inflow and a set of empirical pa-
rameters that can be calibrated in the absence of information
on the actual operation of a reservoir.

Hanasaki et al. (2006) pioneered the development of in-
flow and demand reservoir models and laid the foundation
for many subsequent developments. The method of Hanasaki
et al. (2006) simulates reservoir release at a monthly time
step within a global routing model and accounts for wa-
ter withdrawals for reservoirs categorized as irrigation reser-
voirs. They grouped reservoirs serving all other purposes as
non-irrigation reservoirs. This approach first estimates a pro-
visional total annual release at the beginning of the water
year based on the long-term mean annual inflow adjusted
by an annual release coefficient. Then, a monthly provi-
sional release is estimated based on the purpose of the reser-
voir (irrigation or non-irrigation). Downstream demands are
accounted for in irrigation reservoirs only. The provisional
monthly release for large reservoirs is then modified by the
annual release coefficient to calculate the actual monthly re-
lease, and the provisional monthly release for small reser-
voirs is additionally adjusted based on the monthly inflow
to calculate the actual monthly release. The release coeffi-
cient is estimated as a function of the reservoir storage at the
beginning of the operational year and the reservoir capacity
(the formulation of Hanasaki et al., 2006, is briefly explained
in Sect. 3.4). The release coefficient reduces the current year
release if the storage at the beginning is low and vice versa.
Thus, the release coefficient accounts for inter-annual vari-
ability and facilitates the representation of strategies to over-
come reservoir depletion in dry years and flood overtopping
in wet years.

The implementation of the release coefficient is one of the
limitations of Hanasaki et al. (2006) because it depends only
on the year’s initial storage and does not account for the ac-
tual inflow of the current operational year; i.e. it does not
use foresight. The initial storage reflects the recent past of
operation of the reservoir, while the actual inflow could be
considerably different than the long-term mean annual in-
flow. For instance a sequence of low-flow years would re-
sult in a low initial storage, while the current year inflow
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(which is not known yet) could be high, and vice versa. Addi-
tionally the simplification of complex reservoir operation in
Hanasaki et al. (2006) by using the mean annual inflow and
a release-constraining coefficient produces errors. However,
the method is generic and has low data requirements, which
are advantageous. The results showed that the reservoir algo-
rithm improved monthly discharge simulation compared to
the natural lake method (Hanasaki et al., 2006). The approach
is effective and has found wide applicability in several global
hydrological and land-surface models.

The original Hanasaki et al. (2006) reservoir model has
been modified in subsequent studies to address some of its
limitations. For example, it has been modified for water ex-
traction and other reservoir functions, such as fulfilling en-
vironmental flows (Hanasaki et al., 2008a, b; Pokhrel et al.,
2012), and has been adjusted to address direct precipitation
over, and evaporation from, the reservoir (Döll et al., 2009).

Biemans et al. (2011) added new functionalities to the
Hanasaki et al. (2006) reservoir model related to irrigation
water demand and supply distribution and ran it at a daily
time step. Their contributions include (1) modifying irriga-
tion withdrawals to account for conveyance losses and irri-
gation efficiency, (2) adjusting the minimum release to 10 %
of the mean monthly inflow, (3) prioritizing irrigation over
flood control, (4) using regulated flow instead of natural flow
to estimate mean annual inflow, and (5) storing the “flow
to be released” for 5 d in the reservoir – to mimic the stor-
age within the conveyance system – before it is released to
the river. Voisin et al. (2013a) further modified the reser-
voir model of Hanasaki et al. (2006) to include multipurpose
functionalities (irrigation and flood control) by changing the
operation to release more before the onset of snowmelt-flood
season so that there will be enough room to store flood waters
from snowmelt in the reservoir. The modification requires the
specification of a flood control period. Voisin et al. (2013a)
have also evaluated the uncertainty of reservoir simulation by
comparing withdrawal vs. consumptive demands and natural
vs. regulated flow for configuring operating rules. The re-
sults of Voisin et al. (2013a) demonstrated that adding flood
control in reservoir operation, along with a parameterization
using mean annual natural inflow and mean monthly with-
drawals, improves the reservoir storage and flow simulation.

Haddeland et al. (2006) developed another pioneering
generic reservoir model that has been implemented in a rout-
ing model at a daily time step to study the impact of reser-
voir and irrigation water withdrawals on continental surface
water fluxes. The model is retrospective; i.e., it assumes full
knowledge of the upcoming operation-year reservoir inflow.
The reservoir operation is conducted using an optimization
scheme to determine the optimal release to satisfy different
sectoral demands and targets that are defined in the form of
objective functions. In the case of a multipurpose reservoir,
the model gives priority to irrigation demand, followed by
flood control and hydropower production. Minimum flow is
estimated using natural flow based on 7 d consecutive low

flows with a 10-year recurrence period. The flood protection
objective function is minimizing reservoir release above the
bankfull discharge, which is estimated using the long-term
mean of annual maximum discharge. Irrigation is optimized
to satisfy downstream irrigation demand, while hydropower
is optimized to increase power production. Predicting inflows
for the current operational year, if possible, would allow
the method to optimize the release while accounting for the
whole operational year; otherwise optimizing day-to-day re-
lease without accounting for the remaining operational year
would require several constraints. The maximum daily re-
lease is set based on the reservoir water balance that sets the
storage at the end of the operational year to vary from 60 %
to 80 % of the maximum capacity.

Similar to Hanasaki et al. (2006), the model of Haddeland
et al. (2006) is favorable due to its generic formulation and
capability to operate multipurpose reservoirs and to extract
water for irrigation from the reservoir. These make the model
applicable for large-scale hydrologic models, when data on
operational policies are limited (Adam et al., 2007; van Beek
et al., 2011). One limitation of Haddeland et al. (2006) is
that it requires knowledge of the future inflow for each reser-
voir so that the optimization can be conducted to determine
the optimal release. Another limitation is that the release can
deviate from the actual value because of simplifications of
the objective function and errors from irrigation demand cal-
culation. The algorithm does not represent reservoirs with
multi-year operational policies (Adam et al., 2007) and also
requires running the model many times to optimize the reser-
voir release.

Adam et al. (2007) modified the Haddeland et al. (2006)
reservoir model parameterization to include (1) estimated
minimum flow based on observed mean winter flow, (2) the
reservoir-filling phase, (3) a storage–area–depth relation-
ship following the regular shape approximation of Liebe
et al. (2005), and (4) a seasonally varying hydropower-
production economic value that can be calibrated for hy-
dropower production instead of a constant one; van Beek et
al. (2011) further modified the retrospective inflow assump-
tion to the prospective model by approximating the upcom-
ing operational year inflow based on previous years’ inflow
(requires historical inflow observation) and then adjusting the
release and demand every month using the actual inflow as
estimated from a hydrologic model.

Solander et al. (2016) tested and compared six generic
equations to represent reservoir release and storage simu-
lations. The complexity of equations tested varies from the
simplest case that assumes that reservoir outflow equals in-
flow (no-reservoir assumption) to a more complex represen-
tation using separate linear functions during reservoir-filling
and release periods. While the reservoir-filling and release
seasons were identified using long-term mean temperature,
their respective release equations are configured as a function
of reservoir inflow, storage, and optimized seasonal empiri-
cal parameters. Their results on California reservoirs showed
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that the equation dependent on inflow is best for the recharge
season, while release during the drawdown season was bet-
ter represented as a function of storage. Despite failing for
highly regulated reservoirs, their study demonstrated the pos-
sibility of generalizing the seasonal empirical parameters as
a function of the ratio between winter inflows and storage
capacity. However, further testing is required to examine the
usefulness of the Solander et al. (2016) method in different
regions, such as cold regions, with different filling and re-
lease seasonality.

Although the inflow- and demand-based models provide
improved results compared to the natural lake approach,
these models do not accurately reproduce observed flows
(Adam et al., 2007; Haddeland et al., 2006; Coerver et al.,
2018). Overall, while the above methods have better flexi-
bility for coupling with global hydrological and land-surface
models, the methods have limitations in accounting for de-
tails of reservoir operation. For an adequate representation of
reservoirs, particularly multipurpose reservoirs and/or those
with multi-year carry-over capacity, it is important to con-
sider reservoir zoning and adjust reservoir-release formula-
tions for different storage levels. The absence of this consid-
eration may limit the capability of this group of methods in
representing complex reservoir operations.

2.3 Neural-network-based methods

Artificial NN models have been applied to establish data-
driven rules that relate reservoir storage, inflow, and release
data. This type of model includes (1) extensive data on reser-
voir release, storage and inflow, but minimal prior expert
knowledge of the reservoir operation, and (2) extensive train-
ing of a model for each individual reservoir to deduce the
reservoir operation rules. Neural-network techniques have
been widely used beyond reservoir operation applications
(e.g., flood forecasting, streamflow simulation, and water
quality; Maier and Dandy, 2000; Razavi and Karamouz,
2007) and more recently have shown promise in reproduc-
ing historical reservoir operations (Coerver et al., 2018).

The study of Coerver et al. (2018) provides detailed back-
ground on NN applications for deduction of reservoir oper-
ation rules and also demonstrates the performance of NN-
based fuzzy rules to describe the reservoir-release decisions.
The analysis of Coerver et al. (2018) involves different levels
of input complexity for the neural-network setups, such as
the importance of accounting for inflow prediction and time
of the season on the reservoir operation performance. An-
other similar application was shown by Ehsani et al. (2016),
who demonstrated a general reservoir operation scheme that
uses an NN technique to map the general input–output re-
lationships to actual operating rules of 17 dams. Ehsani et
al. (2016) demonstrated the possibility of aggregating multi-
ple reservoirs that are closely located so that their integrated
effect can be accounted for in large-scale hydrological mod-
eling studies. In a subsequent study, Ehsani et al. (2017) in-

tegrated the reservoir model of Ehsani et al. (2016) into a
global water security model to study reservoir operations un-
der climate change.

While these studies demonstrated that the NN-based mod-
els can reproduce historical reservoir operation data and pos-
sibly outperform the widely used reservoir simulation mod-
els such as those of Hanasaki et al. (2006) and Wisser et
al. (2010), the user of such models may have to deal with
a fundamental limitation, i.e., their “black-box” nature. This
limits their ability to provide insight into the underlying
mechanisms of reservoir operation and might mask possible
shortcomings in a derived NN model. Further, the credibility
of their performance in extrapolation beyond the historical
data can be in question, as they ignore the expert knowl-
edge available on the actual physical and socio-economic
processes that govern reservoir operations. Together, these
limit the interpretation of results and their applicability in
a changing environment. There have been some recent re-
search efforts to reformulate neural networks such that they
can overcome these limitations (e.g., see Razavi and Tolson,
2011).

2.4 Target storage-and-release-based methods

The target storage-and-release-based methods aim to emu-
late actual rule curves (i.e., reservoir target storage and re-
lease for different times of the year) that guide reservoir op-
erators to decide on downstream releases (Burek et al., 2013;
Yates et al., 2005; Neitsch et al., 2005). The target levels of
storage divide the total reservoir storage capacity into multi-
ple zones. For example, in the SWAT model (Arnold et al.,
1998), a reservoir model is available in which the total stor-
age of a reservoir is divided into sediment, principal, flood
control, and emergency flood control zones, where each zone
is either specified by the user or as a function of soil moisture
wetness (Neitsch et al., 2005). Wu and Chen (2012) modified
this approach by changing the reservoir zoning model and
developed a reservoir-release simulation strategy that uses a
decision-based parameterization to better fit both storage and
release of multipurpose reservoirs. However, they reported
only one application of this strategy to a local-scale reservoir,
and its comprehensive evaluation needs to be performed on
other reservoirs in other regions with different climates, lev-
els of regulation, and allocation objectives.

Zhao et al. (2016) integrated a reservoir regulation mod-
ule into a hydrology model, requiring user-specified (based
on observed data) values to divide the reservoir into inac-
tive, conservation, and flood control zones. In their module,
the release from the conservation zone is determined using
water demand, which includes multi-sectorial demand and
environmental flow. The release from the flood storage zone
is decided as a function of inflow (classified as flood inflow
or non-flood inflow), downstream channel current discharge,
and downstream maximum discharge. At the time of flood,
if the downstream discharge is below the maximum limit,
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release from flood storage zone is estimated using available
storage above the conservation zone, multiplied by a weight
parameter which allows the release of more water. If the
downstream discharge is at maximum capacity, there is no
release from flood storage zone. Finally, any storage above
the flood storage zone is automatically released. Addition-
ally, Zhao et al. (2016) added the possibility to operate reser-
voirs conjunctively by giving release priorities to immediate
downstream demands and by limiting the release if the down-
stream reservoir is within flood storage zone. The results of
reservoir integration showed improved capability of the hy-
drological model to simulate storage and release for Lake
Whitney and Aquilla Lake in Texas. The limitation of Zhao
et al. (2016) for wider application is that there is no generic
formulation of reservoir zoning (requires user specification),
and evaluation was only performed on two reservoirs.

Similarly, Burek et al. (2013) divided the total reservoir
storage into conservative, normal, and flood zones within the
LISFLOOD model and defined releases in accordance with
these storage zones using multiple linear regression. Zajac et
al. (2017) showed the applicability of this method in captur-
ing the effects of lakes and reservoirs globally using a param-
eterization that depends on naturalized inflow and maximum
storage. Their results showed that the inclusion of reservoirs
and lakes in a hydrologic model through this method helped
improve streamflow simulation for many stations, but the
performance in replicating observed storage dynamics was
not reported.

Overall, the primary advantage of methods in this category
is that they allow approximation of reservoir-release policy
and have the potential of making use of detailed data on a
reservoir when available. Their main limitation, however, is
their relatively high data demands. When data are available,
methods under this category have the potential to enhance
the representation of dams and reservoirs in terms of both
reservoir storage and release while adapting to the season-
ality and change in operations on different timescales from
daily to seasonal. These methods seem advantageous com-
pared to NN-based models, as their functioning is transpar-
ent, accounting for the governing processes, while requiring
similar data.

Given the advances in the field and the growing availabil-
ity of data sources, the target storage-and-release methods
seem to be the most promising, as they can better simu-
late the reservoir operation dynamics (the dynamics of both
storage and release). The data requirement includes data on
observed inflow, observed release, observed storage (level),
and reservoir physical characteristics. Reservoir-level data
are available for most lakes and reservoirs in the public do-
main, particularly in North America. These data can be con-
verted to reservoir storage using reservoir elevation–area–
volume relationships or by using area–volume relationships
approximated by regular geometric shapes (Yigzaw et al.,
2018; Liebe et al., 2005; Lehner et al., 2011). Inflows to and
releases from a reservoir can be approximated by stream-

flow stations located upstream and downstream of the reser-
voir, respectively. Further, satellite missions such as MODIS
(Savtchenko et al., 2004) and satellite radar altimetry pro-
vide information on lake and reservoir surface area dynamics
and reservoir water elevation for some large reservoirs. The
combination of MODIS and satellite radar altimetry allows
deriving storage–area–depth relationships (Gao et al., 2012;
Andreadis et al., 2007; Zhang et al., 2014; Yoon and Beigh-
ley, 2015). The planned SWOT (2021) mission (Garambois
and Monnier, 2015; Biancamaria et al., 2016) will increase
the availability of water-level data for smaller rivers (with
widths going down to 100 m) that can be potentially con-
verted to discharge to estimate reservoir inflows and down-
stream reservoir releases.

3 Material and methods

This study aimed to develop an improved reservoir model
that better emulates reservoir operation for large-scale hydro-
logic modeling application in terms of both reservoir stor-
age and release following the previous advances in target-
storage-and-release-based methods reviewed in Sect. 2.4. In
this section, we present the characteristics and formulation
of our reservoir model. The reservoir water balance is main-
tained using the continuity equation, as shown in finite dif-
ference form in Eq. (1). The aim is to estimate unknown stor-
age St and release Qt at the current time step based on the
storage at the previous time step St−1 and precipitation (P )
over the reservoir, evaporation (E) from the reservoir, and
inflows (I ) during the current time step. When integrated
within an H-LSM model, the inflow will be the modeled
value of the upstream catchment that would account for de-
lays in the precipitation-runoff generation and routing. This
equation is solved in conjunction with the parameterization
equations presented in the next section for reservoir releases
to compute St and Qt :

St − St−1

1t
=
It + It−1

2
−
Qt +Qt−1

2
+
Pt +Pt−1

2

−
Et +Et−1

2
. (1)

3.1 Proposed reservoir operation model

A detailed description of our proposed target storage-and-
release model (or target-release model for brevity) is pro-
vided here. This model is formulated in the form of paramet-
ric piecewise-linear functions that approximate the reservoir-
release rules that may be used by reservoir operators. This
model can be set up on any timescale; in the case studies re-
ported here, we define the target levels to dynamically change
over time. We call the model the dynamically zoned tar-
get release (DZTR) model. Piecewise-linear-function-based
reservoir operation models have already been used to solve
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Figure 1. The schematic representation of reservoir zoning and the storage-release function: (a) four (active) reservoir zones with inflows
and outflows, and (b) piecewise-linear reservoir-release function.m1 andm2 control the slope of the release curve, and they change monthly.
The upward blue arrow is to indicate that inflow to the reservoir may also be considered in determining the release in Zone 3.

complex reservoir operations and water resource manage-
ment problems (e.g., Razavi et al., 2014; Asadzadeh et al.,
2014). A systematic integration of such models into large-
scale hydrological modeling has been reported in Burek et
al. (2013), as implemented in the LISFLOOD hydrological
model, and in Neitsch et al. (2005), as implemented in the
SWAT model. Our DZTR model is a generalization of the
method developed by Razavi et al. (2014), which may also
be viewed as a modification to the model proposed by Burek
et al. (2013) in terms of parameterization and reservoir zon-
ing. Figure 1 shows the schematic representation of DZTR;
Fig. 1a shows the reservoir zoning, and Fig. 1b shows the
piecewise-linear functions to estimate the release for each
zone based on DZTR.

The DZTR model divides reservoir storage into five zones
in a similar fashion to Wu and Chen (2012) and Burek et
al. (2013), namely dead storage, critical storage, normal stor-
age, flood storage, and emergency storage. Whenever stor-
age is below the emergency storage zone, release only occurs
through the bottom outlet, but when the storage is within that
zone, release happens through both a bottom outlet and the
spillway. In the absence of data, the dead storage (Zone 0)
is assumed to be 10 % of the maximum storage after Döll et
al. (2009). To estimate the remaining storage zones in cases
where no operational information on a reservoir is available,
we propose two alternative strategies: (1) setting the zones
based on suggested exceedance probabilities on historical
reservoir storage time series and (2) optimizing these zones
to reproduce the observed storage and release time series.
Target releases for each zone can be obtained in a similar
fashion. These target storages and releases are allowed to
vary each month (or on any other arbitrarily selected time
resolution) to allow a better representation of the seasonality
of reservoir operation.

When reservoir storage is within the dead storage zone
(Zone 0), the reservoir release is zero (Eq. 2). In Zone 1 (crit-
ical storage zone), the reservoir release is a function of stor-
age at a given time step and the critical release target value
(Eq. 3). In this zone, the reservoir operates to avoid storage
depletion while trying to support environmental flow require-
ments defined as a critical (or minimum) release. In Zone 2
(normal storage zone), the reservoir release is purely gov-
erned by reservoir storage and varies between critical and
normal release targets (Eq. 4). In this zone, the downstream
release is greater for higher levels of storage. In Zone 3, the
release decision considers both reservoir storage and inflow
in that time step as well as the normal and maximum release
targets (Eq. 5). When in this zone, two scenarios may oc-
cur: (A) the amount of inflow in a time step is equal to or
less than the normal release rate or (B) the amount of in-
flow in this time step is greater than the normal release rate.
As formulated in Eq. (5), in the case of scenario B, the in-
flow rate comes into play to augment the release in an at-
tempt to keep the reservoir level within the normal storage
zone. Scenario B is expected to occur more frequently in
smaller reservoirs that only have “within-year” storage ca-
pacity, while scenario A should be more commonly seen
with larger reservoirs that have “multi-year” carry-over ca-
pacity. Hanasaki et al. (2006) suggested that reservoirs that
have a ratio of storage capacity to mean annual inflow (re-
ferred to as c) of less than 0.5 be assumed as within-year
reservoirs and that the ones with a ratio of 0.5 and above be
considered to be multi-year reservoirs. Other values for this
threshold were also suggested in the literature; e.g., Wu and
Chen (2012) used a c value of 0.3. In this study, scenario A
is used for reservoirs that have multi-year capacity (c > 0.5),
and scenario B is used for reservoirs that have within-year ca-
pacity (c < 0.5). Lastly, in Zone 4 (emergency storage zone)
the reservoir algorithm operates to avoid reservoir overtop-
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ping by releasing the larger of the maximum release target
or all excess storage above the maximum storage value (the
flood storage) constrained to the downstream channel capac-
ityQmc. If not specified, a rough estimate of the downstream
channel capacity value could be the 99th percentile of non-
exceedance probabilities of discharges from historical data.

Zone 0 Qt = 0 [St < 0.1Smax] , (2)

Zone 1 Qt =min
(
Qci ,

St − 0.1Smax

1t

)
[
0.1Smax < St ≤ Sci

]
, (3)

Zone 2 Qt =Qci +
(
Qni −Qci

) (St − Sci
)(

Sni − Sci
)[

Sci < St ≤ Sni
]
, (4)

Zone 3A Qt =Qni +
(
Qmi
−Qni

) (St − Sni
)(

Smi
− Sni

)[
Sni < St ≤ Smi

]
, (5a)

Zone 3B Qt =Qni +max
((
It −Qni

)
,
(
Qmi
−Qni

))(
St − Sni

)(
Smi
− Sni

) [Sni < St ≤ Smi

]
, (5b)

Zone 4 Qt =min

([
max

((
St − Smi

)
1t,Qmi

)]
,Qmc

)
[
Smi

< St
]
. (6)

It , Qt , and St are inflow, release, and storage at time step t .
Sci , Sni , and Smi

are critical, normal, and maximum storage
targets for month i. Qci , Qni , and Qmi

are critical, normal,
and maximum release targets for month i. Qmc is the max-
imum channel capacity parameter. The unit for inflow, re-
lease, and target release parameters are in cubic meters per
second. The unit for storage and target storage parameters
are in cubic meters.

3.2 Evaluation criteria

We evaluated the performance of the proposed reservoir op-
eration model in emulating the outflow and storage data col-
lected for many reservoirs around the world. As this model
was intended to be integrated into large-scale H-LSMs, we
further evaluated it when embedded in the MESH (Mod-
élisation Environmentale-Surface et Hydrologie; Pietroniro
et al., 2007) model. For all of these evaluations, we used
Nash–Sutcliffe efficiency (NSE; Nash and Sutcliffe, 1970)
and Kling–Gupta efficiency (KGE; Gupta et al., 2009) as the
metrics to assess the goodness of fit of the model to observed
reservoir outflow and storage data.

3.3 Identification of reservoir operation model
parameters

As demonstrated in Sect. 3.1, the proposed reservoir opera-
tion model has six parameters (Sci , Sni , Smi

, Qci , Qni , and

Qmi
) that can vary for different times of the year. We rec-

ommend varying these parameters on a monthly basis, while
other time resolutions are also possible. To normalize the pa-
rameters and their ranges across different types and sizes of
reservoirs, for every reservoir, we use cumulative distribu-
tion functions (CDFs) of historical storage and release val-
ues; see Fig. 2 for an example of CDFs of the Lake Diefen-
baker reservoir (Gardiner Dam) in the Saskatchewan River
basin, Canada. Our preliminary analysis indicated that target
storage and release values corresponding to 10 %, 45 %, and
85 % non-exceedance probabilities generally perform rea-
sonably well. We call these our generalized parameterization.

However, optimal values of parameters for a given reser-
voir can be identified, when data are available, through op-
timization and parameter-identification techniques (Maier et
al., 2019; Guillaume et al., 2019). For this purpose, we used
a bi-objective optimization approach, as follows, that begins
with the generalized parameter values as the starting point
and optimizes the model fit to both storage and release data
simultaneously:

F(x)= (f1(x), f2(x)) , (7)

where x is a vector of decision variables (parameter val-
ues), � is decision space, f1(x) is NSE (flow) measuring the
goodness of fit in reproducing observed release, and f2(x) is
NSE (storage) measuring the goodness of fit in reproducing
observed storage dynamics.

For parameter identification on a monthly basis, a total
of 72 decision variables were used in the optimization. We
chose rather arbitrarily the storage and release target intervals
that correspond to 5 %–35 %, 35 %–75 %, and 75 %–95 %
non-exceedance probabilities as the ranges of variation for
critical, normal, and maximum (flood) storage and release,
respectively.

The bi-objective optimization problem to calibrate
72 reservoir target release and storage parameters was con-
ducted using the AMALGAM evolutionary multi-objective
optimization algorithm (Vrugt and Robinson, 2007). AMAL-
GAM was selected because it provides effective and reli-
able solutions for multi-objective optimization using multi-
ple search operators (genetic algorithm, particle swarm opti-
mization, adaptive metropolis search, and differential evolu-
tion) and self-adaptive offspring creation. Vrugt et al. (2009),
Wöhling and Vrugt (2011), Zhang et al. (2011), Raad et
al. (2009), Dane et al. (2011), and others showed that the per-
formance of AMALGAM model parameter calibration was
better than, or equivalent to, some other calibration algo-
rithms across different complex response surfaces. AMAL-
GAM was run using an initial population size of 100, result-
ing in a total of 15 000 model evaluations to estimate final
Pareto solutions for every single reservoir.
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Figure 2. Cumulative distribution function (CDF). (a) Storage CDF of Gardiner Dam. (b) Reservoir-release CDF of Gardiner Dam. Double
arrows on y axis show parameterizations ranges for each generalized parameter.

3.4 Comparison of reservoir operation models

We compared the performance of our DZTR model against
the performances of Hanasaki et al. (2006) and Wisser et
al. (2010) using NSE and KGE performance metrics de-
fined on both storage and release simulations. The compar-
isons were made only for selected non-irrigation reservoirs
because their irrigation reservoir formulation requires addi-
tional data on water demands. For the method of Wisser et
al. (2010), reservoir release was estimated under two condi-
tions as shown in Eq. (8):

Qt =

{
κIt It ≥ Im,

λIt + (Im− It ) It < Im,
(8)

where κ and λ are empirical constants set to 0.16 and 0.6,
respectively, Im is the mean annual inflow (m3 s−1), and It is
inflow to the reservoir (m3 s−1) at time t .

In the method of Hanasaki et al. (2006), the release
from non-irrigation reservoirs was estimated by multiplying
the mean annual inflow by release-constraining coefficients
(Eq. 9). The release-constraining coefficients for every given
operational year were estimated by dividing the initial stor-
age of that year by the maximum storage (Eq. 10). The start
of the operational year was considered to be the month when
the mean monthly inflow shifts from being greater to being
lower than the mean annual inflow:

rm,y =

{
krls,y · r

′
m,y (c ≥ 0.5),(

c
0.5

)2
· krls,y · r

′
m,y +

(
1−

(
c

0.5

)2)
· im,y (0≤ c < 0.5), (9)

krls,y =
Sfirst,y

α · Smax
, (10)

where c is the ratio of maximum reservoir storage to the
mean total annual inflow, krls,y is the release coefficient,
r ′m,y is the provisional monthly release (m3 s−1) which is
equal to mean annual inflow (m3 s−1), and α is a dimen-
sionless constant set to 0.85. Equation (12) differentiates be-

tween multi-year and single-year storage reservoirs based on
a threshold value of 0.5 for c.

3.5 MESH modeling system

MESH is Environment and Climate Change Canada’s land-
surface–hydrology modeling system (Pietroniro et al., 2007)
and has been widely used in different parts of Canada (Davi-
son et al., 2016; Haghnegahdar et al., 2017; Yassin et al.,
2017; Sapriza-Azuri et al., 2018; Berry et al., 2017). MESH
is a grid-based modeling system composed of three com-
ponents: (1) the Canadian Land Surface Scheme (CLASS;
Verseghy, 1991; Verseghy et al., 1993), (2) lateral movement
of surface (overland) runoff and subsurface water (interflow)
to the channel system within a grid cell, and (3) hydrological
routing using WATROUTE from the WATFLOOD hydrolog-
ical model (Kouwen et al., 1993).

Currently, the reservoir representation in the MESH model
is rudimentary. MESH offers two approaches to account for
reservoir operations. In the first approach, the observed reser-
voir release rate at the reservoir location is provided as input
to the model. In this approach, the flow from the catchment
upstream of the reservoir is discarded as the release is re-
placed by observations, a process referred to as streamflow
insertion, which limits the utility of the model in simulating
future scenarios for which releases are not yet known. This
approach violates the water conservation law in the model
and also creates discontinuities within the model setup, espe-
cially if there are reservoir cascades. Nevertheless, stream-
flow insertion could be used when coupling water manage-
ment models with MESH, and these coupled models could
be used to formulate scenarios for reservoir operations. As
mentioned in the objectives, however, model coupling is not
the focus of this study, as we are looking to examine the
internal representation of reservoir operations within CMs
and LSMs. The second approach is a natural lake or uncon-
trolled reservoir representation model similar to that of Döll
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et al. (2003), which was shown to be unsuitable for highly
managed reservoirs. To improve the reservoir representation
in MESH, this study aims to incorporate the DZTR model for
controlled reservoirs into the MESH framework and evaluate
its performance.

3.6 Case studies and data

The dataset required to build and evaluate a reservoir op-
eration model includes (1) reservoir physical characteristics
such as the volume–level–area relationship and maximum
capacity, which are static (in the absence of sedimentation
or dam heightening), (2) time series of hydrologic variables
such as inflow, release, and water level (or storage), and
(3) environmental flows. In this study, we assembled such
a dataset for 37 reservoirs located in several regions across
the globe (Fig. 3) to test the model. These dams represent a
wide range of storage sizes, from 0.132×109 to 162×109 m3,
spanning multiple orders of magnitudes. Most of these are lo-
cated in the western US and western Canada, while some are
located in Vietnam, central Asian countries, and Egypt. Ta-
ble 1 provides a summary of reservoir locations, construction
years, main purposes, data periods, and other dam character-
istics. Measured inflow, release, and storage time series were
collected from different sources. For reservoirs located in
Canada, the data were acquired from Water Survey Canada,
Alberta Environment and Parks, and the Saskatchewan Wa-
ter Security Agency. Data for the High Aswan Dam were ac-
quired from the Nile Basin Encyclopedia via the Nile Basin
Initiative. The data for other reservoirs were provided by the
authors of previous studies (Hanasaki et al., 2006; Coerver et
al., 2018). Additional information about the degree of regu-
lation, dam height, and catchment area were obtained from
the GRanD database (Lehner et al., 2011). Reservoir opera-
tion simulations were performed on a daily and monthly ba-
sis, with simulation periods varying from 8 to 62 years. The
choice of simulation period and timescale was based on data
availability (Table 1). The first year of the reservoir simula-
tions was used for spin-up, while the first half of the remain-
ing data periods was used for calibration and the second half
for model validation.

We also evaluated the integration of our reservoir model
into the MESH model on seven reservoirs in two major
basins in western Canada. Six of the test reservoirs (Gar-
diner, St. Mary, Waterton, Oldman, Ghost, and Dickson
dams) are located within the heavily regulated Saskatchewan
River basin (SaskRB), and one reservoir (W. A. C. Ben-
nett Dam) is located in the Mackenzie River basin (MRB).
For both of the basins, the MESH model was set up on a
grid resolution of 0.125◦, and the data required to build the
MESH model were obtained from different sources. The to-
pographic data are based on the Canadian Digital Elevation
Data (CDED) at a scale of 1 : 250000 and were obtained
from the GeoBase website (http://www.geobase.ca/, last ac-
cess: February 2018). The data on seven climate forcing

Figure 3. Locations of dams used to evaluate the reservoir routing
model.

variables were obtained from a Global Environmental Mul-
tiscale (GEM) numerical weather prediction (NWP) model
(Côté et al., 1998) and the Canadian Precipitation Analy-
sis (CaPA; Mahfouf et al., 2007). The land-cover data used
are based on a 2005 land-cover map from the Canada Centre
for Remote Sensing (CCRS). Soil texture data were obtained
from Soil Landscapes of Canada (SLC) data of Agriculture
and Agri-Food Canada. The MESH parameter values were
taken from previous studies for calibration to streamflow at
major subbasins of the SaskRB and MRB.

4 Results and discussion

4.1 Evaluation of the dynamically zoned target
release (DZTR) model with generalized parameters

Individual reservoir simulations were conducted using the
DZTR model with generalized monthly storage and release
parameter values set at non-exceedance probabilities recom-
mended in Sect. 3.3 for representing the reservoir storage
zones and their respective target releases. The evaluation of
the DZTR model was based on the performance metrics and
a comparison with the other reservoir operation approaches
and a base case where the existence of a reservoir was ig-
nored in a model, referred to as the “no-reservoir assump-
tion”. Under the no-reservoir assumption, the release was
considered equal to inflow, storage was considered constant,
and, as such, the performance metrics were computed by di-
rectly comparing inflow with observed release.

Figure 4 shows performance metrics results of the DZTR
model in terms of NSE and KGE for storage and release
simulations compared to those of the base case. As shown
in Fig. 4a, both NSE (flow) and NSE (storage) results are
greater than 0.25 and 0.5 for 90 % and 50 % of reservoirs,
respectively. Although NSE (flow) results are greater than
zero for all reservoirs, 1 % of reservoirs resulted in a negative
NSE (storage) values. The no-reservoir assumption resulted
in NSE (base case) values of greater than 0.25 and 0.5 for
45 % and 30 % of reservoirs, respectively, which, in general,
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Table 1. Summary of reservoirs.

Dam name Country Year Main Long Lat Dam Capacity c =
(

Capacity
MAI

)
Simulation Percentage

purpose∗ (◦) (◦) height (MCM – period (year) bias (PBIAS)
(m) million release vs.

cubic inflow
meters)

American Falls USA 1977 IR −112.87 42.78 32 2061.5 0.303 1978–1995 (18) −3.29
Andijan1 Uzbekistan 1974 HP 73.06 40.77 115 1900 0.444 2001–20132 (13) −0.98
Bhumibol Thailand 1964 IR 98.97 17.24 154 13462 2.645 1980–1996 (16) −10.29
Big Horn Canada 1972 HP −116.32 52.31 150 1770 0.747 2002–2011 (10) 16.08
Bull Lake1 USA 1938 IR −109.04 43.21 24 187.2 0.883 2001–2013 (13) −3.74
Canyon Ferry1 USA 1954 HP −111.73 46.65 69 2464.4 0.543 1971–20112 (40) −1.46
Chardara Kazakhstan 1968 IR 67.96 41.24 27 6700 0.354 2001–20102 (10) 7.57
Charvak1 Uzbekistan 1977 HP 69.97 41.62 168 2000 0.284 2001–20102 (10) 1.6
Dickson Canada 1983 WS −114.21 52.05 40 203 0.167 2005–2011 (6) 27.3
E. B. Campbell1 Canada 1963 HP −103.40 53.66 34 2200 0.153 2000–2011 (12) −1.69
Flaming Gorge1 USA 1964 WS −109.42 40.91 153 4336.3 2.460 1971–2017 (46) −6.37
Fort Peck1 USA 1957 FC −106.41 48.00 78 23 560 2.210 1970–19992 (30) 6.33
Fort Randall USA 1953 FC −98.55 43.06 50 6683 0.240 1970–19992 (30) −1.43
Gardiner Canada 1968 IR −106.86 51.27 69 9870 1.460 1980–2011 (32) −3.44
Garrison1 USA 1953 FC −101.43 47.50 64 30 220 1.436 1970–19992 (30) −5.79
Ghost Canada 1929 HP −114.70 51.21 42 132 0.048 1990–2011 (22) 5.43
Glen Canyon1 USA 1966 HP −111.48 36.94 216 25 070 2.230 1980–1996 (17) −6.87
Grand Coulee USA 1942 IR −118.98 47.95 168 6395.6 0.124 1978–1990 (12) −3.37
High Aswan Egypt 1970 IR 32.88 23.96 111 162 000 2.843 1971–19972 (26) −3.34
Amistad (Int. Amistad) USA–Mexico 1969 IR −101.05 29.45 87 6330 2.457 1977–2002 (25) −20.28
Falcon International

USA–Mexico 1954 FC −99.17 6.56 53 3920 1.045 1958–2001 (43) −14.48
(Int. Falcon)
Kayrakkum1 Tajikistan 1959 HP 69.82 40.28 32 4160 0.199 2001–20102 (10) 1.19
Navajo USA 1963 IR −107.60 36.80 123 1278 1.744 1971–2011 (40) −21.07
Nurek Tajikistan 1980 IR 69.35 38.37 300 10 500 0.540 2001–20102 (10) 0.28
Oahe Dam1 USA 1966 FC −100.40 44.45 75 29 110 1.244 1970–19992 (30) −5.366
Oldman River Canada 1991 IR −113.90 49.56 76 490 0.446 1996–2011 (16) 3.98
Oroville1 USA 1968 FC −121.48 39.54 235 4366.5 0.804 1995–2004 (11) 4.20
Palisades USA 1957 IR −111.20 43.33 82 1480.2 0.242 1970–2000 (31) 0.48
Seminoe USA 1939 IR −106.91 42.16 90 1254.8 1.048 1951–20132 (63) −4.10
Sirikit Thailand 1974 IR 100.55 17.76 114 9510 1.834 1981–1996 (16) −7.32
St. Mary Canada 1951 IR −113.12 49.36 62 394.7 0.492 2000–2011 (12) 0.16
Toktogul1 Kyrgyzstan 1978 HP 72.65 41.68 215 19 500 1.393 2001–20102 (10) −6.34
Trinity USA 1962 IR −122.76 40.80 164 2633.5 1.470 1970–2000 (31) −4.18
Tyuyamuyun Turkmenistan NA IR 61.40 41.21 NA 6100 0.204 2001–20102 (10) -2.43
W. A. C. Bennett Canada 1967 HP −122.20 56.02 183 74 300 1.200 2003–2011 (9) 5.41
Waterton Canada 1992 IR −113.67 49.32 55 172.7 0.258 2000–2011 (12) −10.34
Yellowtail USA 1967 IR −107.95 45.30 160 1760.6 0.489 1970–20002 (31) −1.693

∗ Main purpose: WS – water supply, HP – hydropower, IR – irrigation, and FC – flood control. 1 Monthly data and simulation. 2 Multiple reservoir models that are compared on this reservoir. NA – not available.

are much lower than those of the DZTR model. Under the no-
reservoir assumption, 48 % of the reservoirs resulted in a neg-
ative NSE (base case). Almost all positive NSE (base case)
results were observed in reservoirs with c < 0.5, such as
Dickson, E. B. Campbell, Kayrakkum, Oldman, and Tyuya-
muyun (as explained in Sect. 3, c is the ratio of storage ca-
pacity to annual inflow volume). However, for reservoirs with
c > 0.5, such as Bhumibol, Flaming Gorge, Fort Peck, High
Aswan, and W. A. C. Bennett, the NSE (base case) is neg-
ative, which indicates the significant influence of their reg-
ulations on the hydrograph shape. Similarly, Fig. 4b shows
the evaluation of the different reservoir models based on the
KGE metric (Gupta et al., 2009). The values of KGE (flow)
and KGE (storage) are greater than 0.25 and 0.5 for 100 %

and 86 % of the reservoirs, respectively. The KGE (base case)
values of 21 % of reservoirs are less than zero, while those of
57 % and 49 % of the reservoirs are greater than 0.25 and 0.5,
respectively. The NSE and KGE results show that the DZTR
with the generalized parameter values is capable of simulat-
ing flow and storage simulation well.

Figure 5 shows scatter plots between KGE, NSE, and the
regulation level represented by c. These plot orientations of
the scatter plot between NSE and KGE on flow and stor-
age show a strong positive correlation between the evaluation
metrics, which indicates that both metrics provide somewhat
similar evaluation information. Figure 5a and b show that
both the no-reservoir assumption and DZTR estimate the re-
lease more accurately for lower levels of regulation. As ex-
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Figure 4. Performance evaluation result of the DZTR model reservoir operation algorithm: (a) NSE performance metrics and (b) KGE
performance metrics.

pected, the degradation of performance was pronounced for
the no-reservoir assumption as the regulation level increased,
while DZTR performance reduced by a much smaller extent
(still positive values). Almost all low-regulation-level reser-
voirs (c < 0.5) showed positive performance metrics, which
means that the reservoir regulation does not strongly mod-
ify the flow regime, whereas the opposite case is true for
highly regulated reservoirs (c > 0.5) in which the reservoir
regulation strongly changes the reservoir release. Coerver et
al. (2018) also noted that low-regulation-level reservoirs are
more dependent on the current time-step inflow knowledge
because of their smaller influence on the flow regime. The
method of Hanasaki et al. (2006) also recognizes the strong

dependence of c < 0.5 reservoirs on inflow to determine the
release by configuring the release as a function of monthly
mean inflow. Conversely, the relationship between the reg-
ulation level and the storage simulation performance – in
terms of both KGE (storage) and NSE (storage) – did not
show a strong correlation (Fig. 5c).

Figure 6 compares the reservoir simulation and obser-
vation time series for the whole simulation period, while
Fig. 7 shows the long-term average of these simulations. In-
flows are also included in Figs. 6 and 7 to show the reg-
ulation pattern and changes caused by reservoir operation.
Both figures indicate that the DZTR model captures both re-
lease and storage dynamics well, reproducing the daily and
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Figure 5. Scatter plot between KGE and NSE, with regulation scale represented in terms of c. (a) KGE and NSE on no-reservoir condition,
(b) KGE and NSE on DZTR release, and (c) KGE and NSE on DZTR storage.

monthly seasonality as well as the magnitude and timing
of storage and releases for almost all reservoirs, especially
for reservoirs with high regulation (multipurpose and multi-
year reservoirs) such as American Falls, Bhumibol, High
Aswan, Sirikit, Trinity, and W. A. C. Bennett dams. How-
ever, the simulations also show some systematic over- and
underestimations; for example, the simulations of Bhumibol,
Fort Peck, High Aswan, Int. Falcon, Navajo, Bennett, and
Int. Amistad reservoirs show continuous underestimation and
overestimation of reservoir storage. Some reservoirs, such as
Trinity, Palisades, Kayrakkum, Flaming Gorge, and Garri-
son, show underestimation and overestimation of reservoir
storage only for some seasons. A closer look at American
Falls, Flaming Gorge, Fort Peck, Glen Canyon, and Navajo
dams in Fig. 6 indicates that the DZTR model reliably cap-
tured storage and release seasonality, inter-annual trends, and
release pattern shifts during the consecutive wet years 1982–
1986 followed by consecutive dry years 1987–1993. Similar
patterns can be observed for the Gardiner Dam, with good
simulation results during both dry years (1984–1986, 1988–
1989, and 1999–2004) and wet years (1993, 2005, and 2010–
2011). Furthermore, as expected, Fig. 7 shows that lowly
regulated reservoirs (c < 0.5) have less of an impact on the
flow regime, but with fairly significant storage seasonality
(Oldman, E. B. Campbell, Palisades, and Andijan). In gen-
eral, the DZTR model with the generalized parameterization
of reservoir zones and releases showed an improved perfor-
mance and can be applied to any hydrological model (CM or
H-LSM) that involves reservoir simulation.

It is important to note that for the case of a cascade of
reservoirs, the parameterization of the DZTR model implic-
itly accounts, to some extent, for the upstream regulation ef-
fects of the upstream cascade reservoirs. This is because the
regulated inflow is used for parametrizing downstream reser-
voirs, which reflects the regulation information of upstream
reservoirs in the cascade. In reality, the operations of some
cascade reservoirs are highly interlinked, particularly during
the flood season. The decision regarding the release from one
reservoir accounts for the (forecasted) state of other reser-
voirs. Such dual- or multi-linked operation is, however, not
accurately accounted for in the presented algorithm because

it assumes that each reservoir operates using its own stor-
age state, inflow, and target storage and releases. Such sys-
tems require detailed modeling of operations that is not usu-
ally attainable in large-scale hydrological models. Depend-
ing on the purpose of the model, the modeler may decide to
lump those reservoirs together to improve simulations down-
stream, e.g., Ehsani et al. (2016).

4.2 Comparison with previously developed reservoir
operation models

To further illustrate the reliability of the DZTR model in sim-
ulating reservoir operation, a comparison with the methods
of Hanasaki et al. (2006) and of Wisser et al. (2010) was con-
ducted, as shown in Fig. 8. The comparison shows that the
DZTR model provides a considerable improvement accord-
ing to all of the performance criteria, notably NSE (storage)
and NSE (flow), except in the case of the E. B. Campbell
dam, where the method of Hanasaki et al. (2006) showed
similar performance to DZTR. The method of Hanasaki et
al. (2006) outperformed that of Wisser et a. (2010). Out of
the 13 reservoirs compared, the DZTR resulted in positive
values for both NSE (storage) and NSE (flow) for all simula-
tions except for that of E. B. Campbell storage. The method
of Hanasaki et al. (2006) and Wisser et al. (2010) resulted
in eight and five reservoirs with positive NSE (flow), re-
spectively (Fig. 8a), while both produced negative values for
NSE (storage) for all the reservoirs compared (Fig. 8c). A
similar performance pattern was observed for KGE metrics
for flow and storage. In addition, we compared the DZTR
result shown in Figs. 7 and 8 with the results reported in
Coerver et al. (2018), who applied a fuzzy-neural-network
model to extract 11 operating rules. This comparison showed
that the performance of our generalized parameterization is
comparable to that of Coerver et al. (2018) in simulating
reservoir release; note that performance on storage is not re-
ported in Coerver et al. (2018). This indicates that the sim-
ple parameterization applied in the DZTR model can pro-
vide a solution that is at least as effective as that of a neural-
network-based model. Equally importantly, the DZTR model
is transparent, as opposed to neural-network methods that are
often criticized as being a black box.
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Figure 6. Daily and monthly reservoir simulations using the DZTR model with a generalized parameterization; x axes show month and year,
the primary y axes show release (m3 s−1), and the secondary y axis shows storage (m3).
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Figure 7. Long-term average daily or monthly reservoir simulations with generalized parameterization; the x axes show days (1–365) or
months (1–12), the primary y axes show release (m3 s−1), and the secondary y axis shows storage (m3).

The above comparisons were conducted for non-irrigation
reservoirs because water demand data are needed to use the
Hanasaki et al. (2006) method for irrigation reservoirs. In
the case of the DZTR approach, the idea is that the DZTR
model operates in such a way that it infers existing opera-
tional rules that cater to those demands. Thus, the release
from DZTR accounts implicitly for downstream demands as

per the intended purpose of the reservoir, whether it is for
flood control, irrigation, hydropower, etc., or any combina-
tion of these. The case study dams include reservoirs with
different purposes, as shown in Table 1. The DZTR approach
showed good performance for these reservoirs.

If the reservoir purpose is irrigation, the target releases
from DZTR are to satisfy irrigation demands because the
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Figure 8. A comparison of our proposed reservoir operation model with generalized parameters with the models of Hanasaki et al. (2006)
and Wisser et al. (2010): (a) NSE (flow), (b) KGE (flow), (c) NSE (storage), and (d) KGE (storage).

parameterization is optimized based on observed releases.
The release from an irrigation dam will be available for
abstraction at the predefined abstraction points downstream
of the dam. The abstraction and distribution can be imple-
mented as separate modules, as done within the MESH land-
surface model (Yassin et al., 2019). In such an implementa-
tion, MESH takes care of (1) calculation of actual irrigation
demand for a configured irrigation area, (2) water abstraction
from the defined abstraction point along the river below the
dam, and (3) distribution across the irrigation fields. Regard-
ing the return flow, the excess water flows from the irrigation
areas are assumed to join the nearest stream within the model
grid cell.

The DZTR model can in principle handle multipurpose
reservoirs, e.g., a reservoir that is used simultaneously for
hydropower generation, irrigation water supply, and flood
control (e.g., High Aswan Dam in Egypt, which is one of
the studied reservoirs); the DZTR provides the release based
on the inflow and storage conditions that will be available
for irrigation downstream. Hydropower does not consume
water but returns it back to the river (except in rare cases
where it returns to a different channel). Flood control is di-
rectly accounted for in the scheme and becomes relevant
when storage is within the flood storage zone. Further, the
flexible formulation of DZTR allows for implicitly chang-
ing the priorities in operation for selected time periods (e.g.,
months or seasons) by changing the target storage values
during flood periods (e.g., the storage target before the on-
set of snowmelt). During these flood months, lowering the
target storage would increase the buffer for flood control.
Conversely increasing the target storage during other months
would be desirable to store water and release during irriga-

tion months. When the scheme is optimized using inflow, re-
lease, and storage data, the parameterizations capture these
priorities implicitly, as expressed in the data. When inflow
data are lacking, the generalized parameterization will set the
storage zones based on the suggested exceedance probabili-
ties (that were deduced based on all reservoirs used in the
study), and the priorities can be assumed as predefined.

4.3 Initial storage and inflow sensitivity test

The initial storage at the beginning of the simulation is an
input that needs to be specified for the model. The initial
values can be prescribed from the observations, if available.
However, the simulation of a hydrological and land-surface
model could start at any point in time when there is no obser-
vation is available (e.g., some time in far past, a future sce-
nario simulation, or a hypothetical scenario). Additionally,
in a long-term simulation, the initial storage may result from
a previous model simulation, which may not be as close to
observations as desired. The aim of the experiment is to ex-
amine and show the extent to which the initial storage value
affects the simulation performance.

To test the effect of initial storage used in the reservoir
simulation performance, two experiments were conducted on
three reservoirs with different scales of regulations: (1) Char-
vak (c = 0.28), (2) Gardiner (c = 1.46), and (3) High Aswan
(c = 2.84). In the first experiment, the initial storage was al-
lowed to vary between 10 % of maximum storage (0.1 ·Smax)
and maximum storage (Smax). In the second experiment, the
initial storage range was narrowed to starting simulation-
month minimum and maximum historical observations. In
both tests, 150 simulations were conducted by sampling the
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initial storage using uniform random sampling from the de-
fined storage range.

Figure 9 and Table 2 show the results of these initial stor-
age perturbation experiments. For both experiments the sim-
ulations on the Charvak dam showed a similar range for
NSE (flow) [0.79, 0.83] and NSE (storage) [0.61, 0.74]. Us-
ing 1 year as a spin-up period on Charvak dam simulations
stabilized the initial storage effects, resulting in NSE (flow)
of 0.82 and NSE (storage) of 0.74. The simulations on
Gardiner Dam in the first experiment showed a range of
[0.35, 0.51] for NSE (flow) and a range of [−0.43, 0.88]
NSE (storage), while in the second experiment the ranges
were narrowed to [0.44, 0.49] for NSE (flow) and [0.87, 0.88]
for NSE (storage). For a 1-year spin-up period on the Gar-
diner Dam, this simulation reduced the NSE (flow) range to
[0.49, 0.51] and the NSE (storage) range to [0.76, 0.87] in the
first experiment and to 0.49 NSE (flow) and 0.87 NSE (stor-
age) for the second experiments. On the other hand, the
simulation on the High Aswan Dam showed a range of
[−0.28, 0.85] for NSE (flow) and [0.38, 0.91] for NSE (stor-
age) for the first experiment and [0.52, 0.85] for NSE (flow)
and [0.42, 0.91] for NSE (storage) for the second experi-
ment. Excluding a 1-year spin-up period from the metric cal-
culation on the High Aswan Dam simulation narrowed the
NSE (flow) range to [0.62, 0.85] and the NSE (storage) range
to [0.58, 0.91] for both experiments. Overall, as expected,
the experiments suggest that the effect of initial storage on
reservoir simulation performance depends on the regulation
scale. Starting from observed storage values and using a 1-
year warm-up period allows stabilization of the initial stor-
age effect for low and medium regulated reservoirs. How-
ever, for highly regulated reservoirs, as in the case of High
Aswan, longer spin-up periods are needed to stabilize the
simulations. For example, a 5-year spin-up period was re-
quired to fully stabilize the performance for the High Aswan
Dam simulations.

The existence of inflow bias is inevitable in any hydro-
logical modeling practice. To understand the behavior of the
DZTR model under biased inflow conditions, we conducted
a sensitivity experiment on the Charvak, Gardiner, and High
Aswan reservoirs. To do so, the DZTR model performance
was tested using five simulations in which the entire inflow
time series was changed by−50 %,−25 %, 0 %,+25 %, and
+50 %. The sensitivity of simulations to bias in inflow was
evaluated using the NSE (flow) and NSE (storage) perfor-
mance metrics.

Figure 10 and Table 3 show the results of the inflow bias
test and that the reservoir simulation performance signifi-
cantly changes as a result of this bias. Reducing the inflow by
50 % considerably reduced the reservoir storage and release
and led to negative values of NSE (flow) and NSE (storage)
for all reservoirs. For such a large negative inflow bias, the
reservoir operation tries to recover the storage to the target
(observed) level by releasing as low as possible. Conversely,
the positive inflow bias increased simulated storage and re-

leases for all reservoirs, which led to negative performance
metrics for all reservoirs except for Gardiner NSE (storage).
As shown in Fig. 10, with large positive inflow bias, storage
quickly moves towards flood and maximum storage targets,
resulting in insufficient storage left to attenuate flood peaks,
and the operation model starts discharging large releases
through the spillway to maintain the storage at the maxi-
mum storage target. An inflow bias of −25 % and +25 %
showed similar behavior to a −50 % and +50 % bias for
all reservoirs, but the simulation performance metrics during
−25 % and +25 % provide significant positive NSE values
for the Charvak and Gardener dams, except for the Gardiner
NSE (flow) for +25 %, which resulted in a negative NSE
value. However, on the highly regulated High Aswan Dam,
the ±25 % inflow bias significantly reduced the performance
to negative values.

4.4 Parameter calibration and validation of the DZTR
model

We tried to improve upon the generalized parameterization
by calibrating the DZTR parameters via bi-objective op-
timization for two objective functions, Nash–Sutcliffe on
reservoir storage – NSE (storage) – and Nash–Sutcliffe on
reservoir release – NSE (flow). This is an important step
when the data and computational resources for optimiza-
tion are available to enhance reservoir simulation and conse-
quently hydrological modeling of the region of interest. Fig-
ure 11 shows the multi-criteria reservoir calibration (yellow
circles) and validation (red circles) Pareto solutions for all
reservoirs. The Pareto solutions show strong trade-offs be-
tween fitting observed reservoir storage versus downstream
release, which also reflects the fact that the problem is multi-
objective by nature and that it is required to consider both
storage and release instead of fitting one at the cost of de-
grading the other. The generalized parameterization solu-
tion for the calibration (yellow square with blue border)
and validation periods (red square with blue border) is also
added in Fig. 11 for each reservoir to show the improvement
gained through parameter calibration. Relative to the gener-
alized solution for the calibration period, reservoir param-
eter calibration improved both NSE (flow) and NSE (stor-
age) for all reservoirs, with a median improvement of 0.11
and 0.21, respectively. The NSE (flow) improvement ranged
from 0.017 to 0.575, and NSE (storage) improvement ranged
from 0.02 to 0.66. The parameter calibration has shown sig-
nificant improvement in reservoirs that have lower perfor-
mance with generalized parameterization. The best examples
of this case are Fort Randall, Int. Amistad, Trinity, Int. Fal-
con, and E. B. Campbell, as shown in Fig. 11. Small im-
provements in performance have also been observed in reser-
voirs that have greater performance with generalized param-
eterization, such as American Falls, Andijan, Nurek, High
Aswan, Waterton, and Charvak. The validation of calibrated
solutions improved the NSE (flow) and NSE (storage) for
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Figure 9. Reservoir initial storage effect on storage and release simulation: (a) Charvak storage case 1, (b) Charvak release case 1, (c) Charvak
storage case 2, (d) Charvak release case 2, (e) Gardiner storage case 1, (f) Gardiner release case 1, (g) Gardiner storage case 2, (h) Gardiner
release case 2, (i) High Aswan storage case 1, (j) High Aswan release case 1, (k) High Aswan storage case 2, and (l) High Aswan release
case 2.

Table 2. Reservoir initial storage effect on storage and release simulation.

Case 2
S0 = [min(obs) max(obs)],

Case 1 obs= observed for all 1 Jan observations
S0 = [0.1SmaxSmax] from the historical reservoir storage data

NSE NSE NSE NSE
(storage) (flow) (storage) (flow)

Charvak
No spin-up [0.61 0.74] [0.79 0.83] [0.61 0.74] [0.79 0.83]
1 year spin-up [0.74 0.74] [0.82 0.82] [0.74 0.74] [0.82 0.82]

Gardiner
No spin-up [−0.43 0.88] [0.35 0.51] [0.87 0.88] [0.44 0.49]
1 year spin-up [0.76 0.87] [0.49 0.51] [0.87 0.87] [0.49 0.49]

High Aswan
No spin-up [0.38 0.91] [−0.28 0.85] [0.42 0.91] [0.52 0.85]
1 year spin-up [0.58 0.91] [0.62 0.85] [0.58 0.91] [0.62 0.85]

56 % of the reservoirs, with a median improvement of 0.035
and 0.092, respectively. The NSE (flow) improvement in the
validation period ranged from 0.001 to 0.335, and NSE (stor-
age) improvement ranged from 0.004 to 1.02. During vali-
dation, the remaining reservoirs (44 % of them) resulted in
NSE (flow) and NSE (storage) reductions, with a median
reduction of 0.032 and 0.089, respectively. The reductions
of NSE (flow) ranged from 0.001 to 0.073, and those of
NSE (storage) ranged from 0.001 to 0.257.

Overall, considerable improvement was achieved for both
calibration and validation periods for several reservoirs, such
as the Dickson, Gardiner, Ghost, Int. Amistad, Int. Falcon,
Kayrakkum, Sirikit, Yellowtail, and Glenmore. However, as

shown in Fig. 11, the improvements of DZTR model perfor-
mance during calibration do not guarantee performance im-
provement in validation. This is because, as well as for any
other type of model, the properties of the calibration and val-
idation periods might differ significantly. In particular, the
calibrated Pareto solution does not show the same trade-off
or level of performance during validation when there is con-
siderable change in inflow properties as a result of consecu-
tive wet or dry years. Examples of this condition are shown
for Glen Canyon (similarly Bhumibol, Fort Randall, and Fort
Peck), where the calibration period had more wet and high-
inflow years than the validation period. Such considerable
changes of inflow, storage, and release result in performance
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Figure 10. Inflow bias sensitivity test on storage and release simulation: (a) Charvak storage, (b) Gardiner storage, (c) High Aswan storage,
(d) Charvak release, (e) Gardiner release, and (f) High Aswan release.

Table 3. Inflow bias sensitivity test on storage and release simulation.

−50 % −25 % 0 % 25 % 50 %

Charvak
NSE (storage) −1.95 0.25 0.74 0.52 −0.21
NSE (flow) −0.06 0.54 0.82 0.57 −0.07

Gardiner
NSE (storage) −2.00 0.74 0.88 0.79 0.66
NSE (flow) −0.21 0.47 0.49 −0.43 −2.02

High Aswan
NSE (storage) −9.37 −5.96 0.90 −0.60 −1.45
NSE (flow) −3.90 −0.34 0.80 −2.29 −8.70

degradation during the validation period. In general, a small
change in inflow, storage, or release for the validation pe-
riod can change the shape of the trade-off. However, the cali-
brated parameters in most cases were still capable of produc-
ing good performance during validation that was close to, or
better than, that of the generalized parameterization for the
same period.

To further test the role of the calibration period, we cal-
ibrated all reservoirs using the whole observational record.
The result of this test is shown in Fig. 12, which demon-
strates the strong role of the calibration period. All reservoirs
showed trade-off between storage and release fitting. The so-
lution resulted in a consistent Pareto pattern similar to the
split-sample calibration results. The median NSE (flow) and
NSE (storage) improvement when using the whole observa-
tional record for calibration is approximately 0.1 and 0.12
respectively, while the maximum improvement reached 0.45
and 0.55 for some reservoirs. High improvements in stor-
age and flow simulations in the case of whole-period cali-
bration are mostly observed in reservoirs that have consid-

erable shift of observed storage and flow across the period
of observation period. Figure 13 shows some example reser-
voirs that had considerable improvements, such as Bhumibol,
Canyon Ferry, Int. Amistad, Int. Falcon, Navajo, and Trin-
ity dams, compared to generalized parameters (Fig. 6). Sim-
ilarly, for the remaining reservoirs, calibrating the whole pe-
riod showed (Fig. 13) better agreement of daily and monthly
simulations with the observations, even for years with ex-
treme deviations that are most likely associated with extreme
dry and wet conditions. Additionally, the long-term average
simulations (Fig. 14) showed that calibrating using the whole
period reduced the deviation between simulations and obser-
vations, and in most cases the Pareto simulation range en-
compasses the observation. Overall, the calibration period
test indicates the benefit of using long-term observation for
parameterization (even for generalized parameterization) to
allow the parameterization to represent behavior in extreme
periods. Thus, we recommend using as many data as avail-
able to parameterize the model for a specific reservoir so that
all information on reservoir operation will be accounted for.
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Figure 11. Reservoir-release-parameter multi-objective calibration result. x axes show NSE (flow) multiplied by −1, and the y axes show
NSE (storage) multiplied by −1.

The DZTR scheme introduces more parameters to the host
land-surface model. However, its parameters are external to
those of land-surface model and are determined a priori us-
ing storage and release data. The decision of the timescale to
use for specifying the parameters is left to the modeler. The

user has the ability to investigate the seasonal patterns in the
storage and release data and decide whether a monthly or a
coarser timescale (e.g., quarterly) would be sufficient. In fact,
the configuration of DZTR is also flexible in using any user-
specified zoning that is available from observation, reservoir
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Figure 12. Reservoir-release-parameter multi-objective calibration using all available data for each reservoirs; x axes show NSE (flow)
multiplied by −1, and the y axes show NSE (storage) multiplied by −1.

information, or zoning values specified in other studies, such
as that of Zhao et al. (2016).

4.5 DZTR model test within the MESH model

Finally, the generalized parameterization of the DZTR model
was integrated into the MESH model and tested to simu-
late six reservoirs in the Saskatchewan River basin (Gardiner,
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Figure 13. Daily and monthly reservoir simulations using DZTR model with a generalized parameterization; x axes show the month and
year, the primary y axes show release (m3 s−1), and the secondary y axis shows storage (m3).
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Figure 14. Long-term average daily or monthly reservoir simulations with generalized parameterization; the x axes show days (1–365) or
months (1–12), the primary y axes show release (m3 s−1), and the secondary y axes show storage (m3).

St. Mary, Waterton, Oldman, Ghost, and Dickson dams) and
one reservoir (W. A. C. Bennett Dam) in the Mackenzie River
basin, both in Western Canada. The reservoir simulation was
run using MESH-modeled inflows at a half-hourly time step,
the usual MESH time step, and the performance metrics were
calculated at a daily time step. The MESH-modeled inflows
are considered to represent the base-case scenario, and the

inflow can be assumed to be regulated or natural, depending
on whether there are dams upstream or not.

Figure 15 illustrates that the generalized DZTR model
generally improves upon having no representation of the
reservoirs in the model. This improvement is apparent in the
NSE (flow) values, which increase with the DZTR model.
The only exception is Dickson Dam, with a small reduction
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in NSE. The importance of integration of the DZTR model
was predominant for the Gardiner and W. A. C. Bennett
dams, which are highly regulated reservoirs (c > 0.5) when
compared to the other reservoirs tested in MESH.

This general improvement of flow simulation when com-
paring a reservoir model to the no-reservoir assumption is,
of course, not surprising. What is important to note, how-
ever, is that the improvement in NSE can be substantial with-
out calibration of the DZTR parameters. This is important
for many LSM applications where calibration is generally
not performed. Hanasaki et al. (2006) illustrated that their
method is superior to the natural lake (or unregulated reser-
voir) method applied in many CMs and H-LSMs, and this
paper shows that the DZTR model improves upon the results
of Hanasaki et al. (2006). Therefore, it is natural to assume
that the DZTR model would also be an improvement in un-
calibrated H-LSM applications.

However, calibration is very common in CM or H-LSM
applications in which the DZTR model would likely be em-
ployed. A full comparison of calibrated results between a no-
reservoir case, natural lake (or unregulated reservoir), and
the DZTR model (and the other reservoir models) is be-
yond the scope of this paper. Again, given the improvements
shown with the uncalibrated DZTR model when compared
with other uncalibrated models, and the general improve-
ments shown here when calibrating the DZTR model, it is
assumed that calibrating the DZTR model within a CM or H-
LSM would improve upon calibrating an unregulated reser-
voir model or the other reservoir models compared in this
paper.

The storage simulation showed a low NSE (storage) value
for the St. Mary and Waterton dams and a negative NSE (stor-
age) for Oldman and Ghost dams. However, the simulation
showed a reasonable representation of storage variability but
with considerable underestimation. This underestimation in
storage in Fig. 15 is attributable to the fact that the modeled
inflow is underestimated. It is expected that calibration of the
land-surface parameters in conjunction with the DZTR pa-
rameters in MESH would improve the modeled inflows and
resulting modeled reservoir storage.

It is worth mentioning again that H-LSMs, such as MESH,
can also be used for the original purpose of LSMs, which is
to represent fluxes from the land-surface to the atmosphere.
If the approach improves modeled flows where reservoirs op-
erate, it could result in a better parameterization of the LSM,
which should in turn improve land-surface fluxes and feed-
backs to the atmosphere.

4.6 Uncertainties in reservoir operations and DZTR
parameterization

Reservoir operation involves considerable uncertainties that
several factors are attributed to. One major source of uncer-
tainty in reservoir operations is future inflows (long-term and
short-term inflow forecast). The forecast contains errors are

rooted in the forecast method, the driving climate forecast,
snowpack measurements, timing of snowmelt, and the sta-
tistical (stationarity) assumptions to generate inflows based
on historical inflows. The inflow forecast uncertainty is more
significant during flood seasons because it involves subjec-
tive decisions of operators to avoid the risk of dam overtop-
ping and downstream flooding. Other sources of uncertainty
in reservoir operations include changes in demand over time
because of increases in demand for irrigation, power, wa-
ter supply, etc. The purpose of the reservoir can also change
from its initial intended purpose (e.g., adding a hydropower
station to an irrigation dam). These changes are only implic-
itly captured by the DZTR scheme, as implied in the storage
and release time series used for parameterizing it for a spe-
cific reservoir.

Given the above uncertainties, even the actual reservoir
operation may deviate from the designed reservoir opera-
tion rule curve. Some of the decisions of reservoir opera-
tors are spontaneous, ad hoc, and depend on experiences that
are not usually documented. Thus, there are difficulties in
accurately representing the historical operation or establish-
ing accurate relationships between reservoir storage, inflow,
and release. These relationships typically contain consider-
able noise, e.g., different release values for the same storage
level during the same season. As a result, these uncertainties
influence considerably the parameterization of the model de-
rived to represent the reservoir operation based on historical
observations of each reservoir. This is particularly true for the
algorithm presented because of two main factors. Firstly, the
presented reservoir algorithm assumes that the relationship
between reservoir storage and releases follows piecewise-
linear functions. There is a chance that other functional forms
represent such relationships better for some reservoirs. Sec-
ondly, in the case of the generalized parameterization, the
bending points in the piecewise linear functions (zone classi-
fication points) are estimated based on fixed probabilities of
exceedance extracted from historical data for all reservoirs.
A different dataset (of reservoirs and/or time periods) could
result in different quantiles. The assumption of having sim-
ilar bending points of the piecewise-linear functions for all
reservoirs cannot provide optimal zones for each reservoir.
However, we showed that the generalized parameterization
performs better compared to other widely used algorithms.

Optimizing storage and release parameters allows us to
overcome the limitation of generalized bending points of the
piecewise-linear function by adjusting the bending points so
that the best fit can be identified. However, optimization usu-
ally does not provide a perfect storage-release relationship
(i.e., in general, the trade-off between objectives never con-
verges to a single point) because the perfect representation
only occurs in the case of a perfect reservoir model and per-
fect data. The proposed model, like many other types of mod-
els, is not an exception because of the uncertainties high-
lighted in the previous point. Thus, the trade-off between
storage and release objectives can be viewed as a measure
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Figure 15. Reservoir simulation results within MESH model run for selected reservoirs; x axis shows time (d), the primary y axes show
release (m3 s−1), and the secondary y axes show storage (m3).

of the limitation of the reservoir algorithm (piecewise linear
functions, fixed number of zones, etc.) and observation er-
rors. To examine the level of uncertainty of the trade-off, it is
important to look at the shape and range of the trade-off on
each objective function axis.

As shown in Figs. 11 and 12, apart from a few reservoirs,
the range of Pareto solutions for each objective function is
generally narrow, with good NSE values (Figs. 11 and 12).
In such cases, the associated uncertainties are few, and the
trade-off between improving simulated releases and improv-
ing simulated storage is minimal. Conversely, in some cases,
an extended spread of the trade-off along one of the axes
(objective function) was observed, indicating a higher uncer-
tainty of the algorithm for the process that the axis repre-
sents, i.e., reservoir storage or release. This requires further
investigation of the datasets and parameterization for those
reservoirs and their history of operations. Shifts in opera-
tional management of reservoirs do occur, and these may ob-
scure the parameterization. These may be detected by care-
ful examination of the available records as well as metadata
records of the reservoir history if accessible. The level of
noise when determining the parameters could be an indicator
of changes in operation.

4.7 Implementation strategies to overcome data
limitation

The data requirement is the main limitation of the DZTR
model for application at continental and global scales. One
approach to overcome data limitations is to integrate our pro-
posed method in land-surface and catchment models along
with other reservoir operation methods (e.g., Hanasaki et al.,
2006). Then, within the land-surface and catchment models,
identifier flags can be used to indicate which method applies
to which reservoirs. The DZTR approach can only be acti-
vated for reservoirs with data support, while the remaining
reservoirs can use other approaches as dictated by data avail-
ability. We follow such an implementation within the MESH
model.

As shown in our results, reservoir regulation has a large
impact on downstream flows if the reservoir is highly regu-
lated and/or is of the multi-year type (c > 0.5). Thus, more
emphasis can be placed on those reservoirs with c > 0.5. At
the moment, such methods will be more effective at the re-
gional than global scale (for example for the Saskatchewan
River basin in our case) because modelers at the regional
scales have better access to inflow–storage–outflow data and

www.hydrol-earth-syst-sci.net/23/3735/2019/ Hydrol. Earth Syst. Sci., 23, 3735–3764, 2019



3760 F. Yassin et al.: Representation and improved parameterization of reservoir operation

have a better understanding of the system to acquire the nec-
essary reservoir data. In a land-surface hydrologic model,
important reservoirs are those causing large changes to the
downstream flows, and those tend to be the larger ones with
generally better data availability.

Data on reservoir storage, inflow, and release exist for
most reservoirs, but sometimes they are not made publicly
available. Storage data can be obtained from water-level data,
which are generally available for major reservoirs and can
be converted to storage. Release data can be deduced from
the nearest downstream station. In addition, new initiatives
are needed to gather and archive such reservoir datasets and
move beyond the information on reservoir characteristics that
is currently available in databases (e.g., GRanD database –
Lehner et al., 2011). One of our recommendations is that the
target release and storage data be archived for public use at
least for highly regulated and multi-year type dams (c > 0.5).

The possibility of estimating storage and release data from
different satellite data products is promising; such new data
sources will potentially improve the use of methods like
the presented reservoir operation (optimized or generalized).
More recently, Busker et al. (2019) showed an estimation of
volume for 130 reservoirs using surface water dataset and
satellite altimetry; this is an encouraging approach for reduc-
ing data limitation.

5 Summary and conclusions

Human interventions in hydrologic systems through dams
and reservoirs significantly change the flow regime of many
rivers. In this paper, we presented an improved reservoir
operation model, called the dynamically zoned target re-
lease (DZTR) model, that can be integrated into any large-
scale hydrological model; here we integrated it into the
MESH land-surface–hydrology model. The DZTR model is
based on parametric piecewise-linear functions that approxi-
mate reservoir-release rules used by reservoir operators. We
proposed two strategies to identify the parameters of this
model: one based on the distributions of historical storage
and release to generate the so-called generalized parameters
and the other one based on direct calibration to observed stor-
age and release time series via multi-objective optimization.
We first tested the DZTR model individually across a num-
ber of reservoirs around the globe and then tested its perfor-
mance when plugged into the MESH model for a subset of
those reservoirs. Our conclusions can be summarized as fol-
lows:

– The DZTR reservoir operation model performed well
in reproducing observed storage and release time se-
ries in (almost) all reservoirs tested and outperformed
the existing reservoir models proposed by Hanasaki et
al. (2006) and Wisser et al. (2010). The model was ca-
pable of capturing inter- and intra-annual variability in
both reservoir storage and release.

– As expected, calibration significantly improved the per-
formance of the DZTR model compared with the per-
formance of the generalized parameters. However, a sig-
nificant trade-off exists between fitting reservoir storage
versus release, signifying the importance of accounting
for both storage and release in a multi-objective fashion.

– The integration of the DZTR reservoir model into the
MESH land-surface–hydrology modeling system was
straightforward and improved the overall model perfor-
mance compared with the traditional methods of ac-
counting for reservoirs in H-LSMs. This integration can
be viewed as a successful example for improving the
representation of reservoir operation in CMs, LSMs,
and GWSMs.

Future research work may include (1) examining the appli-
cability of the DZTR model for regions with severely limited
data by examining the utility of other data sources such as
those derived from satellite-based observations (Savtchenko
et al., 2004; Garambois and Monnier, 2015; Gao et al., 2012)
and using the area–volume relationship approximated by reg-
ular geometric shapes (e.g., Yigzaw et al., 2018) and (2) ex-
amining direct one-way and/or two-way coupling of WMMs
with CMs and LSMs for developing a seamless coupled
framework for the simulation of naturally engineered water-
shed systems.
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