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Abstract. Hydrological models can be used to assess the im-
pact of hydrologic alteration on the river ecosystem. How-
ever, there are considerable limitations and uncertainties as-
sociated with the replication of ecologically relevant hy-
drological indicators. Vogel and Sankarasubramanian’s 2003
(Water Resources Research) covariance approach to model
evaluation and parameterization represents a shift away from
algorithmic model calibration with traditional performance
measures (objective functions). Using the covariance struc-
tures of the observed input and simulated output time se-
ries, it is possible to assess whether the selected hydrological
model is able to capture the relevant underlying processes.
From this plausible parameter space, the region of parame-
ter space which best captures (replicates) the characteristics
of a hydrological indicator may be identified. In this study,
a modified covariance approach is applied to five hydrologi-
cally diverse case study catchments with a view to replicat-
ing a suite of ecologically relevant hydrological indicators
identified through catchment-specific hydroecological mod-
els. The identification of the plausible parameter space (here
n≈ 20) is based on the statistical importance of these indi-
cators. Evaluation is with respect to performance and consis-
tency across each catchment, parameter set, and the 40 eco-
logically relevant hydrological indicators considered. Timing
and rate of change indicators are the best and worst replicated
respectively. Relative to previous studies, an overall improve-
ment in consistency is observed. This study represents an im-
portant advancement towards the robust application of hydro-
logical models for ecological flow studies.

1 Introduction

Increases in societal water demand and climatic variability
raise questions about the long-term sustainability of water re-
sources (Gleick, 1998; Klaar et al., 2014; Davis et al., 2015;
Gleick, 2016). As the ecological role of flow is better un-
derstood, it has become widely acknowledged as the major
determinant of the ecological health of the riverine ecosys-
tem (e.g. Power et al., 1995; Lytle and Poff, 2004; Arthing-
ton et al., 2006). Consequently, changes to flow threaten both
the ecological health of rivers and their ability to provide the
vital ecosystem services upon which humans depend (Vörös-
marty et al., 2010; Arthington, 2012).

Beginning in the late 1940s in the United States, the need
to balance the conflicting demands of both human society
and those of the ecosystem saw the emergence of the environ-
mental flow movement. Environmental flows have been de-
fined under the Brisbane Declaration (2007) as “. . . the quan-
tity, timing, and quality of water flows required to sustain
freshwater and estuarine ecosystems and the human liveli-
hood and well-being that depend on. . . ”. Tharme (2003) doc-
umented that over 200 formal environmental flow assessment
methods had been developed.

Quantifying the relationship between flow and ecology is
pivotal for the determination of environmental flows (Bunn
and Arthington, 2002; Arthington et al., 2006; Poff et al.,
2010; McManamay et al., 2013). Richter et al. (1996) iden-
tified five facets of the flow regime required to support the
riverine ecosystem: magnitude, frequency, duration, timing
and rate of change. Alteration of the flow regime invariably
leads to significant ecologic change. To date, over 200 eco-
logically relevant hydrologic indices (ER HIs) have been pro-
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posed (Olden and Poff, 2003; Monk et al., 2006; Thompson
et al., 2013; Mills and Blodgett, 2017). Poff et al. (2010) and
Peters et al. (2012) each describe environmental flow frame-
works, which call for the determination of ER HIs via hydro-
logical model simulations of flow. At the time of publication
(of these frameworks), the application of hydrological mod-
els for the determination of ER HIs was in its infancy (Knight
et al., 2011). Indeed, early work was largely based on re-
gional statistical approaches which had been in use since the
1960s in the United States (for the determination of water-
resource-relevant HIs; for example, see Knight et al., 2011;
Carlisle et al., 2010). Murphy et al. (2012) compared such
ER HIs against those determined from simulated flows, find-
ing that, without targeted calibration to specific HIs, “the
widespread application of general hydrologic models to eco-
logical flow studies is problematic” (p. 667). However, such
statistical approaches are unsuitable when assessing the im-
pact of hydrological change on the river ecosystem (e.g. as
a result of engineering intervention or under a changed cli-
mate) or for the simulation of ecological flows in ungauged
catchments. A hydrological modelling approach is thus nec-
essary.

Model performance and consistency are watchwords for
this study. Following Euser et al. (2013), model performance
is defined as the ability to mimic the behaviour of catchment
hydrological processes; consistency represents the ability of
the hydrological model to reproduce a suite of ER HIs across
parameter sets, hydrological models and catchments.

Significant bias has been observed in hydrological mod-
els calibrated following algorithmic model calibration with
objective functions and performance measures (Grayson and
Blöschl, 2001; Blöschl and Montanari, 2010; Westerberg et
al., 2011; Pushpalatha et al., 2012); hereafter this is termed
the “traditional approach”. For example, when evaluating
the suitability of model-simulated HIs (6 water-resource-
relevant HIs and 32 ER HIs), Shrestha et al. (2014) ob-
served that water-resource-relevant HIs were well-replicated,
whilst notable differences were observed for ER HIs re-
lated to the facets of the flow regime duration and rate of
change. Informed by recent advances in hydrological mod-
elling more generally (Seibert, 2000; Efstratiadis and Kout-
soyiannis, 2010), Vis et al. (2015) compared the ability of
single- and multi-criterion objective functions to replicate
12 ER HIs. The best performance was achieved with multi-
criterion objective functions, though a consistent negative
bias was observed. Despite these advances, overall perfor-
mance was inconsistent, being dependent upon the ER HI
considered. Blöschl and Montanari (2010) observed that the
reliability of hydrological modelling approaches which try
to “model everything” is analogous to simply “throwing the
dice”. To address this, they call for a move towards simpler
models, tuned to focus on specific characteristics of the flow
regime; successful applications of such an approach include
Westerberg et al. (2011). Most recently, Pool et al. (2017)
considered an array of multi-criterion objective functions us-

ing Nash–Sutcliffe efficiency (NSE) and 13 ER HIs. Results
were positive, with ER HIs generally well-replicated, though
the transposability of the model was subject to greater vari-
ability. Those ER HIs not explicitly included in the objective
function exhibited the greatest uncertainty overall.

The past 10 years have seen the replication of ER HIs
evolve from statistical approaches to single- and multi-
objective rainfall–runoff modelling. Whilst improvements
have been notable, to date no approach has been able to
achieve performance and consistency concurrently, raising
questions as to whether these approaches are able to achieve
the “right answer for the right reasons”. Pool et al. (2017)
highlight two points which remain unaddressed: (1) a need
to determine which ER HIs are relevant in order to guide
model parameterization; and (2) laborious recalibration of
the hydrological model is necessary if the suite of HIs is
changed. In addition, model evaluation in these studies is
singularly focussed on the goodness of fit of the observed–
simulated data, while the ability of the hydrological model
to capture the relevant hydrological processes is not consid-
ered. In this paper we look to redress these limiting factors
through the application of a modified covariance approach.
The objective of Vogel and Sankarasubramanian’s (2003) co-
variance approach is to identify the plausible parameter space
which captures (replicates) the characteristics of a specified
HI. This is achieved by focussing on the ability of the hydro-
logical model to capture the observed covariance structure of
the input and output time series. The use of covariance re-
lationships in this way is not new, with examples including
the modelling of ice sheets (Wu et al., 2010) and ocean salin-
ity (Haines et al., 2006). Vogel and Sankarasubramanian’s
covariance approach is limited by its focus on a single HI,
preventing its use for the determination of a suite of ER HIs.
This paper builds on the covariance approach, adapting the
methodology to consider a suite of ecologically relevant hy-
drological indicators; the determination of these ER HIs is
based on the outcomes of hydroecological modelling using
an information theory approach. To determine the ability of
the modified covariance approach in replicating ER HIs, the
method is applied to five case study catchments across the
UK using the daily models from the GR (Génie Rural) suite
of hydrological models (GR4J, GR5J and GR6J, four to six
free parameters; Coron et al., 2018).

2 Methods

2.1 Study areas

The UK is home to a wide range of hydrological environ-
ments, with 18 different river types (based on catchment area,
mean altitude and geology) specified under the Water Frame-
work Directive (Rivers Task Team, 2004). Therefore, to illus-
trate the generality of the modified covariance approach, it
is necessary to apply the proposed methodological approach
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to a range of catchments with differing characteristics (An-
dreassian et al., 2006; Gupta et al., 2014). Hydroecological
models inform the parameterization of the hydrological mod-
els. A mismatch between the co-location of sampling sites as
well as the length of time series is a known limiting factor in
hydroecological modelling (Monk et al., 2006; Knight et al.,
2008). In the UK, this may be addressed, in part, by the re-
cent publication of the UK BIOSYS archive (long-term eco-
logical monitoring data from across England and Wales; En-
vironment Agency, 2018). In this study, ecological and flow
time series were paired and catchments assessed in terms of
length of the paired dataset (>10 years), number of sam-
pling sites (>5), location, catchment area, altitude, catch-
ment steepness (m km−1), baseflow index (BFI) and land use.
A total of five catchments were selected across the UK, from
the north of Scotland to the south-west of England (Fig. A1
in the Appendix); catchment characteristics are summarized
in Table 1.

2.2 Hydrological model

The principle of parsimony, known as Occam’s razor, posits
that a solution should be no more complex than necessary. In
the context of hydrological modelling, model simplicity rel-
ative to performance is thus made key (Kokkonen and Jake-
man, 2002; Perrin et al., 2003; Beven, 2012). To this end,
the three lumped models from the GR-J series of daily hy-
drological models were selected (Perrin et al., 2003): GR4J,
GR5J and GR6J (four, five and six free parameters respec-
tively; Perrin et al., 2003; Le Moine, 2008; Pushpalatha et
al., 2011). The GR-J series of models have been applied in
a variety of hydrological contexts, including climate change
impact assessment, water resource forecasting and prediction
in ungauged catchments; for examples, see Rojas-Serna et
al. (2006), Perrin et al. (2008), Coron et al. (2012, 2017) and
Smith et al. (2012).

The three models are based on soil moisture account-
ing (Fig. A2); precipitation and potential evapotranspiration
serve as input. Water is directed to a production store with
capacity x1 mm, split into routed and direct components,
and input to unit hydrographs with time base F(x4) days.
The routed flow is directed to a routing store with capac-
ity x3 mm. Finally, a groundwater exchange term, F(x2), acts
on the routed and direct flow components. The total flow,
Q, is the sum of the routed and direct flow. To improve
general model efficiency (Anderson Michael et al., 2004;
Hughes, 2004), GR5J sees the addition of the inter-catchment
exchange threshold, x5, a function representing the interac-
tion between channel and aquifer flows (Le Moine, 2008).
To improve simulations of low flows, the GR6J model in-
cludes a parallel store with capacity x6 mm (Pushpalatha et
al., 2011). The models are applied using R package airGR
(Version 1.0.15.2; Coron et al., 2017, 2018). Parameter lim-
its are summarized in Table A1.

2.3 Determination of ecologically relevant hydrological
indicators

The ER HIs were determined based on the outcomes of
hydroecological modelling for each catchment. Following
Visser et al. (2018), hydroecological models were developed
using multiple linear regression with an information theory
(IT) approach; see Appendix A2 for details. The IT approach
provides a measure of the statistical importance of each ER
HI. Consequently, more conclusive statements may be made
with regards to the model and the relevance of the ER HIs.
To reflect seasonality in the flow regime, the indices are dif-
ferentiated by hydrological season: winter (ONDJFM) and
summer (AMJJAS). Definitions of the ER HIs included in
the hydroecological models, and their importance, are avail-
able in Table B1. A summary of the distribution of the ER
HIs per facet of the flow regime, season and river is provided
in Table 2.

2.4 Covariance approach

Continuous (daily) time series of mean flow, precipitation
and potential evapotranspiration serve as input to the hydro-
logical models; flow and climate data availability are sum-
marized in Table 1 previously. Potential evapotranspiration
was estimated using a temperature-based PE model (Oudin
et al., 2005).

The covariance approach was developed by Vogel and
Sankarasubramanian (2003), where the aim was to replicate a
specific HI rather than the flow time series. The modification
of the covariance approach in this study allows for the con-
sideration of a suite of ecologically relevant HIs. The mod-
ified covariance approach is implemented over three stages
(Fig. 1); stages 1 and 2 are as in Vogel and Sankarasubra-
manian (2003), with the exception that multiple ER HIs are
calculated, with the final stage representing the modification
introduced in this study.

– Stage 1, data preparation. The parameter space of the
three hydrological model structures was sampled within
the limits specified in Table A1. With a view to ad-
dressing both parameter sensitivity (Tong and Graziani,
2008; Wu et al., 2017) and the number of parameter sets
considered, the parameter space was sampled uniformly
based on Sobol quasi-random sequences (a quasi-Monte
Carlo method). The River Nar catchment served as the
“proof-of-concept”, consequently, for this catchment;
100 000, 150 000 and 200 000 independent parameter
sets were selected for the GR4J, GR5J and GR6J hy-
drological models respectively; for the remaining four
catchments, 10 000 parameter sets were considered (per
hydrological model).

For each parameter set, flow time series were simulated
based on the full time series of the observed climate
data. For each of these flow time series, a correspond-
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Table 1. Summary of case study catchment characteristics. Catchment steepness is unavailable for the Tarland Burn.

Tarland Burn River Trent River Ribble River Nar River Thrushel

Fl
ow

ga
ug

e
an

d
ca

tc
hm

en
t Location Aboyne Stoke-on-Trent Arnford Marham Hayne Bridge

Longitude −2.7758 −2.1624 −2.2471 0.5472 −4.2424

Latitude 57.0777 53.0175 53.9962 52.6783 50.6584

Altitude, gauge
(mAOD)

125 113 117 5 67

Altitude, max
(mAOD)

616 331 691 85 273

Catchment steepness
(m km−1)

– 68 100 23 94

Bedrock geology Mafic and felsic
igneous

Mud/siltstone,
sandstone

Mud/siltstone,
sandstone;
limestone

Chalk Mud/siltstone,
sandstone

Baseflow index 0.66 0.44 0.25 0.91 0.39

Drainage area
(km2)

70.9 53.2 204 153 57.6

Principal land use Mountain, heath
and bog

Urban and
grassland

Grassland Arable and
horticulture

Grassland

D
at

a Years 2003–2016 1989–2016 2000–2016 1961–2015 1989–2016

Flow data source
JHI (2018)

NRFA (2018)
Climate data source Met Office (2018a, b)

Table 2. Number of ER HIs per facet of the flow regime, season (W and S denote summer and winter respectively) and river. Sum totals are
detailed in the final columns and rows.

Facet of the flow regime Tarland River River River River Sum per
Burn Ribble Trent Nar Thrushel facet

W S W S W S W S W S

(M) Magnitude Statistic 1 1 1 2 1 1 2 9
Ratios – log-quantile 2 1 1 4
Ratios – median-quantile 4 2 3 1 2 12
Monthly 2 1 1 4

(D) Duration 2 1 2 1 6
(F ) Frequency 1 1 1 1 1 2 7
(T ) Timing 1 2 2 1 6
(R) Rate of change 1 1 1 1 1 5

Sum per season per river 4 4 3 10 9 4 2 5 9 3 53

ing set of covariances (between observed climate and
simulated flow) and HIs were computed. The observed
covariance and HIs are also determined.

– Stage 2, evaluation. Under the traditional approach, the
hydrological model is evaluated (commonly termed val-
idation) following calibration using an optimization al-
gorithm; this presupposes that the selected hydrologi-

cal model is able to capture the underlying processes
(Oreskes and Belitz, 2001). The covariance approach
sees the evaluation of the model structure prior to iden-
tification of the plausible parameter space. The model
is invalidated, i.e. rejected, when the observed moments
lie outwith the simulated moments (sampled parameter
space). This may be facilitated through plots of the ob-
served and simulated relationship between the (a) co-
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Figure 1. Overview of the three stages of the modified covariance approach to model parameterization.

Figure 2. Conceptualization of the limits of acceptability, depicted here as the log-linear relationship between relative importance and the
allowable (absolute) error thresholds per indicator and covariance. The limits of acceptability are reduced until n= 3 parameter sets lie within
the plausible parameter space. In this example, the error threshold ranges from 5 %, where the relative importance is one, to a maximum of
50 %. The maximum allowable error per example indicator is marked.

variance between precipitation and flow, ρ(PQ), and
HIs; and (b) covariance between potential evapotranspi-
ration and flow, ρ(PEQ), and HIs. An example for the
River Nar is provided in Fig. A3. The moments may
also be used to assess model equifinality (the existence
of multiple behavioural parameter sets; Beven, 2006;
Efstratiadis and Koutsoyiannis, 2010). With a focus on
evaluating the hydrological model structure, stage 2 al-
lows consideration of the full length of the hydroclima-

tological time series; split-sampling may be considered
in the parameterization of the model in stage 3.

– Stage 3, parameterization. Selection of a model param-
eter set was based on a specified limit of acceptabil-
ity (summarized in Fig. 2), i.e. the ability to replicate
or minimize the error (percentage difference) between
the observed & simulated covariance structures and ER
HIs. In Vogel and Sankarasubramanian (2003) the fo-
cus was on the replication of a single index, whilst,
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in this study, the objective was the replication of mul-
tiple indices. To this end, a limit of acceptability was
specified per index, with each ER HI assigned a maxi-
mum error threshold based on their normalized or rela-
tive importance. The ER HI importance (Table B1) was
normalized (rescaled to a range from zero to one) per
catchment and the covariances assigned a relative im-
portance of one, equal to the most important index. The
catchment-specific limits of acceptability were specified
as the relationship between the relative importance and
a user-specified allowable error range. If no parameter
sets are selected, the model structure is invalidated and
rejected.

Given the large number of ER HIs identified for some
catchments, an exponential model of the form y =

emx+c was specified for each catchment, thereby ensur-
ing a focus on the most important indicators (see Fig. 2).
In order to account for equifinality, the maximum error
was set such that the feasible parameter space was lim-
ited to approximately n= 20 distinct parameter sets (a
discretionary choice made in the absence of any estab-
lished rule). In Fig. 2, a simplified example is presented
where the limits of acceptability are adjusted with a
view to identifying a plausible parameter space where
n= 3.

Note that, dependent on modelling objective, spatio-
temporal transposability may be tested in stage 3 fol-
lowing a split-sample approach (Klemeš, 1986). As in
Vogel and Sankarasubramanian (2003), the focus here
is on methodological development, and thus spatio-
temporal transposability is not considered.

2.5 Model performance and consistency

In this study, the ability of the parameterized models in repli-
cating the ecologically relevant hydrological indicators was
evaluated through the evaluation metrics detailed in Table 3
(determined with reference to prior studies with similar mod-
elling objectives: Shrestha et al., 2014; Vis et al., 2015; Pool
et al., 2017). Metrics were determined across the full time
series for each catchment parameter set pairing (e.g. for the
River Nar, 54 years of seasonal ER HIs were determined for
each of the 23 parameter sets). Three statistical tests were
applied, where the goal is the rejection of the null hypothesis
(α = 0.001). Welch’s t-test considers the correlation between
the means of the observed and simulated indicators, whilst
the KS and CvM (Cramér, 1928; Anderson, 1962) tests look
to the distribution of the interquartile range and tails respec-
tively; agreement indicates a relationship between the ob-
served and simulated ER HIs. The hydrologic alteration fac-
tor (HAF) is adapted from the IHA approach (Mathews and
Richter, 2007). It is a measure of the simulated and observed
frequencies of values within three target percentile ranges:
0–25th, 25–75th, and 75–100th. As a measure of distribu-
tion, HAF is essentially a simplification of the distribution

function. The acceptable range of HAF values is defined as
±0.33. Finally, two measures of error are determined: model
efficiency, or the NSE, and the mean arctangent absolute
percentage error (MAAPE), designed to address the limita-
tions inherent to mean absolute relative error (Kim and Kim,
2016).

3 Results

3.1 Model parameters

For all catchments, the low-flow optimized six-parameter
GR6J model was invalidated; GR5J was invalidated for all
catchments with the exception of the Tarland Burn and River
Trent. A summary of the number of parameter sets (per
model, per catchment) and interquartile ranges is presented
in Table 4, normalized (by the parameter limits specified
in Table A1). For further details, see Fig. B1. Being re-
lated in function, the parameters of the production (x1) and
routing (x3) store capacities exhibit the greatest range. The
groundwater exchange coefficient (x4) and inter-catchment
exchange threshold (x5; where applicable) appear more con-
sistent, whilst the time elapsed for the routing of flow appears
inversely related to BFI.

3.2 Model performance and consistency

The ability of the covariance approach in the replication of
the ER HIs is considered in terms of performance and consis-
tency. The models are evaluated with reference to the metrics
summarized in Table 3 previously. Results are considered by
metric, with a focus on the ER HIs with the best and worst
performance and consistency.

3.2.1 Statistical tests

A series of tests were applied with a view to determining
whether, statistically speaking, the observed and simulated
ER HIs come from the same population. The tests focus on
the mean (t-test), the central distribution (KS) and tails of the
distribution (CVM test). Table B1 in the Appendix details,
per ER HI and catchment, the percentage of the parameter
sets which did not show a significant level of agreement.

The statistical tests saw perfect agreement across all six
timing indicators. With respect to the magnitude indices, the
ER HI BFIr and the three skewness indicators do not satisfy
any of the tests; performance appears irrespective of impor-
tance indicated by the hydroecological model or catchment.
Magnitude median-quantile ratio agreement was mixed, with
high and low flows achieving poor and good agreement re-
spectively. Broadly, frequency indicators indicate a lack of
agreement, with only the PlsFld index in the River Thrushel
exhibiting performance and consistency. The role of statisti-
cal importance in the replication of these more complex in-
dicators is also suggested, with PlsQ75 replicated well in the
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Table 3. Descriptions, definitions and optimal values for the applied evaluation metrics. For the statistical tests, the optimal value of p<0.001
represents the significance threshold (α = 0.001).

Metric Description Definition
(or R function)

Optimal value

Statistical
tests

Welch’s t-test Variation on correlation where the two sam-
ples have unequal variances. Hypothesis is
that two populations have equal means.

stats::t .test(. . . ) p<0.001

Kolmogorov–Smirnov
test (KS)

Tests whether samples come from the same
population, i.e. follow the same distribu-
tion.

stats::ks.test(. . . ) p<0.001

Cramér–von Mises
(CvM)

Addresses limitations of the KS test: (1) less
focused on the central distribution; (2) more
equal weighting on the tails of the distribu-
tion.

cramer::cramer.test(. . . )
(Franz, 2014)

p<0.001

Distribution Hydrologic alteration
factor (HAF)

A factor developed as part of the Indi-
cators of Hydrologic Alteration (Mathews
and Richter, 2007). Tests the replicability
of sections of the probability distribution
(lower-tail, IQR and upper-tail) for a given
index.

Fsim−Fobs
Fobs

Where F is fre-
quency, the no. of
values lying within
the probability
distribution.

0

Measures
of error

Mean arctangent
absolute percentage
error (MAAPE)

A modification of MARE. Considers the
relative error as an angle rather than a slope,
reducing the bias of large errors.

1
n

∑
arctan

(
Iobs−Isim
Iobs

)
Where I is the
index value and n the
no. observations.

0

Model efficiency
(NSE)

Nash–Sutcliffe efficiency. A measure of the
goodness of fit of the HI to the 1 : 1 line (ob-
servational mean) normalized by the
variance.

1−
∑
(Iobs−Isim)

2∑(
Iobs−Iobs

)2
Where I is the index
value.

1

Tarland Burn (importance 0.69) and poorly in the River Trent
(importance 0.03). More broadly, log-transformed indicators
saw better agreement; for example, the more important Max-
MonthlyVar generally performed poorly, whilst MaxMonth-
lyLogVar saw agreement across all tests and parameter sets.

3.2.2 Distribution – hydrologic alteration factor (HAF)

The hydrologic alteration factor (HAF) is a test of the repli-
cability of the shape of the probability distribution. Figure 3
summarizes the HAF value across the central distribution and
tails for each ER HI. There is agreement across the percentile
ranges for the majority of the ER HIs considered. Notably,
the 19 (of 22; statistics, log ratios and median-quantile ratios)
magnitude indicators not pictured achieved an optimal HAF
of zero. The 3-monthly indicators (depicted) again highlight
relative success in replicating a log-transformed index.

The performance of the six indicators capturing flow pulse
events is varied: the central distribution of flood pulses is
well-replicated, whilst the upper tail exhibits a consistent
large negative bias. The HAF values also serve to highlight

some inconsistencies in the performance of the timing indi-
cators. A variable negative bias is in evidence for the index
Mn7MaxJD; however, in this case, it is worth noting that it is
inherently more difficult for a hydrological model to detect
and replicate (multiple) short-term events (Pool et al., 2017).
Perhaps surprisingly, Mn90MnJD is subject to a large posi-
tive bias in the lower tail, i.e. the range of the distribution is
underestimated. In contrast to Mn7MaxJD, this discrepancy
may be due to the long(er)-term duration; with seasons of
approximately 180 d in length, there are a limited number of
values the indicator can take.

3.2.3 Error – MAAPE and NSE

Two measures of error were applied, MAAPE, a modifica-
tion of the mean absolute relative error (MARE) which re-
duces the bias of large errors, as well as the more com-
monplace NSE. The MAAPE for each ER HI is depicted in
Fig. 4; to ensure consistency with HAF, acceptable bound-
aries are specified as ±0.33 (depicted, horizontal red lines).
Overall, the same general patterns may be observed; for ex-
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Table 4. Normalized interquartile (IQR) range across the parameter sets for each catchment. The average and mean values across all catch-
ments and models are also indicated. The model GR6J was invalidated; therefore, parameter x6 is omitted.

Tarland Burn River Ribble River Trent River Nar River Thrushel
Summary

No. of free parameters 4 5 4 4 5 4 4

No. of parameter sets 15 4 24 12 4 23 18 Average Median

x1 0.29 0.76 0.48 0.04 0.08 0.31 0.45 0.35 0.31
x2 0.13 0.05 0.26 0.11 0.08 0.04 0.07 0.10 0.08
x3 0.16 0.25 0.18 0.07 0.51 0.30 0.17 0.24 0.18
x4 0.09 0.09 0.03 0.11 0.04 0.01 0.02 0.06 0.04
x5 – 0.05 – – 0.08 – – 0.06 0.06

Figure 3. Hydrologic alteration factor (HAF) values for the three percentile ranges for each ER HI; ER HIs are grouped by facet of the flow
regime: magnitude (M), duration (D), frequency (F ), timing (T ) and rate of change (R). The acceptable range of HAF values is defined
as ±0.33 (red dashed line); HAF>0 represents an increase in frequency relative to that observed, whilst HAF <0 represents a decrease.
All magnitude statistics and ratio ER HIs achieved optimal values (HAF= 0) and are not depicted. The four- and five-parameter results are
adjacent, left and right respectively, for the Tarland Burn and River Trent.

ample, skew indicators are not well-replicated, log transfor-
mation improves the monthly index performance, and tim-
ing, with the exception of Mn90MinJD, achieves consistently
good performance. However, it is clear that the considera-
tion of multiple parameter sets per catchment model leads
to variation in the simulated ER HI which may not have
been detected by the previous metrics. MAAPE also serves
to highlight the difference in performance across the median-
quantile ratios, extreme high-flow indices (Qmax to Q05) are

overestimated, whilst the replication of low-flow indices is
subject to considerably less (negative) bias.

The NSE is a measure of model efficiency where values
less than zero suggest that the observational mean may be
a better estimate. In Fig. 5, only ER HIs with NSE>0 are
depicted with the number of parameter sets described as n;
for all ER HIs, see Fig. B2.

Seventeen ER HIs achieved NSE values greater than zero;
further, the low values of n which are in evidence (Fig. 5) in-
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Figure 4. Mean arctangent absolute percentage error (MAAPE) values for each ER HI; ER HIs are grouped by facet of the flow regime:
magnitude (M), duration (D), frequency (F ), timing (T ) and rate of change (R). As per HAF, the acceptable range is defined as ±0.33 (red
dashed line). The four- and five-parameter results are adjacent, left and right respectively, for the Tarland Burn and River Trent.

dicate a lack of consistency across parameter sets. Those ER
HIs which have already been shown to perform well are indi-
cated: examples include the low-flow median-quantile ratios,
the log-transformed monthly index and the timing indicators
more generally.

4 Discussion

There is a clear need to understand the impact of hydrologic
change on the river ecosystem. To this end, hydrological
models are used to simulate flow time series from which eco-
logically relevant hydrological indicators are derived. Previ-
ous studies (e.g. Vis et al., 2015; Shrestha et al., 2014; Pool et
al., 2017) have highlighted the inability of hydrological mod-
els to simulate a range, or suite, of ER HIs concurrently. In
this study, a modification of the Vogel and Sankarasubrama-
nian (2003) covariance approach was applied to five hydro-
logically distinct catchments; the focus was on the replication
of a suite of ER HIs identified through catchment-specific
hydroecological models. The ability of this modified covari-
ance approach, in terms of performance and consistency, was
assessed through a series of evaluation metrics.

A range of catchments was, with the main differences ly-
ing in the catchment BFI, length of the available time series

and the ER HIs. In this study, BFI ranged from 0.25 to 0.91,
essentially flashy to groundwater-fed. With the exception of
model parameterization, there was no discernible difference
in the replication of ER HIs. Similarly, the length of the avail-
able time series appears to have made no observable differ-
ence to the replicability of the ER HI distributions specifi-
cally. In terms of error, MAAPE and NSE, lower overall per-
formance for the shorter time series is expected as a result
of sample size sensitivity. Finally, despite consideration of a
range of ER HIs with different associated importance, there
appears a consistent message in terms of the performance
and consistency of similar indices and the facets of the flow
regime more broadly.

4.1 Performance and consistency

The consideration of a range of catchments provides a clear
picture of the capacities of the hydrological models as well
as the relative success of the covariance approach. Over-
all, replication of the ER HIs was good. Timing and log-
transformed indicators (logQVar, MaxMonthlyLogVar and
the log-quantile ratios) were among the most consistent
and well-replicated across the range of catchments. The re-
sults are broadly consistent with a number of recent studies
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Figure 5. Nash–Sutcliffe efficiency (NSE) for each ER HI where NSE >0 (model skill greater than the observational mean); see Fig. B2 for
all NSEs. The ER HIs are grouped by facet of the flow regime: magnitude (M), duration (D), frequency (F ), timing (T ) and rate of change
(R). The four- and five-parameter results are adjacent, left and right respectively, for the Tarland Burn and River Trent.

(Melsen et al., 2018; Mackay et al., 2019; Worthington et al.,
2019) where timing and duration indicators are among the
indicators with the highest prediction accuracy. Difficulties
were observed in replicating frequency and rate of change
indices. Replication of indicators incorporating the seasonal
median flow (Q50) was also poor, with large positive biases
frequently observed. This may be observed directly through
comparison of the replication of Q01 and Q01Q50 in the
River Trent where the degree of error can be seen to markedly
increase. Recent studies by Mackay et al. (2019) and Wor-
thington et al. (2019) also observed higher error rates for
monthly indicators.

4.1.1 Suitability of ER HIs in hydrological modelling

This, and previous studies, have observed difficulties in the
replication of frequency ER HIs (flow pulses). This begs the
following questions. Is this a product of the covariance ap-
proach? An inherent limitation of hydrological models more
generally? Or is this related to the nature of the indicator it-
self? A review of the simulated flow suggests the latter. There
is a tendency for the simulations to identify shorter more
frequent pulses, whilst the observed pulses are longer and
less frequent. For instance, the median error (MAAPE) for
PlsQ50 (the number of pulses above a baseline Q50 thresh-

old) on the River Trent was 0.75; this falls to 0.368 if the
focus is on the total duration of the pulses. The pooling of
events with an inter-event time below some threshold, as per
the inter-event time and volume criterion (Gustard and De-
muth, 2009) for example, may serve to improve the replica-
tion of the pulse indicators. It should be noted that, in this
study, this limitation does not extend to flood pulses (Fld-
Pls) due to the much larger inter-event time, thus allowing
for better replication of flood pulses overall.

In multiple cases, this study observed difficulties in repli-
cating those ER HIs which are considered relative to the me-
dian seasonal flow. Comparison of the indicators Q01 and
Q01Q50 in the same catchment indicates that the lack of di-
rect consideration of median flows in the parameterization of
the model may be a limiting factor. Indeed, it may be that the
decomposition of such indicators into their component parts,
e.g. Q01 and Q50, may lead to better replicability overall.
Similarly, the results indicate that log transformation of flows
may lead to improvements in the replicability of certain ER
HIs.

Further work is required to confirm this premise.
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4.1.2 Suitability of evaluation metrics

There is a lack of consistency in the evaluation metrics
considered in the evaluation of hydrological model perfor-
mance. Further, these studies make use of metrics which ex-
hibit known bias, for example, mean absolute relative error
(MARE; Kim and Kim, 2016; and NSE, Gupta et al., 2009;
Pushpalatha et al., 2012; Vis et al., 2015). For the measure
of error, this study replaced the former with MAAPE (see
Table 3). The reasons for the consideration of NSE in this
study were twofold: (1) application of NSE is the norm; and
(2) to illustrate the limitations of this measure. The limita-
tions of NSE are frequently cited as low scores where there
is high variability (Gupta et al., 2009) as well as a bias to-
wards high flows (Pushpalatha et al., 2012). Additionally, the
NSE is scaled by the standard deviation, rendering it incom-
parable across catchments (Gupta et al., 2009). In this study,
only 17 of the ER HIs achieved NSE>1; i.e. the simulations
are better than an estimation based on the observed mean.
Similar observations were made in Vis et al. (2015). It can
be concluded that, given this lack of robustness, NSE is not
a suitable evaluation metric in studies such as this one.

4.2 Advantages and limitations of the modified
covariance approach

In this section we consider the general advantages of the
modified covariance approach, relative to the traditional ap-
proach; this is followed by consideration of the hydroecolog-
ical modelling requirements. It is clear that no approach has
been able to achieve adequate performance and consistency
in the replication of more complex ER HIs, specifically those
related to rate of change. Shrestha et al. (2014) observed dif-
ficulties in replicating low flows, the duration of flow pulses,
and monthly flows specifically. In this study, no such obser-
vations have been made with regards to low flows and dura-
tion; indeed, these may be considered to be relatively well-
replicated across all catchments. Poor replication of monthly
ER HIs does however persist; log-transformed variations of
these indicators may represent a viable alternative. Whilst
Pool et al. (2017) saw improvements (relative to Shrestha et
al., 2014; Vis et al., 2015), the need to calibrate the model to
each ER HI in question would strongly call into question the
reliability of the hydrological model (due to the inability of
the hydrological model to simulate catchment hydrological
processes simultaneously). The consistency with which (the
majority of the) ER HIs are replicated here illustrates that
this is not a necessary limitation of hydrological models. A
lack of consistency in ER HIs demonstrating elevated levels
of variability, such as high flows, is to be expected due to the
dynamic nature of inter-annual weather patterns (Pool et al.,
2017).

4.2.1 General advantages

Here follows a brief discussion of the general advantages of
the modified covariance approach. First, uncertainty is re-
duced via a number of avenues.

– Disinformative data. Models calibrated following a tra-
ditional approach are particularly sensitive to measure-
ment error (Westerberg et al., 2011). Lack of agreement
in the observed–simulated time series, even for a sin-
gle event, may bias the objective function, leading to
rejection of an otherwise well-performing parameter set
(Beven, 2010; Westerberg et al., 2011). Methods which
do not focus on the replication of time series directly,
such as the modified covariance approach, are known to
limit the influence of input uncertainty (Westerberg et
al., 2011; Euser et al., 2013).

– Validation of model structure. Consideration of the ob-
served and simulated moments allows the user to eval-
uate the ability of the hydrological model structure in
capturing the hydrological processes in the catchment,
thus ensuring the selection of the optimal model (struc-
ture).

– Equifinality. Equifinality, reaching the same outcome by
different means, is a major challenge of hydrological
modelling. In the modified covariance approach the en-
tire parameter space is considered at the outset. A plau-
sible parameter space is determined by focussing on the
region which is best able to replicate the characteristics
of the HIs, thereby reducing the epistemic uncertainty
associated with accounting for equifinality (Wu et al.,
2017).

Finally, whilst the large number of simulations required un-
der the modified covariance approach may seem prohibitive,
this demand may be offset. Unlike the traditional approach,
where selection algorithms may introduce issues of speed
and accuracy (Seibert, 2000), finite time is needed to apply
the covariance approach. All simulations of the hydrologi-
cal model are performed at the outset; once the full suite of
parameter sets have been simulated, the hydrological model
need not be run again. Under a more traditional approach,
such as in Pool et al. (2017) where the ER HIs serve as the
objective, the HIs must be specified at the outset. This is not
the case in the modified covariance approach, where the n
Monte Carlo simulations can be performed in advance of HI
selection. Thus, multiple suites of ER HIs may be considered
(e.g. all rate of change or magnitude indicators) with limited
additional time outlay.

4.2.2 Hydroecological model requirements

The explicit consideration of the outcomes of hydroecolog-
ical modelling is perhaps both the most significant advan-
tage and disadvantage of the modified covariance approach.
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Whilst hydrological modelling informed by the outcomes
of hydroecological studies is not new, for instance, Pool et
al. (2017) was informed by Knight et al. (2014), the novelty
of this approach lies in the explicit consideration of the sta-
tistical importance of the ER HIs, identified through hydroe-
cological modelling. The consideration of the relative impor-
tance of each ER HI allows a large suite of ER HIs (7 to 13)
to be considered with no apparent penalties. Further, contrary
to expectations, a large number of important ER HIs (>0.5)
has no impact on replicability. In the case of the River Rib-
ble, where a total of 13 ER HIs were considered, 7 had an im-
portance greater than 0.5. Similarly, through this approach, a
high weighting is not needlessly attributed to ER HIs with
low importance.

The need for a hydroecological model represents the major
limiting factor due to the requirement for long-term hydroe-
cological time series. Historically, hydrological and ecologi-
cal data were collected for different objectives (Poff and Al-
lan, 1995; Knight et al., 2008; Monk et al., 2008), leading to
a mismatch in temporal and spatial coverage. High levels of
disparity in sampling and gauging sites inevitably introduce
noise into the model. However, the availability of national
ecological datasets, such as BIOSYS in the UK, may serve
to offset the issue of data availability. Such datasets may be
used to develop regional hydroecological models based on
flow regime type and the assumption of homogeneity in en-
vironmental conditions. The modified covariance approach
may also be applied without a numerical measure of the rela-
tive importance of each indicator; this would however intro-
duce an element of subjectivity into the parameterization of
the model.

4.3 Wider applicability and further work

The modified covariance approach is able to provide statis-
tically robust simulations and projections of ER HIs for ap-
plications such as environmental flow assessment or in as-
sessing the hydroecological impact of climate change such
as in Visser et al. (2019a, b). However, the applicability of
the approach may not be limited to hydroecological studies
and the simulation of ER HIs (e.g. replication of hydrolog-
ical signatures). In this context, example applications could
include the replication of water resource management indi-
cators (monthly, seasonal and annual flows). Such applica-
tions would require consideration of a statistical model for
the determination of the statistical importance of indicators.
The approach may also be used in the development of re-
gional hydrological models, thereby facilitating the simula-
tion of ER HIs in ungauged catchments. Finally, the clarity
with which model structures are accepted or rejected makes
the approach apt for use in combination with model selection
frameworks such as the Framework for Assessing the Real-
ism of Model Structures (FARM; Euser et al., 2013).

5 Concluding remarks

This study considered the performance and consistency of
a modified covariance approach in the replication of ecologi-
cally relevant hydrological indicators. Application across five
hydrologically diverse catchments showed a consistent level
of performance across the majority of ER HIs; the timing
facets of the flow regime were best replicated, whilst rate of
change indicators saw the poorest performance and consis-
tency. Relative to similar studies, there was an overall im-
provement in consistency; thus, this study represents an im-
portant advancement towards the robust application of hydro-
logical models for ecological flow studies. The explicit con-
sideration of hydroecological modelling outcomes allows the
hydrological model to be tuned to parameters based on statis-
tical importance. A further major advantage of the modified
covariance approach lies in the identification of the plausible
parameter space which best captures (replicates) the charac-
teristics of the ER HIs, thereby providing a greater under-
standing of the suitability, limitations and uncertainties of the
hydrological model structure.

Data availability. The hydroclimatological data used for all catch-
ments (except the Tarland Burn) are freely available from the
NRFA (2018), Met Office (2018a, b). Data for the Tarland Burn
were provided to Heriot-Watt on request for this study by the James
Hutton Institute (JHI, 2018).
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Appendix A: Method

A1 Case studies

Table A1. Parameter limits for the hydrological models.

Description Limits

x1 Capacity of production store (mm) (100, 1200}
x2 Groundwater transfer (mm d−1; positive indicates flow from aquifer) (−5, 25}
x3 Capacity of routing store (mm) (20, 1000}
x4 Time lag between rainfall event and flow (days) (0.5, 30}
x5 Inter-catchment exchange threshold (–) (−5, 25}
x6 Capacity of parallel routing store (mm) (20, 1000}

Figure A1. Distribution of the case study catchments across the UK.
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A2 Hydroecological modelling

Based on Olden and Poff (2003) and Monk et al. (2006),
daily mean flow data were used to derive 63 hydrological in-
dices per hydrological season: winter (ONDJFM) and sum-
mer (AMJJAS); for the data source, see Table 1. Principal
component analysis (PCA) was applied to identify those in-
dices which describe the major aspects of the flow regime
whilst minimizing redundancy.

Macroinvertebrates serve as the proxy for ecological re-
sponse. Response is determined using the Lotic-invertebrate
Index for Flow Evaluation (LIFE), accounting for macroin-
vertebrate flow velocity preferences (Extence et al., 1999).
For four out of five case studies LIFE scores were determined
to family level; data for the River Nar, obtained directly from
the Environment Agency, were available to species level. The
modelling focused on spring ecological activity (the period
of peak activity and largest consistent availability of data).

Following Visser et al. (2019b), an information theory ap-
proach to modelling was taken in order to provide a quantita-
tive measure of support for parameters and candidate models.
Inference is made from multiple models through model av-
eraging. In summary: (1) the candidate models are evaluated
with respect to the second-order bias-corrected Akaike infor-
mation criterion (AIC) (following Burnham and Anderson,
2002; see also Visser et al., 2019b); (2) a best approximat-
ing model is inferred from a weighted combination of all the
candidate models; (3) the parameters are ranked, such that
the highest value represents the most important in the model;
(4) filters are applied to remove parameters where the esti-
mate and confidence intervals are zero (i.e. certainty that the
index is not to be included) and to reduce the model to the pa-
rameters which describe 95 % of the cumulative information.
For further details, see Visser et al. (2018, 2019b).

Figure A2. Structure of the GR4J hydrological model, based on
Perrin et al. (2003). The five-parameter GR5J sees the addition of
x5, inter-catchment exchange parameter, at the same locations as
x2, whilst GR6J sees the addition of a store parallel, capacity x6, to
the routing store.
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A3 Hydrological modelling

Figure A3. Observed and simulated moments for the 100 000 Monte Carlo simulations using the GR4J model for the River Nar case study.
The grey boxes depict the boundaries of the limits of acceptability per index. One of the selected parameter sets, i = 73 952, is highlighted
(yellow).
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Appendix B: Supplementary results

B1 Ecologically relevant hydrological indices and test
statistics
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B2 Model parameters

Figure B1. Boxplots of the parameter values across the 100 selected models. The whiskers represent the maximum and minimum values
observed.

B3 Nash–Sutcliffe efficiency

Figure B2. NSE for each ER HI; see Fig. 5 for NSE>0. The four- and five-parameter results are adjacent, left and right respectively, for the
Tarland Burn and River Trent.
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