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Abstract. Hydrological models can provide estimates of
streamflow pre- and post-observations, which enable greater
understanding of past hydrological behaviour, and poten-
tial futures. In this paper, a new multi-objective calibration
method was derived and tested for 303 catchments in the
UK, and the calibrations were used to reconstruct river flows
back to 1891, in order to provide a much longer view of
past hydrological variability, given the brevity of most UK
river flow records which began post-1960. A Latin hypercube
sample of 500 000 parameterisations for the GR4J model for
each catchment were evaluated against six evaluation met-
rics covering all aspects of the flow regime from high, me-
dian, and low flows. The results of the top ranking model pa-
rameterisation (LHS1), and also the top 500 (LHS500), for
each catchment were used to provide a deterministic result
whilst also accounting for parameter uncertainty. The cali-
brations are generally good at capturing observed flows, with
some exceptions in heavily groundwater-dominated catch-
ments, and snowmelt and artificially influenced catchments
across the country. Reconstructed flows were appraised over
30-year moving windows and were shown to provide good
simulations of flow in the early parts of the record, in cases
where observations were available. To consider the utility of
the reconstructions for drought simulation, flow data for the
1975–1976 drought event were explored in detail in nine case
study catchments. The model’s performance in reproducing
the drought events was found to vary by catchment, as did

the level of uncertainty in the LHS500. The Standardised
Streamflow Index (SSI) was used to assess the model sim-
ulations’ ability to simulate extreme events. The peaks and
troughs of the SSI time series were well represented despite
slight over- or underestimations of past drought event mag-
nitudes, while the accumulated deficits of the drought events
extracted from the SSI time series verified that the model
simulations were overall very good at simulating drought
events. This paper provides three key contributions: (1) a
robust multi-objective model calibration framework for cal-
ibrating catchment models for use in both general and ex-
treme hydrology; (2) model calibrations for the 303 UK
catchments that could be used in further research, and op-
erational applications such as hydrological forecasting; and
(3) ∼ 125 years of spatially and temporally consistent re-
constructed flow data that will allow comprehensive quanti-
tative assessments of past UK drought events, as well as long-
term analyses of hydrological variability that have not been
previously possible, thus enabling water resource managers
to better plan for extreme events and build more resilient sys-
tems for the future.
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1 Introduction

Hydrological extremes and associated flood and drought
events threaten the security of water supply, food supply,
livelihoods and welfare (Kundzewicz and Matczak, 2015).
Managing the impacts of both rainfall excess and deficit on
the hydrological system poses a significant challenge for
authorities and water resource managers across the globe.
These challenges are set to become more acute in future:
the latest projections for Europe suggest increasing hydro-
logical variability with more severe extremes (Collet et al.,
2018; Guerreiro et al., 2018; Teuling, 2018) and further re-
ductions in low flows in many regions (Wilby and Harris,
2006; Christierson et al., 2012; Prudhomme et al., 2012; Kay
et al., 2018; Marx et al., 2018). Increasing demands due to a
growing population and socio-economic changes also imply
growing pressures on water resources in the future, necessi-
tating considerable investment in long-term strategic water
resources planning and adaptation (HM Government, 2017).

Understanding extremes of the past can help us prepare
for future extreme events. Drought characteristics of events
in the recent past can be used to stress test water supply sys-
tems (Mens et al., 2015), a practice that is commonly applied
in UK water resource management and drought plans (e.g.
Southern Water, 2013; Northumbrian Water, 2017). Simi-
larly, drought severity estimates of past events have been
used to investigate the impacts of increased drought fre-
quency on water supply vulnerability (Herman et al., 2016).
There is a growing trend towards testing water supply sys-
tems against events worse than those experienced, using ei-
ther scenario-based methods (e.g. Stoelzle et al., 2014; An-
derton et al., 2015) or stochastic approaches to generate sim-
ulated droughts with credible characteristics (e.g. Atkins,
2016). In addition, short-term water management planning
can benefit from seasonal forecasting of reservoirs inflows
and streamflow volumes (Prudhomme et al., 2017), so that
periods of water deficit can be known in advance and ap-
propriate measures put in place to manage resources and
mitigate impacts. However, these methods are all dependent
on having a good understanding of past variability and long
hydrometric records which are used to train and validate
stochastic approaches, and to create tools that enable the sim-
ulation of river flows as accurately as possible under a range
of varied climate conditions.

Observations of global streamflow are sparse prior to the
1950s, with less than 20 % of stations in the Global Runoff
Data Centre (GRDC, 2019) beginning pre-1950. Post-1960,
the streamflow network expanded rapidly, a pattern that is
mimicked by the UK gauging network, where 100 gauging
stations in 1950 have increased to over 1300 today. Qualita-
tive data sources and long rainfall records can identify sig-
nificant drought events in the pre-instrumentational period
(Pfister et al., 2006; Marsh et al., 2007; Brázdil et al., 2016).
However, these cannot be used to determine whether these
events were more or less severe in hydrological terms than

those on the observational record, and there is a need for
temporally and spatially coherent flow time series to allow
systematic assessment of extreme events.

Meteorological records of rainfall and temperature gener-
ally extend further back than hydrological data, often pro-
viding data from the turn of the 21st century (New et al.,
2000), and occasionally as far back as the mid-20th century.
Modelled climate reanalysis data (e.g. Compo et al., 2011)
and long-term reconstructed climate datasets (e.g. Casty et
al., 2007) have been developed for use in scientific research
and can be fed into hydrological models to quantitatively re-
construct river flows beyond the limits of the observational
period. In the UK, quantitative reconstructions of river flows
using simple hydrological models have previously been con-
ducted, but only for a handful of catchments (e.g. Jones and
Lister, 1998; Jones et al., 2006). Regional flow reconstruc-
tions have been used to explore the implications of drought
events on water resources (e.g. Spraggs et al., 2015). Drought
reconstruction has also been conducted in other countries us-
ing proxy data (Jones et al., 1984; Cook et al., 2015), precipi-
tation data (Noone et al., 2017, Ireland), soil moisture models
(Wu et al., 2011, China), and hydrological models (Caillouet
et al., 2017, France). Generally, however, there are few ex-
tant studies that use hydrological models to derive plausible
historical sequences.

Catchment hydrological models are tools that can gener-
ate streamflow time series from meteorological time series
data, to provide continuous proxy river flow data that are
otherwise not directly available. They can be used to ex-
tend flow records, creating very long sequences that extend
back beyond the initiation of the observational network. Such
long time series can enable thorough analysis of past vari-
ability and frequency of severe events (e.g. Caillouet et al.,
2017); as vital input to short range and seasonal forecasting
(Day, 1985; Harrigan et al., 2018), providing valuable early
warnings and help preparedness; or for future projections
for long-term planning accounting for possible future non-
stationarity, for example due to global warming (e.g. Collet
et al., 2018).

Calibrating a hydrological model for multiple purposes,
e.g. flow reconstruction and forecasting, for high, low,
and average flows, requires careful consideration. Currently,
models are typically calibrated to minimise a specific type of
error against observations, measured by an “evaluation met-
ric” also known as an “objective function”. Commonly used
metrics, such as the Nash–Sutcliffe efficiency (Nash and Sut-
cliffe, 1970) or root mean squared error, tend to focus on
the correct estimation of high flows (Krause et al., 2005;
Dawson et al., 2007), whilst more general metrics, such as
mean absolute percent error and percent bias are also used
to more systematically optimise the flows and the water bal-
ance respectively. There are few examples focusing on op-
timising low flow simulation. Most commonly, a single ob-
jective function is used, implemented using automatic algo-
rithms to find a deterministic parameterisation of the model.
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Such algorithms are commonly categorised as “local” (e.g.
PEST, Kim et al., 2007) or “global” (e.g. SCE, Duan et
al., 1993), some examples of which have been compared
by Wallner et al. (2012). However, seeking a single “opti-
mum” parameter set to describe the observations has been
argued to be a misconception with theoretical catchment
models (Beven, 2012). The need for calibration techniques
to maximise hydrological model performance against multi-
ple elements of the flow regime has, however, been recog-
nised, and multi-objective optimisation methods have been
advancing since the turn of the century, though few studies
explore more than three objectives (Efstratiadis and Kout-
soyiannis, 2010). Multi-objective optimisation commonly in-
volves seeking Pareto-optimal solutions that find a compro-
mise between objective functions (e.g. Shafii and De Smedt,
2009; Kamali et al., 2013; Jung et al., 2017). Multi-objective
methods may also be used to optimise more than one hy-
drological variable (e.g. Mostafaie et al., 2018). In addition,
utilising multiple model parameterisations have been advo-
cated to account for “equifinality” – that many different pa-
rameterisations may produce equally adequate simulations of
past observations (see, for example, Beven and Binley, 1992;
Beven, 2006).

Here, we develop a framework to establish a national net-
work of catchment hydrological models and evaluate their
application to the reconstruction of hydrological time series,
with application to the UK over the period 1891 to 2015. The
aims of this research are to

– develop a robust method for multi-objective model cal-
ibration suitable for use in simulating streamflow with
associated uncertainty,

– apply that method to reconstruct historic streamflow
time series from the 1890s across the UK,

– examine the performance of these time series where ob-
servations are available, and

– explore the potential for application of these time series
in evaluating drought events.

This paper first outlines the datasets in Sect. 2, before de-
tailing the modelling methods in Sect. 3. Section 4 provides
the results of the performance of the model reconstructions
compared with streamflow observations, both generally and
during drought events. Section 5 discusses the potential lim-
itations of this work, and suggests directions for further re-
search, before the paper is concluded in Sect. 6.

2 Data

The hydrological model employed in this study (see
Sect. 3.1) requires rainfall and potential evapotranspiration
data to run, and observed flow data for calibration and vali-
dation. Means of access to the datasets used in this study are

described in the Data availability section at the end of the
paper.

2.1 Catchment selection and flow data

A diverse set of 303 UK catchments were selected for model
calibration. Initially, 395 stations were considered, from the
near-natural catchments suitable for low flow analysis from
the UK Benchmark Network (Harrigan et al., 2017), and
those which are part of the National Hydrological Moni-
toring Programme (https://nrfa.ceh.ac.uk/nhmp, last access:
23 July 2019), which are of particular interest for operational
water situation monitoring. Catchments were required to
have a minimum of 32 years of observational daily data from
the National River Flow Archive (https://nrfa.ceh.ac.uk/, last
access: 23 July 2019), from 1984 to 2015 for model calibra-
tion. Some catchments that suffered repeated or prolonged
periods of missing data, truncation of flow measurements,
step changes, and artificial influences resulting in unrealis-
tic flow patterns were removed from the catchment selection,
resulting in 303 catchments. These catchments had records
ranging from 32 to 135 years in length, with an average
length of 49 years. The average completeness in the gauged
daily flows was 99.2 % (with a minimum of 90 %, and a
maximum of 100 %). An additional two flow records were
included, the naturalised daily flows for the River Thames
at Kingston and the River Lee at Feildes Weir, making 305
flow records from 303 catchments. Throughout this paper,
the observed calibrations for these two catchments are pre-
sented (rather than the naturalised series), for consistency
with the other catchments across the UK. While this paper
presents summary results from the whole network, we also
selected a set of nine case study catchments to present re-
sults in more detail. The nine catchments (shown in Fig. 1)
were selected from each of the nine hydro-climatic regions
defined in Harrigan et al. (2017) in order to represent the
range of hydro-climatology, hydro-geology, and artificial in-
fluence across the country, as well as to explore some of the
better and some of the poorer model performances among the
303 catchments used in this study.

2.2 Rainfall data

The daily rainfall dataset used in this study was derived by
the UK Met Office as a result of a large data rescue and digi-
tisation programme. The 5 km gridded dataset, which covers
the period 1891 to 2015, was derived using the same method-
ology as the UKCP09 data (Met Office, 2017), with interpo-
lation carried out using inverse distance weighting (Perry and
Hollis, 2005). The data rescue and digitisation programme
added over 200 monthly and 38 daily gauges to the network
during the period 1890 to 1910. Catchment averages were
derived from the 5 km grids, using the catchment boundaries
provided from the National River Flow Archive, for use in
the hydrological model.
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Figure 1. Map of 303 catchments calibrated. Nine reconstruction
case study catchments (one per region) are shown with black hatch-
ing.

2.3 Potential evapotranspiration data

As the meteorological variables needed to derive potential
evapotranspiration (PET) data using the Penman–Monteith
equation (Monteith, 1965) are not available prior to 1961,
the PET data used for the reconstructions was derived us-
ing the McGuinness–Bordne temperature-based PET equa-
tion (McGuinness and Bordne, 1972), calibrated for the
UK. The temperature data for 1891–2015 were again pro-
vided by the UK Met Office following their data rescue
programme. A detailed description of the generation of the
PET dataset used in this study, following a rigorous analysis
of seven temperature-based PET equations, four calibration
techniques, and seven input temperature data sources or for-
mats, can be found in Tanguy et al. (2018).

3 Methods

3.1 The GR4J hydrological model

The GR4J (Génie Rural à 4 paramètres Journalier) daily
lumped rainfall-runoff model (Perrin et al., 2003) was used
in this study via the “airGR” R package version 1.0.2 (Coron
et al., 2017). The suite of daily GR models (GR4J, GR5J,

and GR6J) is being increasingly applied around the world,
and GR4J was chosen for several reasons:

1. GR models have been used for streamflow reconstruc-
tions previously (Brigode et al., 2016; Caillouet et al.,
2017).

2. The GR4J model has demonstrated good performance
in a diverse set of catchments in the UK (Harrigan et al.,
2018), as well as good performance at simulating tem-
poral transitions between wet and dry periods (Broder-
ick et al., 2016).

3. The GR models are openly accessible.

4. The model has a low computational demand, and can be
run in parallel without manual input requirement.

The model has four free parameters (X1–X4), requires daily
precipitation and potential evapotranspiration data as input,
and routes water into two stores: the production store and
the routing store. The production store (capacity X1) gains
water from effective rainfall and loses water through evapo-
ration and percolation. Percolated water joins that which has
bypassed the production store and is routed with a fixed split,
in which 90% is routed via a unit hydrograph (time lag X4),
followed by the non-linear routing store (capacity X3); the
remaining 10 % is routed by a single unit hydrograph (time
lag 2×X4). Groundwater or inter-catchment exchange (con-
trolled by X2) is effective on both the routing store and the
flow routed by the single unit hydrograph and can be positive,
negative, or zero.

The GR models include an optional snowmelt module, Ce-
maNeige (Valéry et al., 2014). Due to the high computational
demand of the snowmelt module, it was decided to calibrate
the GR4J model without snowmelt, as only 15 (5 %) of the
303 catchments experience a significant fraction of precip-
itation falling as snow (>15 %) over the calibration period
(Harrigan et al., 2018).

3.2 Calibration strategy

The GR4J model was calibrated for this study incorporat-
ing concepts from GLUE-type Bayesian approaches (Beven
and Freer, 2001), and multi-objective Pareto-optimal solu-
tions (Yapo et al., 1998). The approach consisted of three
stages, the details of which are further elaborated in this
sub-section: firstly the feasible parameter space was deter-
mined, and sampled using Latin hypercube sampling (LHS)
(McKay et al., 1979); secondly the model was run, and six
evaluation metrics were calculated for each parameter set;
and thirdly the top 500 parameter sets for each catchment
were selected using a very simple Pareto-optimising ranking
approach, accounting for non-acceptable trade-offs (Efstra-
tiadis and Koutsoyiannis, 2010). This method was formalised
for several reasons:
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1. Latin hypercube sampling allowed the systematic sam-
pling of the model parameter space.

2. Multiple evaluation metrics enabled the simultaneous
optimisation of several aspects of the flow regime, in-
cluding general water balance and low flows.

3. Model equifinality (Beven, 2006) could be addressed by
accepting multiple “behavioural” parameter sets.

4. A deterministic “best” parameter set could also be se-
lected.

3.2.1 Latin hypercube sampling

LHS uses Latin square theory to ensure that the full range
of each parameter is represented regardless of its resultant
importance (Cheng and Druzdzel, 2000), whilst maximising
efficiency in comparison to a simple random sampling ap-
proach. An LHS set of 500 000 model parameter sets (pa-
rameterisations) for the four model parameters was derived
using the MATLAB package “lhsdesign” (The MathWorks
Inc, 2016), using the “maximin” criterion to maximise the
minimum distance between each point. In order to determine
what values to ascribe to the upper and lower bounds of the
parameters, a smaller experiment using 100 000 model pa-
rameterisations was run over 45 catchments as a “first pass”.
This experiment used parameter limits that could be found
in previous literature on the GR4J model (Pushpalatha et al.,
2011; Perrin et al., 2003). It was found that good parameter
sets for this first pass had storage values (X1 and X3) close
to the limits that had been set from the literature. Therefore,
in consultation with the developers of the airGR model pack-
age, it was decided to widen the ranges of parameter values,
and then to increase the number of model parameterisations
that were run to account for this increase in the parameter
space. The parameter values were sampled from a uniform
distribution, using the upper and lower limits given in Ta-
ble 1. Lower bounds of 0.0001 were ascribed to the two stor-
age parameters to represent a value of 0, without causing di-
vision errors.

3.2.2 Evaluation metrics

For each of the 500 000 model parameterisations, six eval-
uation metrics were calculated in order to employ a “multi-
objective” approach to cover the full range of the flow dura-
tion curve (see Table 2): the Nash–Sutcliffe efficiency (NSE)
focusses on optimising high flows, absolute percent bias (ab-
sPBIAS) maintains the water balance, mean absolute percent
error (MAPE) and NSE on logarithmic flows (logNSE) mea-
sure overall agreement on the full range of flows, and ab-
solute percent error in Q95 (Q95APE) and absolute percent
error in mean annual minimum on a 30 d accumulation pe-
riod (MAM30APE) focus on low flows. These metrics were
calculated over 32 water years 1 October 1982 to 30 Septem-
ber 2014.

Post-calibration, the upper and lower daily limits of the
500 top ranking parameterisations (see Sect. 3.2.3 for details
on the ranking process) were used to calculate two further
model performance metrics over the full observational record
available for each catchment (a maximum of 1891–2014):

– The uncertainty width (UncW) – calculated by taking
range of the minimum and maximum LHS500 members
each day and dividing it by the midpoint of the LHS500
for that day. The mean of these values was then calcu-
lated over the duration of the time series, as per

1
n

n∑
i=1

(
ensmax− ensmin

ensmax+ ensmin/2

)
.

– The containment ratio (ContR) – calculated as the per-
centage of days that the observations fell within the en-
velope of the minimum and maximum of the LHS500
ensemble members for that day.

3.2.3 Ranking and selecting model parameterisations

In order to optimise six evaluation metrics, the 500 000
model parameterisations were ranked from best to worst by
their scores for each metric in turn, and these ranks were then
summed to create a total rank. This total, or “basic”, rank
was used to reorder the parameterisations for each catch-
ment from best to worst, accounting for all metrics. How-
ever, the scores of the 500 000 model parameterisations were
not normally distributed, and it was found that unacceptable
trade-offs between metrics were occurring, whereby nomi-
nal increases in one metric were taking preference over quite
significant decreases in other metrics. Therefore, a series of
thresholds of acceptability were set, as shown in Table 3. A
simple iterative search algorithm was then used to re-rank
the list according to these thresholds, whilst retaining their
original ranks within each threshold group. For example, if
the first, third, and fourth parameterisations in the basic rank
met the hardest threshold for all six metrics, but the second
ranked parameterisation did not, the third and fourth would
be bumped up the rankings, above the second, resulting in a
list of [1, 3, 4, 2 . . . ]. All parameterisations meeting the hard-
est thresholds were prioritised before the algorithm switched
to search for those in meeting the middle thresholds, and so
on. From this final list, the top ranking optimum parameter
set was extracted for deterministic model applications, herein
referred to as LHS1. Due to the variability of the performance
across catchments, where hundreds of thousands of parame-
ter sets met the hardest threshold in some catchments, whilst
none met even the softest threshold in other catchments, it
was decided that extracting behavioural parameter sets using
a “limit of acceptability” approach after Beven (2006) would
not be appropriate. Therefore, a proportion of the sampled
model parameterisations, the top 500 (herein referred to as
LHS500), were taken forward to provide an indication of
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Table 1. Sampled parameter ranges.

Model parameter Units Lower bound Upper bound

X1 production store capacity mm 0.0001 3000
X2 inter-catchment exchange coefficient mm d−1

−20 20
X3 routing store capacity mm 0.0001 2000
X4 unit hydrograph time constant d 0.5 15

Table 2. Evaluation metrics used for model calibration, where i is the daily flow value, n is the number of days in calibration period, Qo is
the observed value, Qs is the simulated values, and Qo is the mean of the observed values.

Evaluation metric Equation Range Focus

Nash–Sutcliffe efficiency NSE= 1−

n∑
i=1

(Qo−Qs)
2

n∑
i=1

(Qo−Qo)
2

1 (Perfect) to –∞ High flows

Absolute percent bias absPBIAS=
∣∣∣∑(Qs−Qo)∑

Qo

∣∣∣ · 100 0 (optimum) to∞ Water balance

Mean absolute percent error MAPE=

(
1
n

n∑
i=1

∣∣∣Qo−Qs
Qo

∣∣∣) · 100 0 (optimum) to∞ Full range

Nash–Sutcliffe efficiency on log flows logNSE= 1−

n∑
i=1

(logQo−logQs)
2

n∑
i=1

(logQo−logQo)
2

1 (Perfect) to –∞ Full range

Absolute percent error in Q95 (flow exceeded 95 % of the time) Q95APE =
∣∣∣Q95o−Q95s

Q95o

∣∣∣ · 100 0 (optimum) to∞ Low flows

Absolute percent error in the mean annual minimum on a MAM30APE =
∣∣∣MAM30o−MAM30s

MAM30o

∣∣∣ · 100, 0 (optimum) to∞ Low flows

30 d accumulation period (30 d moving average) where MAM30 =
1
m

m∑
j=1

minj (MovAve30),

where MovAve30 = 30 d moving average
j = water year in calibration period,
m years in length.

parameter uncertainty within the flow simulations. The ex-
tent to which the threshold re-ranking influenced the rank-
ings varied by catchment due to the differences in mode per-
formance. Figure 2 shows the NSE and logNSE scores of
the 500 000 model parameterisations (though this graph has
been limited to show only those with positive scores for both
metrics) for the River Greet in the Severn Trent region. This
figure demonstrates how the basic ranking system identified
500 parameterisations close to the Pareto front of NSE vs.
logNSE; however; parameterisations with scores that were
lower for NSE than logNSE were selected. By applying the
thresholds, parameterisations with an NSE lower than 0.4
were rejected and replaced with others within the acceptable
range for all metrics.

3.3 Flow reconstructions

Using these 500 model parameterisations per catchment, and
the rainfall and potential evapotranspiration data described in
Sect. 2, daily flow reconstructions were produced from Jan-
uary 1891 to November 2015 for the 303 catchments. Details

on accessing this data are provided in the Data Availability
section at the end of this paper.

3.4 Standardised Streamflow Index (SSI)

The application of model results to drought analysis are
conducted here using the “Standardised Streamflow Index”
(SSI). The SSI has for some years been advocated as
an equivalent to the Standardized Precipitation Index (e.g.
Vicente-Serrano et al., 2012), being based on the cumula-
tive probability of a given monthly mean streamflow occur-
ring in a given catchment. The procedure involves fitting a
statistical distribution to time series of accumulated stream-
flow over a baseline period, then transforming the data to a
normal distribution to produce a dimensionless time series
of the deviation of flow about the catchment mean. In this
study, SSI was calculated using the 12-month accumulation
period (SSI-12) and the Tweedie distribution (Svensson et al.,
2017), over the baseline period 1961–2010. A 12-month ac-
cumulation period was chosen to provide summaries of long-
term deficits that were likely to have significant impacts on
water resources. The Tweedie distribution, which is a flexible
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Table 3. Thresholds for selecting acceptable model parameterisations.

NSE absPBIAS MAPE logNSE Q95APE MAM30APE

Optimum value 1 0 0 1 0 0
Hardest 0.5 10 50 0.5 50 50
Middle 0.4 15 75 0.4 75 75
Softest 0.3 20 100 0.3 100 100
Remainder <0.3 >20 >100 <0.3 >100 >100

Figure 2. Nash–Sutcliffe efficiency and log Nash–Sutcliffe effi-
ciency calibration scores for all sampled model parameterisations
(grey), the top 500 from the basic ranking process (blue), and the
top 500 after the thresholds were applied to negate non-acceptable
trade-offs (red). The x and y axes have been reversed and limited to
show only parameterisations that achieved positive scores. Scores
of 1 would indicate perfect simulation of the observations; optimal
performance is in the bottom left of the graph.

three-parameter distribution that has a lower bound at zero,
has been shown to perform effectively for UK river flows,
across a wide range of near-natural Benchmark catchments
(Svensson et al., 2017).

3.5 Drought accumulated deficit

Using the SSI, accumulated over a 12-month period, drought
events were identified as periods where the SSI was consec-
utively negative (i.e. below normal) with at least one month
reaching an SSI of −1.5 (Barker et al., 2016). The sum of
monthly SSIs during these events was calculated to derive
the accumulated deficit (e.g. Noone et al., 2017; Barker et
al., 2019).

Figure 3. The threshold met by the LHS1 model parameterisation
(shape), and the percentage of the LHS500 that met that threshold
(colour), for the 303 study catchments. See Table 3 for the definition
of the thresholds.

4 Results of model calibrations

4.1 Model calibration statistics

The map in Fig. 3 shows the threshold (as set out in Table 3)
met by the LHS1 runs and the percentage of the LHS500
members that met that threshold. The map shows that the
LHS1 runs for 272 of the 303 catchments met the hardest
threshold set (shown as triangles). However, there is a lot
of variability within these catchments, with 82 demonstrat-
ing all of the LHS500 met the hardest threshold (black trian-
gles), whilst 108 have less than 10 % of the LHS500 above
the hardest threshold (yellow triangles). The LHS1 run for 20
of the catchments met the “middle” threshold, and very few
catchments performed worse than this, having <0.4 for NSE
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and logNSE; >75 % for MAPE, MAM30APE, and Q95APE;
and >15 % for absPBIAS (five catchments in the “softest”
threshold, shown as circles, and six catchments that failed
to meet even the “softest” threshold, shown as crossed cir-
cles). These localised examples of poor model performance
(shown as circles and crossed circles) may be due to the
lack of snowmelt processes in the model (in Scotland and
north-eastern England), human influences such as abstrac-
tions and water transfers or significant groundwater interac-
tions (in Anglian and southern England). For the Warleggan
in Cornwall, poor performance is due to underestimation of
peak flows, which may be attributed to an issue in simulating
the localised geological outcrops.

Figure 4 shows the results of the six evaluation metrics
for each of the 305 flow reconstructions over the calibra-
tion period (1982–2014), for both the LHS1 runs and the
range of the LHS500. These polar plots confirm the find-
ings of Fig. 3, showing that the model performance is gen-
erally very good, with most of the LHS1 runs for the 305
catchments satisfying the thresholds defined in Table 3 with
ease. This plot allows the assessment of each performance
metric individually and shows that performance varies both
between metrics and across catchments. The poorest scores,
where the LHS1 did not meet the softest threshold, can be
mostly attributed to NSE, but MAPE and MAM30APE each
also account for one failed catchment. MAM30APE shows the
fewest LHS1 scores below the hardest threshold, and NSE
the most. LHS1 points are mostly on the extreme periphery
of the absPBIAS and MAM30APE plots, demonstrating very
good results, but several catchments deviate quite substan-
tially from this. Q95APE exhibits a similar but not so strong
pattern, whilst the LHS1 points for NSE, logNSE, and MAPE
are far more scattered. The ranges of the LHS500 scores are
also varied, with some very narrow ranges, particularly in the
SE region across all metrics. These narrow ranges show that
the 500 ensemble members are very similar in performance.
Beyond the SE region, the ranges of model performance
among the LHS500 do not appear to show any regional pat-
tern, but are generally narrower for the NSE, logNSE, and
MAPE metrics than absPBIAS, MAM30APE, and Q95APE.
These results show that using this multi-objective calibration
procedure, all six of the evaluation metrics were well opti-
mised for the majority of catchments, providing confidence
in the application of the flows derived from these model cal-
ibrations across the range of flow values.

Figure 5 shows the scores of the uncertainty width (UncW)
and the containment ratio (ContR) for each of the 303 catch-
ments. The lower the UncW (a narrow range of model re-
sults among the 500 ensemble members), and the higher the
ContR (a high proportion of the observations fitting within
the band of model runs), the more accurate and reliable the
simulation. In these results, there appears to be a correla-
tion between UncW and ContR (Pearson correlation 0.52,
with significance, p value 2.2×10−16): where UncW is high
(which can be seen as poor), the ContR is also high (seen

as good), and vice versa. This highlights the need to con-
sider both of these elements when assessing the confidence
in the model, as a low UncW with a low ContR would sug-
gest a biased and under-sensitive model. Catchments with
the smallest UncW associated with low ContR are located
in central southern England, parts of north-eastern England,
and eastern Scotland. Whilst attribution of the cause of this
modelling deficiency is difficult and out of scope here, it is
possibly linked with the “flashiness” of the catchment, which
can be due to groundwater and human influences (southern
England and parts of north-eastern England), and snowmelt
(eastern Scotland). In the majority of the catchments (250 of
303), the ContR is greater than 80 %, but the UncW is also
greater than the mean flow in 189 of those catchments.

These graphs represent an overview of the performance
of the model calibrations across the UK. The model per-
formance for individual catchments, as well as time series
of the reconstructed flow data from 1891–2015, can be ex-
plored in more detail using the interactive web applica-
tion at https://shiny-apps.ceh.ac.uk/reconstruction_explorer/
(Centre for Ecology & Hydrology, 2018a).

4.2 30-year model validation statistics

In order to evaluate the integrity of the reconstructed flow se-
ries, in the earlier pre-calibration parts of the record, the six
evaluation metrics for the LHS1 runs specified in Table 2, as
well as the uncertainty width and the containment ratio for
the LHS500, were calculated over 30-year moving windows
for all water years where flow observations were available.
These results have been plotted as polar heat maps in a sim-
ilar way to the polar plots showing the evaluation metrics
over the calibration period. Figure 6 shows the heat map for
Q95APE, whilst all eight heat maps are provided in Supple-
ment Fig. S1. In these figures, the catchments with longer ob-
servational time series are shown as longer bars that originate
nearer the centre of the circles. Here it can be seen that obser-
vations for most catchments began after the 1960s, and only
12 catchments have observations prior to the 1940s. The two
longest series in the SE region are the Lee at Feildes Weir
(plotted at the boundary with the Anglian region) and the
Thames at Kingston (plotted three catchments further clock-
wise). Long records can also be seen in the Dee in eastern
Scotland (ES) and the Severn in the Severn Trent (ST) re-
gion.

In general, across all metrics and catchments, the scores
are very stable: where bars are dark or pale, showing good
and poorer model performance respectively, they remain sim-
ilar colours throughout their length. There are some excep-
tions, which are most notable in the catchments with longer
observational records. The Avon at Evesham in the ST re-
gion, the Dee at Manley Hall in the north-western Eng-
land and northern Wales (NWENW) region, and the Bedford
Ouse catchment in the Anglian (ANG) region show reduced
model performance earlier in the record, with the bars mov-

Hydrol. Earth Syst. Sci., 23, 3247–3268, 2019 www.hydrol-earth-syst-sci.net/23/3247/2019/

https://shiny-apps.ceh.ac.uk/reconstruction_explorer/


K. A. Smith et al.: A multi-objective modelling approach for drought reconstruction 3255

Figure 4. Polar plots of the scores for six evaluation metrics over the calibration period 1982–2014. Each blue bar and associated dot
represents one of the 303 catchments, plotted around the perimeter of the circle, grouped by hydrometric region; see Fig. 1 for region
abbreviations. Dark blue dots represent the LHS1 run, and blue shaded bars represent the range of the LHS500. The score is shown on the
radial axis, with the outside of the circle representing best model performance.
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Figure 5. (a) Uncertainty width and (b) containment ratio over the calibration period (water years 1982–2014) for all 303 study catchments.
In these maps, darker blue colours represent better scores.

Figure 6. Polar heat map showing Q95APE scores calculated over
30-year moving windows for all available water years of observed
flow data. Each bar represents one of the 303 catchments, plotted
around the perimeter of the circle and grouped by hydrometric re-
gion; see Figure 1 for region abbreviations. The starting year of the
30-year window is represented on the radial axis with 1891 plotted
towards the centre of the circle. Catchments with longer observa-
tional records have longer bars. The shading of the bars represent
the Q95APE scores, with darker colours being optimum. The hard-
est (H), middle (M), and softest (S) thresholds are labelled on the
legend.

ing through orange and yellow shades as they stretch towards
the centre of the circle. It is worth noting, though, that these
catchments are not part of the near-natural Benchmark Net-
work (Harrigan et al., 2017) and have had reported issues
with inhomogeneity in their observed records as a result of
human influences. The Lee at Feildes Weir in the SE region
(plotted at the boundary with the ANG region) also shows
variation in performance across most metrics, although in
this catchment, the performance is good (plotted in black)
at the start and end of the record, with poorer performance
(shown in yellow) around the start years of 1920–1940 (eval-
uation years of 1920 to 1970). In contrast to this, the Dee
at Woodend in eastern Scotland and the Severn at Bewd-
ley in Severn Trent region, which have the longest records
in their regions, show more temporal stability in the model
performances (with black colouring for the whole bar). This,
coupled with the generally very stable results over the 20–
30 years prior to the calibration period among with the catch-
ments with shorter records, demonstrates that the flow series
produced for this study are suitable for use in longer temporal
studies, outside of the period of calibration (1982–2014).

5 Reconstructions of drought events

In this section, the nine case study catchments (shown in
Fig. 1) are used to examine the performance of both the
LHS1 and the LHS500 modelled flows at simulating drought
events.
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5.1 The 1975–1976 drought event

The 1975–1976 event was chosen as a case study period
to test the model’s capability to reconstruct drought events.
This event occurs before the model calibration period of
1982–2014 and was one of the most severe and widespread
droughts of the 20th century in the UK (Marsh et al., 2007).
Summary statistics showing the model performance for these
catchments during both the calibration period (1982–2014)
and the 10-year period surrounding this significant drought
event (1971–1980) are provided in the Supplement Table S1.
It is worth noting that the observational records in the Bush
and Crimple did not begin until 1972, nor the Greet until
1974.

5.1.1 Flow time series

SSI data for the LHS1 runs have been calculated for all
303 catchments and are freely available (Barker et al., 2018;
see Data availability). These data, along with summaries
of extracted drought events over space and time, can also
be explored using an interactive web application at https:
//shiny-apps.ceh.ac.uk/hydro_drought_explorer/ (Centre for
Ecology & Hydrology, 2018b). For this paper, the SSI has
been calculated for the LHS500 for the nine case study catch-
ments in order to evaluate how well the ensemble simulations
reproduce the drought event accumulated deficit. The plots
in Fig. 7 show observed and simulated monthly flow for the
years 1971 to 1980. Here, the simulations in each catchment
capture the variability of the observational record well; how-
ever, the model results show differing ensemble ranges be-
tween catchments. The range of the LHS500 members (re-
ferred to as the uncertainty width in Table S1) appears in the
graphs to be much wider in the Avon, Greet, and Tove than in
the Dee, Cree, and Lambourn, but this is not reflected in the
statistics. This is likely due to the higher inherent variability
or “flashiness” in the Dee and Cree over the Avon that is af-
fecting the visualisation of the uncertainty width (UncW) in
the graphs. The Lambourn does have a particularly narrow
UncW (0.23 over the 10-year period), but the Dee and the
Cree have some of the largest UncW values (1.44 and 1.46
respectively), with the Crimple showing the highest (1.52). It
is evident that where the UncW is low, the observations are
more likely to fall outside of this range; with the exception
of the Lambourn at 52 %, the ContR across the catchments
for this period is very high (exceeding 73 %), and there are
very few instances where the observations fall outside of the
range of the model ensemble members.

In the Crimple, the UncW is especially wide during low
flow events, and the observations lie very close to the low-
est of these model runs; however, the LHS1 run lies close
to the observational flow values. In other catchments, such
as the Otter, the observed and LHS1 flows sit more centrally
within the range of the LHS500. In the Avon, the observa-
tions sit centrally within the uncertainty range, but the LHS1

run overestimates low flows. The LHS1 flows for the Cree
tend to underestimate the low flows. The Avon and the Bush
display poor scores in the low flows metrics MAM30APE and
Q95APE compared with other catchments during the 1971–
1980 period. The inclusion of low flow evaluation metrics
in the LHS calibration procedure does not appear to have
heavily impacted the performance of the model during high
flows. The high flows that followed the 1975–1976 drought
event are very well simulated, with the exception of the Lam-
bourn and the Greet where there are slight discrepancies in
the monthly peak flows.

Daily flows for January 1975–December 1976 (shown in
Fig. 8) highlight the difference in variability between the
catchments in the northern and southern parts of the UK.
The variability is generally well simulated, though the GR4J
model exhibits some difficulty in simulating the low flow
variability in the southern catchments, with very little inter-
monthly variability in the simulated discharge, although sig-
nificant peaks are identified among the ensemble members.
Note that the abnormal peaks of the observational record
on the Lambourn in September–December of both 1975
and 1976 are the result of the West Berkshire Groundwater
Scheme (WBGS) that was implemented during the drought
to alleviate the extreme low flows, and these are not ac-
counted for in the model, which has no human influence rep-
resentation. Generally, LHS1 simulations are low among the
LHS500 runs in the Cree, Bush, and the Crimple (as seen
in the monthly plots) but are close to the observations. This
indicates that selecting the “best” simulation where a deter-
ministic result is needed is more appropriate, in these cases,
than extracting a mean or median from the ensemble.

As with the monthly flows, the Avon and the Bush show
systematic overestimation of the low flows by the LHS1 run,
whilst the Cree shows underestimation of low flows, with the
exception of the most extreme low flows in July–September
1976. These mixed results that can be seen for the nine case
study catchments highlight the variation in model perfor-
mance among the 303 modelled catchments and emphasise
the need for users to carefully appraise the evaluation met-
rics of the flow simulations for the catchments they are in-
vestigating. However, these catchments were deliberately se-
lected to explore these variations, and the results shown in
Sect. 4 demonstrate that the model performs well across a
wide range of different catchment types at the national scale.

5.1.2 Standardised Streamflow Index (SSI)

SSI data for the LHS1 runs have been calculated for all 303
catchments and are freely available (Barker et al. 2018; see
Data availability) but have also been calculated here for the
LHS500 for the nine case study catchments. These data are
used to evaluate how well the ensemble simulations repro-
duce the drought event accumulated deficit. For low flows,
we consider SSI values of −1 to −1.5 to indicate a moder-
ate hydrological drought, −1.5 to −2 a severe drought, and
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Figure 7. Monthly mean flows for 1970–1980. Each of the LHS500 ensemble members are shown in grey, with the LHS1 run shown in
black, and the observations shown in red. The y axis is presented on a log scale in order to allow better visualisation of low flows.
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Figure 8. Daily flow time series for the 1975–1976 drought event in each of the nine case study catchments. The y axis is presented on a log
scale in order to allow better visualisation of low flows.
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SSI values below −2 an extreme drought (after Barker et al.,
2016; McKee et al., 1993).

Here, the SSI time series for the same 10-year period
(1971 to 1980) are appraised and shown in Fig. 9. The un-
certainty widths in the SSI plots shown vary substantially
between catchments and directly reflect the ranges seen in
the flow time series: with the Lambourn showing a very low
UncW from the LHS500, whilst the Greet, Tove, and Otter
show a wider range. In the Lambourn, Dee, and Bush catch-
ments, the SSI derived from the observations frequently falls
outside of the range of the LHS500, showing a low contain-
ment ratio (ContR). This behaviour is more pronounced in
the SSI time series than the flow time series. The Dee catch-
ment, for example, produced a ContR of 92.6 % for the daily
flow data over 1971–1980, but the SSI-12 ContR is just 30 %.
It is noticeable that the UncW values of the SSI data are fairly
even throughout the time series, whilst in the flow data, they
appear to be wider during the more extreme high and low
flow periods. There are two factors which may have con-
tributed to these differences: firstly that the smoothed nature
of the SSI-12 reduces the short-term variability of the data
(the ContR of the SSI-1 are closer to those of the flow data),
and secondly, when deriving the SSI, the tails of the fitted dis-
tribution are more uncertain than for the average flows, which
may result in convergence of the SSI values for the more ex-
treme members of the LHS500 during periods of high and
low flows.

For the Lambourn, the negative SSI values (below nor-
mal flows) are underestimated and the positive SSI values
(above normal flows) are overestimated showing the model
is overemphasising the extreme events. In the Avon catch-
ment the most extreme SSI deficit occurs in 1973, and the
1976 event is classed as “severe” but not “extreme” for the
observations and all but a few of the LHS500. The deficit in
1973 is simulated as being more extreme than the observa-
tions, but the 1976 event is better captured. The uncertainty
range in the Greet catchment is very wide, particularly for the
SSI peak (drought termination) in 1977; however, the 1976
SSI deficit has a lower range among the LHS500. For the
Tove, the SSI of the 1976 drought event is well simulated, as
are those for the Crimple, despite some underestimation of
SSI at other times in the 1970s. The Otter shows very good
simulation of SSI-12 during this 10-year period.

SSI time series plots over the longer period 1975 to 2015
are provided in Fig. S2. These plots show that although the
exact magnitudes of the SSI deficits and excesses are not al-
ways captured by the model in some of the poorer performing
catchments, the pattern of the SSI-12, the shape of the peaks
and the troughs are very well represented.

5.2 Drought event accumulated deficits

This section explores the accumulated deficits of extracted
drought events between 1975 and 2015 (the common ob-

served period for all nine catchments), which are presented
in Fig. 10.

This plot shows that drought events are generally in good
synchrony across the country. For these nine catchments,
four major nationwide drought events using SSI-12 are ev-
ident: 1975–1978, 1989–1993, 1997–1998, and 2004–2006.
Regional droughts include 1984 in the northern catchments
and 2010–2012, which affected England and Wales, but not
Scotland and Northern Ireland. There appears to be a rela-
tively “drought-poor” period in the south between 1977 and
1988, whilst the north shows a lack of droughts in the more
recent period of 2006–2015.

The observed events are very well captured by the model
simulations. There are only four out of a total of 40 observed
drought events across all nine catchments that are not de-
tected by the simulated drought events: an event in 1992 in
the Crimple, 1994 and 2004 in the Dee, and 2006 in the Cree.
In each of these cases, the SSI of the model simulations fall
below−1, but do not reach−1.5 (see Fig. S2), suggesting an
overestimation of low flows, and therefore a slight underesti-
mation of the drought deficit for this event. In contrast, there
are some drought events that are identified from the model
simulations that are not evident in the observed record, for
example 1998 in the Avon and the Bush. In these events the
model underestimates the flow and therefore overestimates
the drought deficit. In the Bush, this underestimation of flow
continues during the low flow periods of 2002 and 2003–
2006.

In terms of timing and deficit, the 1995–1998 drought
event demonstrates the most confidence among the simula-
tions. The Crimple catchment shows some uncertainty about
the timing of each of the events, and the majority of the
LHS500 model simulations place the 2004–2006 event later
than the observation. In Fig. S2, it can be see that this is due
to the fact that the intensity of the 2005 deficit was overem-
phasised by the model. Similarly, in Fig. 10, the 1975–1978
event in the Bush shows a wide range of mid-point dates
(centre of the circles), and the deficit also varies. Overall,
the deficits of the events are well captured by the mod-
elled data: for example, the 2004–2006 event in the north
showed smaller deficits than the 1975–1978 event, and the
modelled deficits reflect these differences. The modelled re-
sults for the 1997–1998 event in the Greet show two possible
event timings, and the thickness of the circles indicates some
differences in the simulated accumulated deficit among the
model parameterisations, though these differences are rela-
tively small.

On balance, the pattern of drought events is well simulated
by the GR4J model, despite some small differences in magni-
tude and timing, with magnitude being better estimated than
the timing. These results demonstrate that, despite the issues
seen in the SSI time series plots, the dataset can provide good
estimates of drought events and their characteristics. This
highlights the potential of the model to reproduce hydrologi-
cal drought events using just precipitation and evapotranspi-
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Figure 9. Standardised Streamflow Index (SSI) using a 12-month accumulation period for nine case study catchments over the years 1971–
1980. SSI values of 0, as well as those representing moderate (−1), severe (−1.5), and extreme (−2) drought are shown as dashed horizontal
lines on the y axis.
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Figure 10. Accumulated deficits of extracted drought events (using a threshold of SSI < − 1.5) for nine case study catchments over the
years 1975 to 2015. Circles are plotted along the x axis according to the date of the mid-point of the extracted drought event. The circle size
represents the magnitude of the accumulated deficit. Drought events extracted from the observed data are shown in red (with a thick circle for
visibility). Events extracted from the 500 ensemble members are shown with thinner black circles (these circles are semi-transparent; where
these circles appear black, multiple ensemble members are simulating the event, and where they are thick, the ensemble members show
different accumulated deficit values). Multiple, overlapping black circles suggest discrepancies in the timing of the drought event among the
ensemble members.

ration data and shows that the reconstructed flow time series
will be valuable in appraising historic hydrological droughts
over a longer period and wider spatial domain than the ob-
servations that are available.

6 Discussion

The multi-objective calibration framework presented in this
paper has produced modelled flow data with demonstrable
high performance across a wide range of available observed
records. This framework has been developed to enable na-
tionally and temporally coherent flow simulation that can be
applied to a wealth of applications, past, present, and future.
In this paper, the calibration framework has been applied to a
wide range of catchments across the UK, allowing for a de-
tailed exploration of model performance across different hy-
drological regimes. Two potentially limiting factors in model
performance were highlighted in this study: snowmelt and
human influences.

The airGR snowmelt module was not employed in this
study as only 15 of the 303 catchments showed snowmelt
fractions greater than 0.15 (15 %). These catchments were

located along 10 rivers, all in Scotland. Despite the lack
of snowmelt processes here, all of the catchments met at
least the “softest” evaluation thresholds set out in Sect. 3.2.3,
with six, eight, and one catchment meeting the hardest, mid-
dle, and softest thresholds respectively. This implies that
snowmelt only causes modelling issues for high-altitude
Scottish catchments.

Human interactions are a common problem in hydrologi-
cal modelling that remain largely understudied (Calvin and
Bond-Lamberty, 2018). Whilst global scale models have
been advancing in socio-hydrology, making use of satellite
information and governmental estimates of total water con-
sumption, the data to support such endeavours is lacking
(Bierkens, 2015). Small-scale catchment models would need
to rely on significant amounts of abstraction and licencing
data as well as reservoir operation procedures, the details of
which are often sensitive and/or unavailable. The lack of ab-
straction processes in GR4J is likely to be responsible for
some reduced model performance, particularly in the regions
of Anglian and southern England. The loss function (param-
eter X2 “inter-catchment exchange coefficient”) of the GR4J
model can account for some systematic losses or gains; how-
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ever, human influence is often non-stationary (e.g. construc-
tion and operation of reservoirs, irrigation, and water trans-
fer schemes). For the Lee at Fieldes Weir and the Thames
at Kingston naturalised river flow data, which attempt to re-
move the impact of human activity on the observed flow,
were available. Whilst not included in this paper for con-
sistency with the other 301 catchments, calibration scores
were slightly better for the naturalised flow data in these
catchments, though both naturalised and observed calibra-
tions easily met the hardest thresholds. An alternative ap-
proach is to focus studies on the “near-natural” catchments,
which are deemed to have minimal human influence. Of the
303 catchments included in this study, 115 are classified as
near-natural and are part of the Low Flows Benchmark Net-
work (Harrigan et al., 2017). Since many of the UK’s most
significant catchments are heavily influenced, they were not
excluded from this study, and the model does successfully
manage to implicitly account for human influences in these
large rivers. Localised issues in the model’s performance, and
therefore the quality of the reconstructed flow data, highlight
the need for users to take caution when choosing a catchment
from this set of 303. Depending on their needs, an alternative
nearby catchment where model performance is better may
be more suitable if model performance is poor in the initially
selected catchment.

The modelling framework developed in this study has ex-
plored model parameter uncertainty in order to account for
equifinality (Beven, 2006). A total of 500 000 parameter re-
alisations were run, and the best 500 of these were selected
for each catchment to allow for uncertainty quantification
in applications of these flow data. Here, the uncertainty in
the model runs was shown to vary more between catchments
than over time (from 1890 to 2015, where long observational
records were available). Whilst model parameter uncertainty
was considered in this study, further sources of uncertainty
can contribute to variations in model performance, includ-
ing model input data (precipitation and PET), flow data used
for model calibration, and the choice of hydrological model
(Smith et al., 2018b).

The impact of precipitation uncertainty has been shown to
be more significant than PET in hydrological modelling (Pa-
turel et al., 1995; Bastola et al., 2011; Guo et al., 2017). Perry
and Hollis (2005) and Legg (2015) state that the accuracy of
gridded data is dependent on the density of the rain gauge
network, with greater errors associated with sparse cover-
age. Therefore errors in the reconstructed precipitation data
applied in this study will be higher in the early part of the
record when the station density was lower. Since the model
is calibrated to the more recent period 1982–2014, uncer-
tainty from the rainfall data may propagate through to the
flow reconstructions in the early part of the record. However,
from the moving window analysis of model performance (see
Fig. 6), there does not appear to be significant degradation in
the quality of flow simulations in the early part of the record.
Tanguy et al. (2018) considered the impact of poorer qual-

ity and lower density of temperature data on the derivation
of the PET dataset that was employed in this study and con-
cluded that, whilst PET is an important variable for predict-
ing runoff, the influence of degraded PET input that results
from low quality temperature data on runoff simulation can
be limited by the adequate calibration of hydrological models
(Bai et al., 2016; Seiller and Anctil, 2016). Thus, the Tanguy
et al. (2018) PET dataset is considered suitable for use in
hydrological models, especially if they are calibrated to this
dataset.

Uncertainties may also arise from the observational flow
data used to calibrate models. Uncertainties from the preci-
sion of the instruments that measure the water level (stage)
and uncertainties from the derivation of the stage-discharge
relationship are both particularly sensitive in the extreme
flow ranges. For example, a 10 mm error in stage measure-
ment at the Q95 flow can result in a 20 % error in flow
for around a third of the UK’s gauging stations (National
River Flow Archive, 2019). The dataset used in this study
was taken from a reputable source (the NRFA) who, in or-
der to minimise such errors, conduct rigorous quality con-
trol procedures using both automatic and manual validation
procedures annually (Dixon et al., 2013). Nevertheless, hy-
drometric data quality does vary across the network and er-
rors tend to cluster in the extreme flow ranges, so hydro-
metric uncertainty could be influential in some periods in
catchments used herein – we recommend users consult the
NRFA’s extensive station and catchment metadata (available
at https://nrfa.ceh.ac.uk/) in conjunction with model perfor-
mance information (Smith et al., 2018a) when using the flow
reconstructions.

Whilst the parameter uncertainty in the model was evalu-
ated here, applying different model types and model struc-
tures can also yield dramatically different results. Many
multi-model experiments have been conducted to assess the
differences between hydrological models (e.g. Warszawski
et al., 2014; Vansteenkiste et al., 2014). Similarly, different
structures of the same model (e.g. GR4J, GR5J, and GR6J)
can influence the results. However, Smith (2016) found that
model parameter uncertainty can be as wide as that from us-
ing different hydrological models, and initial testing of the
GR5J and GR6J models showed significant parameter inter-
actions that resulted in poor simulations in many UK catch-
ments. It was therefore decided that considering the parame-
ter uncertainty of the GR4J model would be sufficient to de-
vise an ensemble of flow reconstructions for this dataset and
study. Future work will investigate these simulations against
a wider set of model runs using other model structures as part
of a follow-up study.

The modelling framework developed here has been shown
to be fit-for-purpose for drought reconstruction, across a very
wide range of catchment behaviours. The reconstructed se-
ries can be used to shed light on historical drought occur-
rence, characteristics (severity, duration, termination, sea-
sonality), and variability. A first exploration of hydrologi-
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cal drought using the reconstructions is presented in a com-
panion paper by Barker et al. (2019). The data can also be
used to support drought and water resources planning ac-
tivities, whether directly or to provide context for stochas-
tic approaches to drought generation. Ensembles of historical
drought events can be used to provide insight into the prob-
abilities of the termination of a current event over a certain
time period (e.g. Parry et al., 2018). Knowledge of historic
events can also be used to explore statistical correlations with
atmospheric drivers of droughts that may help predict the on-
set of events (e.g. Lavers et al., 2015). In these approaches,
extending the hydrological record by∼ 70 years significantly
increases the sample of historic drought events from which to
conduct such research. Furthermore, the modelled data may
be used to extend streamflow records used in seasonal hy-
drological forecasting with a hydrological analogue method
(e.g. Svensson, 2016). The model calibrations may be ap-
plied to studies of the impacts of climate change on future
hydrological extremes in the UK, such as in the Future Flows
Hydrology project (Haxton et al., 2012), the outputs of which
have been widely applied by water resources managers. The
modelling framework developed in this study could extend
the Future Flows Hydrology research using the more recent
UKCP18 data (Met Office Hadley Centre, 2018). However,
as with the Future Flows Hydrology project, users will need
to be aware of the implications of the lack of artificial influ-
ence processes in the model.

7 Conclusions

In this paper, a novel multi-objective calibration method was
derived and tested for 303 catchments in the UK, and the cal-
ibrations were used to reconstruct river flows back to 1891.
The GR4J model was applied and calibrated using Latin hy-
percube sampling (LHS) and six evaluation metrics simul-
taneously to allow for the evaluation of high, median, and
low flows, thus optimising the calibrations for a wide range
of potential applications. A best run (LHS1) and 500 model
parameterisations (LHS500) were used to assess model un-
certainty. Overall, the multi-objective calibration procedure
has yielded excellent model results when compared to the
observations, with the exception of only a few catchments.
The reconstructed flows were appraised over 30-year mov-
ing windows, and were shown to provide good simulations
of flow in the early parts of the record, where observations
were available. Model performance and uncertainty during
drought events was explored in nine case study catchments,
and varied by catchment. The model simulations were used
to derive the Standardised Streamflow Index, which allowed
for an assessment of the model’s ability to simulate sig-
nificant deviations from a catchment’s “norm”. The results
showed that, despite observations regularly sitting outside the
range of the LHS500, the peaks and troughs of the time series
were well represented. Drought event accumulated deficits

were extracted from the SSI data and the results were over-
all very good, demonstrating that the data from these model
calibrations are suitable for the identification and characteri-
sation of hydrological drought events in the UK.

The contributions of this paper are threefold: firstly, the
multi-objective model calibration framework applied here
has been shown to provide robust model calibrations that can
be applied in studies of both general and extreme hydrology.
This framework could be applied elsewhere across Europe,
and indeed globally, to allow for spatially and temporally
consistent simulations of hydrology with far reaching poten-
tial applications. Secondly, the model calibrations that have
been derived for these 303 catchments in the UK can be used
in further research and operational applications, such as for
seasonal hydrological forecasting, or for assessing changes
in river flows under climate change. Finally, this study has
produced a crucial dataset of ∼ 125 years of seamless flow
reconstructions across the UK that will allow for the spatial
and temporal investigation and quantification of past drought
events, as well as long-term trends in flows, that have never
before been possible. These methods and results can provide
a valuable step forward in our ability to plan for and forecast
the onset, duration, and termination of drought events in the
UK, and overseas.

Data availability. The potential evapotranspiration dataset used in
this study is freely available from the Environmental Information
Data Centre (Tanguy et al., 2017, https://doi.org/10.5285/17b9c4f7-
1c30-4b6f-b2fe-f7780159939c).

Observed river flow data was accessed via the National River
Flow Archive, which provides daily and peak river flows for the
UK for over 1500 gauging stations (https://nrfa.ceh.ac.uk/)

The flow reconstructions produced in this study are freely
available on the Environmental Information Data Centre (EIDC,
https://doi.org/10.5285/f710bed1-e564-47bf-b82c-4c2a2fe2810e,
Smith et al., 2018a) along with associated metadata on the model
performance. The LHS1 and LHS500 model runs are provided
separately within the EIDC dataset. The LHS1 files includes the
deterministic simulation based on the LHS1 parameter set, plus the
upper and lower daily limits from the LHS500 to allow for the in-
terpretation of the parameter uncertainty without the need to assess
the full ensemble. It should be noted, however, that these upper and
lower bounds cannot be implemented as time series in their own
right as they do not represent individual ensemble members, and are
instead comprised of multiple runs. The LHS500 files contain all
500 time series, and each catchment has a metadata file providing
performance of each of the 500 runs for that catchment. The
performance of the model in each catchment, as well as the recon-
structed flow time series, can be explored using an interactive web
application at https://shiny-apps.ceh.ac.uk/reconstruction_explorer/
(Centre for Ecology & Hydrology, 2018a).

The Standardised Streamflow Index data derived from the LHS1
runs are also freely available from the Environmental Information
Data Centre (Barker et al., 2018, https://doi.org/10.5285/58ef13a9-
539f-46e5-88ad-c89274191ff9). This SSI data, along with further
event analyses, can be explored using an interactive web applica-
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tion at https://shiny-apps.ceh.ac.uk/hydro_drought_explorer/ (Cen-
tre for Ecology & Hydrology, 2018b).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/hess-23-3247-2019-supplement.
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