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Abstract. Stochastically generated streamflow time series
are widely used in water resource planning and manage-
ment. Such series represent sets of plausible yet unobserved
streamflow realizations which should reproduce the main
characteristics of observed data. These characteristics
include the distribution of daily streamflow values and their
temporal correlation as expressed by short- and long-range
dependence. Existing streamflow generation approaches
have mainly focused on the time domain, even though sim-
ulation in the frequency domain provides good properties.
These properties comprise the simulation of both short-
and long-range dependence as well as extension to multiple
sites. Simulation in the frequency domain is based on the
randomization of the phases of the Fourier transformation.
We here combine phase randomization simulation with a
flexible, four-parameter kappa distribution, which allows
for the extrapolation to as yet unobserved low and high
flows. The simulation approach consists of seven steps:
(1) fitting the theoretical kappa distribution, (2) normal-
ization and deseasonalization of the marginal distribution,
(3) Fourier transformation, (4) random phase generation,
(5) inverse Fourier transformation, (6) back transformation,
and (7) simulation. The simulation approach is applicable
to both individual and multiple sites. It was applied to and
validated on a set of four catchments in Switzerland. Our
results show that the stochastic streamflow generator based
on phase randomization produces realistic streamflow time
series with respect to distributional properties and temporal
correlation. However, cross-correlation among sites was in
some cases found to be underestimated. The approach can

be recommended as a flexible tool for various applications
such as the dimensioning of reservoirs or the assessment of
drought persistence.

Highlights.

1. Stochastic simulation of streamflow time series for indi-
vidual and multiple sites by combining phase random-
ization and the kappa distribution.

2. Simulated time series reproduce temporal correlation,
seasonal distributions, and extremes of observed time
series.

3. Simulation procedure suitable for use in water resource
planning and management.

1 Introduction

Stochastically generated streamflow time series are used in
various applications of water resource planning and manage-
ment. These applications include water and reservoir man-
agement, the determination of the dimensions of hydraulic
structures such as reservoirs, and the estimation of hydrologi-
cal extremes such as droughts and floods. Stochastically gen-
erated time series mimic the characteristics of observed data
and represent sets of plausible realizations of streamflow se-
quences (Ilich, 2014; Borgomeo et al., 2015; Tsoukalas et al.,
2018b). They are essential for many uncertainty studies in
hydrology because they can serve as input for deterministic
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water system models in which they allow for the propaga-
tion of natural variability and uncertainty (Tsoukalas et al.,
2018b).

Stochastic models for the generation of synthetic stream-
flow time series need to fulfil certain requirements. They
should reproduce both the marginal distribution of observed
streamflow time series as well as their temporal dependence
structure (Sharma et al., 1997; Salas and Lee, 2010). Tempo-
ral dependence encompasses both short- and long-range de-
pendence. While short-range dependence typically refers to
the dependence of daily streamflow values measured within
a few days, long-range dependence refers to dependencies
across months or years. This temporal dependence has been
found to depend on magnitude, in that low values have
stronger dependence than high values (Lee and Salas, 2011).
A proper representation of this long-range dependence is of
particular importance in studies where storage in reservoirs
is of interest (Tsoukalas et al., 2018b). If one is interested
in extreme events, the model should allow for the genera-
tion of values that go beyond the magnitude of those ob-
served (Herman et al., 2016). This requires the choice of a
suitable theoretical marginal distribution. Streamflow typi-
cally exhibits a skewed distribution, which requires the use
of a three- or more-than-three-parameter distribution (Kout-
soyiannis, 2000; Blum et al., 2017). Studies looking at indi-
vidual hydrological events such as floods or droughts require
a daily resolution. Therefore, the stochastic model should
allow for outputs at such a fine temporal resolution. Often,
study regions encompass several sites whose streamflows are
correlated. Consequently, the model ideally not only allows
for the simulation of streamflow at individual sites, but also
for the joint simulation of streamflow at multiple sites, taking
into account their spatio-temporal dependence. From a prac-
titioner’s point of view, the model should not only reproduce
the characteristics of the observed data, but it should also be
simple (Sharma et al., 1997).

Many different approaches have been proposed for the
stochastic simulation of streamflow time series, each able
to fulfil some but usually not all of the desired properties
listed above. One commonly used approach is the use of a
synthetic weather generator in combination with a rainfall–
runoff model (Pender et al., 2015). This approach is affected
by uncertainties due to hydrological model selection and
calibration, which can be avoided by using direct synthetic
streamflow generation approaches (Herman et al., 2016). Ac-
cording to Stedinger and Taylor (1982), the development of
such direct approaches consists of the following steps: (1) se-
lection of a model for seasonal marginal distributions, (2) se-
lection of a model for spatial and temporal dependence, and
(3) validation of the model. Different groups of direct ap-
proaches exist which are distinct in terms of their flexibility
regarding marginal distributions and temporal dependence
structures.

A first group of models consists of parametric models such
as autoregressive moving average (ARMA) models and their

modifications. While these models are commonly used in
stochastic hydrology, they only allow for modelling of short-
range dependence because their autocorrelation decreases
strongly with increasing lag time (Sharma et al., 1997).
This means they guarantee neither the reproduction of ob-
served persistence of annual flows nor the correlation struc-
ture among flows in different months (Stedinger and Taylor,
1982). This makes them unsuitable for applications where
long-range dependence is important (Koutsoyiannis, 2000).
However, AR models can be used to generate seemingly
long-memory processes if a parametric autocorrelation struc-
ture is used to fit the data (Papalexiou, 2018). A second group
of parametric models is based on the temporal disaggrega-
tion of annual series and enables the representation of long-
range dependence (Stedinger and Taylor, 1982; Salas and
Lee, 2010). These models include fractional Gaussian noise
models (Mandelbrot, 1965), fast fractional Gaussian noise
models (Mandelbrot, 1971), broken line models (Mejia et al.,
1972), and fractional autoregressive integrated moving aver-
age models (Hosking, 1984). Disaggregation models can be
extended to multi-site applications (Grygier and Stedinger,
1988). However, this group of models has been shown to ex-
hibit parameter estimation problems and only allows for the
representation of a narrow range of autocorrelation functions
(Koutsoyiannis, 2000). A third group of models is nonpara-
metric in its approach and includes kernel density estima-
tion (Lall and Sharma, 1996; Sharma et al., 1997) and var-
ious bootstrap approaches. The latter include simple boot-
strap, which is only useful if data are uncorrelated, moving
block-bootstrap, nearest-neighbour bootstrap (Salas and Lee,
2010; Herman et al., 2016), matched-block bootstrap (Srini-
vas and Srinivasan, 2006), and maximum-entropy bootstrap
(Srivastav and Simonovic, 2014), which also take lagged cor-
relations into account. These nonparametric techniques re-
sample from the data with perturbations and directly repro-
duce the characteristics of the original data (Sharma et al.,
1997). However, the reproduction of long-range dependence
is difficult, and variance can be underestimated or overes-
timated (Salas and Lee, 2010). To allow for values that go
beyond the observed distribution, Salas and Lee (2010) pro-
posed a model employing k-nearest-neighbour resampling
with a gamma kernel perturbation. A further group of mod-
els consists of models that employ Markov chains and their
variations. These models account for transition probabilities
between different hydrological states (Stagge and Moglen,
2013; Bracken et al., 2014; Pender et al., 2015) and can be
combined with nonparametric approaches such as k-nearest
neighbours (Prairie et al., 2008). They can be extended to
multiple sites by scaling the simulated values at individual
sites with spatially correlated random numbers (Mehrotra
and Sharma, 2006).

Several alternatives to these well-established simulation
procedures have been proposed, which allow for a flexi-
ble choice of marginal distributions. These include models
where the temporal dependence structure is modelled with
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copula functions, which are, however, difficult to apply for
higher orders of autocorrelation (Lee and Salas, 2011). Ex-
amples of new simulation procedures based on the Autore-
gressive to Anything (ARTA) model proposed by Cario and
Nelson (1996) following Li and Hammond (1975) are the
SMARTA model by Tsoukalas et al. (2018b) or the SPARTA
model by Tsoukalas et al. (2018a), which employ Nataf’s
joint distribution model for the simulation of stochastic time
series, representing both short- and long-range dependence.
In addition, simulation schemes based on wavelet decompo-
sition, which avoid assumptions about the temporal depen-
dence structure, have been proposed by Kwon et al. (2007),
Wang et al. (2010), and Erkyihun et al. (2016). Borgomeo
et al. (2015) have shown how simulated annealing can be
used to generate synthetic streamflow time sequences that
represent possible climate-induced changes in user-specified
streamflow properties.

All these previously mentioned models are based on
the time domain. An alternative to time-domain models is
frequency-domain models (Shumway and Stoffer, 2017),
which allow for the simulation of surrogate data with the
same Fourier spectra as the raw data (Theiler et al., 1992).
Such methods are based on the randomization of the phases
of the Fourier transformation and have been commonly ap-
plied in hypothesis testing, when identifying nonlinearity in
time series (Schmitz and Schreiber, 1996; Kugiumtzis, 1999;
Venema et al., 2006; Maiwald et al., 2008), and in trend
detection (Radziejewski et al., 2000). We hereafter refer to
such methods, which are also known as amplitude-adjusted
Fourier transformations (AAFTs) (Lancaster et al., 2018), as
phase randomization simulations. Serinaldi and Lombardo
(2017) used an iterative AAFT method to generate binary se-
ries of rainfall occurrence and non-occurrence. An extension
of the amplitude-adjusted Fourier transformation has been
presented by Keylock (2007), who applied randomization
procedures to wavelet-decomposed signals to generate sur-
rogate data. In hydrology, phase randomization simulation
has rarely been applied for purposes other than hypothesis
testing (Fleming et al., 2002) even though it has desirable
properties which make it suitable for a wider range of ap-
plications. Indeed, its implementation is relatively simple, it
can simulate time series with both short- and long-range de-
pendence, and it can be extended to multiple sites. However,
its application is often limited to the reproduction of the em-
pirical distribution of the data. We here propose the use of
phase randomization simulation for the stochastic generation
of streamflow time series at individual and multiple sites. To
allow for non-empirical distributions, we combine the data
simulated by phase randomization with the flexible, four-
parameter kappa distribution introduced by Hosking (1994)
as a generalization of the three-parameter kappa distribution
suggested by Mielke (1973). The stochastic streamflow gen-
eration approach shall represent a flexible tool which is easy
to apply and generalizable to different contexts. This is en-
abled by combining a nonparametric time dependence model

with a flexible four-parameter distribution. The simulation
approach can be tailored to the specific problem at hand and
be used for various water resource management applications.

We now turn to some theoretical background on Fourier
transformation and phase randomization. For a more detailed
introduction to the Fourier transformation, the reader is re-
ferred to textbooks by Morrison (1994) or Shumway and
Stoffer (2017). We then discuss the use of phase randomiza-
tion for the stochastic generation of streamflow time series.
For illustration purposes, we apply and validate the approach
on a set of four catchments in Switzerland. Finally, we dis-
cuss potential applications of the simulation approach.

2 Theoretical background

The basic idea behind all surrogate methods is to randomize
the Fourier phases of the underlying (hydrological) process.
The Fourier transformation converts a time-domain signal
into a frequency-domain signal, which is complex-valued.
This transformation may be depicted as a decomposition of
the time series into sine and cosine waves of different ampli-
tude, phase, and period (Fleming et al., 2002; Shumway and
Stoffer, 2017). In the frequency domain, the power spectral
density (power spectrum) expresses the same information in
cycles as the autocovariance function expresses in lags in the
time domain. The periodogram, the empirical counterpart of
the power spectrum, shows high values at those frequencies
which correspond to strong periodic components (Shumway
and Stoffer, 2017).

The surrogate approach utilizes the property that realiza-
tions of linear Gaussian processes differ only in their Fourier
phases and not their power spectrum. It preserves the auto-
correlation structure of the raw series by conserving its power
spectrum through phase randomization. The procedure con-
sists of three main steps (Radziejewski et al., 2000; Maiwald
et al., 2008; Kim et al., 2010). In the first step, the streamflow
series is converted from the time domain to the frequency do-
main by Fourier transformation (Morrison, 1994). In this fre-
quency domain, the data are represented by the phase angle
and the power spectrum, as represented by the periodogram.
The phase angle θ of the power spectrum is uniformly dis-
tributed over the range of −π to π . In the second step, the
phases in the phase spectrum are randomized while the power
spectrum is preserved. In the third step, the inverse Fourier
transformation is applied to transform the data from the fre-
quency domain back to the temporal domain (Maiwald et al.,
2008).

The Fourier transformation of a given time series x =
(x1, . . . , xt , . . . , xn) of length n is

f (ω)=
1
√

2πn

n∑
t=1

e−iωtxt , −π ≤ ω ≤ π, (1)

where i =
√
−1 is the imaginary unit. The original time se-

ries can be recovered by the back transformation
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xt =

√
2π
n

n∑
j=1

eiωj tf
(
ωj
)
, t = 1, 2 , . . ., n, (2)

if the transformation is calculated for discrete frequencies
ωj = 2π/n, j = 1, 2, . . . , n. The Fourier transformation sur-
rogate method constructs a new time series yt with the
same periodogram as the observations. Apart from this, the
new series are statistically independent of xt . This can be
achieved by fixing the Fourier amplitudes |f (ωj )| and re-
placing the Fourier phases φ(ωj )= arg(f (ωj )) with uni-
formly distributed random numbers φrand(ωj ) ∈ [−π , π ]. A
new realization is given by

yt =

√
2π
n

n∑
j=1

eiωj t
∣∣f (ωj )∣∣eiφrand(ωj ). (3)

The surrogate data consist of the same values as the original
data in another temporal order but with the same time depen-
dence structure as the original data (Schreiber and Schmitz,
2000). The approach can be extended to multiple sites by
multiplying the phases of each site by the same set of random
phases. This is possible because the cross-spectrum, which
describes the cross-correlation of the data in the frequency
domain, reflects relative phases only (Prichard and Theiler,
1994; Schreiber and Schmitz, 2000).

3 Methods

3.1 Stochastic streamflow simulation

Here, we use phase randomization to simulate stochastic
streamflow time series to be used in various water resource
management studies. The stochastic series generated using
phase randomization are combined with a theoretical dis-
tribution to allow extrapolation to unobserved values which
still realistically represent daily streamflow values. The ob-
served streamflow time series require pre-treatment before
phase randomization can be applied. First, they need to be
normalized because phase randomization assumes Gaussian-
ity (Maiwald et al., 2008). Second, they need to be deseason-
alized in order to remove monthly/daily fluctuations (Pender
et al., 2015). The stochastic simulation procedure consists of
the following seven steps.

1. Fitting of theoretical kappa distribution: the four-
parameter kappa distribution (Hosking, 1994) is fitted
to the daily values of the observed input time series us-
ing L moments. This distribution will be used for the
back transformation in Ste 7 and permits extreme val-
ues going beyond the empirical distribution to be ob-
tained. It has four parameters and its cumulative distri-
bution function is expressed as

F(x)=
{

1−h[1− k(x− ξ)/α]1/k]
}1/h

, (4)

where ξ is the location parameter, α is the scale param-
eter which must be positive, and k and h are the shape
parameters.

The kappa distribution was found to be suitable for fit-
ting observed streamflow data in US catchments (Blum
et al., 2017). A suitable fit was also found for our data as
confirmed by the Kolmogorov–Smirnov and Anderson–
Darling tests which did not reject the null hypothesis at
α = 0.05 for most catchments. We fitted a separate dis-
tribution for each day to take into account seasonal dif-
ferences in the distribution of daily streamflow values.
To do so, we used the daily values in a 30 d window
around the day of interest. This procedure guarantees a
large enough sample for the parameter fitting procedure,
and allows for smoothly changing distributions along
the year. For leap years, flows from 29 February were
removed to maintain constant sample sizes across years
as in Blum et al. (2017).

2. Normalization and deseasonalization of the marginal
distribution: the input time series are normalized us-
ing the normal transform, i.e. values corresponding to
a certain rank are replaced with respective values from
a standard normal distribution. The normal transform is
applied to each day of the year separately, which results
in the deseasonalization of the marginal distribution of
the data.

3. Fourier transformation: the normalized and deseasonal-
ized data are transferred to the frequency domain using
the Fourier transformation (Eq. 1). The Fourier phases
(i.e. the arguments of the Fourier transformation) are
computed.

4. Random phase generation: random phase series are
generated by sampling from the uniform phase distri-
bution. The observed spectrum (i.e. the modulus of the
Fourier transformation) is preserved.

5. Inverse Fourier transformation: the random phases
are combined with the observed spectrum and inverse
Fourier transformation is applied (Eq. 2) to transform
the data back to the time domain.

6. Back transformation: the data are back transformed
from the normal to the kappa domain using the fitted
daily kappa distributions (Eq. 4), which achieves resea-
sonalization. This is done by generating a sample of
length n (length of observed time series) and reassign-
ing values according to the ranks in the simulated se-
ries. Negative simulated values are replaced by values
sampled from a uniform distribution in the interval [0,
min(x)], where min(x) represents the minimum of the
observed values corresponding to the day under consid-
eration. Using the empirical distribution instead of the
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Figure 1. Map showing the four Swiss catchments: (1) Plessur, (2) Birse, (3) Thur, and (4) Cassarate.

kappa distribution would prevent us from obtaining val-
ues that go beyond the range of observed data (Srini-
vas and Srinivasan, 2006). Depending on the input time
series, other suitable theoretical distributions than the
kappa distributions could be used for back transforma-
tion.

7. Simulation: steps 4–7 are repeated m times to generate
m time series of the same length as the observed time
series.

The method is extended to the simulation of stochas-
tic streamflow time series at multiple sites. To model the
cross-correlation between sites, the phase randomization per-
formed in Step 4 of the procedure is performed in the same
way for all the stations in the data set (Prichard and Theiler,
1994). In contrast, the parameters of the monthly kappa dis-
tributions and the power spectrum are calculated for each in-
dividual site separately.

3.2 Model validation

The simulation was validated on the observed streamflow
time series of a set of four catchments in Switzerland (Fig. 1),
namely, Plessur–Chur, Birse–Moutier, Thur–Jonschwil, and
Cassarate–Pregassona. The catchments are characterized by
diverse catchment characteristics and flow regimes (Table 1).
Their catchment areas range between 74 and 493 km2 and
their mean elevations between 930 and 1850 m a.s.l. Plessur
represents a catchment with a melt-dominated flow regime
with high flows in summer but low flows in winter. In con-
trast, the flow regimes of Birse and Thur are dominated by
precipitation with high flows in winter and low flows in sum-
mer. The regime of Cassarate shows two peaks, one in spring
due to melt processes and one in autumn due to precipitation.

The model outlined in the previous section was fitted to the
observed time series over 50 years (1960–2009) for each in-
dividual catchment. The application of this approach is only

recommended for records longer than 30 years to reduce un-
certainty in the estimation of the parameters of the kappa dis-
tribution. The model was then run, on the one hand, for each
individual catchment and, on the other hand, for the four sites
jointly. In both cases, 100 sets of stochastic streamflow time
series of the same length as the observed series were gener-
ated as in Salas and Lee (2010) and Pender et al. (2015).

Both the temporal correlation structure and seasonal
streamflow statistics were used to compare observed and
simulated streamflow time series in order to assess the va-
lidity of the stochastic streamflow generation model. As
in Kim et al. (2010), we used the autocorrelation function
on daily values to represent the short-range temporal cor-
relation. Further, we also used the partial autocorrelation
function (Stedinger and Taylor, 1982). In addition to short-
range dependence, long-range dependence was assessed by
looking at the autocorrelation function of annual discharge
sums. The seasonal statistics were validated with respect
to the seasonal distributions (winter: December–February,
spring: March–May, summer: June–August, and autumn:
September–November) and the monthly means, maxima,
minima, and standard deviations. In addition to general dis-
tribution characteristics, the approach was validated for low
and high flows because these characteristics are often of in-
terest in hydrological simulation studies (Borgomeo et al.,
2015). High and low flows were defined as above or below
threshold values, respectively. For high flows, the 95th per-
centile was used as a threshold, while the 5th percentile was
used for low flows.

4 Results

4.1 Simulation at individual sites

The stochastic streamflow generator was found to produce
realistic annual hydrograph realizations as illustrated in
Fig. 2 for the Plessur catchment (Fig. 1). This is confirmed vi-
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Table 1. List of catchments and catchment summary including ID, river name, gauging station, catchment area, station elevation, mean
elevation, and flow regime.

ID River Gauging Area Station Mean Flow
station (km2) elevation elevation regime

(m a.s.l.) (m a.s.l.)

1 Plessur Chur 263 573 1,850 Melt-dominated
2 Birse Moutier 183 519 930 Rainfall-dominated
3 Thur Jonschwil 493 534 1030 Rainfall-dominated
4 Cassarate Pregassona 74 291 990 Mixed

Figure 2. Observed (grey) and stochastically generated (orange) annual hydrographs at daily resolution over 30 years for the Plessur catch-
ment.

sually by observing the temporal correlation structure as well
as the seasonal statistics (see Fig. 3 for Thur and Plessur).

The stochastic generator produces time series with mean
regimes similar to the observed mean regime, and reproduces
both the autocorrelation (ACF) and partial autocorrelation
functions (PACF). Seasonal distributions match well thanks
to the good fit of the kappa distribution to the data. Monthly
means and standard deviations match particularly well, while
monthly maxima and minima show some deviations from the
observed maxima and minima, as was intended by using a
theoretical instead of an empirical distribution. The suitabil-
ity of the kappa distribution for producing realistic high and
low flows is confirmed in Fig. 4. The distribution produces
low flows similar to observed low flows, but with different
outliers. In two catchments (Thur and Cassarate), however,
observed low flows were rather overestimated. High flow
distributions match well in all catchments, and values ex-

ceeding observed values are generated. The four-parameter
kappa distribution (Houghton, 1978; Griffiths, 1989) was
found to be more suitable for representing daily streamflow
values compared to distributions with even more parame-
ters, which are rather prone to over-fitting. Similarly, tests on
distributions with only three parameters (e.g. Burr type XII;
Burr, 1942 and generalized Gamma distributions; Stacy and
Mihram, 1965) were here not satisfactory because the dis-
tributions were not flexible enough. In cases where distribu-
tions with fewer parameters provide a satisfactory fit, they
could, however, be used instead of the kappa distribution to
ensure model parsimony.

The stochastic streamflow generator is able to reproduce
not only the streamflow distribution and the short-range de-
pendence in the data, but also the long-range dependence
over several years (Fig. 5). Both the rapid decrease in the
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Figure 3. Comparison of observed and stochastically generated time series for the melt-dominated Plessur catchment (upper two rows) and
the rainfall-dominated Birse catchment (lower two rows) for the following characteristics: mean hydrograph over 50 years, autocorrelation
function, partial autocorrelation function, seasonal distributions, monthly means, monthly maxima, monthly minima, and monthly standard
deviations. Black lines represent observations, while orange lines represent simulations.

ACF at short lags (up to 5 years) and the cyclical behaviour
at lags longer than 5 years are reproduced as well.

The good performance of the stochastic streamflow gen-
erator with respect to streamflow distribution and temporal
correlation – both short and long range – is not limited to
these four example catchments, but generalizes to other data
sets used as input.

4.2 Simulation at multiple sites

The stochastic streamflow generator can be extended from
the simulation at individual sites to the joint simulation at
multiple sites. In addition to reproducing distribution and
temporal correlation at individual sites, it should then be
able to reproduce the cross-correlation among sites, which
describes the similarity of time series at two sites. Figure 6

www.hydrol-earth-syst-sci.net/23/3175/2019/ Hydrol. Earth Syst. Sci., 23, 3175–3187, 2019
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Figure 4. Low and high flows for observed (grey) and simulated (orange) time series for the four catchments Plessur, Birse, Thur, and
Cassarate. The results are given for 10 simulation runs (S1–S10), and high flows are plotted with (middle column) and without (right
column) outliers. Whiskers extend to the lowest/highest data point, which is still within 1.5 times the interquartile range.

shows the cross-correlation function (CCF) for pairs of sta-
tions among the example catchments for the observed time
series and the 100 simulation runs. Cross-correlation is al-
ready generally low for observations because the selected
sample catchments are characterized by diverse discharge
regimes and seasonality. The shape of the cross-correlation
is reproduced for all pairs of stations. However, the magni-
tude of cross-correlation is underestimated for certain pairs
of stations in the simulated time series compared to the ob-
served series independently of the simulation run consid-
ered. For the catchment pair Birse–Thur, whose discharge be-
haviour is rainfall-dominated, the simulated cross-correlation
is much lower than the observed one. In the observations,
spatially consistent rainfall events lead to a joint rise in dis-
charge at both stations. This behaviour is not captured by
the stochastic discharge generator. The underestimation of
cross-correlation is also visible when looking at the cross-
correlation of below- or above-threshold events (not shown).

5 Discussion and conclusions

The stochastic streamflow generator based on phase random-
ization has been shown to produce realistic streamflow time
series with respect to both distributional properties and tem-
poral correlation. Compared to models commonly used for
the stochastic generation of streamflow time series, such as
autoregressive moving average models, the simulation ap-
proach presented here reproduces not only short-range, but
also long-range dependence. However, the representation of
this dependence is limited to ranges within the length of the
observed time series. Instead of producing one long time se-
ries, the simulation procedure allows for the simulation of
multiple series of the same length as the original series. The
use of ensembles of the same length as the observed time se-
ries might not be equivalent to using a long time series. Still,
long-range dependence features may not be generated in ei-
ther case since the model is fitted based on a limited number
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Figure 5. Autocorrelation (ACF) of annual streamflow sums of the
observed and simulated streamflow time series for the catchments
Plessur, Birse, Thur, and Cassarate.

of years of observations. While the reproduction of the tem-
poral dependence was well reproduced here, this is not nec-
essarily the case under all conditions. Embrechts et al. (2010)
have shown that any nonlinear transformation of a Gaussian
time series, which is done during back transformation, re-
duces the strength of the linear correlations in the time se-
ries as expressed by Pearson’s correlation coefficient and pre-
serves only rank correlations. If one is working with heavy-
tailed and zero inflated marginals (as present when looking
at intermittent processes), it can happen that autocorrelations
are reduced during back transformation (Papalexiou, 2018).

Phase randomization was here combined with the flexible
four-parameter kappa distribution, which was found to effec-
tively represent daily streamflow values. The distribution of
daily flows was found to be modelled well in all seasons.
However, the use of one distribution per day has the disad-
vantage of introducing a lot of parameters, which makes the
model non-parsimonious (Koutsoyiannis, 2016). If the user
is not reliant on the generation of unobserved values, he/she
might use the empirical instead of theoretical kappa distri-
bution for back transformation instead. The use of the kappa
distribution allows us to generate values that go beyond the
range of observed values, which would not be the case if the
empirical distribution was used. This ability of the genera-
tor to extrapolate extremes makes it suitable for applications
where extreme events such as floods and droughts are of in-
terest.

The generator can, on the one hand, be used to simulate
streamflow at individual sites, and, on the other, to simulate

jointly at multiple sites, which is not necessarily the case for
other existing models. Its application to the example catch-
ments, however, resulted in somewhat underestimated cross-
correlations between stations. This underestimation can be
explained by the fact that phase randomization preserves the
cross-correlation in the normal domain but not necessarily in
the domain of the original distribution. This cannot be over-
come even if the simulation run which best reproduces these
cross-correlations is extracted from a large set of simula-
tions. However, Stedinger and Taylor (1982) showed that es-
timators of the autocorrelation and cross-correlation of flows
which do not match the historical sample estimates often pro-
vide more accurate estimates of the true but unknown corre-
lations. Still, there are several potential avenues for improv-
ing the representation of cross-correlation. A first possibil-
ity would be the use of phase annealing (Hörning and Bár-
dossy, 2018). Phase annealing modifies the Fourier phases in
an iterative way in order to optimize certain statistics, such as
the cross-correlation function, and makes it possible to take
covariates into consideration for the generation of time se-
ries. However, using phase annealing increases the compu-
tational effort. A second possibility was presented by Key-
lock (2012), who only randomized the phases corresponding
to the wavelet coefficients lying above a certain threshold.
He suggested fixing the large wavelet scales if one wanted
to ensure that the low-frequency behaviour between the ob-
servations and simulated series remains the same. This can
indeed be a solution for retaining the cross-correlation be-
tween two series. However, it comes with the disadvantage
that the temporal structure of the simulated series is not
very variable from the one of the observed series anymore.
A third possibility is the introduction of functions correct-
ing for the phase differences between two series as done by
Nguyen et al. (2019), who applied this approach to correct
for biases across multiple atmospheric variables derived from
global circulation models. Another possibility for addressing
the underestimation of cross-correlation would be the infla-
tion of the cross-spectrum in the original domain in order to
allow for a certain target cross-correlation after back trans-
formation. To do so, transformation approaches have been
introduced, which inflate the original process, which should
after the back transformation to the original domain result
in a process with a target distribution and correlation struc-
ture (Papalexiou, 2018; Tsoukalas et al., 2018b). An addi-
tional disadvantage of the method presented here (and of
most other approaches presented in the literature) is that time
irreversibility, which has been shown to be significant at a
daily scale (Koutsoyiannis, 2019), is not explicitly modelled.

The streamflow generator was here used on observed
streamflow time series. The input time series, however, do
not necessarily need to consist of observed values. One could
also use the generator on streamflow simulated with a hydro-
logical model. This extends its application to climate impact
studies where a hydrological model is driven by meteorolog-
ical time series generated with global and/or regional climate
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Figure 6. Cross-correlation function (CCF) of observed (black line) and simulated (orange lines) daily streamflow for pairs of stations at
Plessur, Birse, Thur, and Cassarate.

models. Alternatively, the representation of non-stationary
conditions in the properties of the marginal distribution or the
temporal dependence structure could also be achieved by ad-
justing the parameters of the marginal distribution or the fre-
quency spectrum, respectively. Phase randomization simula-
tion can potentially accommodate not only changing climate
conditions, but also changes in land use or water extractions.
The approach is not limited to the simulation of streamflow
time series, but extends to other hydro-meteorological vari-
ables such as precipitation, evapotranspiration, or snowmelt.
This would require the test and identification of a suitable
marginal distribution. In the case of intermittent processes,
mixed-type marginal distributions would need to be used (Pa-
palexiou, 2018). Distributions other than the kappa distribu-
tion can be used in PRSim by specifying a suitable (mix-
ture) distribution. Spatio-temporal modelling of precipitation
fields, for example, may be performed using a technique
based on phase randomization. However, it must be noted
that due to the large number of zero observations (specifically
with fine temporal resolution), the normal score transforma-

tion can become non-unique. In this case, additional efforts
are needed to preserve the spatial structure of precipitation.

The stochastic streamflow generator presented here repre-
sents a flexible tool for streamflow simulation at individual or
multiple sites. It can be used for various applications such as
the design of hydropower reservoirs, the assessment of flood
risk, or the assessment of drought persistence and the estima-
tion of the risk of multi-year droughts.

Code availability. The stochastic simulation procedure for a sin-
gle site using the empirical, kappa, or any other distribution and
some of the functions used to generate the validation plots are pro-
vided in R package PRSim. The stable version can be found in the
CRAN repository https://cran.r-project.org/web/packages/PRSim/
index.html (Brunner and Furrer, 2019), and the current develop-
ment version is available at https://git.math.uzh.ch/reinhard.furrer/
PRSim-devel.
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