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Abstract. Soil water movement has direct effects on envi-
ronment, agriculture and hydrology. Simulation of soil water
movement requires accurate determination of model parame-
ters as well as initial and boundary conditions. However, it is
difficult to obtain the accurate initial soil moisture or matric
potential profile at the beginning of simulation time, mak-
ing it necessary to run the simulation model from the arbi-
trary initial condition until the uncertainty of the initial con-
dition (UIC) diminishes, which is often known as “warming
up”. In this paper, we compare two commonly used methods
for quantifying the UIC (one is based on running a single
simulation recursively across multiple hydrological years,
and the other is based on Monte Carlo simulations with real-
ization of various initial conditions) and identify the warm-
up time #y,, (minimum time required to eliminate the UIC by
warming up the model) required with different soil textures,
meteorological conditions and soil profile lengths. Then we
analyze the effects of different initial conditions on parame-
ter estimation within two data assimilation frameworks (i.e.,
ensemble Kalman filter and iterative ensemble smoother) and
assess several existing model initializing methods that use
available data to retrieve the initial soil moisture profile. Our
results reveal that Monte Carlo simulations and the recursive
simulation over many years can both demonstrate the tempo-
ral behavior of the UIC, and a common threshold is recom-
mended to determine . Moreover, the relationship between
twy for variably saturated flow modeling and the model set-
tings (soil textures, meteorological conditions and soil profile
length) is quantitatively identified. In addition, we propose a

warm-up period before assimilating data in order to obtain a
better performance for parameter and state estimation.

1 Introduction

Understanding the movement of soil water is of great impor-
tance due to its direct effects across different disciplines, such
as environment, agriculture and hydrology (Doussan et al.,
2002). However, modeling of flow in variably saturated soil
is complicated by many difficulties, including highly variable
and nonlinear physical processes as well as limited informa-
tion about the soil hydraulic properties, initial conditions and
boundary conditions (DeChant, 2014; Rodell et al., 2005;
Seck et al., 2014; Bauser et al., 2016; Li et al., 2012). The
soil hydraulic parameter uncertainty is identified as a ma-
jor uncertainty source in vadose zone hydrology, and many
studies have been focused on this topic. A highly relevant re-
search area, inverse modeling, has been developed to reduce
the uncertainty of the parameter by incorporating observa-
tional data (Erdal et al., 2014; Montzka et al., 2011; Wu and
Margulis, 2011, 2013). Boundary conditions also introduce
uncertainty during the simulation of soil water flow (Ataie-
Ashtiani et al., 1999; Forsyth et al., 1995; Szomolay, 2008).
For instance, the uncertainty introduced by flawed or noise-
contaminated meteorological data or the fluctuating ground-
water table has been investigated in the past (Freeze, 1969;
French et al., 1999; van Genuchten and Parker, 1984; Ji and
Unger, 2001; Xie et al., 2011).
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Many publications have addressed the issue of the uncer-
tainty of the initial condition (UIC) in modeling soil water
movement. For example, Walker and Houser (2001) com-
pared the simulation with the degraded soil moisture initial
condition to that with the true initial condition and found that
the discrepancy did not fade away even after 1 month. Then,
Mumen (2006) concluded that the initial soil water state was
one of the most important factors for estimating soil moisture
in the case of bare soil. Chanzy et al. (2008) tested three ini-
tial water potential profiles and found that initialization had
a strong impact on the soil moisture prediction. These stud-
ies showed that the incorrect initial condition may lead to
false results. Based on the availability of information, differ-
ent initialization approaches can be used for constructing ini-
tial conditions, e.g., an arbitrary uniform profile (Chanzy et
al., 2008; Das and Mohanty, 2006; Varado et al., 2006), a lin-
ear interpolation with in situ observation (Bauser et al., 2016)
or a steady-state soil moisture profile induced with a constant
infiltration flux (Freeze, 1969). All of the approaches involve
great uncertainties due to nonlinearity of soil moisture pro-
file, observation error or the inaccurate boundary condition.
As a result, it is crucial to explore the effects of the UIC on
model outputs and compare the uncertainties inherited from
various initialization approaches.

Besides the simple initialization methods referred to
above, another common approach is to obtain the initial
condition inherited from the warm-up model with preced-
ing meteorological data. Starting from an arbitrary initial
condition, this approach runs the model using a certain pe-
riod (i.e., warm-up time fy,) of meteorological data until
the model state (e.g., soil moisture) reaches an equilibrium
state, which is defined as the state when the uncertainty orig-
inating from the UIC is negligible during simulation. The
equilibrium state can be obtained by either running Monte
Carlo simulations until the states from different initial con-
ditions converge to the same value (hereafter referred to as
the Monte Carlo method; Chanzy et al., 2008) or running
a single simulation for several years by repeating a 1-year
or multiple-year meteorological condition until the state at
an arbitrary date ceases to vary from year to year (spin-up
method; DeChant and Moradkhani, 2011; Seck et al., 2014).
The spin-up method is widely used in large-scale hydrolog-
ical model due to its smaller computational cost, while the
less-common Monte Carlo method has the merit of quanti-
fying the UIC explicitly at arbitrary time, which can be po-
tentially used to construct state covariance matrix for data
assimilation. To the best of our knowledge, there is no com-
parison made between these two methods to date. Finding an
equivalency between these two methods is beneficial for link-
ing initialization methods and data assimilation techniques.
Moreover, the determination of warm-up time t, is crucial
to the success of this approach (Ajami et al., 2014; Rahman
and Lu, 2015). An underestimation of f,, may bring uncer-
tainty from an arbitrarily specified initial condition prior to
initialization, while a large #, leads to higher computational
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demands (Rodell et al., 2005). A variety of modeling settings,
such as soil hydraulic properties, meteorological conditions
and soil profile lengths, have strong influences on #y, (Ajami
et al., 2014; Cosgrove et al., 2003; Lim et al., 2012; Walker
and Houser, 2001). Thus, the determination of ¢y, should be
investigated thoroughly with different settings.

As well as model predictions, the UIC also has consid-
erable effects on parameter estimation. One of the com-
monly used inverse methods in the field of vadose zone hy-
drology is the data assimilation approach (Vereecken et al.,
2010; Chirico et al., 2014; Medina et al., 2014a, b). Pre-
vious studies showed that a poor initial soil moisture pro-
file can be corrected by assimilating near-surface measure-
ments (Galantowicz et al., 1999; Walker and Houser, 2001;
Das and Mohanty, 2006). Oliver and Chen (2009) discussed
several possible approaches for improving the performance
of data assimilation through improved sampling of the ini-
tial ensemble and suggested the use of the pseudo-data. Re-
cently, Tran et al. (2013) found that decreasing assimilation
interval could improve the soil moisture profile results in-
duced by the wrong initial condition, and Bauser et al. (2016)
addressed the importance of the UIC in the data assimila-
tion framework. However, these preliminary investigations of
the influence of the UIC in data assimilation results are de-
graded by the narrow choice of initialization and data assim-
ilation methods and the lack of comprehensive assessment
of the temporal evolution of state or parameter uncertainty
when the UIC and the parameter uncertainty coexist. For in-
stance, during data assimilation, the initial ensemble is often
assumed to be known without uncertainty (Shi et al., 2015)
or created by adding Gaussian noise to the initial estimate
(Huang et al., 2008), both of which may result in false out-
puts. The researches mentioned above are all based on a se-
quential data assimilation approach (i.e., ensemble Kalman
filter or EnKF; Walker and Houser, 2001; Oliver and Chen,
2009), which incorporates observation in a sequential fashion
so that the effect of the UIC can be eliminated quickly. Com-
pared to EnKF, an iterative ensemble smoother (IES), which
assimilates all data available simultaneously, can obtain rea-
sonably good history-matching results and performs better in
strongly nonlinear problems (Chen and Oliver, 2013). How-
ever, the IES utilizes all the observation simultaneously at
every iteration, and the UIC may have a more persistent ef-
fect on the IES. Thus, a systematical analysis for the effects
of the UIC and initialization methods within various data as-
similation frameworks is necessary and obligatory.

The objectives of this paper, therefore, are to (a) compare
the temporal evolution of the UIC with two common methods
(spin-up method and Monte Carlo method) and identify the
warm-up time t, under different soil hydraulic parameters,
meteorological conditions and soil profile lengths; (b) ana-
lyze the effects of different initial conditions on parameter es-
timation during data assimilation with EnKF or the IES; and
(c) propose a selection scheme for choosing a suitable ap-
proach of initializing variably saturated flow models within
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different data assimilation frameworks to minimize the influ-
ence of the UIC. We first summarize the governing equations
of variably saturated flow and methods of the UIC quantifi-
cation in Sect. 2. Then we present results of synthetic sim-
ulations designed to investigate the propagation of the UIC
under different scenarios in Sect. 3, which is complemented
by the results for field data in Sect. 4. Finally, we present our
conclusions in Sect. 5.

2 Method
2.1 One-dimensional soil water movement

Richards’ equation can be used to describe the one-
dimensional, vertical soil water movement, which is given
as

ae_a[K 8h+1} .
o (& ), M)

where & (L) represents the pressure head, 6 (-) denotes volu-
metric soil moisture, # (T) indicates the time, z (L) is the spa-
tial coordinate taken positive upward and K (L T~!) denotes
the unsaturated hydraulic conductivity. The solution of the
one-dimensional Richards’ equation is numerically solved by
a noniterative numerical scheme, which was originally pro-
posed in Ross (2003). By using the primary variable switch-
ing scheme, this scheme uses the soil moisture as the un-
known variable for unsaturated nodes and the pressure head
for saturated nodes (Zha et al., 2013). It can greatly reduce
the computational cost of variably saturated flow modeling
in soils under the atmospheric boundary condition, where al-
ternative drying—wetting conditions are often encountered.

To obtain the solution of Eq. (1), the knowledge of func-
tions K and 6 versus & must be required. In this study, we use
the van Genuchten—-Mualem model (van Genuchten, 1980;
Mualem, 1976) to describe these relationships:

Oh) = b+ —2 % 2)
[1+ ahl"]"
K@) = KSSS'S[I - (1 - e‘/’")m]z, 3)

where K (L T~ 1) denotes the saturated hydraulic conductiv-
ity, 65 and 6, represent the saturated and residual soil mois-
ture, respectively, parameters o (L™ 1Y and n are related to the
measure of the pore-size density functions and m =1—1/n
(n > 1), and the effective saturation degree S, is defined as
Se = (0 —6r)/(0s — 6r).

Initial and boundary conditions are needed to solve the
one-dimensional Richards’ equation. The initial condition
could be the state of soil moisture,

0(z,1) li=0 =00(2) , “

where 6y (z) is the initial soil moisture profile.
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The state-dependent, atmospheric boundary condition can
be described as (Simtinek et al., 201 3)

oh
|q|=‘—1<5—1< <|E, - Pyl, S

hm > h > he, (6)

where ¢ (LT™!) is the Darcian flux at the soil surface,
E, (L T~1) denotes the potential evaporation, P, (L T
represents the precipitation intensity, and hy, (L) and A. (L)
are maximum and minimum pressure heads allowed at the
soil surface, respectively. The value of iy, is set to 0, whereas
h¢ is determined as —100 m.

The bottom boundary condition is the free drainage bound-

ary:

oh

P |li=zy =0, (7)

where zp is the depth of bottom boundary.
2.2 UIC quantification

The investigation of uncertainty in this study includes model
states (e.g., soil moisture) and model parameters, where the
UIC is a special case of state uncertainty at = 0. The analy-
sis is twofold. First, we consider a particular situation when
the UIC is the only uncertain source and all the model pa-
rameters are known. Thus, the choice of initial conditions
is solely responsible for the accuracy of the model outputs.
In this case, the temporal decay of the UIC can be clearly
demonstrated by utilizing the spin-up or Monte Carlo meth-
ods. Second, a more complex and realistic situation, includ-
ing both the uncertain initial condition and model parame-
ters, is considered during the data assimilation of soil mois-
ture observation. The UIC and data assimilation are smoothly
combined in our approach, since we choose Monte Carlo-
based methods (EnKF and IES). At t =0, we generate an
ensemble of soil moisture profiles based on one initializa-
tion method (which introduces UIC) and use this ensemble
to initiate the data assimilation (assimilate observations and
estimate parameter). Finally, we can evaluate our data assim-
ilation performance based on different initializing methods.

2.2.1 The indices of spin-up and Monte Carlo methods

The uncertainty of the initial condition can be measured by
the percent change (PC) for the spin-up method (Ajami et
al., 2014; Seck et al., 2014) or the ensemble spread S, for
the Monte Carlo method (Reichle and Koster, 2003). Percent
change is an index that reflects the deviation of soil moisture
between 2 adjacent years in a recursive run after a period of
warm-up time #y,y,, which could be calculated as

PC(t) = 100 M@ - M@ +12) , ®)
M(t +12)

Hydrol. Earth Syst. Sci., 23, 2897-2914, 2019



2900

where M (¢) and M (¢ + 12) are the monthly averaged soil
moisture after model spin-up for  months and ¢ + 12 months
(De Goncalves et al., 2006).

The ensemble spread (Sp), calculated as a square root of
averaged variance over all interested nodes, is an index for
quantifying the difference among various realizations in the
Monte Carlo simulation, and it is given as

N Ne 2
Sp(k) = N(Ne—l ZZ(y,,k (i) ©

where yl  is nodal soil moisture value, (yl ) is the ensem-
ble mean of yi ik b= 1, 2,..., N values are the nodes of
interest (can be part of the proﬁle) j=1,2,...,Ng is the
ensemble number index and N, is the ensemble size, which
is taken as 300 in this study, based on sensitivity analysis of
the ensemble size on the calculated results. When N = 1, the
concept of S, (k) is equivalent to the standard deviation of y}
at one location and time #.

2.2.2 Data assimilation approaches

We employ EnKF and the IES for data assimilation in this
study. Figure 1 illustrates the basic ideas and differences of
the two methods.

The EnKF approach was first proposed by Evensen (1994)
and has been widely used in variably saturated flow problems
(Huang et al., 2008; De Lannoy et al., 2007). This approach
is a sequential data assimilation method (as shown in Fig. 1a)
which incorporates observations into the model in order.

In this part, we assume that hydraulic parameters K, o
and n are unknown, while the other parameters 6; and 6; are
deterministic. The vector of the parameter and state is de-
scribed as

yi = lmg, uel”, (10)

where my, is the parameter vector (i.e., Ks, @ and n), uy is
state variables (i.e., soil moisture) at time f, the dimension
of y; is Ny: Ny = Ny + Ny, where Ny, indicates the amount
of the parameters to be estimated, and Ny is the number of
nodes of the numerical model. The updated soil moisture en-
semble can be converted to the pressure head to drive the
model. The observation vector can be defined as

diy=di+ej, (11)

where d denotes the observations at time #, € ; x values (j =
1, 2,..., Ne) are independent Gaussian noises added to the
observations and d j x is the observation vector for ensemble
index j at time ;. Based on the differences of model forecast
and observations, the state—parameter vector can be updated
to

o=+ K (dj—Hyh,), (12)
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where y  denotes the estimated or initially guessed values
of parameter and state, while y  1s the updated estimates,
and H is an observation operator linking the relationship be-
tween the state—parameter vector and the observation vector.
K represents the Kalman gain matrix, which can be calcu-
lated as

—1
Kk = C{HT[HC[HT +Cp, | (13)

where Cp, indicates the covariance matrix of observed data
errors, while C,f( is the error covariance matrix of forecast
ensemble, given by

Ne

Ci~ Nel_ . ;[[yﬁ,k ~ (0] [ —<y£>]T], (14)

where ( y,i) is the ensemble mean of yi.

Compared to EnKF, the IES gives a better estimate
by taking all the available observations into consideration
(van Leeuwen and Evensen, 1996), as presented in Fig. 1b.
Thus, it can keep the overall consistency of parameters and
state variables over time effectively and has been increas-
ingly used to solve the parameter estimation problem in hy-
drology (Crestani et al., 2013; Emerick and Reynolds, 2013).
By calculating iteratively, the nonlinear relationship between
observation and parameter is linearized and the information
content of the observations can be fully utilized (Chen and
Oliver, 2013). In this case, we write the analyzed vector of
model parameters m; as

r+1 _ 1 T ro_ r
' = m K (df — Hm')) (15)
The notation is similar to the one presented for EnKF, where
“r” is the iteration index, m"; i is the initially guessed or esti-

mated parameters for realization j at iteration r, and m s

the updated estimates for realization j by conditioning on the
observed information at iteration r. It should be noted that
the d; and Hm". denote the total number of observations and
predicted data at iteration », which is different from EnKF.
The Kalman gain K is defined as

K" = CTH [HC{HT +Cp + Adiag (HCfHT)]il, (16)

where CTHT is the cross-covariance matrix between the prior
vector of model and the vector of predicted data at iteration r,
HCH is the auto-covariance matrix of predicted data at it-
eration r, and Cp is the covariance matrix of observed data
errors. A donates a dynamic stability multiplier, which is set
as 10 initially and can be adjusted adaptively according to
the data misfit at every iteration; diag(HCfHT) is a diagonal
matrix with the same diagonal elements as HCfHT. Math-
ematically, the dynamic stabilizer term facilitates the solu-
tion switching between the Gauss—Newton solution and the
steepest-descent method, which is known as the Levenberg—
Marquardt approach (Pujol, 2007).
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Figure 1. Flow charts of simulation period — or data assimilation period with (a) ensemble Kalman filter (EnKF) and (b) iterative ensemble
smoother (IES) — and warm-up period. 7y is the initial time, and zepq is the end of simulation time. my and u; are the vectors of model
parameters (e.g., hydraulic conductivity) and state variables (e.g., soil moisture), respectively, at time f, while m" and u" are the vectors at
iteration r; the superscripts “a” and “f” refer to model analysis and forecast (or initial guess). Besides this, the period between #pre and 7
donates the process of warming up, and twy is the required warm-up time.

2.2.3 Quantitative index for data assimilation

To assess model parameter and state estimations, the
root-mean-square error (RMSE) of estimated parame-
ters (RMSE,,) and soil moisture (RMSEs) and the relative
error index (RE) are computed as follows:

Ne

1 E T 2
RMSE,, = E;(mj—m ). (17)
Nobs 2
RMSEqps = D (d;?; _ d;;bS) , (18)
obs ;T
RMSE®
g — RMSE, 19
RMSE,

where m represents the estimated parameter of realization j
at the last simulation day (EnKF) or the last iteration (IES)
and m" represents the true parameter listed in Table 1. d¢ and
d® indicate the predicted and measured soil moisture, re-
spectively. Nops is the amount of observations. RMSES, and
RMSE?, represent the RMSE of the estimated and prior pa-
rameters, respectively. RE varies from 0 to positive infinity.
As RE approaches 0, the analysis result is close to the truth,
but a large value of RE (more than 1) indicates a bad pa-
rameter estimation. Compared with the RMSE,,, this index
can better present the improvement of parameter estimation
during data assimilation.

3 Numerical examples

A series of synthetic numerical experiments are performed
in this section. In Sect. 3.1, we give a general description

www.hydrol-earth-syst-sci.net/23/2897/2019/

Table 1. Soil hydraulic parameters used in simulation.

Soil 05 6, Kimd™ ) a@mb =n

Sand 0.43  0.045 7.128 145 2.68
Loam 0.43  0.078 0.2496 3.6 156
Silt 0.46 0.034 0.06 1.6 137
Clay loam 041  0.095 0.062 1.9 131

of the numerical experiments. In order to gain a better un-
derstanding of the propagation of the UIC, all the hydraulic
parameters (i.e., K, @ and n) are deterministic, and the UIC
is the only uncertainty source in Sect. 3.2. Finally, the nu-
merical cases are designed to evaluate performances of data
assimilation algorithms combined with various initialization
methods in Sect. 3.3, in which the parameter uncertainty is
taken into consideration in conjunction with the UIC.

3.1 General description of model inputs

As shown in Table 1, four soils (sand, loam, silt and clay
loam) are chosen in this study to explore the impacts of
soil hydraulic property on the UIC. The values of hydraulic
parameters are determined according to Carsel and Par-
rish (1988). Besides this, the effects of the meteorological
condition are also considered: M-AC, M-SC and M-HC in
Fig. 2 represent three sets of precipitation and potential evap-
oration data from three different regions (arid region, semi-
arid region and humid region) in China.

Unless otherwise specified, a uniform soil profile with the
50 % relative saturation (a value of 0.254 for loam) is cho-
sen as the initial condition (IC-HfSatu). The soil profile is set
to be 300 cm thick and is filled with loam. The flow domain

Hydrol. Earth Syst. Sci., 23, 2897-2914, 2019
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Figure 2. Synthetic rainfall (blue bars) and potential evaporation (red bars) of three typical climates: (a) arid climate, (b) semi-arid climate
and (¢) humid climate. It should be noted that the meteorological data of simulation period are from day 366 to day 730.

is discretized into 60 grids with a grid size of 5cm, which
has been proved to be sufficient for evaluating the UIC in
our study (results not shown). Besides this, the total simula-
tion time during the synthetic simulation is 1 year (365 d). In
addition, the default upper and bottom boundaries are set to
be M-SC and the free drainage boundary, respectively. Other
specifications and assumptions for our model simulation runs
are given in Table 2.

3.2 The temporal evolution of UIC
3.2.1 Comparison of UIC quantification methods

A synthetic experiment is conducted to compare two meth-
ods (i.e., spin-up method and Monte Carlo method) in quanti-
fying the UIC. Using the spin-up method, the first case runs a
single simulation for 10 years by repeating the preceding me-

Hydrol. Earth Syst. Sci., 23, 2897-2914, 2019

teorological condition starting with IC-HfSatu (Fig. 3a), and
the percentage cutoff PC is calculated. In the second case,
the Gaussian noise with a standard deviation of 3 % (deter-
mined according to the observation error of soil moisture) is
added to the IC-HfSatu to generate an ensemble with differ-
ent initial soil moisture profiles. Then we run different model
realizations (Fig. 3b). Finally, the PC and Spvalues of the two
cases versus time are compared in Fig. 3c.

As shown in Fig. 3a, there is a visible difference between
the monthly averaged soil moisture at the beginning and the
12th month, while the difference is much smaller for 6 at
the 12th and 24th months, indicating the decay of the UIC.
Similarly, the soil moisture values from different realizations
gradually get closer to each other. As shown in Fig. 3c,
PC and S, values gradually decrease with the simulation
time, and their values are approximately the same after t > 6
months. The significant difference at the beginning (PC of

www.hydrol-earth-syst-sci.net/23/2897/2019/
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Table 2. The default model settings used in the simulations.

2903

Parameter definition Value or type

Initial condition

Number of soil layers 1

Thickness of soil zone 3m

Soil hydraulic properties Loam

Upper boundary M-SC
Bottom boundary Free drainage

Number of grids

Simulation time 365d

A uniform 50 % relative saturation over the soil profile (IC-HfSatu)

60 (with the size of 5cm)

0.30 5
(c) Ensemble
0.27 o — pC
: - --- Spread

: 5
F i i
go2 33
° ©
13 >
H 0.21 A E 2
@ £

0.18 1 11

0.15 T T 0.15+ T T T 0 T

0 4 8 12 16 20 24 0 4 8 12 16 20 24 0 4 8 12 16 20 24

Date (total spin-up month)

Date (total spin-up month)

Date (total spin-up month)

Figure 3. Comparison of spin-up and Monte Carlo methods in determining warm-up time. (a) The spin-up method with monthly averaged
soil moisture versus time by running a simulation recursively for 10 years, (b) Monte Carlo method with monthly averaged soil moisture
of different realizations versus time based on various initial conditions, and (¢) comparison of PC and Sp versus time. For the purpose of
demonstration, the parameter uncertainty is not considered, and we only show the results of the first 2 years in the figure.

4.7% and S}, of 2.6 %) is due to different initial soil mois-
ture values given by the spin-up and Monte Carlo methods.
The result indicates that the widely used the spin-up method
and Monte Carlo method are equivalent in terms of quanti-
fying the UIC. We will use Monte Carlo method for the rest
of the study, since it is consistent with the data assimilation
approaches used in this study.

The determination of the threshold value when the UIC
is regarded to have negligible effects on modeling has been
discussed in previous studies (Ajami et al., 2014; Lim et
al., 2012; Seck et al., 2014). PC or S, values of 1% (Yang
et al., 1995), 0.1 % (De Goncalves et al., 2006) or 0.01 %
(Henderson-Sellers et al., 1993) have been used. As shown in
Fig. 3c, there is a significant diversity in the results between
the spin-up and Monte Carlo methods at the index value of
1 %, indicating that the UIC still plays a significant role. In
contrast, the requested #y,, is more than 15 months for a value
of 0.1 %. To balance the estimation accuracy and computa-
tional cost, we recommend a threshold of 0.5 % for both the
spin-up and Monte Carlo methods; the corresponding warm-
up time #y,, is 8 months, which is long enough for the UIC to
diminish, and the difference between PC and S, is insignifi-
cant.

www.hydrol-earth-syst-sci.net/23/2897/2019/

3.2.2 The influencing factors on UIC

The Monte Carlo method is used in this part to obtain the
warm-up time tyy, and a number of scenarios are constructed
under a variety of conditions (different soils, meteorological
conditions and soil profile lengths). First, the influence of soil
texture and the meteorological condition on ty, are exam-
ined. Four different types of homogeneous soils (sand, loam,
silt and clay loam listed in Table 1) and a heterogeneous soil
with multiple layers — consisting of loam (0-75cm), clay
loam (75-150 cm), silt (150-225 cm) and sand (225-300 cm)
— under three typical meteorological conditions (M-AC, M-
SC and M-HC) are employed in these scenarios, while the
other model inputs use the default values (see Table 2). Be-
sides this, the influence of different soil profile lengths (1, 3,
5, 10, 15 and 20 m) on the UIC is also investigated.

a. The influences of soil texture and meteorological
condition

Figure 4 plots ty, with five different soils under three typi-
cal meteorological conditions. The computational times vary
greatly according to soil property. We find that t, values of
sand are all less than 1 d, whereas ty,, values of loam are 412,
242 and 195 d. In addition, the warm-up times of silt and clay
loam with M-AC and M-SC exceed 10 years, while those
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Figure 4. The length of warm-up time #y, with various soils and
meteorological conditions. Note that some of the #wy values are
larger than 10 years and are not able to be obtained due to the
10-year simulation time. The heterogeneous soil profile consists of
loam (075 cm), clay loam (75-150 cm), silt (150-225 cm) and sand
(225-300 cm).

with M-HC are 264 and 253 d. The results imply that the
warm-up time ty, for the fine-textured soil is larger than that
for coarse-textured soil. This may be attributed to the diver-
sity of the drainage property for different soils. For sand, due
to its fast drainage property, the soil moisture ensemble con-
verges extremely quickly and most of the values at the profile
are maintained as residual soil moisture. Thus, the UIC of
sand disappears very quickly. In contrast, the soil moisture
states for silt and clay loam change more slowly than sand
during the simulation. Therefore, the faster drainage prop-
erty leads to a smaller warm-up time.

In addition, the meteorological condition has a strong im-
pact on the UIC. For example, with soil loam, the order of #yy
is M-HC < M-SC < M-AC. For silt and clay loam, ty, val-
ues of M-AC and M-SC decrease from more than 10 years
to 264 and 253 d with a humid climate M-HC, respectively.
With intensive and excessive rainfall events, 8 approaches
the saturated soil moisture, leading to a sudden drop in S,.
Thus, the meteorological condition, especially the precipita-
tion, plays an important role in the propagation of the UIC.
Moreover, regarding the heterogeneous soil with multiple
layers, the #, under the M-AC is larger than 10 years (sim-
ilar to silt and clay loam), while that under M-SC or M-HC
becomes much smaller (higher than that of loam, but they are
of the same magnitude). Thus, it is conjectured that #,, is de-
termined by the fine soil texture in the layered profile under
the dry meteorological condition but averaged soil hydraulic
properties under the wet meteorological condition.

It should be noted that the t, is also relevant to the initial
state of soil. Regarding the initial condition in an extremely
dry state under the arid climate, the hydraulic conductivity is
very small and the initial spread extends for a long time. For
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instance, ty, of sand increases from 1 to 8 d when the ensem-
ble mean value of initial soil moisture decreases from 0.2375
to 0.15 (results not shown). Yet, if a sufficiently large rain
event takes place, the soil moisture increases and then con-
verges to a similar state rapidly.

b. The influence of soil profile length

To investigate the effects of soil profile length on warm-up
time, we investigate the t,, values for simulations with vari-
ous soil profile lengths. As presented in Fig. Sa, the t,,, val-
ues for soil lengths of 1, 3, 5, 10, 15 and 20 m are 0.11, 0.57,
0.74, 1.57, 2.78 and 4.3 years, respectively, indicating that
the warm-up time increases with increasing depth of soil col-
umn. Figure 5b plots the #,, value for each depth with the
profile length of 20 m, showing that a longer warm-up time is
needed if the soil layer is deeper. Both subfigures imply that
the UIC decays more slowly if the effects of the boundary
condition become less important. We also examine the case
for substituting the free drainage boundary for a prescribed
groundwater table. The results indicate that the t, is further
shortened due to the influence of the bottom saturation con-
dition (not shown).

In addition, ty, in homogeneous loam reveals a power-law
relationship with the length of soil profile. According to the
fitted curve in Fig. 5a, the warm-up time ty, is more than
7 years for a depth d of 30 m (e.g., North China Plain; Huo et
al., 2014) and 700 years for d = 1000 m (e.g., Yucca Moun-
tain site; Flint et al., 2001) with loam soil. This result sug-
gests that we should be very careful in dealing with a sim-
ulation with a long unsaturated profile where the UIC lasts
for an extremely long time and influences the simulation and
data assimilation results.

3.3 Initialization of data assimilation

Besides IC-HfSatu, two other common methods to prescribe
initial conditions in variably saturated flow model based on
the availability of information are also considered in this
study, including a linear interpolation between observations
(at depths of 10, 80, 150, 220 and 290 cm) at the beginning of
simulation (IC-ObsInt) and a steady-state soil moisture pro-
file by warming up the model with a constant infiltration flux
of 1mmd~! (IC-flux). Moreover, we employ two warm-up
methods, which give initial conditions by running the model
prior to the beginning of simulation period with available me-
teorological data (as shown in Fig. 2). If the preceding me-
teorological data before the simulation period are available,
they are used in the warm-up method (IC-WUP); otherwise,
we use the meteorological data at the experimental period as
a surrogate (IC-WUE). The length of warm-up time for IC-
flux, IC-WUP and IC-WUE is equal to fy, (242 d) based on
the results in Sect. 3.2.2a, so the warm-up period of these
three methods is from day 124 to day 365. In addition, IC-
HfSatu and IC-Obslnt are assumed to be deterministic with-
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a function of depth z with a 20 m soil profile.

out uncertainty, while for the IC-flux, IC-WUP and IC-WUE,
the uncertainty of states is introduced by warming up the
model with uncertain parameters.

Thus, a total of five initialization methods (IC-HfSatu, IC-
Obslnt, IC-NetFlux, IC-WUP and IC-WUE) are assessed to
investigate the effect of the UIC on model state and pa-
rameter estimations within two data assimilation frameworks
(EnKF and IES). The initial realizations of soil hydraulic
parameters K, « and n for all data assimilation models
are generated following logarithm-normal distributions, with
mean values of 4.7md ™!, 8.6 m~! and 1.8 and variances (log
transformed) of 0.1, 0.3 and 0.006. The saturated soil mois-
ture 6 and residual soil moisture 6; are assumed to be de-
terministic with the value of 0.43 and 0.078. Compared with
the reference values (K, « and n for loam are 0.2496 m a1,
3.6m~! and 1.56, respectively) listed in Table 1, the prior
means of unknown parameters are biased.

3.3.1 General description for various data assimilation
cases

Several test cases are conducted to explore the effects of ini-
tialization on parameter estimation under various data assim-
ilation frameworks. Case 1 investigates the effects of five ini-
tialization methods on individual parameter estimation with
EnKF and the IES, respectively. Then, we increase the en-
semble size of IC-HfSatu and IC-ObsInt to 500 (hereafter
referred to as IC-HfSatu-500 and IC-ObsInt-500) in Case 2
to demonstrate the impacts of ensemble size. Case 3 ex-
plores the effects of the uncertainty magnitude of the ini-
tial ensemble on the parameter estimations. A Gaussian noise
with a standard deviation of 0.017 (counted from IC-WUP)
is added to both IC-HfSatu-500 and IC-ObsInt-500 (here-
after referred to as IC-HfSatu-500-Un and IC-ObsInt-500-
Un). Furthermore, to find out the role of the initial condition
in multi-parameter inverse problems, Case 4 is conducted to
estimate K, o and n simultaneously. Case 5 is implemented
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with a simulation time of 60d to explore the influence of
assimilation time on multiple parameter estimation with the
IES. It should be noted that the warm-up methods IC-WUP
and IC-WUE) are used in the IES warm-up model before ev-
ery iteration (as presented in Fig. 1b), since the initialization
of the IES by warming up the model for only the first itera-
tion leads to poor assimilation results.

The synthetic observations used for data assimilation are
generated by running the model with the true parameter
(loam) and true initial condition (produced by warming up
model with a sufficient long time of 10 years). The generated
observations are perturbed by a Gaussian noise with a stan-
dard deviation of 0.01. A total number of 37 observations
are assimilated into the model. The observation depth is at
z = 10cm, and the observed soil moisture is assimilated ev-
ery 10d, starting from day 3. The details of the model inputs
for Case 1 to Case 5 are listed in Table 3.

3.3.2 Result

The results for parameter estimation (In Ks) using the two
data assimilation frameworks with different initialization
methods (Case 1) are compared in Fig. 6. In Fig. 6a, the es-
timated In K values of EnKF are presented. In general, the
In K estimations under different initial conditions all grad-
ually approach the true values over assimilation time, but
the final assimilation results are different. For IC-HfSatu,
because the initial profile is uniform and arbitrarily speci-
fied, the assimilation results are affected by the parameter
uncertainty and the UIC simultaneously. Thus, the decrease
in RMSEy is the slowest, and the final parameter estimation
result is the worst. In contrast, the initial conditions generated
by warm-up methods (IC-WUP and IC-WUE) can eliminate
the UIC in advance, and thus data assimilation can handle
parameter uncertainty more efficiently, leading to the best
results among the five. The data assimilation results of IC-
WUE are a little worse than those of IC-WUP, owing to the
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Table 3. Case summary for parameter estimation within EnKF and IES.

Case Description  Ensemble Initial Simulation  Framework
size uncertainty time
Case 1  Individual - - - EnKF-IES
Case 2  Parameter 500 - - EnKF-IES
Case 3  Estimation 500 0.017 - EnKF-IES
Case 4  Multiple - - - EnKF-IES
Case 5 Parameter - - 60 1IES
Estimation

Note: values that are not given use the default values. The default value of initial uncertainty for

IC-ObsInt and IC-HfSatu is 0.
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Figure 6. The results of In K estimations (a, b) and their associated standard deviations (¢, d) within two data assimilation frameworks

(a, c: EnKF; b, d: IES) under five initialization methods (Case 1).

diversity of the meteorological condition. Since IC-Obslnt
and IC-flux are created by adding observation information or
simple infiltration information, they perform better than that
with IC-HfSatu but worse than warm-up methods. Similarly,
the assimilation results for the IES with IC-WUP are also the
best, while those with IC-HfSatu have the worst parameter
estimation in the five initialization methods (Fig. 6b). In ad-
dition, by comparing Fig. 6a and b, the cases using the IES
show better results than those using EnKF, indicating a supe-
rior ability of the IES to estimate the individual parameter in
variably saturated model. However, since the IES estimates
parameter iteratively, it has a much larger computational cost
than EnKF when using warm-up methods.

Hydrol. Earth Syst. Sci., 23, 2897-2914, 2019

For the data assimilation problem, the ensemble variance
is increasingly underestimated over time and iteration, which
may cause the filter inbreeding problem (Hendricks Franssen
and Kinzelbach, 2008). To determine if our data assimilation
runs are affected by filter inbreeding, the temporal change of
the standard deviation of estimated In K is plotted in Fig. 6¢
and d. In general, the standard deviation of estimated In K
declines gradually with assimilation steps (EnKF) or itera-
tion steps (IES). As given in Fig. 6a and c, the filter inbreed-
ing might take place after 280th days for EnKF, since the
standard deviations of ensemble all approach 0.1 and the es-
timated parameters stay constant over time. However, with
the help of a damping parameter, the filter inbreeding prob-
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lem for the IES could be reduced significantly. This partly
explains the inferior result of EnKF compared to the IES.

Increasing the ensemble size and model uncertainty is an
efficient approach for reducing the filter inbreeding (Hen-
dricks Franssen and Kinzelbach, 2008). To demonstrate the
impacts of ensemble size and initial uncertainty on data as-
similation results, the results of In K estimations utilizing
the initial condition IC-HfSatu and IC-ObsInt with the en-
semble size of 500 (Case 2) and a Gaussian noise (Case 3)
are plotted in the Fig. 7.

The results of IC-HfSatu-500 and IC-ObsInt-500 with the
ensemble size of 500 in Fig. 7 are similar to those of IC-
HfSatu and IC-Obslnt (Fig. 6), indicating that the improve-
ment of the parameter estimation result is slight when the
ensemble size increases from 300 to 500. Hence, the ensem-
ble size of 300 is sufficient for the data assimilation problem
in this study. In contrast, the influences of adding the uncer-
tainty to the initial state on parameter estimation are totally
different for EnKF and the IES. Compared with the results
of IC-ObsInt-500 and IC-HfSatu-500, the results of In K es-
timation with IC-ObsInt-500-Un and IC-HfSatu-500-Un im-
prove for EnKF (Fig. 7a) but deteriorate for the IES (Fig. 7b).
This may be attributed to the diversity between two algo-
rithms. EnKF is a sequential algorithm, so the state uncer-
tainty introduced by the UIC could decrease over assimila-
tion steps. A larger ensemble state variance implemented at
the beginning leads to a larger trust in data and thus a quicker
update of the parameter to truth and can prevent EnKF from
inbreeding, leading to a better result than that with an ini-
tial condition of small variance. On the contrary, the IES
is a batch optimization method. The uncertainty of the ini-
tial state exists at each iteration and has a negative effect on
the model calibration during the whole simulation, worsen-
ing the parameter estimation results. Besides this, we also
investigate the influences of spatial correlation of the added
noise (e.g., with correlation length of 50 cm or infinity) for
constructing IC-HfSatu and IC-ObslInt, but their parameter
estimation results are similar (not shown), indicating that the

www.hydrol-earth-syst-sci.net/23/2897/2019/

effects of spatial correlation of noise during the construction
of IC-HfSatu and IC-Obslnt are not significant in parameter
estimation.

Moreover, the parameter estimation results of IC-WUP
are still superior to those of IC-HfSatu-500-Un and IC-
ObsInt-500-Un even though they all have a similar compu-
tational cost, showing the promising performance of warm-
up methods. The results are reasonable, since all ensemble
Kalman filter methods are affected by the quality of the auto-
covariance matrix and the mean value of the predicted state
ensemble (Eqs. 11 and 12 for EnKF; Eqs. 14 and 15 for IES).
For the WUP method, the initial condition is constructed by
warming up the model with the prior parameter; thus IC-
WUP contains useful information of prior parameter, even
it is biased. Besides this, the state covariance matrix is im-
plicitly inflated due to the introduction of uncertain prior
parameter ensemble during warming up. These two aspects
ensure the robust performance of warm-up methods. How-
ever, the initial state ensembles of IC-HfSatu-500-Un and
IC-ObsInt-500-Un are independent of the prior parameter,
which introduces additional uncertainties, making the data
assimilation results worse. Therefore, even using a larger en-
semble size and enlarging the state uncertainty (covariance
inflation), warm-up methods are still the optimal choice for
both EnKF and IES algorithms. We also construct another
case with larger parameter uncertainty to alleviate the filter
inbreeding problem, and the data assimilation for all cases
are improved (not shown). The results also agree with our
conclusion that WUP performs the best among the five ini-
tialization methods.

To evaluate the effects of the UIC in the multi-parameter
inverse problem, the RE results of K, « and n estimates of
Case 4 are presented in Fig. 8. In general, the RE results of n
and K are small no matter whether EnKF or the IES is used
or not, while the RE of « is the largest. A cross-correlation
analysis indicates that soil moisture observations are insensi-
tive to parameter « with a free drainage boundary condition,
which agrees with the results of Hu et al. (2017). In Fig. 8a,
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Figure 8. The RE results of parameter estimations («, n and Ks) under five initialization methods with (a) EnKF and (b) IES (Case 4).

similar to the conclusion of the one-parameter inverse prob-
lem, the parameter estimation results of Ky and o with IC-
HfSatu and IC-ObslInt are worse than those of IC-WUP and
IC-WUE. There is not much difference between the n esti-
mates under various initial conditions, implying that n is less
affected by the UIC when estimating K, o and n simulta-
neously. Compared with EnKF, the IES shows a smaller RE
(Fig. 8b) for all parameters, indicating that the IES can also
perform better in the multi-parameter inverse problem. How-
ever, the assimilation results with various initialization meth-
ods do not show much difference, implying that the final
RE values are not significantly affected by the UIC, possibly
due to abundant observations available over 1 year. Never-
theless, long-term observation data may not be available in
many cases.

To examine the impact of assimilation time on parameter
estimation with the IES, Case 5 with a shorter assimilation
period (60d) and a fewer number of observations (i.e., six)
is conducted. Figure 9 shows the RE results, and it is infe-
rior to those in Case 4, where the simulation time is 1 year
(Fig. 8b). Nevertheless, the effects of assimilation time on
parameter estimation are different for different parameters.
For instance, parameter n can still be estimated well in the
most of the situations. In addition, though the assimilation
results of K degraded with a 60d simulation, the variation
in K estimation values among different initialization meth-
ods is small. The number of observations can greatly affect
the estimation of parameter «, since RE values of « in Case 5
(3.5, 4.8, 1.17, 0.79 and 0.23) are much larger than those
in Case 4 (0.16, 0.29, 0.68, 0.24 and 0.31). Furthermore,
the warm-up methods show the best data assimilation results
among the five when the observations are insufficient.

4 Field validation

Synthetic observation in previous section is generated by
running the model with uncertainty sources that are exactly
known. By conducting synthetic experiments, we can thor-
oughly analyze the impact of the UIC during data assimila-
tion, with scenarios having different numbers of observations
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and/or unknown parameters, and more decisive conclusions
can be drawn. In contrast, the field observations contain ad-
ditional uncertainties which are largely unknown (e.g., the
calculated evapotranspiration is inaccurate for the real-world
case). In order to examine the real-world applicability of the
conclusions drawn from synthetic case, field data are nec-
essary for validating our results. A field experiment is con-
ducted in the irrigation-drainage experimental site of Wuhan
University (Li et al., 2018; Fig. 10a). Meteorological data, in-
cluding air temperature, relative humidity, atmospheric pres-
sure, incident solar radiation and precipitation, are continu-
ously monitored by an automatic weather station (Logger-
Net 4.0), which can be used as an upper boundary condition
after the calculation of the potential evaporation (Penman—
Monteith’s equation) on the bare soil (see Fig. 11a). A ver-
tically inserted frequency domain reflectometry (FDR) tube
was used to monitor soil moisture (Fig. 10b). The in situ
soil moisture observation was measured every 3 d. The tube
gave soil moisture measurements at the depths of 10, 20 and
30 cm. During 18 April to 30 May 2017, the measurements
were repeated 14 times and 42 soil moisture data were col-
lected (see Fig. 11b). Besides this, the soil moisture at the
depths of 10, 20, 30, 40, 60 and 80 cm at the beginning of the
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Table 4. RMSE} results for the soil moisture predictions at ob-
servation points with different initial conditions in the experimental
case.

Initial 10cm 20cm 30cm
condition

IC-HfSatu  0.0232 0.0271 0.0280
IC-ObsInt  0.0286 0.0187 0.0134
IC-flux 0.0198 0.0222 0.0206
IC-WUP 0.0180 0.0153 0.0155

simulation time is also available to construct an initial profile
via IC-Obslnt.

4.1 General description of the experimental case

To analyze the experimental data, the 1-D numerical domain
is set as 2m and discretized in 50 grids. The top 40 grids
have a size of 2.5 cm, and the rest have a size of 10 cm. The
upper boundary is set as an atmospheric boundary using the
data shown in Fig. 11a, and the bottom boundary is set to
be free drainage, since the groundwater table is much deeper
than the bottom of the domain.

The prior parameter distributions follow the study of Li et
al. (2018). The saturated soil moisture 05 and residual soil
moisture 6, are given as 0.43 and 0.078, while the other hy-
draulic parameters are to be estimated. The initial means
of K, « and n are setas 1 md—!, 5m~! and 2, and the initial
natural logarithmic variances of them are set as 0.22, 0.16
and 0.003. The data from 18th April through 27 April are
used for calibration, while the remaining data are reserved
for validation. The climate of Wuhan is semi-arid condi-
tions, and the soil of the experimental site is sandy loam.
We use a warm-up time of 242 d based on our investigation
in Sect. 3.2.2.

4.2 Results

The assimilation results with four different initialization re-
sults (IC-HfSatu, IC-ObslInt, IC-flux and IC-WUP) are pre-
sented in this part. Since the true hydraulic parameters at
the experimental site are unknown, we assess the estima-
tion by comparing the predicted (using estimated parameters)
and observed soil moisture during the validation period. The
RMSE_ s values for soil moisture predictions under different
assimilation scenarios are listed in Table 4. Generally speak-
ing, RMSE,s values with IC-WUP are again the smallest,
while IC-HfSatu has the largest RMSE s values.

In order to evaluate the overall performances of the four
initialization methods, the soil moisture observations and
predictions at all depths are plotted in Fig. 12. The coeffi-
cients of determination under the four scenarios are 0.033,
0.599, 0.083 and 0.553, and the RMSE,,s values are 0.045,
0.037, 0.036 and 0.028, respectively. As shown in Fig. 12a
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and c, IC-HfSatu and IC-flux show very large scattering,
indicating a bad prediction performance. A significant im-
provement is found in IC-WUP, with a large R? and the
smallest RMSE s value, as shown in Fig. 12d. Surprisingly,
IC-ObslInt has the largest R? among the four methods, though
its RMSE s value is bigger than that of IC-WUP. The simu-
lation of real-world problems may have uncertainties that are
not considered in data assimilation. For instance, the meteo-
rological data prior to the simulation for warming up are not
precise from the weather-station instrument error and calcu-
lation of evapotranspiration, which has a detrimental effect
on IC-WUP. IC-Obslnt, on the other hand, has the advantage
of utilizing the soil moisture observations for both initializa-
tion and predictions. However, IC-ObsInt may not be appli-
cable when soil moisture observations at t = 0 are not avail-
able or the soil moisture profile is discontinuous in layered
soils, leading to a large interpolation error. In summary, for
both the synthetic and field cases, models initialized using
the warm-up method result in low uncertainty and superior
soil moisture predictions even if the calibration data are in-
sufficient.

5 Discussion and conclusions

The study investigates the effects of the UIC on variably sat-
urated flow simulations subject to different soil hydraulic pa-
rameters, meteorological conditions and soil profile lengths.
Two common approaches (spin-up and Monte Carlo meth-
ods) are applied to explore the required warm-up time fyy
and temporal behavior of the UIC. In addition, the data as-
similation performances with five common initialization ap-
proaches are compared using synthetic experiments and a
field soil moisture dataset.

Under the atmospheric boundary condition, the soil mois-
ture value near the upper boundary could approach its up-
per and lower bounds (saturated water content and residual
water content) due to rainfall and evaporation. This signifi-
cantly reduces the UIC of soil moisture profile near the soil
surface. Our investigation shows that the coarse-textured soil
results in faster reduction of the soil moisture UIC because
of fast redistribution of water in sandy soil. Regarding the
influence of boundary conditions, we find that heavy rainfall
can reduce the UIC significantly, while an initial condition in
a drier status leads to a growth of ty, since a drier soil drains
and evaporates less water, making the UIC of soil moisture
dissipate slowly. The conclusion agrees with the conclusions
reported by Castillo et al. (2003) and Seck et al. (2014). Al-
though #y,, for sandy soil is very small, it could be very large
for other soils (less than 1d versus more than 10 years in
Fig. 4). The length of soil profile plays an important role in
the UIC, since the UIC decays from the boundaries. As a re-
sult, the UIC could exist persistently in a very thick vadose
zone. Our findings imply that the UIC dissipation depends
nonlinearly on the soil type, meteorological condition and
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soil profile lengths, and special attention should be paid dur-
ing vadose zone modeling.

Ideally, the initial ensemble should represent the error
statistics of the initial guess for the model state during data
assimilation (Evensen, 2003). Thus, effort should be invested
in reducing the impact of the UIC on data assimilation. Meth-
ods which do not consider the UIC (i.e., assuming an initial
ensemble arbitrarily without uncertainty, which was used in
some studies; e.g., Shi et al., 2015) can induce significant
bias according to our data assimilation results. By construct-
ing the initial condition using the information of observa-
tions or the boundary condition (averaged flux), the data as-
similation results can be improved. However, these two ini-

Hydrol. Earth Syst. Sci., 23, 2897-2914, 2019

tialization methods are also suboptimal due to the oversim-
plification of the complex initial condition. By warming up
the model with available meteorological data, the initializa-
tion methods can improve data assimilation results. More-
over, EnKF is more sensitive to the filter inbreeding problem
than the IES. The initial condition with a larger state uncer-
tainty gains better performance than that without covariance
inflation for EnKF, while for the IES, this inflated uncertainty
cannot decrease over iterations, making the results inferior.
In this study, we only use the soil moisture observations
rather than the pressure head to construct the initial profile.
For homogeneous soil column, there is a one-to-one relation-
ship between the spread of soil moisture and the pressure
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Figure 12. The comparisons between soil moisture observations and predictions (with estimated parameters from IES combined with differ-

ent initialization methods) at all observation depths.

head (i.e., UIC in terms of the pressure head can be converted
from that of soil moisture). The situation will be much more
complex if the soil is heterogeneous, since a large number
of unknown hydraulic parameters may introduce significant
nonlinearity during the transformation between the head and
soil moisture. For instance, the soil moisture profile is dis-
continuous in layered soils. The use of the pressure head in-
stead of soil moisture as the initial condition for heteroge-
neous soils deserves investigation in our future work.

Our work leads to the following major conclusions:

1. The spin-up method and Monte Carlo method can both
quantify the UIC, and they agree well with each other
after a sufficiently long simulation. A threshold of 0.5 %
for percentage cutoff PC or ensemble spread S, is rec-
ommended to determine the warm-up time.

2. Warm-up time varies nonlinearly with soil textures, me-
teorological conditions and soil profile length. Under
most situations (e.g., loam with the soil profile length
less than 5 m under non-arid climate), a 1-year warm-
up time is sufficient for soil water movement modeling,
but an extremely long time (exceeds 10 years) is needed
to warm up the model for a long, fine-textured soil pro-
file under an arid meteorological condition.

3. The IES shows better performance than EnKF in the
strongly nonlinear problem and is affected less by the
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UIC with a long period of observations. In addition, co-
variance inflation of the initial condition could improve
the data assimilation results for EnKF but deteriorate
them for the IES.

4. The following procedure is recommended to initial-
ize soil water modeling: (1) evaluate the approximate
warm-up time based on the model settings, (2) initialize
the model using the method of the WUP (if meteorolog-
ical data are available) and make sure the warm-up time
is larger than the required ty,, and (3) run the simula-
tion with the initial condition obtained in step 2. WUE
is an alternative to WUP if the preceding meteorological
data are not available. Obslnt is also a practical choice
if dense soil moisture observations at the beginning of
simulation are available.

Further research may examine the performance of these ini-
tialization methods in two- or three-dimensional variably sat-
urated flow conditions. Our approach can also be extended to
other modeling and data assimilation problems in other disci-
plines (e.g., groundwater flow and solute transport modeling
and soil-water—crop modeling).

Code and data availability. All the data used in this study can be
requested by email to the corresponding author Yuanyuan Zha at
zhayuan87 @ gmail.com.
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