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Abstract. Evapotranspiration (ET) is a major component of
the land surface process involved in energy fluxes and en-
ergy balance, especially in the hydrological cycle of agri-
cultural ecosystems. While many models have been devel-
oped as powerful tools to simulate ET, there is no agree-
ment on which model best describes the loss of water to
the atmosphere. This study focuses on two aspects, eval-
uating the performance of four widely used ET models
and identifying parameters, and the physical mechanisms
that have significant impacts on the model performance.
The four tested models are the Shuttleworth–Wallace (SW)
model, Penman–Monteith (PM) model, Priestley–Taylor and
Flint–Childs (PT–FC) model, and advection–aridity (AA)
model. By incorporating the mathematically rigorous ther-
modynamic integration algorithm, the Bayesian model ev-
idence (BME) approach is adopted to select the optimal
model with half-hourly ET observations obtained at a spring
maize field in an arid region. Our results reveal that the SW
model has the best performance, and the extinction coef-
ficient is not merely partitioning the total available energy
into the canopy and surface but also including the energy
imbalance correction. The extinction coefficient is well con-
strained in the SW model and poorly constrained in the PM
model but not considered in PT–FC and AA models. This
is one of the main reasons that the SW model outperforms
the other models. Meanwhile, the good fitting of SW model
to observations can counterbalance its higher complexity. In
addition, the detailed analysis of the discrepancies between
observations and model simulations during the crop growth

season indicate that explicit treatment of energy imbalance
and energy interaction will be the primary way of further im-
proving ET model performance.

1 Introduction

Surface energy fluxes are an important component of Earth’s
global energy budget and a primary determinant of surface
climate. Evapotranspiration (ET), as a major energy flux pro-
cess for energy balance, accounts for about 60 %–65 % of the
average precipitation over the surface of the Earth (Brutsaert,
2005). In agricultural ecosystems, more than 90 % of the to-
tal water losses are due to ET (Morison et al., 2008). There-
fore, robust ET estimation is crucial to a wide range of prob-
lems in hydrology, ecology, and global climate change (Xu
and Singh, 1998). In practice, mtuch of our understanding of
how land surface processes and vegetation affect weather and
climate is based on numerical modeling of surface energy
fluxes and the atmospherically coupled hydrological cycle
(Bonan, 2008). Several models are commonly used in agri-
cultural systems to evaluate ET. The Penman–Monteith (PM)
and Shuttleworth–Wallace (SW) models are physically sound
and rigorous (Zhu et al., 2013) and thus widely used to sim-
ulate ET for seasonally varied vegetation. The models con-
sider the relationships between net radiation, all kinds of heat
flux (such as latent heat, sensible heat, and heat from soil
and canopy), and surface temperature. The Priestley–Taylor
and Flint–Childs (PT–FC) model (based on radiation) and
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the advection–aridity (AA) model (based on meteorological
variables) have also been widely used because they only re-
quire a small number of ground-based measurements to set
up the models (Ershadi et al., 2014).

Comparing the performance of the competing ET mod-
els and evaluating and understanding the discrepancies be-
tween simulations of the models and corresponding observed
surface–atmosphere water flux remain challenging problems
(Legates and McCabe, 1999). Both non-Bayesian analysis
(Szilagyi and Jozsa, 2008; Vinukollu et al., 2011; Li et al.,
2013; Ershadi et al., 2015) and Bayesian analysis have been
used to evaluate the performance of ET models (Zhu et al.,
2014; Chen et al., 2015; Liu et al., 2016; Zhang et al., 2017;
Elshall et al., 2018; Samani et al., 2018;). Li et al. (2013)
compared the ET simulations of the PM, SW and adjusted
SW models under film-mulching conditions of maize growth
in an arid region of China. They found that the half-hourly
ET was overestimated by 17 % in the SW model. In con-
trast, the PM and adjusted SW models underestimated the
daily ET by 6 % and 2 %, respectively. Therefore, the perfor-
mances of PM and adjusted SW models are better than those
of the SW model in their case study. Ershadi et al. (2014)
evaluated the surface energy balance system (SEBS), PM,
PT–JPL (JPL is the Priestley–Taylor Propulsion Laboratory
Model; a modified Priestley–Taylor model), and AA mod-
els. Based on the average value of model efficiency (EF)
and RMSE, the model ranking from worst to best was AA,
PM, SEBS, and PT–JPL. Ershadi et al. (2015) also com-
pared the response of the models to different formulations of
aerodynamic and surface resistances with global FLUXNET
data. Their results showed considerable variability in model
performance among and within biome types. Currently, ET
model selection and comparison have been still conducted
using traditional error metrics. It is known that error metrics
are not adequate for providing a reasonable result of model
ranking for disregarding model complexity (Marshall et al.,
2005; Samani et al., 2018). The focus of this study is to use
a Bayesian approach to evaluate the performance of the PM,
SW, PT–FC, and AA models, which is a novelty contribution
of this study. In ET models, the land surface energy system
is governed by presumably infinitely dimensional physics.
However, considering the ET models to be finitely dimen-
sional can be more precise by covering all relevant relations.
Therefore, employing consistent criteria for model selection
might be justified when the aim is to better understand the
processes involved (Höge et al., 2018). When using consis-
tent model selection, Bayesian model evidence (BME), also
known as marginal likelihood, measures the average fit of
model simulations to their corresponding observations over
a model’s prior parameter space. This feature enables BME
to consider model complexity (in terms of the number of
model parameters) for model performance evaluation. When
comparing several alternative conceptual models, the model
with the largest marginal likelihood is selected as the best
model (Lartillot and Philippe, 2006). BME can thus be used

for evaluating the model fit (over the parameter space) and
for comparing alternative models. In previous studies, the
Bayesian information criterion (BIC; Schwarz, 1978) and the
Kashyap information criterion (KIC; Kashyap, 1982) have
been used to approximate BME by using maximum likeli-
hood theories to reduce the computational cost of evaluating
BME (Ye et al., 2004). However, these approximations have
theoretical and computational limitations (Ye et al., 2008;
Xie et al., 2011; Schöniger et al., 2014), and a numerical eval-
uation (not a likelihood approximation) of BME is necessary,
especially for complex models (Lartillot and Philippe, 2006).
Lartillot and Philippe (2006) advocated the use of thermody-
namic integration (TI) for estimating BME, also known as
path sampling (Gelman and Meng, 1998; Neal, 2000), in or-
der to avoid sampling solely in the prior or posterior param-
eter space. TI uses samples that are systematically generated
from the prior to the posterior parameter space by conducting
path sampling with several discrete power coefficient values
(Liu et al., 2016). It is more numerically accurate than the
generally used harmonic mean method (Xie et al., 2011).

Most applications of Bayesian methods have focused on
the calibration of individual models, while the comparison
of alternative models continues to be performed using tra-
ditional error metrics. More generally, Bayesian approaches
to model calibration, comparison, and analysis have been
used far less in the evaluation of ET models than in other
areas of environmental science. In this study, the Bayesian
approach is used to calibrate and evaluate the four ET mod-
els (PM, SW, PT–FC, and AA) based on an experiment over a
spring maize field in an arid area of northwestern China from
3 June to 27 September 2014. The objectives of the study
are as follows: (1) to calibrate ET model parameters using
the DiffeRential Evolution Adaptive Metropolis (DREAM)
algorithm (Vrugt et al., 2008, 2009), (2) to identify which
parameters had a greater impact on the model performance
and to explain why the selected optimal model performed
best, (3) to evaluate the performance of the models using tra-
ditional error metrics and BME, and (4) to analyze discrep-
ancies between model simulations and observation data in
order to better understand model performance and identify
ways to improve these models. We expect that the study will
not only boost the development of model parameterization
and model selection but also contribute to the improvement
of the ET models.

2 Data and methodology

2.1 Description of the study area

The experiment of maize growth was conducted at the
Daman Superstation, located in Zhangye, Gansu province,
northwestern China. Daman oasis is located in the middle
Heihe River basin, which is the second largest inland river
basin in the arid region of northwestern China. The mid-
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stream area of the Heihe River basin is characterized by
oases with irrigated agriculture and is a region that con-
sumes a large amount of water for both domestic and agri-
cultural uses. The annual average precipitation and temper-
ature are 125 mm and 7.2◦ (1960–2000), respectively. The
annual accumulated temperature (> 10◦) is 3234◦, and the
annual average potential evaporation is about 2290 mm. The
average annual duration of sunshine is 3106 h, with 148 frost-
free days. The predominant soil type is silty-clay loam, and
the depth of the frozen layer is about 143 mm. The study
area is a typical irrigated agricultural region, and the ma-
jor source of water is snowmelt from the Qilian Mountains.
Maize and spring wheat are the principal crops grown in
the region. Maize is generally sown in late April and har-
vested in mid-September and is planted with a row spacing
of 40 cm and a plant spacing of 30 cm. The plant density is
about 66 000 plants ha−1 in the study area.

2.2 Measurements and data processing

Our data were collected from the field observation systems
of the Heihe Watershed Allied Telemetry Experimental Re-
search (HiWATER) project as described in Li et al. (2013).
The observation period was from DOY (day of the year) 154
to DOY 270 in 2014. An open-path eddy covariance (EC)
system was installed in a maize field, with the sensors at
a height of 4.5 m. Maize is the main crop in the study re-
gion and thus covers sufficient planting area to set the EC
measurements. The EC data were logged at a frequency of
10 Hz and then processed with an average time interval of
30 min. Sensible and latent heat fluxes were computed by the
EC approach of Baldocchi (2003). Flux data measured by
EC were controlled by traditional methods, including three-
dimensional rotation (Aubinet et al., 2000); Webb–Penman–
Leuning (WPL) density fluctuation correction (Webb et al.,
1980); frequency response correction (Xu et al., 2014); and
spurious data removal caused by rainfall, water condensa-
tion, and system failure. About 85 % of the energy balance
closure was observed in the EC data (Liu et al., 2011).

Standard hydro-meteorological variables, including rain-
fall, air temperature, wind speed, and wind direction, were
continuously measured at the heights of 3, 5, 10, 15, 20,
30, and 40 m above the ground. Soil temperature and mois-
ture were measured at heights of 2, 4, 10, 20, 40, 80, 120,
and 160 cm. Photosynthetically active radiation was mea-
sured at a height of 12 m. Net radiation, including downward,
upward, and longwave radiation, was measured by a four-
component net radiometer. An infrared thermometer was in-
stalled at a height of 12 m. The leaf area index (LAI) was
measured approximately every 10 d during the growing sea-
son.

2.3 Model description

In this section, we summarize the mathematical definitions
forming the basis of each of the four models. Appendix A
contains a summary of the names and physical meanings of
the model parameters.

2.3.1 Penman–Monteith (PM) model

The PM model can be formulated in the following way
(Monteith, 1965):

λE =
εA+

(
ρCpt/γ

)
Daga

ε+ 1+ ga/gs
, (1)

where ε =1/γ , and A is defined as A= Rn−G.
In the present study, ga is parameterized in the way sug-

gested by Leuning et al. (2008), and gs is defined as

gs = g
c
s

1+ τga
(ε+1)gc

s

[
f −

(ε+1)(1−f )gc
s

ga

]
+

ga
εgi

1− τ
[
f −

(ε+1)(1−f )gc
s

ga

]
+

ga
εgi

 , (2)

where 1− τ and τ are the fractions of the total available
energy absorbed by the canopy and by the soil, τ = exp
(KaLAI), and gi and gc

s are defined in Eqs. (3) and (4), re-
spectively (Monteith, 1965),

gi =
A(

ρCp/γ
)
Da
, (3)

gc
s =

gmax

Kq
In

[
Qh+Q50

Qh exp
(
−KqLAI

)
+Q50

]
[

1
1+Da

/D50

]
f (θ),

(4)

where f (θ) represents water stress and is expressed as

f (θ)=


1 θ > θa,
θ − θb

θa − θb
θb < θ < θa l,

0 θ < θbl,

(5)

and θa is set as θa = 0.75 θb. Aerodynamic conductance ga is
calculated as

ga =
k2um

ln
[
(zm− d)/z0 m

]
ln
[
(zm− d)/z0 v

] , (6)

where the quantities d , z0 m, and z0 v are calculated using d =
2h/3, z0 m = 0.123h, and z0v = 0.1z0 m (Allen et al., 1998).

2.3.2 Shuttleworth–Wallace (SW) model

The SW model comprises a one-dimensional model of plant
transpiration and a one-dimensional model of soil evapora-
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tion. The two terms are calculated by the following equa-
tions:

λET= λE+ λT = CsETs+CcETc, (7)

ETs =
1A+

{
ρCp (es− ea)−1r

s
a (A−As)

}
/
(
ra

a + r
s
a
)

1+ γ
{
1+ rs

s/
(
ra

a + r
s
a
)} , (8)

ETc =
1A+

{
ρCp (es− ea)−1r

c
aAs

}
/
(
ra

a + r
c
a
)

1+ γ
{
1+ rc

s /
(
ra

a + r
c
a
)} , (9)

where the available energy input above the soil surface is de-
fined as As = Rns−G.
Rns can be calculated using the Beer’s law relationship:

Rns = Rn exp(−KaLAI) . (10)

The coefficients Cs and Cc are obtained as follows:

Cs = {1+RsRa/Rc (Rs+Ra)}
−1, (11)

Cc =
{
1+RcRa

/
Rs (Rc+Ra)

}−1
, (12)

where

Ra = (1+ γ )r
a
a , (13)

Rs = (1+ γ )r
s
a + γ r

s
s , (14)

Rc = (1+ γ )r
c
a + γ r

c
s . (15)

Soil surface resistance is expressed as

rs
s = exp

(
b1− b2

θ

θs

)
. (16)

In this study, we consider the reciprocal of bulk stomatal re-
sistance, known as canopy conductance. The calculation of
gc

s is the same as in the PM model. The two aerodynamic re-
sistances (ra

a and rs
a) and the boundary layer resistance (rc

a )
are modeled following the approach proposed by Shuttle-
worth and Gurney (1990).

2.3.3 Priestley–Taylor and Flint–Childs (PT–FC) model

The Priestley–Taylor model (Priestley and Taylor, 1972) was
introduced to estimate evaporation from an extensive wet
surface under conditions of minimum advection (Stannard,
1993; Sumner and Jacobs, 2005). The ET is expressed as

λET= αPT
1

1+ γ
(Rn−G), (17)

where αPT is a unitless coefficient. The Priestley–Taylor
model was modified by Flint and Childs (1991) in order to
scale the Priestley–Taylor potential ET to actual ET for non-
potential conditions (hereafter the PT–FC model):

λET= α
1

1+ γ
(Rn−G), (18)

where α is as a function of the environmental variables,
which could be related to any process that limits ET (e.g.,

soil hydraulic resistance, aerodynamic resistance, and stom-
atal resistance); however, only soil moisture status was con-
sidered for simplifying ET estimation in the PT–FC model
(Flint and Childs, 1991). In this model, α is defined as

α = β1
[
1− exp(−β22)

]
, (19)

where 2= θ−θr
θs−θr

.

2.3.4 Advection–aridity (AA) model

The AA model was first proposed by Brutsaert and
Stricker (1979) and further improved by Parlange and
Katul (1992). The model relies on the feedback between ac-
tual ET (λET) and potential ET, which assumes that actual
potential ET should converge to wet surface ET at wet sur-
face conditions. Its general form is

λET= (2αPT− 1)
1

1+ γ
(Rn−G)−

γ

1+ γ

ρ (q∗− q)

ra
, (20)

where αPT is the Priestley–Taylor coefficient, usually taken
as 1.26 (Priestley and Taylor, 1972), and ra is similar to
that used for the Penman–Monteith model (Brutsaert and
Stricker, 1979; Brutsaert, 2005; Ershadi et al., 2014). This
model is based mainly on meteorological variables and does
not require any information related to soil moisture, canopy
resistance, or other measures of aridity (Ershadi et al., 2014).
In this study, we changed αPT to α, which is calculated using
the same equation as in the PT–FC model.

2.4 BME Estimation

The Bayesian model evidence (BME) of a model, M , is de-
fined as (Schöniger et al., 2014)

BME= p(D|M)=
∫
p(D|θ ,M)p(θ |M)dθ , (21)

where D is observed or estimated data, θ is the vector of pa-
rameters associated with model M , and p(θ |M) is the prior
density of θ under model M; p(D|θ ,M) is the joint like-
lihood of model M and its parameters θ . Estimating BME
using power posterior estimators such as thermodynamic in-
tegration (Lartillot and Philippe, 2006) depends mainly on
the calculation of the marginal likelihood p(D|M). The main
idea of power posterior sampling is to define a path that links
the prior to the unnormalized posterior. Thus, using an un-
normalized power posterior density,

qβ(θ)= p(D|θ ,M)
βp(θ |M), (22)

the power coefficient β ∈ [0, 1] is a scalar parameter for dis-
cretizing a continuous and differentiable path linking two
unnormalized power posterior densities. The unnormalized
power posterior density qβ(θ) in Eq. (22) uses the normal-
izing constant Zβ to yield the normalized power posterior
density,
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pβ(θ)=
qβ(θ)

Zβ
, (23)

such that

Zβ =

∫
qβ(θ)dθ . (24)

The above integral takes a simplified form by the potential

U(θ)=
∂ lnqβ(θ)
∂β

. (25)

Thus, the integral can be directly estimated in the following
way:

p(D|M)=
Z1

Z0
= exp


1∫

0

Eθ [lnp(D|θ ,M)]dβ

 . (26)

The one-dimensional integral with respect to β is evaluated
by using numerical methods by discretizing β into a set of βk
values. Since there is no theoretical method for selecting
βk values (Liu et al., 2016), we determined these values us-
ing an empirical but straightforward method. Following Xie
et al. (2011), a schedule of the power posterior coefficients βk
is generated by

βk = (k/K)
1/ε, (27)

for k = 0, 1, 2 . . . ,K . Using ε = 0.3 and K = 20 is a reason-
able initial choice. By using the trapezoidal rule of numerical
integration, Eq. (26) is evaluated via

p(D|M)= exp

 1∫
0

yβdβ

= exp

(
K∑
k=0

rTI,k

)
, (28)

such that

rTI,k = (βk −βk−1)

[
yk + yk−1

2

]
, (29)

and

yk = Eβk
[
lnp(D|θk,M)

]
=

1
n

n∑
i=1

lnp
(
D|θk,i,M

)
, (30)

where n is the number of random samples of θk correspond-
ing to βk , and θk,i is the ith sample.

The random samples, θk,i , are drawn by using the
Markov chain Monte Carlo (MCMC) method implemented
in the DREAM code. See Appendix B for further details
on Bayesian inference and the DREAM algorithm. In the
DREAM-based calculation, the Metropolis acceptance ra-
tio is αk =min(1, [αk,power-posteriorαk,prior]) with the power
posterior ratio given by αk,power-posterior = (αk,posterior)

βk . The
prior probability ratio αk,prior = Pr(θk,new|M)/Pr(θk,old|M)

is the ratio of the probability of the newly proposed sam-
ple θk,new and the probability of the previously accepted
sample θk,old. The posterior probability ratio αk,posterior =

L(D|θk,new,M)/L(D|θk,old, M) is the likelihood ratio of
samples θk,new and θk,old, and βk is the power posterior
coefficient. Thus, to use the DREAM algorithm to sam-
ple any power posterior distribution, the regular Metropo-
lis acceptance ratio α =min(1, [αposteriorαprior]) is changed
to αk =min(1, [αk,power-postriorαk,prior]) in DREAM.

2.5 Traditional statistical metrics of evaluating model
performance

The traditional error metrics for evaluating model perfor-
mance include R2 and slope (correlation-based measures),
the index of agreement (IA) and EF (relative error measures),
and the root-mean-square error (RMSE) and mean bias er-
ror (MBE; Poblete-Echeverria and Ortega-Farias, 2009). The
definitions of the listed metrics are

IA= 1−

n∑
t=1
[O(t)−M(t)]2

n∑
t=1
[|O(t)−O(t)| + |O(t)−M(t)|]2

, (31)

EF= 1−

n∑
t=1
[O(t)−M(t)]2

n∑
t=1
[O(t)−O(t)]2

, (32)

RMSE=

√√√√1
n

n∑
t=1
[O(t)−M(t)]2, (33)

MBE=
1
n

n∑
t=1
[O(t)−M(t)], (34)

where O(t) is the observation and O(t) is the mean obser-
vation at time t , M(t) is the modeled value and M(t) is the
mean modeled value estimated by the posterior median pa-
rameter values, and n is the total number of the observed
values.

3 Results

3.1 Parameter estimation

The PM model has five parameters, gmax, D50, Q50, Kq ,
andKa; the SW model has seven parameters – the five used in
the PM model and parameters b1 and b2. The PT–FC and AA
models each include two parameters, denoted by β1 and β2
(Table 1). The prior probability density of each parameter is
specified as an uniform distribution with the ranges listed in
Table 1. A total of 50 000 realizations were generated with
the DREAM algorithm, which was used to estimate the pos-
terior probability density function of each parameter with the
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Figure 1. Trace plots of the G–R statistic using DREAM for the PM model (a) and (b) the SW model. Different parameters are coded with
different colors. The dashed line denotes the default threshold used to diagnose convergence to a limiting distribution.

Table 1. Prior distributions and parameter limits for the PM, SW, PT–FC and AA models. The values are derived from the literature.

Parameter Description Prior range PM Prior for SW Prior for PT and AA References

lower upper lower upper lower upper

gmax (mm s−1) maximum stomatal conductance 0 50 0 50 Kelliher et al. (1995)
Q50 (W m−2) visible radiation flux 10 50 10 50 Leuning et al. (2008)
D50 (kPa) vapor pressure deficit 0.5 3 0.5 3 Leuning et al. (2008)
Kq extinction coefficient 0 1 0 1 Leuning et al. (2008)
Ka extinction coefficient 0 1 0 1 Leuning et al. (2008)
b1 (s m−1) empirical constant 4.5 11.3 Sellers et al. (1992)
b2 (s m−1) empirical constant 0 8 Sellers et al. (1992)
β1 empirical constant 0.5 1.5 Flint and Childs (1991);
β2 empirical constant 0.1 10 Barton (1979)

calibration period data from DOY 154 to DOY 202. In the
calculations, the chain number, N , was equal to the number
of parameters in the associated model. Therefore, N is equal
to 5, 7, 2, and 2 for the PM, SW, PT–FC, and AA models,
respectively. For each model, the first 10 000 samples were
discarded as burn-in data, and the remaining 40 000 sam-
ples were used for calibration. In total, 40000×N realiza-
tions were used to set up posterior density functions for
each model. To illustrate the efficiency and convergence of
DREAM for the ET models, Fig. 1 shows the trace plots of

the G–R (Gelman and Rubin, 1992) statistic for each of the
different parameters in the PM and SW models using a dif-
ferent color. The algorithm required about 8000 generations
to make the G–R statistic close to 1.0 for the two models.
The acceptance rates for the PM and SW models were about
15.3 % and 18.9 %, respectively.

Histograms of the DREAM-derived marginal distributions
of the parameters are presented in Fig. 2 and summarized
in Table 2 by maximum likelihood estimates (MLEs), pos-
terior medians, and 95 % probability intervals. Figure 2a–e,

Hydrol. Earth Syst. Sci., 23, 2877–2895, 2019 www.hydrol-earth-syst-sci.net/23/2877/2019/
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Figure 2. (a–e), (f–l), (m–n), and (o–p) show histograms for the PM (black), SW (cyan), PT–FC (magenta), and AA (orange) models,
respectively. These histograms are constructed from all chains for each model, and a total of 40000×N realizations are simulated using
DREAM. The x axes represent the prespecified limits of the parameters.

f–l, m–n, and o–p show histograms of the PM, SW, PT–FC,
and AA models, respectively. Parameter gmax (Fig. 2a) in
the PM model; parameters gmax, Ka, and b2 (Fig. 2f, j, l)
in the SW model; and parameter β1 (Fig. 2m) in the PT–FC
model and AA model (Fig. 2o) were well constrained and oc-
cupied a relatively small range. These parameters displayed
a unimodal distribution and appeared approximately Gaus-
sian. In contrast, the distributions of the other parameters
differed significantly from a Gaussian distribution, as shown
by the corresponding histograms. The distributions of all but
one of these parameters concentrated most of the probability
mass at their upper limits. The exception was parameter b1
for the SW model (Fig. 2k), which clearly does not follow
a normal distribution, with most of the mass concentrated
in the lower bounds. In contrast, Q50 was not only poorly

constrained (Fig. 2g) but was also the upper-edge-hitting pa-
rameter in the SW model. Moreover, the corresponding dis-
tributions of the same parameter in different models were
slightly different. For example, the mean of gmax in the PM
model (0.04 mm s−1) was less than that in the SW model
(0.01 mm s−1; Fig. 2a and f; Table 2) except that D50 in the
PM and SW models and β2 in the PT–FC and AA models
exhibited similar regions. It is interesting to observe that the
distribution of Ka in the PM model (Fig. 2e) has a trun-
cated distribution with highest probability mass at the up-
per bound, whereas the distribution of Ka in the SW model
(Fig. 2j) tends to become approximately normal. Overall, the
marginal posterior probability density function of most of the
individual parameters occupied only a relatively small region
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Table 2. Maximum likelihood estimates (MLEs), mean estimates, 95 % high-probability intervals (lower limit, upper limit).

Parameter Posterior for PM Posterior for SW Posterior for PT and AA

MLE Mean CI MLE Mean CI MLE Mean CI

gmax (mm s−1) 0.04 0.04 (0.03, 0.04) 0.01 0.01 (0.005, 0.012)
Q50 (W m−2) 49.96 48.52 (39.73, 49.74) 47.49 40.32 (11.02, 48.99)
D50 (kPa) 3.00 2.87 (1.92, 2.97) 2.98 2.88 (2.26, 2.98)
Kq 1.00 0.99 (0.911, 0.998) 0.99 0.88 (0.06, 0.98)
Ka 1.00 0.98 (0.822, 0.995) 0.12 0.12 (0.074, 0.184)
b1 (s m−1) 4.51 4.57 (4.52, 4.96)
b2 (s m−1) 0.39 0.57 (0.07, 1.38)

β1
1.1a 1.098a (1.06, 1.16)a

1.5b 1.499b (1.492, 1.499)b

β2
10.00a 9.75a (7.97, 9.95)a

10.00b 9.94b (9.44, 9.99)b

a PT–FC model; b AA model.

Table 3. Slope and coefficient of determination (R2) of regression
between measured and modeled half-hourly evapotranspiration val-
ues, and statistics of root mean square error (RMSE), mean bias
error (MBE), index of agreement (IA), model efficiency (EF) and
Logarithm of BME for the four ET models.

Model Slope R2 RMSE MBE IA EF BME

PM 1.01 0.76 85.38 −9.52 0.93 0.74 −6300.5
SW 1.05 0.82 76.34 −19.07 0.95 0.79 −6025.1
PT–FC 0.91 0.75 94.39 25.42 0.92 0.68 −6366.8
AA 0.92 0.75 95.09 23.29 0.92 0.67 −6390.3

compared with the uniform prior distributions and exhibited
relatively large uncertainty reduction.

3.2 Performance of the models

The performance of each of the four ET models was evalu-
ated over the course of the whole season in 2014. The cali-
brated parameters of the four models were used, and individ-
ual ET models were run to estimate the half-hourly λET val-
ues. Table 3 summarizes the statistical results for the per-
formance of the models using the regression line slope, R2,
RMSE, MBE, IA, and EF. The regressions between mea-
sured and modeled λET values and the MBE are shown in
Figs. 3 and 4, respectively.

In general, the four models produced slightly better fits
to the measured λET for all the seasons with R2 larger
than 0.75 (Fig. 3). However, obvious discrepancies in the
predictions made by the models were detected by compar-
ing measured and modeled λET. According to the regres-
sion line slope and MBE, the PM model overestimated ET
by 1 %, with an MBE of −9.52 W m−2, and the SW model
overestimated ET by 5 %, with a relatively higher MBE of
−19.07 W m−2 compared to the PM model. The PT–FC and
AA models tended to underestimate λET by 9 % and 8 %,

with an MBE of 25.42 and 23.29 W m−2, respectively. From
a comparison between the slope and MBE, the PM model
performance was higher than that of the other three models,
with a slope almost equal to 1 and a relatively lower MBE.
The SW model was ranked second, while the performance
of the AA model was slightly higher than that of the PT–FC
model. However, ifR2, RMSE, IA, and EF were used to eval-
uate performance, the SW model had the best overall perfor-
mance, with R2

= 0.83, RMSE= 76.34 W m−2, IA= 0.95,
and EF= 0.79. The second-best model was the PM model,
the PT–FC model was ranked third, and the AA model ranked
fourth. Based on the analysis of these traditional error met-
rics, the PT–FC and AA models yielded similar results. The
observed and modeled λET for the four ET models were
tightly grouped along the regression lines (Fig. 3), and the
PT–FC and AA models had similar modeled ET values with
a similar degree of point scattering along the regression lines
(Fig. 3 and d).

Figure 4 shows that large seasonal variations arise in the
MBE for the four ET models. From the variations in the
MBE, the estimated λET values for all models were gener-
ally lower than the measured values before the early joint-
ing stage of maize growth (DOY 154–177; left dashed line)
and after the late maturity stage (DOY 256–265; right dashed
line) with the corresponding LAI< 2.5 m2 m−2. More posi-
tive MBE values for the PT–FC and AA models after the late
maturity stage indicate their underestimated performances;
however, these estimations appeared to be even more con-
sistent, with a symmetrical scattering of points along the
0–0 line (Fig. 4c and d) during DOY 177–256 and with
LAI> 2.5 m2 m−2.

3.3 Comparison of the models using BME

Since there is currently no theoretical method for selecting
power posterior β values, we determined these values us-

Hydrol. Earth Syst. Sci., 23, 2877–2895, 2019 www.hydrol-earth-syst-sci.net/23/2877/2019/



G. Wei et al.: Bayesian performance evaluation of evapotranspiration models 2885

Figure 3. Regressions between measured and modeled half-hourly ET values produced by different models from DOY 154 to DOY 270:
(a) PM, (b) SW, (c) PT–FC, and (d) AA. The regressions are Y = 0.99X (R2

= 0.76), Y = 1.05X (R2
= 0.82), Y = 0.91X (R2

= 0.75), and
Y = 0.92X (R2

= 0.75) for the PM, SW, PT–FC, and AA models, respectively.

ing empirical but straightforward methods. For any power
coefficient of β ∈ [0, 1], a sample was drawn from the dis-
tribution pβ (Eq. 23) through running DREAM. Although
adding more βk values might improve the BME estimation,
this was not done because of the computational cost. For
each βk value, at least 150 000 DREAM simulations were
large enough to ensure convergence. Figure 5 shows the
evolution of lnp(D|θ , M) for the four models as a func-
tion of β for a dataset covering the entire period. The BME
for the SW model was substantially larger than that for the
other three models, and the BME for the AA model was
the smallest. The BME-based model ranking (from the best
to the worst) is SW, PM, PT–FC, and AA. The PT–FC and
AA models, which consist of the same number of parame-
ters, had similar potential patterns of evolution with respect
to the coefficient βk . The results illustrate that with the ad-
dition of parameters, the model complexity and the model
performance are both increased.

4 Discussion

4.1 Parameter uncertainty analysis

With regard to the efficiency of the DREAM algorithm, the
acceptance rates of the PM (15.3 %) and SW (18.9 %) mod-
els were much higher than those obtained by some MCMC
algorithms that have been used in previous studies (Sadegh

and Vrugt, 2014). The posterior parameter bounds exhibit a
larger reduction using the DREAM algorithm compared with
other studies using the Metropolis–Hastings algorithm. This
demonstrates that DREAM could efficiently handle problems
involving high dimensionality, multimodality, and nonlinear-
ity.

The results showed that the assumed prior uncertainty
ranges from most parameters in the four models were signifi-
cantly reduced. This indicates that the observed ET data con-
tained sufficient information for estimating these parameters.
Surface conductance gs and modeled ET in the PM model are
relatively insensitive to Q50, D50, and Kq . Hence, these pa-
rameters could not be well constrained, and further relaxing
the ranges for these parameters could not result in physically
realistic behavior of the model. The calculation of gc

s in the
SW model is the same as in the PM model, and thus gc

s and
modeled ET in the SW model are also insensitive to the pa-
rameters ofQ50,D50, andKq . Therefore, these three param-
eters were also not well constrained in the SW model. In ad-
dition, the uncertainties present in the edge-hitting parame-
ters may be the outcome of model biases or EC-measured
ET data errors or the characteristic timescale of parameters
governing the processes affecting ET being not exactly on
the order of half-hours (Braswell et al., 2005). For example,
Q50 and D50 govern changes in visible radiation flux and
the humidity deficit at which stomatal conductance is half
its maximum value, respectively, and these parameters may
change over a shorter or longer timescale than half-hours.
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Figure 4. Mean bias error (MBE) of predicted and observed ET values for (a) PM, (b) SW, (c) PT–FC, and (d) AA models from DOY 154 to
DOY 270. Parameters used for prediction are estimated by DREAM with the dataset for the calibration period from DOY 154 to DOY 202.

The ecophysiological parameter gmax is a variable in the
gc

s equation in both the PM and SW models, but this parame-
ter is sensitive to gc

s and has a significant impact on the eval-
uated ET. Its effect is relatively independent compared to the
other meteorological parameters in the models, and therefore
this parameter was well specified in the PM and SW mod-
els. The posterior mean value of gmax (0.04 m s−1) in the
PM model from our study was close to that (0.05 m s−1)
reported in northwestern China (Li et al., 2013; Zhu et al.,

2014), but gmax (0.01 m s−1) in the SW model was less than
the reported value. Parameter β1 was well constrained in the
PT–FC and AA models because it was relatively independent
and did not directly relate to other observed variables.

Parameter Ka implicitly appears in the surface conduc-
tance equation (Eq. 2) in the PM model, and Ka is insen-
sitive to gs and modeled ET (Leuning et al., 2008). In con-
trast, Ka is contained in the equation of net radiation flux
into the substrate (Eq. 10) in the SW model. This parame-
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Figure 5. Variation of the mean posterior expectation of the poten-
tial yk with βk for the PM, SW, PT–FC, and AA models.

ter can explicitly partition the total available energy into that
absorbed by the canopy and by the soil in the SW model.
An analysis of Eq. (10) found that the variation of Ka could
not only account for the extinction effect but also correct
the energy forcing data errors. This also meant that the es-
timated value of Ka using calibration data was actually not
just the true extinction coefficient but also included the en-
ergy imbalance correction in the SW model. From this anal-
ysis, we could see that Ka not only involved the distribu-
tion of energy between the canopy and the soil surface but
also the energy imbalance. Therefore, parameter Ka has a
great influence on the performance of the SW model. This
is why Ka is poorly constrained in the PM model but well
constrained in the SW model. To further illustrate the in-
sights regarding the influence of parameter Ka on the perfor-
mance of the SW model, we calibrated the SW model again
and reran the model with a constant value of Ka. The re-
sults showed a significant reduction in model performance
when Ka was held constant. This implied that the main rea-
son for the SW model outperforming the PM model in our
study was not only the more physically rigorous structure of
the SW model but also the key parameterKa being well con-
strained in the SW model.

In general, parameters related to soil surface resistance in
the SW model were well evaluated, while parameters related
to canopy surface resistance in PM and SW models were
poorly estimated. Therefore, using a reliable canopy surface
resistance equation in the ET model was crucial for improv-
ing its performance. In addition, in our study, the traditional
approach was used to quantify the uncertainty, which as-
sumed that the uncertainty mainly arose because of the pa-
rameter uncertainty. However, this method cannot explicitly
consider errors in the input data and model structural inade-
quacies. This is unrealistic for real applications, and it is de-

sirable to develop a more reliable inference method to treat
all sources of uncertainty separately and appropriately (Vrugt
et al., 2008). Moreover, simultaneous direct measurement by
the micro-lysimeter of sap flow and daily soil evaporation
will further help to constrain the model parameters.

4.2 Evaluation and selection of the models

In this study, the traditional statistical measures and BME
were chosen to evaluate and compare the performance of four
ET models. From the respective composition of these mea-
sures, the statistical measures can be divided into residual-
based metrics (such as regression slope and MBE) and
squared-residual-based measures (such as R2, RMSE, IA,
and EF). The rankings of the models obtained using the
same type of metric (residual-based or squared-residual-
based) are similar. Slope and MBE, for example, which
are both residual-based measures, produce identical rank-
ings. However, the rankings produced by metrics of different
types are not the same. For example, the PM model outper-
forms the SW model according to the residual-based met-
rics, but the performance of the PM model is worse than the
SW model based on the squared-residual-based measures.
The comparative analysis shows consistency between BME
and the squared-residual-based metrics (hence the residual-
based metrics disagreed with the BME measures). This re-
veals that the more complex SW model is the best model
based on BME and squared-residual-based statistics. The
rank order of overall performance of the models from best
to worst is SW, PM, PT–FC, and AA.

Previous studies showed that BME evaluated by TI pro-
vided estimates similar to the true values and selected the
true model if the true model was included within the can-
didate models (Marshall et al., 2005; Lartillot and Philippe,
2006). Meanwhile, some have argued that Bayesian analy-
sis would choose the simplest model (Jefferys and Berger,
1992; Xie et al., 2011) because of the best trade-off between
good fit with the data and model complexity (Schöniger et
al., 2014). In this case, the most complex SW model had the
highest BME and was chosen as the model with the best per-
formance. This probably resulted from the fact that the com-
plex SW model is indeed the most reliable model among the
alternative ET models and can provide a good fit to justify its
higher complexity. The SW model is a two-layer model and
simulates soil evaporation and plant transpiration separately,
whereas the PM model is a single-layer model in which the
plant transpiration and soil evaporation cannot be separated
(Monteith, 1965). The PT–FC model is a simplified version
of the PM model and only requires meteorological and ra-
diation information (Priestley and Taylor, 1972), whereas the
AA model only relies on the feedback between actual ET and
potential ET (Brutsaert and Stricker, 1979).

The results indicate that the squared-residual-based mea-
sures yielded the same rank order as the BME consistently,
which makes the squared-residual-based metrics seem to
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identify a reasonable rank order. However, this has not been
the general case, since the error metrics and BME belong
to different types of model selection and because there are
differences in the behavior and optimality of the two types
of model selection. BME is a consistent model selection
that tries to identify which of the models produced the ob-
served data. Conversely, nonconsistent model selection uses
the available data to estimate which of the models might be
best in predicting future data. In fact, the error metrics are
essentially nonparsimonious model selection, which is a spe-
cial case of nonconsistent model selection. The simple tradi-
tional statistical measures were known to usually provide a
biased view of the efficacy of a model (Kessler and Neas,
1994; Legates and McCabe, 1999), where only the good-
ness of fit is used for rating models without penalizing the
model complexity, thus lacking consistency for the selected
model (Höge et al., 2018). In addition, sensitivity to out-
liers is associated with these metrics and leads to relatively
high values due to the squaring of the residual terms (Will-
mott, 1981). Furthermore, these traditional statistical met-
rics ignore the priors, which are in fact used in Bayesian
analysis. The PT–FC and AA models provide identical es-
timates of R2 and IA. This is most likely because both mod-
els had the same dimension and a similar model structure.
Marshall et al. (2005) argued that EF would provide an in-
correct conclusion, and Samani et al. (2018) suggested that
RMSE would select the complex model as the best perform-
ing model. As for the slope and MBE, the rankings produced
by these residual-based metrics were in obvious disagree-
ment with the one based on BME. Part of the lower simu-
lation values could be counterbalanced by the higher values
of that in the slope and MBE methods; thus these criteria
provide an erroneous and unreliable evaluation of the mod-
els. Therefore, the squared-residual-based and residual-based
measures were not certain in providing reasonable results in
terms of model ranking. The consistency between BME and
the squared-residual-based metrics only indicates that the op-
timal model evaluated by BME would also provide the best
predictions, and thus consistent model selection should also
be asymptotically efficient (Leeb and Pötscher, 2009; Shao,
1997).

4.3 Analysis of model–data mismatch

Conceptual and structural inadequacies of the hydrological
model together with measurement errors of the model in-
put (forcing) and output (calibration) data introduce errors
in the estimated parameters and model simulations (Laloy et
al., 2015). Hydrological systems are indeed heavily input-
driven, and errors in forcing data can dramatically impair the
quality of calibration results and model output (Bardossy and
Das, 2008; Giudice et al., 2016). Measurement errors occur
for a variety of reasons, including unreasonable gap filling in
rainy days; dew and fog; inadequate areal coverage of point-
scale soil water measurement; mechanical limitations of the

EC system; and inaccurate measurements of wind speed, soil
water, radiation, and vapor pressure deficit. The ET process is
described using equations that can only capture parts of the
complex natural processes, and any ET model is an inher-
ent simplification of the real system. These inadequacies can
thus lead to biased parameters and implausible predictions.

In our study, the results indicated that the PM and
SW models overestimated the half-hourly ET compared to
the measured ET. Several studies also indicated that ET was
overestimated by the PM model (Fisher et al., 2005; Ortega-
Farias et al., 2006; Li et al., 2015) and the SW model (Li et
al., 2013, 2015; Zhang et al., 2008). Possible reasons for the
inaccurate estimates included the following: (1) anisotropic
turbulence with weak vertical and strong horizontal fluctu-
ation leads to energy imbalance. The total turbulent heat
flux was lower by ∼ 10 %–30 % compared to the available
energy in many land surface experiments (Tsvang et al.,
1991; Beyrich et al., 2002; Oncley et al., 2007; Foken et
al., 2010) and influx networks (Franssen et al., 2010). Liang
et al. (2017) also showed an energy imbalance result in the
semiarid area in China and indicated that the energy bal-
ance closure ratio ranged from 0.52 to 0.90 during the day,
whereas it was about 0.25 at night. However, the measured
ET only included vertical flux and not horizontal flux, lead-
ing to the measured ET being lower than that of ET predicted
by the PM and SW models using the available energy. (2) The
absence of a mechanistic representation of the physiological
response to plant hydrodynamics makes it difficult for the
available ET models to resolve the dynamics of intradaily
hysteresis, producing patterns of diurnal error, while the im-
balance or lack of between-leaf water demand and soil water
supply imposes hydrodynamic limitations on stomatal con-
ductance (Thomsen et al., 2013; Zhang et al., 2014; Matheny
et al., 2014). Li et al. (2015) also concluded that neglecting
the restrictive effect of the soil on water transport in empir-
ical canopy resistance equations can result in large errors in
the partial canopy stage. However, these equations can esti-
mate ET accurately under the full canopy stage (Alves and
Pereira, 2000; Katerji and Rana, 2006; Katerji et al., 2011;
Rana et al., 2011). Li et al. (2015) showed that the PM model
combined with canopy resistance overestimated maize ET
during the partial and dense canopy stages by 16 % and 13 %,
respectively. Moreover, in a study of ET in vineyards, Le-
uning et al. (2008) found that the PM model coupled with
canopy resistance overestimated ET during the entire growth
stage by 29 %.

The estimates for ET produced by the PT–FC and
AA models were generally lower than the measured val-
ues during the entire season. In addition, the four mod-
els also underestimated ET during periods of partial cover
(LAI< 2.5 m2 m−2). The PT–FC and AA models consis-
tently underestimated ET, especially during the late maturity
stage. The underestimation probably resulted from the fol-
lowing: (1) nonclassical situations, such as the oasis effect,
may occur in the study area. Strong evaporation from the
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moist ground and plants results in latent heat cooling. How-
ever, this upward latent heat flux was opposed by a down-
ward sensible heat flux from the warm air to the cool ground,
and thus the latent heat flux was positive while the sensible
heat flux is negative. Therefore, the latent heat flux can be
greater in magnitude than the solar heating because of the
additional energy extracted from the warm air by evapora-
tion (Stull, 1988). (2) The lack of mechanistic representation
of rainfall interception in ET models probably led to inac-
curate simulation for periods soon after rainy days. Bohn
and Vivoni (2016) found that evaporation of canopy inter-
ception accounted for 8 % of the annual ET across the North
American monsoon region. Comparing the AA and PT–FC
models, the former includes forcing data of available radia-
tion, soil water content, and relative humidity, but the PT–FC
model only requires available radiation and soil water con-
tent and is independent of relative humidity. However, the
similar statistical results and similar degrees of MBE scat-
ter indicate that relative humidity has little influence on the
AA model simulation. The consistent and consecutive under-
estimations of ET by the PT–FC and AA models during the
late maturity stage show that the model–data disagreement
is not caused by regional advection and rainfall interception
because atmospheric processes and thermally induced cir-
culation can only occur at certain times and during certain
days. Therefore, we think that the consistent underestima-
tion of ET by the PT–FC and AA models results primarily
from conceptual and structural inadequacies, energy imbal-
ance, and soil water stress. Although the PM and SW models
share a common theoretical basis and the PT–FC model is a
simplification of the PM model, these models perform sig-
nificantly differently. Part of the overestimation of ET by the
PM and SW models, caused by coupling with the canopy
resistance, may be offset by underestimation caused by en-
ergy imbalance and soil water stress. However, underestima-
tion of ET by the PT–FC and AA models cannot be coun-
terbalanced by overestimation during the later maturity stage
because the PT–FC and AA models are independent of the
canopy resistance. Consequently, the half-hourly patterns of
errors in the estimates of ET by the PM and SW models are
characterized by symmetry and a low degree of scatter, but
the PT–FC and AA models exhibit consistently asymmet-
rical error patterns. By contrast, other studies showed that
the PM model (Kato et al., 2004) and the SW model (Chen
et al., 2015) underestimated half-hourly ET. As for the PT–
FC and AA models, some studies reported that the PT–JPL
(Zhang et al., 2017) and the AA model showed an overall
poor performance (Zhang et al., 2017), while other studies
have indicated that the AA method performed well for both
maize and canola crops (Liu et al., 2012). Therefore, the per-
formance of the four ET models appears to vary not only
for different crops and locations but also for different mete-
orological, physiological, and soil conditions. Moreover, the
performance is also related to the stage of crop growth. Note
that these conclusions about the ET models evaluation are de-

rived from traditional error metrics rather than those based on
BME model selection. It would be desirable to use available
data from other study areas or from other crops for BME-
based model selection to confirm whether the SW model
is the optimal model under other conditions. Overall, com-
bined with the parameter uncertainty analysis described in
Sect. 4.1, we conclude that energy imbalance and energy in-
teraction between the canopy and soil surface have a greater
impact on the model performance; thus, explicitly treating
energy error and incorporating the elements of existing hy-
drologic theory about energy interaction between the canopy
and surface or conceptually correcting the energy interaction
are a practicable option for model improvement and applica-
tion.

5 Conclusions

This study illustrated the application of the Bayesian ap-
proach on the statistical analysis and model selection of four
widely used ET models. The results showed that the DREAM
algorithm successfully reduced the assumed prior uncertain-
ties for most of the parameters in the four models. In the
model calibration, the key parameters which had a significant
influence on ET simulations were well constrained. The main
reasons for the outperforming of SW model were its physi-
cally rigorous structure and the extinction coefficient param-
eter, which is sensitive and has a significant impact on the
performance of the model, being well constrained. BME is a
consistent model selection for identifying the best fitting to
the observed data. Although the squared-residual-based met-
rics, including R2, IA, RMSE, and EF, produced a ranking
identical to that of BME, it must be noted that these squared-
residual-based metrics do not allow using prior information
and do not penalize the model complexity when comparing
the models. Therefore, some caution is needed when using
these statistical methods to compare different models.

The model–data discrepancies were analyzed to facili-
tate model improvement after Bayesian model calibration
and comparison. The results indicate that the discrepancies
arose mainly as a result of energy imbalance caused by
anisotropic turbulence, additional energy induced by advec-
tion processes, the absence of a mechanistic representation
of the physiological response to plant hydrodynamics and the
energy interaction between the canopy and surface. Among
these causes, energy imbalance and additional energy are
related to forcing data errors rather than to an unreason-
able model structure. Thus, understanding the process of the
physiological response to plant hydrodynamics, and the in-
teraction between the canopy and surface is essential for im-
proving the performance of evapotranspiration models. Over-
all, the applications of Bayesian calibration, Bayesian model
evaluation, and analysis of model–data discrepancies in our
study provide a promising framework for reducing uncer-
tainty and improving the performance of ET models. It would
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be desirable to confirm whether the SW model is the optimal
model using data of other crops or other climate regions.

Data availability. The eddy covariance flux, meteorological, and
other data used in this study are from Heihe Watershed Allied
Telemetry Experimental Research (HiWATER) (http://heihedata.
org/hiwater, last access: 6 January 2016).
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Appendix A: List of symbols and physical
characteristics in ET models

A Available energy for the whole canopy (W m−2)
As Available energy for the soil surface (W m−2)
Rn Net radiation fluxes into the canopy (W m−2)
Rns Net radiation flux into the substrate (W m−2)
G Soil heat flux (W m−2)
λET Sum of the latent heat flux from the crop (λT ) and soil (λE; W m−2)
ETc Canopy transpiration (W m−2)
ETs Soil evaporation (W m−2)
Cc Canopy resistance coefficient (dimensionless)
Cs Soil surface resistance coefficient (dimensionless)
LAI Leaf area index
Q50 Visible radiation flux when stomatal conductance is half its maximum value (W m−2)
D50 Vapor pressure deficit at which stomatal conductance is half its maximum value (kPa)
Da Vapor pressure deficit at the reference height (Da = es− ea; kPa)
Qh Flux density of visible radiation at the top of the canopy (W m−2)
Kq Extinction coefficient
Ka Extinction coefficient
f Fraction of evaporation soil and total evaporation
λ Latent heat of water evaporation (MJ kg−1)
1 Slope of the saturated vapor pressure curve (Pa K−1)
γ Psychrometric constant (kPa K−1)
ρ Density of air (kg m−3)
k Karman constant (0.41)
es Saturated vapor pressure (kPa)
ea Actual vapor pressure (kPa)
q∗ Saturation-specific humidity at air temperature (kg kg−1)
q Specific humidity of the atmosphere (kg kg−1)
b1 Empirical constant (s m−1)
b2 Empirical constant (s m−1)
β1 Empirical constant
β2 Empirical constant
θ Soil water content (m3 m−3)
θa Critical water content at which plant stress starts (m3 m−3)
θb Water content at the wilting point (m3 m−3)
θr Residual soil water content (m3 m−3)
θs Saturated water content (m3 m−3)
2 Relative water saturation
d Zero-plane displacement height (m)
zm Height of the wind speed and humidity measurements (3 m)
z0 m Roughness length governing the transfer of momentum (m)
z0 v Roughness length governing the transfer of water vapor (m)
h Canopy height (m)
uz Wind speed at height zm (m s−1)
ga Aerodynamic conductance (m s−1)
gs Surface conductance (m s−1)
gmax Maximum stomatal conductance of leaves at the top of the canopy (m s−1)
gc

s Canopy conductance (m s−1)

ra Aerodynamic resistance (s m−1)
ra

a Aerodynamic resistance between canopy source height and a reference level (s m−1)
rs

a Aerodynamic resistance between the substrate and the canopy source height (s m−1)
rc

a Bulk boundary layer resistance of the vegetation element in the canopy (s m−1)
rs

s Surface resistance of the canopy (s m−1);
rc

s Bulk stomatal resistance of the canopy (s m−1)

www.hydrol-earth-syst-sci.net/23/2877/2019/ Hydrol. Earth Syst. Sci., 23, 2877–2895, 2019



2892 G. Wei et al.: Bayesian performance evaluation of evapotranspiration models

Appendix B: Bayesian inference and the DREAM
algorithm

The posterior probability distribution of the parameter is cal-
culated by Bayes’ theorem:

π(θ |D,M)=
π(θ |M)p(D|θ,M)

p(D|M)
, (B1)

where π(θ |M) represents the prior density of θ under model
M , p(D|θ , M) is the joint likelihood of model M and its pa-
rameters θ , and the marginal likelihood, or Bayesian model
evidence (BME), is

p(D|M)=

∫
p(D|θ,M)p(θ |Mt)dθ). (B2)

The likelihood function, p(D|θ , M), used for parameter
estimation, is specified according to the distributions of ob-
servation errors. Error e(t) in each observationD(t) at time t
is expressed by

e(t)=D(tt)− f (t). (B3)

Assuming that e(t) follows a Gaussian distribution with a
zero mean, the likelihood function can be expressed as

p(D|θ)=

n∏
t=1

1
√

2πσ
e
−
[e(t)]2

2σ2 , (B4)

where n is the number of observations and σ represents the
error variances.

In this study, we used the DREAM algorithm (Vrugt et
al., 2008, 2009) to explore the ET models’ parameter space
and to estimate BME. The DREAM sampling scheme is an
adaptation of the global optimization algorithm of a shuffled
complex evolution Metropolis (SCEM-UA). This algorithm
was described in more detail in Vrugt et al. (2008, 2009).
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