Hydrol. Earth Syst. Sci., 23, 2863-2875, 2019
https://doi.org/10.5194/hess-23-2863-2019

© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Hydrology and
Earth System
Sciences

Assessment of spatial uncertainty of heavy rainfall
at catchment scale using a dense gauge network

Sungmin O'>? and Ulrich Foelsche'->

Unstitute for Geophysics, Astrophysics, and Meteorology/Institute of Physics (IGAM/IP),

NAWI Graz, University of Graz, Graz, Austria
2FWF-DK Climate Change, University of Graz, Austria

3Wegener Center for Climate and Global Change (WEGC), University of Graz, Graz, Austria
anow at: Biogeochemical Integration, Max Planck Institute for Biogeochemistry, Jena, Germany

Correspondence: Sungmin O (sungmin.o@uni-graz.at)

Received: 3 October 2018 — Discussion started: 11 October 2018

Revised: 13 June 2019 — Accepted: 4 June 2019 — Published: 8 July 2019

Abstract. Hydrology and remote-sensing communities have
made use of dense rain-gauge networks for studying rainfall
uncertainty and variability. However, in most regions, these
dense networks are only available at small spatial scales (e.g.,
within remote-sensing subpixel areas) and over short peri-
ods of time. Just a few studies have applied a similar ap-
proach, i.e., employing dense gauge networks to catchment-
scale areas, which limits the verification of their results in
other regions. Using 10-year rainfall measurements from a
network of 150 rain gauges, WegenerNet (WEGN), we as-
sess the spatial uncertainty in observed heavy rainfall events.
The WEGN network is located in southeastern Austria over
an area of 20 km x 15 km with moderate orography. First, the
spatial variability in rainfall in the region was characterized
using a correlogram at daily and sub-daily scales. Differ-
ences in the spatial structure of rainfall events between warm
and cold seasons are apparent, and we selected heavy rainfall
events, the upper 10 % of wettest days during the warm sea-
son, for further analyses because of their high potential for
causing hazards. Secondly, we investigated the uncertainty in
estimating mean areal rainfall arising from a limited gauge
density. The average number of gauges required to obtain
areal rainfall with errors less than a certain threshold (< 20 %
normalized root-mean-square error — RMSE - is considered
here) tends to increase, roughly following a power law as
the timescale decreases, while the errors can be significantly
reduced by establishing regularly distributed gauges. Lastly,
the impact of spatial aggregation on extreme rainfall was ex-
amined, using gridded rainfall data with various horizontal

grid spacings. The spatial-scale dependence was clearly ob-
served at high intensity thresholds and high temporal reso-
lutions; e.g., the 5 min extreme intensity increases by 44 %
for the 99.9th and by 25 % for the 99th percentile, with in-
creasing horizontal resolution from 0.1 to 0.01°. Quantitative
uncertainty information from this study can guide both data
users and producers to estimate uncertainty in their own ob-
servational datasets, consequently leading to the sensible use
of the data in relevant applications. Our findings could be
transferred to midlatitude regions with moderate topography,
but only to a limited extent, given that regional factors that
can affect rainfall type and process are not explicitly consid-
ered in the study.

1 Introduction

Rainfall data are one of the most important inputs for hy-
drological as well as climatological studies and applications.
Furthermore, fit-for-purpose information derived from rain-
fall data is crucial for a wider range of users, such as civil
engineers, water resource managers, and governments. To
meet the needs of diverse user groups, rainfall observational
datasets from in situ measurement and remote sensing have
been greatly enhanced in terms of both data quality and reso-
lution (e.g., Berezowski et al., 2016; Hou et al., 2014; Keller
et al., 2015; Yatagai et al., 2012). Often, rainfall data are re-
quired as areal estimates at the scale of interest, for instance,
at grid or catchment scales. Point measurements from in situ
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gauge observations are spatially aggregated or interpolated
to estimate the areal distribution of rainfall, and hence the
accuracy of areal rainfall data is highly dependent on spa-
tiotemporal variability in rainfall events and density of ob-
servation points (Girons Lopez et al., 2015; Hofstra et al.,
2010; Villarini et al., 2008; Wood et al., 2000). This lim-
its the understanding of fine-scale rainfall processes, particu-
larly of extreme events (Sillmann et al., 2017). Gridded rain-
fall data are also available from remotely sensed observations
at high spatial resolutions (e.g., 1-5km? for radar data or
0.1° x 0.1° for satellite data). While those datasets are good
alternatives to address a number of the issues relating to the
scarcity of gauges, rainfall variability at subpixel scales can
still not be fully resolved (Peleg et al., 2013; Tokay et al.,
2014). Moreover, systematic errors can be large (Svensson
and Jones, 2010), and the quality of remotely sensed data
therefore strongly relies on gauge-based data that are used for
their regional validation and correction (Kann et al., 2015; O
et al., 2018b; Steiner et al., 1999).

Addressing the issue of spatial variability in and uncer-
tainty of rainfall has been tackled over many years with var-
ious purposes. For instance, evaluation of satellite or radar-
rainfall products involves investigation of larger-scale rain-
fall processes to assess the ability of remote sensing in cap-
turing the inter-pixel rainfall variability (e.g., Chaudhary
et al., 2017; Dhib et al., 2017; Lockhoff et al., 2014). On
the other hand, small-scale rainfall processes are of interest
in identifying the effect of intra-pixel variability in rainfall on
the performance of remote sensing (e.g., Ciach and Krajew-
ski, 1999, 2006; Gebremichael and Krajewski, 2004; Habib
and Krajewski, 2002; Peleg et al., 2013; Tan et al., 2018;
Tokay et al., 2014). To quantify the rainfall uncertainty, ob-
servational data from highly dense rain-gauge networks have
been employed as a ground truth. Peleg et al. (2013) used
multiple rain gauges within a radar subpixel area (4 km?) and
examined the contribution of gauge sampling error to the to-
tal radar-rainfall estimation error. Using relatively long-term
gauge data (5 years), Tokay et al. (2014) analyzed the spatial
correlation of rainfall for different seasons and weather sys-
tems within the footprint size of microwave satellite sensors.

A similar approach employing dense gauge networks can
be adopted to diagnose the spatial variability in and uncer-
tainty of rainfall at catchment scales (e.g., 100-500km?).
Such scales are of great interest not only for the evaluation of
remotely sensed data but also for hydrological applications
like runoff modeling or gauge network design. Wood et al.
(2000) examined the accuracy of areal estimates of rainfall
over a 135km? basin according to the HYdrological Radar
EXperiment network consisting of 49 rain gauges. The net-
work later provided a 6-year rainfall dataset (from 50 gauges)
for the study of Villarini et al. (2008), where a comprehensive
analysis of temporal and spatial sampling uncertainties was
conducted. However, most of the local areas do not have ad-
equately dense gauge networks, which limits the comparison
and verification of findings from the aforementioned stud-
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ies across diverse rainfall regimes. Schroeer et al. (2018) re-
cently employed the WegenerNet (WEGN) Feldbach region
and the surrounding operational rain-gauge stations to sam-
ple summertime convective extreme events at sub-hourly to
hourly scales and found a power-law decay of the event max-
imum area rainfall with increasing interstation distance (1 to
35km).

In this paper, in order to contribute to the effort for bet-
ter and broader assessment of the rainfall spatial variabil-
ity and associated uncertainty, we employed 10-year rainfall
data from the WEGN, a high-density network in southeast-
ern Austria (Kirchengast et al., 2014). The network includes
150 rain gauges deployed over an area of =~ 300 km?, approx-
imately corresponding to one gauge per 2 km?. First, follow-
ing previous studies (e.g., Villarini et al., 2008; Peleg et al.,
2013; Tokay et al., 2014), we quantified the spatial variability
in rainfall utilizing a corrologam between the gauges to un-
derstand the spatial characteristics of rainfall in the region.

Second, we investigated the uncertainty in estimating areal
rainfall caused by a limited number of point observations.
Given that the properties of individual rainfall events can
be different from all-event averages (Ciach and Krajewski,
2006; Eggert et al., 2015), we focused on events with a
potentially high impact, which we defined as the top 10 %
wettest days during the warm season (May—September). The
accuracy of areal rainfall estimation is a long-standing issue,
e.g., in catchment modeling because error and uncertainty
in rainfall data can propagate into large variations in simu-
lated runoff, and thus it has been dealt with in diverse man-
ners. For instance, the influence of spatial representations of
rainfall input to runoff errors has been demonstrated through
modeling studies (e.g., Bardossy and Das, 2008; Xu et al.,
2013). The error in catchment-scale areal mean rainfall has
also been directly quantified by employing high-resolution
gauge data (e.g., Villarini et al., 2008; Wood et al., 2000;
Ly et al., 2011). We followed the latter approach using the
WEGN rainfall data.

Finally, we compared extreme rainfall at different spatial
and temporal scales using gridded rainfall fields to quanti-
tatively assess the impact of spatial averaging on the def-
inition of extremes. The identification of rainfall extremes
based on intensity thresholds is common practice; however,
the considered spatial scale of rainfall data defines different
sets of extreme events (Eggert et al., 2015), potentially af-
fecting threshold-based early warning systems (Marra et al.,
2017). Although gridded datasets have been used in a range
of applications like assessments of climate change impacts
or evaluation of climate models, a common caveat of using
the datasets in the study of extreme rainfall is that the quality
of gridded rainfall data is highly constrained by the location
and density of input weather station data (Hofstra et al., 2010;
Prein and Gobiet, 2017). By contrast, the quasi-regular con-
figuration of WEGN on an approximately 1.4km x 1.4km
grid permits robust examination of the frequency and inten-
sity of rainfall extremes at various horizontal resolutions.
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Consequently, this study aims to assess spatial uncertainty
of rainfall at the catchment scale using rain-gauge data, with
a focus on heavy and extreme rainfall events. This paper is
structured as follows. Section 2 describes WEGN rain-gauge
data and regional rainfall climatology. Sections 3, 4, and 5
present results and discussion of the data analysis. We close
with a summary and conclusions in Sect. 6.

2 WEGN rainfall data and regional rainfall
climatology

The 10-year rainfall data (2007-2016) are obtained from
the WEGN Feldbach region network in southeastern Austria
(Kirchengast et al., 2014). Of 154 weather stations, 150 sta-
tions that are equipped with tipping-bucket rain gauges are
used in this study (Fig. 1). Raw rain-gauge data are aggre-
gated every 5 min. The rainfall data are quality-controlled by
the WEGN data processing system, and furthermore, system-
atic errors (undercatch) of the rainfall data that are used in
this study were comprehensibly analyzed and corrected by O
et al. (2018a). The gauges are almost uniformly spaced over
an area of 20 km x 15 km with moderate topography (about
260 to 520 m altitude). The inter-gauge distances range from
approximately 0.7 to 23.4km. The gridded fields of rainfall
are constructed by an inverse distance weighting (IDW), us-
ing the power parameter p =2, on a 200m x 200 m Uni-
versal Transverse Mercator grid. The gridded data are con-
structed at 5 min resolution. The sub-daily to daily data used
in this study are obtained by accumulating the 5 min data.
WEGN station and gridded data products are available at
https://wegenernet.org/portal/ (last access: 3 July 2019).
Southeastern Austria including the Feldbach region is in-
fluenced by both continental and Mediterranean climates.
The region receives high amounts of rainfall during sum-
mer months. The occurrence of thunderstorms and hail is
higher than in other parts of Austria (Matulla et al., 2003).
Figure 2 shows average diurnal variations of rainfall and tem-
perature over the entire network during the study period. The
WEGN area is characterized by warm and wet months from
May through September (hereafter “warm season”) and rela-
tively cold months without much rainfall during the remain-
ing 7 months (hereafter “cold season”). The average monthly
rainfall is 102.8 mm in the warm season, while it is 48.9 mm
in the cold season. The diurnal signal is more clearly seen
in the warm season for both rainfall and temperature. Rain-
fall maxima occur often in the early afternoon through mid-
night, shortly after maximum temperature, implying that a
major contribution to the warm season rainfall is from short-
duration convective events. Because diurnal heating plays an
important role in triggering thermal convection, most inland
regions show afternoon rainfall maxima (Dai et al., 2007).
Extreme daily precipitation, however, can also be caused by
Genoa lows (Hofstitter and Bloschl, 2019), which transport
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Figure 1. (a) WegenerNet Feldbach region (WEGN) network in

southeastern Austria, (b) location of 150 tipping-bucket rain gauges,

and (c) inter-gauge distances, rounded to the nearest 1 km bins. The
map is created using the Matplotlib basemap toolkit (Hunter, 2007).

humidity from the Mediterranean Sea, yielding intense rain-
fall with a long duration.

3 Spatial variability in rainfall

The spatial structure of rainfall events is studied using Pear-
son’s correlation coefficient between all pairs of rain gauges.
Pearson’s r is the most commonly used rainfall correla-
tion estimator (e.g., Ciach and Krajewski, 2006; Jaffrain and
Berne, 2012; Peleg et al., 2013; Tokay et al., 2014; Villarini
et al., 2008). At sub-daily and daily timescales from 5 min
to 24 h (06:00-06:00 UTC), the correlation of rainfall among
rain gauges is calculated for each year. A 1-year period in-
cludes a set of the warm season (May to September) and cold
season (October to next April). The incomplete years (i.e.,
first and last years) are excluded from the calculation of all
months (May to next April), whereas the warm and cold sea-
sons have 10 annual curves each. The data pairs when both
record zero rainfall are discarded. The correlation values in
each period were then sorted according to the separation dis-
tance of gauge pairs and averaged into the nearest 1 km dis-
tance bins. We fitted a three-parameter exponential function
to the average correlations. The distance bins for fitting the
model were taken up to and including 15 km given the net-

Hydrol. Earth Syst. Sci., 23, 2863-2875, 2019


https://wegenernet.org/portal/

2866

(a)
| ]
0.00 004 008 0.12 016 0.20 0.24 0.28

S. O and U. Foelsche: Spatial uncertainty of heavy rainfall

.
12 15 18 21 24

MAM

JA

SON

DJF

T T

MAM

JA

SON

DJF

06: 00 12: OO 18: 00 24: 000 50 100

Hour [UTC] [mm]

10 20
[*Cl]

i ; i ‘
06:00 12:00 18:00 24:000
Hour [UTC]

Figure 2. Diurnal cycles of (a) rainfall and (b) temperature derived from WEGN observational data.

work dimension, which means that rainfall data pairs were
sampled uniformly for any spatial direction. The spatial cor-
relation (r) at separation distance 4 is

c3
r(h) =crexp |:—(f—2) :| )

where ¢ represents the nugget effect, ¢, is the correlation
distance, and c3 is the shape factor. The parameters are de-
termined by least-squares curve fitting. Figure 3 shows the
spatial correlation of all months and warm and cold seasons
for four selected accumulation times. A logarithmic transfor-
mation is applied to the data, log(x + 1), to keep zero rainfall,
where x is in rainfall (in mm). As the transformation makes
rainfall data conform more closely to the normal distribu-
tion, the effects of extreme values on correlation coefficients
are mitigated (Habib et al., 2001; Jaffrain and Berne, 2012).
This results in slightly lower correlations (not shown); how-
ever, the overall pattern of correlation decay curves remains
unaffected. The data after the log transformation are used in
the figure.

Many factors are known to affect the spatial correlation
structure in rainfall. For instance, Habib et al. (2001) exam-
ined the sensitivity of correlation estimation in rainfall to the
sample size or extreme rainfall events, and Huff and Shipp
(1969) demonstrated how the rate of correlation decay var-
ied with different rainfall types. In fact, individual weather
systems can exhibit varied spatial characteristics (Habib and
Krajewski, 2002; Ciach and Krajewski, 2006; Tokay et al.,
2014). In southeastern Austria, including the WEGN area,
Schroeer et al. (2018) found much steeper decay in a cor-
relogram function when only extreme summertime convec-
tive events are accounted for. We therefore do not make a di-
rect comparison of correlation values with those from other
studies, yet we still observe that the behaviors of the corre-
lation decay found in this study are in broad agreement with
spatial rainfall correlation structures reported in the afore-
mentioned studies. First, longer accumulation times show
higher ¢ (i.e., smaller microscale variations) and longer cor-

ey
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relation distance values. Second, short-range correlation de-
creases rapidly with increasing separation distance, particu-
larly at sub-hourly scales.

The warm season shows higher spatial variability in rain-
fall compared to the cold season, due to a higher proportion
of convective events. The correlation curves of all months
show a more similar pattern with the warm season, as ex-
pected, given that most of the rainfall events are concentrated
during the warm season (see Sect. 2). Tokay et al. (2014)
found substantial year-to-year variations especially during
autumn and spring. Similarly, WEGN rainfall shows marked
interannual variability also during the warm season. It should
be noted that the correlation functions of the cold season start
with lower ¢ values than those of the warm season, mean-
ing larger measurement errors and microscale variability in
rainfall. This could be related to winter precipitation types
in the region. For instance, uncertainty affecting the gauge
measurements (e.g., wind-induced bias) may play a bigger
role in determining the spatial heterogeneity of neighboring
stations during low-intensity precipitation events than during
warm season convective events. Another possible reason is
that WEGN does not accurately capture solid precipitation
(O et al., 2018a), since only few gauges are heated, and thus
systematic errors between neighboring gauges can be greater
during the cold season, possibly yielding the low ¢ values.

Figure 4a—c summarize the time dependence of the three
parameters. Synthesized parameters here are obtained from
the fitting function that is constructed by averaging yearly
correlation values in each distance bin. Nugget effect val-
ues range from 0.71 to 0.98 for the cold season, while they
ranged from 0.85 to 0.99 for the warm season. The correla-
tion distance of the cold season at the 3 h scale nearly cor-
responds to the correlation distance at the 24 h scale in the
warm season. The parameter values of all months are located
between those of warm season and cold season. We found
that the dependency of the nugget effect and correlation dis-
tance on the timescale is similar to the results by Villarini
et al. (2008). The nugget effect parameter changes sharply
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Figure 3. Spatial correlation of rainfall among rain gauges for (a) all months, (b) warm season, and (c) cold season. Four selected accumu-
lation times are shown. Each solid line represents a fitted exponential function for each year up to 23 km (the longest inter-gauge distance of
WEGN). Note that the function is fitted to correlation for separation distances < 15 km to sample data uniformly for any spatial direction.

at smaller timescales, while the correlation distance appears
to be more sensitive for larger timescales. The shape factor
of this study, however, does not show a clear increasing or
decreasing trend. This is consistent with findings from Pe-
leg et al. (2013) and Tokay et al. (2014). We selected the
three-parameter model for the function fitting, because the
model shows the minimum root-mean-square error (RMSE)
between observed and fitted correlation values across all
timescales (Fig. 4d) among the several tested models. Note
that we fitted the correlation models to bin-averaged val-
ues and thus obtained relatively small fitting errors compared
to other studies (e.g., Ciach and Krajewski, 2006, or Tokay
et al., 2014). During multiple tests with different fitting mod-
els, we found that the fitted correlation distances over 100 km
(e.g., values at accumulation times of > 6h in Fig. 4b) are
often highly impacted by the selected fitting models. How-
ever, this model uncertainty does not affect the general be-
haviors of the parameters, including their dependence on the
timescale and their seasonal differences. Nonetheless, when
the spatial scale of observed correlations is limited to a dis-
tance of a few kilometers (e.g., 15 km in our study), the cor-
relation distances estimated from the fitting model should
be interpreted with caution. Interested readers may obtain

www.hydrol-earth-syst-sci.net/23/2863/2019/

a more detailed discussion of the fitting model in Svoboda
et al. (2015).

So far we assume that the correlation structure is isotropic.
To check the directionality (anisotropy) of the spatial corre-
lations, we remapped them onto the two-dimensional space
(Velasco-Forero et al., 2009; Mandapaka and Qin, 2013).
Figure 5 shows the 10-year averaged correlations plotted
over 1 km x 1km grid cells but only until the e-folding dis-
tance (when the correlation drops to around 0.37). While
the correlation drops rapidly in all directions over short
distances, a strong correlation is observed in an approxi-
mate southwest—northeast direction as separation distance in-
creases. The directionality is more pronounced during the
cold season, which can be interpreted as a consequence of
movement of large-scale weather systems (contrary to sum-
mertime convective) along the favored wind direction dur-
ing the season rather than as an effect of orographic barriers.
Such directional characteristics of the correlations are aver-
aged out in Fig. 3.
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4 Accuracy of areal rainfall estimation during heavy
rainfall events

In this section we investigate data uncertainty associated with
areal rainfall estimation. In particular, the study focuses on
high-impact rainfall events. While heavy rainfall is one of
the major hydrological hazards, its accurate spatial repre-
sentation over an area remains a subject worthy of inquiry.

Hydrol. Earth Syst. Sci., 23, 2863-2875, 2019

Heavy rainfall events are defined as days with total rainfall
exceeding the 90th percentile of the daily rainfall without a
consideration of rainfall type. Only the warm season is taken
into account. As a result, a total of 71d are selected. Ac-
cording to our visual inspection of rainfall time series, the
selected days likely include mixed rainfall types (short- and
long-duration rainfall) rather than a specific type. The me-
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dian of gauge-averaged accumulations is 28.1 mmd~!, with
arange of 19.8 to 64.1 mmd~! (more information in the Sup-
plement).

We assume that the mean areal rainfall of a full density
network represents the “truth”. The areal rainfall of n-gauge
networks (n = number of gauges) is calculated and compared
with the true rainfall to quantify the accuracy of areal rain-
fall estimation with low-density networks (see also Villar-
ini et al., 2008). Each n-gauge network consists of randomly
selected 1000 possible gauge combinations. The one-gauge
network has 150 cases. As shown in Fig. 6a, the average
and spread of normalized RMSEs (NRMSE:s) of areal rain-
fall estimation tend to decrease with a rising gauge number.
The mean number of gauges required to obtain areal rain-
fall with NRMSESs lower than 20 % is given as a function of
time resolution in Fig. 6b. The curve (in black) roughly ex-
hibits power-law behavior: 74.2 x t~94, where t is the time
resolution (minute). At the daily scale, more than one gauge
per 300 km? would be sufficient for reaching a < 20 % es-
timation error. Correspondingly, at the temporal scales of
1h, 30 min, and 5 min, on average more than 12, 18, and
33 gauges, respectively, are needed to achieve the same level
of accuracy. Villarini et al. (2008) found that four gauges are
necessary at the daily scale for the same accuracy level for an
area of 135km?. Heavy events are not explicitly considered
in their study.

One should note that the use of randomly selected gauge
combinations only offers a rule of thumb about the required
number of gauges to minimize uncertainty in areal rainfall
estimates. To demonstrate the role of gauge distribution in
determining the estimation error, we selected “good” and
“bad” distributions, 100 cases for each, out of the 1000 com-
binations for each n-gauge networks that ranked in the top
10 % and bottom 10 % based on the area of influence (see
Supplement). As seen in Fig. 6a (red crosses), the small-
est estimation error is obtained with regularly distributed
gauges. In other words, a well-designed gauge network al-
lows meeting the desired error limit with a smaller number of
gauges (black curve in Fig. 6c¢). For example, at a 1 h scale,
the 20 % estimation error can be reached using uniformly dis-
tributed 8 gauges; however, the same level of accuracy can-
not be guaranteed even with 23 rain gauges if their spatial
configuration is not properly structured.

We repeated the calculation of the required gauge number
to reach the certain accuracy, using sub-areas of 150, 100,
and 50 km?, i.e., one-half, one-third, and one-sixth of WEGN
area size, respectively (grey lines in Fig. 6b and c). For each
sub-area, the mean rainfall of all gauges within the area is as-
sumed to be the truth, and the 1000 possible gauge combina-
tions are randomly selected, as we did above. For the 50 km?
area where only 25 gauges are available, all combinations are
included when the total possible combinations of n gauges
are less than 1000 cases. For any case, the dependence of
the accuracy of areal rainfall estimates on the gauge num-
ber shows the power-law behavior across timescales. How-
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ever, the required gauge numbers do not linearly decrease
as the considered network area decreases. For smaller ar-
eas, we need more number of gauges per square kilometer
(i.e., higher gauge density) to reach the same level of accu-
racy at the same timescale (see inset plots in Fig. 6b and c).
Because rainfall variability varies faster within the first few
kilometers, more dynamic rainfall variations in the smaller
areas cannot be properly captured when the inter-distances
of gauges remain the same (i.e., constant gauge density be-
tween the sub-areas), particularly for short timescales.

Additionally, the effect of gauge density on event-based
rainfall statistics is assessed in Fig. 7. Daily rainfall accumu-
lation and peak hourly rainfall of the 71 heavy daily events
are recalculated using predefined sub-networks with gauges
ranging from 1 to 16. The gauges are uniformly spread; the
definition of the sub-networks can be found in Supplement.
While the sub-network with only one gauge exhibits large
overestimation errors for both total and peak rainfall, em-
ploying an additional gauge already significantly reduces the
degree of errors and yields underestimation error more fre-
quently than overestimation. Given that convective storms
occur on scales of a few kilometers, low-density gauges over
the region are likely to miss the core of storm. On the con-
trary, low-density gauges can also overestimate rainfall inten-
sities by capturing only the core of storm, but the magnitude
and frequency of these errors appear slightly less than those
of the underestimation errors. When more than 10 gauges
are available in the area, the impact of gauge number on the
spread and mean of errors in area rainfall estimation becomes
marginal, as expected from Fig. 6. Note that only two oper-
ational meteorological stations exist over the actual WEGN
area; the insufficient gauge density may hamper the use of
the station data for constructing spatial rainfall information
in the region.

5 Impact of spatial aggregation on extreme rainfall

We next focus on the uncertainty of area- or grid-averaged
rainfall relating to spatial data resolution for the heavy rain-
fall events. Figure 8 compares rainfall percentiles among the
gauges. Grey lines mean a 10th-90th percentile range of rain-
fall intensities at a given percentile bin. For example, at the
30 min scale, the 99.9th percentile (the top 0.1 %) rainfall in-
tensity corresponds to roughly 45mmh~! at most gauges,
while it exceeds 52mmh~! at certain gauges. It is also seen
that 10 % of WEGN gauges (i.e., 15 gauges) records are
found to be lower than 38 mm h~!. The upper tail of the rain-
fall distribution shows strong spatial variation. Such point-
scale extreme rainfall features will be completely missed un-
less dense rainfall observations exist, or they are inherently
smoothed out in gridded data.

In fact, many studies have pointed out that the use of grid-
ded rainfall data can lead to erroneous analyses of small-
scale extremes because of the limited number of point ob-

Hydrol. Earth Syst. Sci., 23, 2863-2875, 2019



2870 S. O and U. Foelsche: Spatial uncertainty of heavy rainfall

(a) (b) (c)
1.6 35
0 i —e— Fit: 74.2t7%4 WEGN —e— Fit: 51.5t7%5 WEGN
5 min 30 min Fit: 48.4t794 x1/2 Fit: 36.9t795 x1/2
Fit: 37.9t7%4 x1/3 Fit: 30.5¢t7%5 x1/3
304 & Fit: 25.0t%4 x1/6 1 Fit: 19.8t%5 x1/6

254

Mean number of gauges to reach =20 % NRMSE

Minimum number of gauges to reach =20 % NRMSE

oo+ v AL 1 £20q |
5 10 15 20 25 30 35 5 10 15 20 25 30 35
n
1.0 151 ]
24 h
il °
10 A R
5_ 4
LI REE | I
¢ ®n
5 10 15 20 25 30 35 5 10 15 20 25 30 35 S e € € <€ <<
Number of gauges n om o ~ N
~Nr~ ™M
N M 1n N O O «n
S © © © o = =~
o

S 3 S S S o
Gauge density [per km?]

Figure 6. (a) Dependence of the accuracy of WEGN areal rainfall estimates on the number of gauges during heavy rainfall. Normalized
RMSEs (NRMSEs) of 1000 random gauge combinations are used to assess the accuracy for each n-gauge network. Four selected time
accumulations are shown. Black horizontal lines correspond to 20 % NRMSE. Box plots display the median and 25th and 75th percentiles of
NRMSE distribution, and whiskers extend to the 10th and 90th percentiles. Red crosses and x symbols show the median NRMSE for good
and bad gauge configurations; 100 cases are selected, respectively, for each of the 1000 combinations. (b) The average number of gauges
required to obtain areal rainfall estimates with the NRMSE < 20 % within the whole WEGN area (black) and within the WEGN x 1/2,
WEGN x1/3, and WEGN x 1/6 areas (grey). Inset shows the results in terms of gauge density. (¢) Same as (b) but for the minimum number
of gauges required to obtain areal rainfall estimates with the NRMSE < 20 %. Note that (a) shows the results with respect to the whole
WEGN area.

80 1= 80
(a) Total rainfall (daily)

(b) Peak rainfall (hourly)

& o0 S

o : o

> H >

2 : 2

- . -

- H -

) M)

> : =}

— H o

2 : il

el : °

Y : Q 5

o - o T

IS : IS i

© : I T~

O -204 @ -207

g ] g |

Y B
6151413121110 9 8 7 6 5 4 3 2 1 6151413121110 9 8 7 6 5 4 3 2 1

Sub-network [number of gauges] Sub-network [number of gauges]

Figure 7. Dependence of the accuracy of (a) daily rainfall and (b) hourly peak intensity on the number of gauges. 71 heavy rain events are
considered. The y axis displays the relative difference between resampled and true rainfall. Resampled rainfall is calculated from n-gauge
sub-networks, while true rainfall is calculated using the full density WEGN network. The thick lines show the median, and the shaded areas
show the 10th to 90th percentile spread.

Hydrol. Earth Syst. Sci., 23, 2863-2875, 2019 www.hydrol-earth-syst-sci.net/23/2863/2019/



S. O and U. Foelsche: Spatial uncertainty of heavy rainfall

Percentile Percentile

90 90

N =N

Top 10 %

\ ) N
= ] h \
o ‘ . \_99.9 , N\ 99.9
g 3-h 30-min | | \
1-h 5-min
; ; : ! 99.99 99.?9
10 25 40 50 60 70 25 50 75 100 125 150

Rain intensity [mm h!] Rain intensity [mm h!]
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timescales are selected. Black lines show median values; grey lines
show a 10th-90th percentile range among the gauges at a given
threshold bin.

servations (Contractor et al., 2015; Hofstra et al., 2010; Pe-
leg et al., 2018; Prein and Gobiet, 2017; Tozer et al., 2012).
In addition to the high resolution, the regular distribution of
WEGN gauges enables generating gridded rainfall fields that
are homogeneous in space and, consequently, robustly as-
sess uncertainty in rare and extreme rainfall represented in
the data.

We generated gridded data using all 150 WEGN gauges
and rescaled the data into horizontal resolutions from 0.01 to
0.1° (hereafter HRO1 to HR10). Spatial aggregation begins
from the top-left corner towards the bottom right, and the re-
maining southern and/or eastern part of the grid is discarded
(see Fig. 9). HRO1 corresponds to about 1.1 and 0.8 km in
latitudinal and longitudinal directions, respectively. The se-
lected spatial scale affects statistics of extreme areal rainfall,
such as daily extreme frequency. This is shown in Fig. 9,
which illustrates the occurrence of days above a selected
threshold: the top 5 % of heavy rainfall events at HRO1. The
concept of the exceedance probability above thresholds is
widely used in analyses of rainfall-triggered risk (e.g., Ban
et al., 2015; Moberg et al., 2006; Schir et al., 2016). Some
HROI1-scale sites appear to experience extreme rainfall more
frequency than other part of the region. In other words, high-
resolution data represent spatial variation and frequency of
rainfall extremes well, neither of which is seen in lower-
resolution data. Many existing gridded datasets are not likely
to fully sample such site-level extreme events, owing to lim-
ited spatial resolution.

The exceedance probability of extreme rainfall across spa-
tial resolutions is given in Fig. 10. The impact of differ-
ent data resolutions on extreme rainfall occurrence is pro-
nounced in both lower and upper tails. The highest daily rain-
fall during 10 years appears to be 68.4mmd~! at HR10 but
104.4mmd~"! at HRO1; the maximum record over the en-
tire WEGN area is 64.1 mmd—!, so the ratio of the site-to-
areal extreme rainfall ranges from 1.07 to 1.63 depending on
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the considered spatial scale. We also demonstrate 99.9th and
99th percentiles of heavy rainfall intensities as a function of
space and timescales. As shown in Fig. 11, the impact of spa-
tial aggregation is more obvious at the sub-hourly scales. The
5 min extreme intensity increases from HRO1 to HR10 by
44 % for the 99.9th percentile, while it increases by 25 % for
the 99th percentile. The 24 h extreme intensity increases by
33% and by 12 % for the 99.9th percentile and the 99th per-
centile, respectively. Note that temporal aggregation also sig-
nificantly alters the definition of extremes.

6 Summary and conclusions

In this study, to quantify spatial variability in heavy rainfall
and associated uncertainty, we used 10-year rainfall mea-
surement data from the 150 rain gauges, uniformly spaced
over the WEGN network in southeastern Austria. First, spa-
tial correlation between the gauge records was examined. We
found that the degree of spatial rainfall variability can be sub-
stantially different not only within years (warm versus cold
seasons) but also between years. This implies that long-term
data should be considered in obtaining comprehensive per-
spectives on regional rainfall variability. We found that dur-
ing the cold season, the density of gauges is less of a concern
(showing longer correlation distance) compared to the warm
season. However, low values of the nugget effect parame-
ter imply that snow or light rain measurements during winter
time remain a challenge, especially at short timescales. Addi-
tionally, we found anisotropic patterns in the spatial correla-
tions, indicating that the assumption of isotropic correlations
can be another source of uncertainty (under certain weather
conditions) in quantification of spatial variability in rainfall.

Secondly, we demonstrate how high density and regular
distribution of WEGN gauges contribute to delivering accu-
rate areal-precipitation estimation. The overall uncertainty in
mean areal rainfall shows a clear dependence on the num-
ber of gauges and the temporal resolution considered for the
estimation. To reach the same level of accuracy, the aver-
age number of gauges has to be increased roughly, following
a power law as timescale decreases. Further analysis shows
that there is no linear relation between the required number of
gauges and the ratio of considered area size. The accuracy of
areal rainfall estimation is also significantly dependent on the
spatial configuration of the network. Additionally, we illus-
trate errors in the rainfall event statistics (e.g., total amount
and peak hourly intensity of daily heavy rainfall events) due
to an insufficient number of gauges. Our findings have im-
plications concerning the use of sparse observational gauge
data, for instance, in hydrologic modeling or rainfall estimate
evaluation (e.g., Syed et al., 2003; Tian et al., 2018).

Lastly, using gridded WEGN data, rainfall extremes are re-
produced at multiple spatial scales, approximately, from the
grid resolution of regional to convective-permitting models
(about 11.1 to 1.1 km in the latitudinal direction). We show
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Note the different color scale for the plots.

how different rainfall events can be considered extreme de-
pending on the spatial and temporal resolutions. The results
also demonstrate that high-resolution gridded data provide
more reliable information not only in terms of the magnitude
and frequency of extremes but also in terms of the exact lo-
cation of the extremes. As a result, limited resolution of rain-
fall data can alter interpretations of rainfall statistics; extreme
rainfall events at a location of interest (a 0.01° x 0.01° site
in our example) could occur more frequently and more in-
tensely versus the local average. Localized information from
high-resolution observation is the key for developing preven-
tion and protection plans to mitigate potential damages of
extreme rainfall in an efficient and adequate way. Our results
highlight the need to evaluate uncertainty in extreme statis-
tics derived from the existing datasets for supporting data se-
lection among available rainfall data products.

In conclusion, the WEGN network provides a unique op-
portunity to empirically assess spatial variability in and un-
certainty of surface rainfall directly based on gauge data. The
network provides long-term records of more than a decade,
which permits an exclusive focus on heavy rain events.
Nonetheless, as stated in Villarini et al. (2008), there are only
a few dense gauge networks on the catchment scale; there-
fore the verification of findings from studies in other regions
is challenging. Regional factors, such as topography or rain
type, can lead to differences in the degree of rainfall vari-
ability and uncertainty (e.g., Buytaert et al., 2006; Prein and
Gobiet, 2017). Therefore, some of the general conclusions of
this study may only be representative for midlatitude regions
with moderate topography. In addition, more robust interpre-
tation of the rainfall spatial structure beyond the network di-
mension (> 15 km) needs to be complemented by additional
larger-scale gauge data. For instance, Schroeer et al. (2018)
used three different scales of networks, including the WEGN,
to estimate the underestimation of maximum area precipita-
tion of extreme convective over the range of 1 to 30km. It
should be noted that WEGN has a high flexibility in terms
of providing rainfall data within various spatial scales thanks
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to both high-resolution and quasi-grid configuration of the
gauges. In this context, WEGN will continue providing ob-
servational evidence to explore rainfall processes at the local
scale to the continental scale in the coming years.
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