
Hydrol. Earth Syst. Sci., 23, 277–301, 2019
https://doi.org/10.5194/hess-23-277-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Improving soil moisture and runoff simulations at 3 km
over Europe using land surface data assimilation
Bibi S. Naz1,2, Wolfgang Kurtz7, Carsten Montzka1, Wendy Sharples2,3, Klaus Goergen1,2, Jessica Keune4,
Huilin Gao5, Anne Springer6, Harrie-Jan Hendricks Franssen1,2, and Stefan Kollet1,2

1Research Centre Jülich, Institute of Bio- and Geosciences: Agrosphere (IBG-3), 52425 Jülich, Germany
2Centre for High-Performance Scientific Computing in Terrestrial Systems, Geoverbund ABC/J, 52425 Jülich, Germany
3Research Centre Jülich, Jülich Supercomputing Centre, 52425 Jülich, Germany
4Laboratory of Hydrology and Water Management, Ghent University, 9000 Ghent, Belgium
5Zachry Department of Civil Engineering, Texas A & M University, College Station, TX 77843, USA
6Institute of Geodesy and Geoinformation, Bonn University, Nussallee 17, 53115 Bonn, Germany
7Leibniz Supercomputing Centre, Environmental Computing Group, Boltzmannstr. 1, 85748 Garching, Germany

Correspondence: Bibi S. Naz (b.naz@fz-juelich.de)

Received: 19 January 2018 – Discussion started: 23 March 2018
Revised: 11 December 2018 – Accepted: 20 December 2018 – Published: 17 January 2019

Abstract. Accurate and reliable hydrologic simulations are
important for many applications such as water resources
management, future water availability projections and pre-
dictions of extreme events. However, the accuracy of water
balance estimates is limited by the lack of large-scale obser-
vations, model simulation uncertainties and biases related to
errors in model structure and uncertain inputs (e.g., hydro-
logic parameters and atmospheric forcings). The availabil-
ity of long-term and global remotely sensed soil moisture
offers the opportunity to improve model estimates through
data assimilation with complete spatiotemporal coverage. In
this study, we assimilated the European Space Agency (ESA)
Climate Change Initiative (CCI) derived soil moisture (SM)
information to improve the estimation of continental-scale
soil moisture and runoff. The assimilation experiment was
conducted over a time period 2000–2006 with the Commu-
nity Land Model, version 3.5 (CLM3.5), integrated with the
Parallel Data Assimilation Framework (PDAF) at a spatial
resolution of 0.0275◦ (∼ 3 km) over Europe. The model was
forced with the high-resolution reanalysis COSMO-REA6
from the Hans Ertel Centre for Weather Research (HErZ).
The performance of assimilation was assessed against open-
loop model simulations and cross-validated with indepen-
dent ESA CCI-derived soil moisture (CCI-SM) and grid-
ded runoff observations. Our results showed improved esti-
mates of soil moisture, particularly in the summer and au-

tumn seasons when cross-validated with independent CCI-
SM observations. The assimilation experiment results also
showed overall improvements in runoff, although some re-
gions were degraded, especially in central Europe. The re-
sults demonstrated the potential of assimilating satellite soil
moisture observations to produce downscaled and improved
high-resolution soil moisture and runoff simulations at the
continental scale, which is useful for water resources assess-
ment and monitoring.

1 Introduction

Soil moisture (SM) is a key variable of the hydrologic cycle,
playing an important role in major processes related to in-
filtration and runoff generation, root water uptake and plant
transpiration, and evaporation (Vereecken et al., 2016). Thus,
soil moisture strongly influences the partitioning of incoming
radiative energy into latent and sensible heat and significantly
affects the land surface energy and water budgets. Conse-
quently, accurate estimates of large-scale SM are needed
for detection of long-term trends in hydrological states and
fluxes, for example in the context of a land surface reanal-
ysis; hydrologic predictions such as discharge forecasts for
large river basins (Western et al., 2004) and water resource
management and planning (e.g., groundwater recharge, mit-
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igation of droughts) (Andreasen et al., 2013; Dobriyal et
al., 2012; Sridhar et al., 2008), identifying regions suscep-
tible to extreme events such as droughts and floods (Senevi-
ratne et al., 2010), lower boundary conditions for numerical
weather predictions (Drusch, 2007), and irrigation manage-
ment and agriculture practices (Bolten et al., 2010; Shock
et al., 1998). At continental spatial scales and inter-annual
timescales, SM typically exhibits large variability (Brocca
et al., 2010), depending on rainfall distribution, topography,
soil physical properties, vegetation characteristics and human
impacts such as irrigation. Monitoring this variability is a
major challenge due to the scarcity of in situ SM observa-
tions networks. Recent advancements in satellite-based sen-
sors offer great potential to monitor SM over large scales for
continental water resources assessment, particularly in areas
where ground observation networks are sparse (Mohanty et
al., 2013). Conventionally, satellite observations have been
used in global water balance studies to provide information
on the water cycle components, such as precipitation, evap-
otranspiration (ET), soil moisture, water storage and runoff
(Kiehl and Trenberth, 1997; Running et al., 2004; Trenberth
et al., 2007; Vinukollu et al., 2011). However, sparse data
coverage in satellite observations limits their ability to pro-
vide spatially and temporally consistent time series of water
balance estimates.

Another approach to facilitate studies at a regional to
global scale is to estimate water budget components us-
ing land surface models forced with precipitation and
other atmospheric data – such as the Community Land
Model (CLM) (Lawrence et al., 2011), the Variable Infiltra-
tion Capacity (VIC) model (Liang et al., 1994, 1996), or the
Joint UK Land Environment Simulator (JULES) (Best et al.,
2011; Clark et al., 2011). Simulated soil moisture distribu-
tions from the land surface models provide spatially and tem-
porally continuous information, yet their accuracy is limited
by model deficiencies and uncertainties in both model param-
eters and atmospheric forcing variables (Chen et al., 2013;
Draper et al., 2009). Therefore these uncertainties need to
be characterized in hydrologic predictions, in order to pro-
vide useful hydrologic data and information for water re-
source management. In order to improve model predictions
and simultaneously honor observation and model uncertain-
ties, remotely sensed soil moisture has been merged with
model predication using data assimilation (DA) (Chen et al.,
2013; De Lannoy and Reichle, 2016; Kumar et al., 2008;
Lahoz and De Lannoy, 2014; Lievens et al., 2016; Liu and
Gupta, 2007; Moradkhani et al., 2005; Nie et al., 2011). Us-
ing DA approaches, previous studies also investigated the im-
pact of uncertainties in both parameters and state variables
of a hydrologic model based on a joint state–parameter esti-
mation approach (Cammalleri and Ciraolo, 2012; DeChant
and Moradkhani, 2012; Gharamti et al., 2015; Liu et al.,
2016; Pathiraja et al., 2016; Rafieeinasab et al., 2014; Xie
and Zhang, 2010). For example, Han et al. (2014) evalu-
ated the joint state and parameter estimation method at catch-

ment scale for the coupled CLM and Community Microwave
Emission Model (CMEM) (De Rosnay et al., 2009) through
assimilation of synthetic microwave brightness temperature
data. Similarly, Samuel et al. (2014) studied the ensemble-
based DA with dual state–parameter estimation to evaluate
the streamflow forecast and variations in soil moisture. How-
ever, many of these studies mainly focused on using data as-
similation approaches for improved predictions at the water-
shed scales. Fewer studies demonstrated the potential of as-
similating satellite observations into land surface models to
improve soil moisture and runoff estimates at regional and
global scales (e.g., Crow and Ryu, 2009; De Lannoy and
Reichle, 2016; Lievens et al., 2015; Liu and Mishra, 2017;
López López et al., 2016; Pan et al., 2008; Rains et al., 2017;
Reichle and Koster, 2005; Renzullo et al., 2014). For in-
stance, Rains et al. (2017) assimilated SMOS data into CLM
over Australia for drought monitoring purposes. Similarly,
Liu and Mishra (2017) also assimilated satellite SM data at
the global scale to evaluate the performance of the commu-
nity land surface model (CLM4.5) in simulating hydrologic
fluxes such as SM, ET and runoff at 0.5◦ (∼ 50 km) spa-
tial resolution. They found that assimilating satellite SM data
into the CLM4.5 model improved the soil moisture simula-
tions, which also led to better representation of other hydro-
meteorological variables in the model, such as ET and runoff.
At the continental scale, several studies have explored the
role of soil moisture assimilation over Europe, in different
modeling frameworks (e.g., Albergel et al., 2017; Brocca
et al., 2010; De Rosnay et al., 2013; Draper et al., 2009;
Ni-Meister et al., 2006). Using NASA’s global catchment
land surface model (CLSM), Ni-Meister et al. (2006) im-
proved simulated soil moisture over small Eurasian catch-
ments through assimilation of near-surface soil moisture de-
rived from the Scanning Multichannel Microwave Radiome-
ter (SMMR). Using an extended Kalman filter (EKF), Draper
et al. (2009) demonstrated the usefulness of assimilating
near-surface soil moisture observations from the C-band Ad-
vanced Microwave Scanning Radiometer (AMSR-E) in the
land surface model ISBA (Interactions between Soil, Bio-
sphere and Atmosphere) at 9 km resolution over continental
Europe. More recently, Albergel et al. (2017) showed the po-
tential of using the satellite-derived soil moisture data from
the European Space Agency (ESA) Climate Change Initia-
tive (CCI) over Europe and the Mediterranean to sequentially
assimilate soil moisture and leaf-area index product into the
ISBA land surface model at 0.5◦ (∼ 50 km) resolution. They
found significant improvements in the surface soil moisture
but little improvement in discharge estimates when compared
to the open-loop (i.e., no assimilation) simulations.

In these global- to regional-scale studies, despite these im-
portant advancements, the data assimilation systems were
employed at fairly coarse spatial resolution (i.e., at 50 to
25 km scale), which is too coarse to provide locally rele-
vant information (Bierkens et al., 2015; Wood et al., 2011).
For example, predicting water cycle processes for scien-
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tific and applied assessment of the terrestrial water cycle
requires a high-resolution modeling framework on the or-
der of 100–101 km horizontal grid spacing. While most of
the global remote sensing observations are available at rel-
atively low resolution (i.e., at 50 to 25 km scale), data as-
similation systems can be used as an effective downscaling
tool by merging the remote sensing information in space
and time with high-resolution models. In turn, data assim-
ilation frameworks that include higher resolution meteoro-
logical, land cover, and soil texture information can be used
to constrain coarse-resolution remotely sensed soil moisture
observations. However, in both cases, the spatial mismatch
between coarse-resolution satellite data and high-resolution
hydrologic models constitutes a great challenge. To address
this issue, the scale disparity between observations and mod-
eling approaches needs to be taken into account either in the
data assimilation algorithm (De Lannoy et al., 2012; Sahoo
et al., 2013) or through preprocessing of satellite products
to match the model resolution (Merlin et al., 2013; Verhoest
et al., 2015). Another challenge is the availability of com-
putational resources, because the computational burden can
increase nonlinearly with increasing model resolution, but
could also increase linearly with an increasing number of
ensembles in the data assimilation system and with the in-
creasing complexity of simulated processes.

In this work, we assimilated the coarse-resolution ESA
CCI-SM data over Europe from January 2000 to Decem-
ber 2006 into the 3 km high-resolution CLM using a joint
state and parameter estimation approach and evaluate its
impacts both on surface soil moisture and on other hydro-
logic variables such as surface and subsurface runoff. A
number of soil moisture retrievals from other missions such
as the Soil Moisture and Ocean Salinity (SMOS, launched
in 2009) (Kerr et al., 2001; Mecklenburg et al., 2016) and
Soil Moisture Active Passive (SMAP, launched in 2015) (En-
tekhabi et al., 2010) missions have been used in assimila-
tion studies (e.g., Lievens et al., 2015, 2016). These recent
high-resolution data products are only available for less than
10 years and cannot be used to apply soil moisture informa-
tion in a land surface reanalysis for extended time periods.
Recently, a number of studies highlighted the quality and
stability of the ESA CCI product (e.g., Dorigo et al., 2017;
McNally et al., 2016; Wagner et al., 2012) and its potential
use in data assimilation studies (Albergel et al., 2013, 2017;
Liu et al., 2018). We selected ESA CCI-SM data because of
their availability at longer timescales, which also provides a
basis for evaluating the feasibility of deriving a land surface
reanalysis, conditioned to satellite information, for Europe
over longer timescales, and allows the potential impact of as-
similating longer-term soil moisture observations on hydro-
logic simulations to be assessed.

The main goal of this study is twofold. Firstly, it inves-
tigates the value of coarse-resolution remotely sensed soil
moisture data in improving soil moisture and runoff model-
ing and to provide higher-spatial-resolution and downscaled

estimates of the surface soil moisture profile and hydrologi-
cal fluxes with complete spatiotemporal coverage over Eu-
rope. Secondly, it aims at exploring the potential of long-
term remotely sensed products such as ESA CCI-SM for
downscaling of soil moisture to high spatial resolution at
the continental scale via data assimilation. In this study, the
analysis also focused on the performance of the Commu-
nity Land Model (v3.5) to simulate surface and subsurface
runoff as a result of assimilation updates restricted to soil
moisture for upper soil layers. In addition, the study also in-
terrogates whether assimilation of satellite-derived surface
soil moisture will improve the skill of the simulated dis-
charge, in gauged and ungauged regions. Therefore, assim-
ilating satellite-derived information into land surface models
may have an important added value for regions where in situ
measurements are not available.

In order to obtain the assimilated product of near-surface
soil moisture, we used CLM3.5 coupled to the Parallel Data
Assimilation Framework (PDAF) library (Nerger and Hiller,
2013). PDAF is computationally efficient due to its paral-
lelization of data assimilation routines and in-memory ex-
change of data. Therefore, PDAF is suitable for applications
at large spatial scales and high resolution over longer time pe-
riods. The coupled CLM-PDAF setup and the experimental
design are described in Sect. 2. The results, including model
validation and analysis of simulated soil moisture and runoff,
are documented in Sect. 3, while the discussion and conclu-
sions are presented in Sects. 4 and 5, respectively.

2 Methods and data

2.1 Model description

In this study, the CLM3.5 (Oleson et al., 2004) was applied to
represent land surface processes such as soil moisture evolu-
tion, evaporation from soil and vegetation, transpiration and
interception of precipitation by vegetation canopy, through-
fall and infiltration, and surface and subsurface runoff and
snow. Specifically, runoff is parameterized using a simple
TOPMODEL-based scheme (SIMTOP; Niu et al., 2005).
Soil water is calculated by solving the one-dimensional
Richards equation (Zeng and Decker, 2009). An operational
groundwater table depth and recharge to groundwater from
the soil column is updated dynamically using the algorithm
described in Niu et al. (2007). The snow model in CLM
explicitly simulates multilayer snow depending on the to-
tal snow depth, and includes processes such as snowmelt,
surface frost and sublimation, liquid water retention, and
thawing–freezing processes (Dai et al., 2003; Dickinson et
al., 2006; Stöckli et al., 2008). Total runoff is calculated as
the sum of the subsurface runoff, surface runoff and runoff
generated from lakes, glaciers, and wetlands (Oleson et al.,
2004).
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CLM3.5 has been widely applied at continental and global
scales to understand how land processes and anthropogenic
impacts affect climate (e.g., Dickinson et al., 2006). The
CLM parameterizes most of the land surface processes
(such as infiltration, evaporation, surface runoff, subsur-
face drainage, canopy and snow processes) using the wa-
ter and energy balance equations. CLM3.5 offers significant
improvements in estimating the components of the terres-
trial water cycle compared to earlier versions (Oleson et al.,
2008), including improvements in soil water availability and
resistance terms to reduce the soil evaporation which was
overestimated in earlier versions (Niu et al., 2005; Oleson et
al., 2008; Yang and Niu, 2003). Compared to CLM3.0, Ole-
son et al. (2008) showed that CLM3.5 exhibits more realis-
tic partitioning of ET into its components (i.e., transpiration,
ground evaporation and canopy evaporation), which resulted
in overall improvements in the representation of the annual
cycle of total water storage. Previous studies also showed
that CLM3.5 produces too-high soil moisture with too-low
variability compared to root zone soil moisture modeled by
later CLM versions (4.0 and 4.5) (e.g., Lawrence et al., 2011;
Niu et al., 2011). In order to reduce these biases, Li and
Ma (2015) introduced a factor to describe soil porosity and
increase recharge water from the soil column to the aquifer in
the newer CLM, leading to improved estimates of soil mois-
ture and biogeochemical processes. However, Lawrence et
al. (2011) showed that the differences between CLM3.5 and
new versions of CLM with respect to soil moisture variability
remained small when compared to observations.

In addition, CLM3.5 is designed for coupling with cli-
mate models and is also part of the fully coupled Terrestrial
Systems Model Platform (TerrSysMP; Shrestha et al., 2014)
that simulates the full terrestrial hydrologic cycle including
feedbacks between atmosphere, land-surface and subsurface
compartments of the water cycle. Moreover, the CLM can
efficiently run for large model domains and at high spa-
tial resolution. Since we performed our simulations at high
spatial resolution and at continental scale, we selected the
TerrSysMP–PDAF modeling framework (Kurtz et al., 2016),
which is designed for high-performance computing infras-
tructures and can efficiently cope with the high computa-
tional burden of ensemble-based data assimilation. Kurtz
et al. (2016) showed the efficient use of parallel computa-
tional resources by TerrSysMP–PDAF, which is needed to
simulate predicted states and fluxes over large spatial do-
mains and long simulations. In this study, we used the CLM–
PDAF setup, in which PDAF is coupled with the stand-alone
CLM3.5 for soil moisture assimilation. Readers are referred
to Kurtz et al. (2016) for technical descriptions of coupling
and model performance.

2.2 Data assimilation framework

The Parallel Data Assimilation Framework (Nerger and
Hiller, 2013) was used to assimilate satellite soil mois-

ture into CLM3.5. PDAF provides data assimilation meth-
ods such as the ensemble Kalman filter (EnKF) (Burgers et
al., 1998; Evensen, 2003) and the local ensemble transform
Kalman filter (LETKF) (Hunt et al., 2007). In this study,
the EnKF algorithm was used for data assimilation, which
is a relatively efficient and robust technique for assimilat-
ing satellite data into land surface models (e.g., Brocca et
al., 2012; Crow et al., 2017; Draper et al., 2011; Matgen et
al., 2012; Mohanty et al., 2013; Pauwels et al., 2001, 2002).
It uses ensembles of model simulations to approximate the
model state and parameter error covariance matrix in order
to optimally merge model predictions with observations.

In this study, the joint state parameter update of soil mois-
ture and soil texture in CLM with the EnKF was used:

θ it = ft

(
θ it−1,q

i
t−1,p

i
t−1

)
, (1)

where the state variable soil moisture
(
θ it
)

is a vector con-
taining soil moisture values within a soil layer for each grid
cell and can be described with a nonlinear model (CLM in
our case) operator ft (·) at time step t for realization i using
the forcing data q and model parameter p.

The state–parameter vector xi for realization i was calcu-
lated using the perturbed soil texture (% sand and % clay)
and perturbed precipitation as follows:

xi =

 θ i

% sandi

% clayi

 . (2)

The EnKF then calculates the ensemble of updated state–
parameter vector xat at daily time step t of the model-
estimated state–parameter variable xt for each ensemble
member i, as follows:

xat = x
i
t +Kt

[
y+ εi −Htx

t
i

]
, (3)

where yt is the perturbed observation vector and ε is a per-
turbation vector of the measurement error with values drawn
from a normal distribution with a mean of zero and a standard
deviation corresponding to the assigned measurement error
of 0.02 m3 m−3 for soil moisture and H is the measurement
operator. K is the Kalman gain matrix defined as follows:

Kt = PtHT
t

(
Rt +HtPtHT

t

)−1
, (4)

where HT
t is the transpose matrix of the measurement op-

erator at time t , Rt is the measurement error matrix, which
is defined a priori based on the expected measurement error
of the ESA CCI soil moisture product. Pt is the state error
covariance matrix of the model predictions calculated as fol-
lows:

Pt =

N∑
i=1
(xi − x)(xi − x)

T

N − 1
, (5)

where x is the vector which contains the ensemble average
soil moisture contents for the different grid cells andN is the
number of ensemble members.
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Figure 1. Model surface input data: (a) USGS GMTED2010 DEM, (b) dominant land use type based on MODIS data, (c) percentage of sand
content, and (d) percentage of clay content based on global FAO soil database. The inner boxes in (a) show the boundaries of the PRUDENCE
regions (FR: France, ME: Mid-Europe, SC: Scandinavia, EA: eastern Europe, MD: Mediterranean, IP: Iberian Peninsula, BI: the British Isles,
AL: Alpine region; Christensen and Christensen, 2007).

In the DA scheme, the updated states (soil moisture) were
kept in reasonable physical ranges (between residual soil
moisture and porosity) to yield physically meaningful esti-
mates of soil moisture water content, energy fluxes and the
water budget. For the soil moisture update, the values of the
updated soil moisture were restricted to values between zero
and saturated soil water content. For the soil texture update,
a value of 1 % was assigned to sand and clay percentages in
case the updated values are less than zero. In case the updated
sum of the sand and clay are greater than 100 %, the values
were constrained to the normalized sum of updated soil and
clay percentages. Other soil parameters such as the soil hy-
draulic and thermal parameters were adjusted after the soil
texture update using pedotransfer functions.

2.3 Data

2.3.1 Land surface data and atmospheric forcing

The land surface static input data used in this study
consisted of topography, soil properties, plant functional
types and physiological vegetation parameters (Fig. 1).
Digital elevation model (DEM) data were acquired from
the 1 km× 1 km Global Multi-resolution Terrain Elevation

Data 2010 (GMTED2010) (Danielson and Gesch, 2011) as
shown in Fig. 1a. In CLM, each grid cell consists of five
land units (i.e., vegetation, wetland, lakes, glaciers and ur-
ban) covering a certain percentage of the total grid cell area.
The vegetation land unit is further subdivided into plant func-
tional types (PFTs) defined by fractional areas with respect to
the entire grid cell (Bonan et al., 2002). In the current study,
the land cover information for each PFT was based on the
Moderate Resolution Imaging Spectroradiometer (MODIS)
MCD12Q1 (version 5) land cover product (Friedl et al.,
2002), which contains a classification of the dominant land
cover (Fig. 1b). The dominant land cover information from
MODIS was first aggregated to the model resolution, calcu-
lating the percentage of all 500 m pixels per 3 km grid cell.
The aggregated land cover information was then transferred
to the CLM-prescribed PFTs on the basis of WorldClim cli-
mate data (Hijmans et al., 2005).

Monthly leaf area index (LAI) values for each PFT
were computed based on the 1 km Global Land Surface
Satellite (GLASS) LAI product (1981–2012). GLASS con-
tains of 1 km× 1 km global maps of LAI provided ev-
ery 8 days. The product was derived from time series of
MODIS (MOD09A1) and AVHRR reflectance data using a
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general regression neural network method (Xiao et al., 2014).
To derive a monthly climatology over the assimilation pe-
riod (2000–2006), the 1 km 8-day improved GLASS LAI for
each year was used to calculate a mean monthly LAI that
was then aggregated to the model resolution. The monthly
LAI values for each PFT were then determined by mapping
the 3 km pixels to the 3 km aggregated PFT values within
each grid cell. This approach provides spatially distributed
and temporally continuous LAI data within each PFT for the
considered time period of 2000–2006. To account for annual
variability in LAI, yearly model runs were performed where
the LAI information was updated at the start of each year run.
It should be noted that CLM3.5 only allows monthly average
LAI values for each PFT to be specified.

Additional properties of each of the subgrid land fractions,
such as the stem area index and the monthly heights of each
PFT, were calculated based on the global CLM3.5 surface
dataset (Oleson et al., 2008). To provide soil texture data in
the model (Fig. 1c and d), sand and clay percentages were
prescribed based on pedotransfer functions (Schaap and Leij,
1998, for 19 soil classes derived from the FAO/UNESCO
Digital Soil Map of the World; Batjes, 1997).

For the time period of 2000–2006, the high-resolution at-
mospheric reanalysis COSMO-REA6 dataset (Bollmeyer et
al., 2015) from the Hans Ertel Centre for Weather Research
(HErZ; Simmer et al., 2016) was used as the atmospheric
forcing for CLM3.5. We preferred to use this data over other
datasets, because of its high spatial resolution in compari-
son to other commonly used forcing datasets such as the
European gridded dataset (E-OBS) (Haylock et al., 2008)
and Interim ECMWF Reanalysis (ERA-Interim; Dee et al.,
2011) at 25 and 80 km resolution, respectively. We used data
from 2000–2006 which were available at the beginning of
this study. The COSMO-REA6 is only now publicly avail-
able for a longer time period of 1995–2015. The essential
meteorological variables applied in this study, such as baro-
metric pressure, precipitation, wind speed, specific humidity,
near-surface air temperature, downward shortwave radiation
and downward longwave radiation were downloaded from
the German Weather Service (DWD; ftp://ftp-cdc.dwd.de/
pub/REA/, last access: 15 September 2017). The COSMO-
REA6 reanalysis is based on the COSMO model and avail-
able at 0.055◦ (∼ 6 km) covering the European CORDEX
domain (Gutowski Jr. et al., 2016). COSMO-REA6 was pro-
duced through the assimilation of observational meteorolog-
ical data using the existing nudging scheme in COSMO with
boundary conditions from ERA-Interim data. Bollmeyer et
al. (2015) compared the COSMO-REA6 precipitation data
with the precipitation data from the Global Precipitation Cli-
matology Centre and showed that COSMO-REA6 performed
well compared to observations, with small underestimations
of precipitation in central and southern Europe and overes-
timation of precipitation in Scandinavia, Russia and along
the Norwegian coast. Additionally, Springer et al. (2017) as-
sessed the closure of the water budget in the 6 km COSMO-

REA6 and compared to global reanalyses (ERA-Interim) and
Modern-Era Retrospective Analysis for Research and Ap-
plications, Version 2 (MERRA-2) for major European river
basins. Springer et al. (2017) found that the COSMO-REA6
closes the water budget within the error estimates whereas
the global reanalyses underestimate the precipitation-minus-
evapotranspiration surplus in most river basins. A more com-
prehensive assessment of the precipitation of the HErZ re-
analysis can be found in Wahl et al. (2017), albeit based on
the 2 km data product, only available for central Europe.

2.3.2 ESA CCI microwave soil moisture

The ESA CCI program provides daily soil moisture (CCI-
SM) at 0.25◦ spatial resolution for approximately the top few
millimeters to centimeters of soil from 1978 to 2016. The
daily CCI-SM product (v03.2) is produced at 0.25◦ spatial
resolution from the microwave retrieved surface soil mois-
ture data and is merged from multiple sensors (Dorigo et al.,
2017; Liu et al., 2011, 2012; Wagner et al., 2012; http://www.
esa-oilmoisture-cci.org, last access: 23 March 2017). For the
study period of 2000 to 2006, the CCI-SM data are based
on passive microwave observations (i.e., DMSP SSM/I,
TRMM TMI, Aqua AMSR-E and Coriolis WindSat; Owe
et al., 2008), whereas the active data products are based on
observations from the C-band scatterometers on board the
ERS-1 and ERS-2 (Bartalis et al., 2007; Wagner et al., 2013)
satellites. In this product, the absolute soil moisture was re-
scaled against the 0.25◦ land surface modeling soil moisture
(GLDAS-NOAH, Rodell et al., 2004) using cumulative den-
sity function matching. The soil-type-specific hydraulic pa-
rameters in Noah are obtained from the pedotransfer func-
tion provided in Cosby et al. (1984), which was also adopted
by CLM. The underlying soil classification in our setup is
based on data from the FAO soil map (Batjes, 1997), which
was the basis for the GLDAS-derived soil parameters used
in GLDAS-Noah and employed to derive the ESA CCI-SM
product (e.g., Dorigo et al., 2012). The setup and the param-
eterizations of Noah and our CLM should hence be fairly
consistent.

In this study, we used the merged product of active and
passive soil moisture data which showed better accuracy than
either the passive or active data alone (Liu et al., 2011). To
match the spatial resolution of our CLM3.5 setup, the origi-
nal SM values were re-sampled and re-gridded to 0.0275◦ us-
ing the first-order conservative interpolation method (Jones,
1999), which is based on the ratio of source cell area over-
lapped with the corresponding destination cell area. The con-
servative regridding scheme preserves the physical flux fields
between the source and destination grid. The CCI-SM dataset
showed large data gaps over the European continent dur-
ing the four seasons – December–February (DJF; winter),
March–May (MAM; spring), June–August (JJA; summer)
and September–November (SON; autumn); (Fig. 2b). Ac-
cording to Fig. 2b, the temporal coverage (i.e., the ratio be-

Hydrol. Earth Syst. Sci., 23, 277–301, 2019 www.hydrol-earth-syst-sci.net/23/277/2019/

ftp://ftp-cdc.dwd.de/pub/REA/
ftp://ftp-cdc.dwd.de/pub/REA/
http://www.esa-oilmoisture-cci.org
http://www.esa-oilmoisture-cci.org


B. S. Naz et al.: Improving soil moisture and runoff simulations at 3 km over Europe 283

Figure 2. Satellite ESA CCI soil moisture data resampled to 3 km resolution for the time period of 2000 to 2006 over EU-CORDEX.
(a) Temporally averaged soil moisture content for different seasons, (b) fraction of days that soil moisture observations were reported
during different seasons, and (c) number of selected observations with valid data for the respective day over the 2000–2006 period, used
for assimilating soil moisture in the data assimilation experiment. Black circles in (a) indicate the location of grid cells selected for data
assimilation.

tween the number of days and the total number of days in
a season) was generally low during the winter and spring
seasons, ranging from less than 30 % (Scandinavian regions)
to about 60 % in southern Europe. SM observations showed
the highest temporal coverage during the summer and au-
tumn. Due to the sparseness of the SM data at daily temporal
resolution, 100 grid cells were randomly selected covering
the complete model domain (Fig. 2a). The satellite CCI-SM
daily soil moisture data at these locations were assimilated.
However, the number of observations for each day ranged
between 2 and 75 depending on the availability of the daily
CCI-SM data. As shown in Fig. 2c, there is a higher level
of noise in the CCI-SM data for the first two years (2000
and 2001), probably related to the absence of data from other
sensors like AMSRE-E and Windsat in those first two years.
Moreover, the availability of selected observations was lower
during winter and spring, while summer soil moisture was
well covered during years 2003 to 2006. This seasonal dif-

ference in data availability is related to the occurrence of soil
freezing events and snow cover.

Furthermore, in land surface modeling systematic differ-
ences between the model climatology and the observation
data climatology are commonly corrected before assimila-
tion, to ensure that data assimilation is applied under con-
ditions of no systematic bias. Previous studies used differ-
ent procedures to correct for biases, such as the estimation
of a single constant bias value, seasonal dependent bias or
CDF matching (e.g., Drusch et al., 2005; Reichle and Koster,
2004). The procedure has some important limitations: (i) the
polynomial fit during CDF matching cannot provide perfect
agreement because the introduced noise changes the random
difference between both datasets, (ii) the bias is only partially
corrected or overcorrected; (iii) the bias in the DA-procedure
is not assigned to the model or measurement data, but after
the assimilation it is implicitly assumed that the systematic
bias is related to the bias in the measurements (model states
are not corrected for a systematic bias). A priori bias correc-
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tion is a specific approach taken in land surface data assimila-
tion in case of large mismatches between modeled and mea-
sured values, for example, when the observations are located
outside of the ensemble spread. We argue that for this dataset,
we see systematic biases between model and data, yet these
are small enough. In addition, data assimilation is able to re-
move biases besides the random component. A further argu-
ment for not following this approach was that spatial patterns
could be altered and thereby some of the independent infor-
mation provided by the satellite may be removed. We, there-
fore, did not perform any bias correction of the ESA CCI-SM
data by rescaling of the observations to model climatology,
to retain as much of the independent satellite information as
possible.

2.3.3 Observational gridded monthly runoff

In order to evaluate the potential of improving runoff esti-
mates by assimilating soil moisture observations, the non-
routed observational gridded monthly runoff data from Gud-
mundsson and Seneviratne (2016) (E-RUN version 1.1) were
used as independent dataset. The E-RUN product provides
monthly pan-European runoff estimates from 1950 to 2015
at 0.5◦ (∼ 50 km) resolution. The monthly runoff rates were
generated using a collection of streamflow observations from
small catchments combined with gridded precipitation and
temperature data using a machine learning approach (Gud-
mundsson and Seneviratne, 2016). Monthly runoff was es-
timated using a regression model, which was trained with a
subset of observed runoff rates and E-OBS precipitation and
temperature. The fitted model was subsequently applied to
all grid cells of the E-OBS data to derive pan-European es-
timates of monthly runoff (Gudmundsson and Seneviratne,
2016). Using this cross-validation method, Gudmundsson
and Seneviratne (2016) reported higher accuracy in central
and western Europe, while accuracy was lower in other re-
gions due to low density of available stations. For model vali-
dation, we preferred to use this dataset over the discharge ob-
servations at different gauge stations, because the nonrouted
gridded runoff product has the distinct advantage of evalu-
ating the impact of soil moisture assimilation on runoff at
every grid cell within a spatial domain. Using gridded runoff
is also useful to evaluate model structure errors in the rep-
resentation of runoff generation in the model. In addition, in
the CLM3.5, the river routing module is implemented at 0.5◦

where the discretization of river routing elements is based
on a grid method in which the grid for river routing is inde-
pendent of the grid for runoff simulation. Therefore, a coarse
spatial resolution river network can lead to unrealistic flow
accumulation, and an adequate validation of the results is not
possible. However, our comparison of aggregated runoff us-
ing E-RUN data for a few watersheds with monthly discharge
observed at stations and obtained from the GRDC (Global
Runoff Data Center, 2011) in Europe showed a good agree-
ment with observed discharge (Fig. S1 in the Supplement).

In the current study, the half-degree monthly runoff rates
were resampled and re-gridded to 0.0275◦ using the first-
order conservative interpolation method for comparison with
the CLM3.5 simulated total runoff.

2.4 CLM-PDAF experimental design and analyses

The joint state and parameter assimilation experiments were
performed for the time period of January 2000 to Decem-
ber 2006. The model spinup was performed by simulating
the time period of 2000–2006 5 times in order to obtain equi-
librium initial state variables. The initial state variables from
the spin-up were then used as initial condition for the ensem-
ble runs as described below. In this study, we implemented
CLM3.5 for the EURO-CORDEX domain with a spatial res-
olution of 0.0275◦ (3 km), inscribed into the official EUR-
11 grid. The model was run with 1 h time step and the time
window for soil moisture updates was set to 1 day. In this
study, we assumed a spatially uniform observational error of
0.02 mm3 mm−3 for CCI-SM in the CLM-PDAF setup.

The outputs of a land surface model are sensitive to both
atmospheric forcings and soil characteristics. To account for
uncertainties in atmospheric forcing and soil texture, precipi-
tation and soil texture (% sand and % clay) were perturbed in
this study (Figs. S2 and S3). Log-normally distributed, spa-
tially homogeneous and temporally uncorrelated multiplica-
tive perturbations were added to precipitation. The mean and
standard deviation of the applied perturbation factors for pre-
cipitation were equal to 0.1 and 0.15, respectively. Sand and
clay content were perturbed with random noise drawn from
spatially uniform distribution (±10 %). In order to avoid un-
physical values of the soil parameters, the sum of the sand
and clay content were constrained to have a value not larger
than 100 %. The initial ensemble size was set to 20 for the
precipitation and soil texture in the assimilation experiment
to update the volumetric soil water content (SWC) of the top
soil layer (∼ 2 cm). Previous studies (e.g., De Lannoy et al.,
2012; Kumar et al., 2008; Pan and Wood, 2010; Yin et al.,
2015) showed that the performance of EnKF relies on the
ensemble size. For example, Yin et al. (2015) indicated that
when the ensemble size is close to 12, it may lead to an ef-
ficient DA updating process, while Pan and Wood (2010)
suggested 20 ensemble members. Our initial investigation
showed slightly improved correlation (R2) between simu-
lated and CCI-SM soil moisture for 20 ensemble members
compared to 12 ensemble members (as shown in Fig. S4). In
addition to ensemble size, systematic biases can also be at-
tributed to erroneous model parameter values, which is one
of the main sources of error and uncertainty in land sur-
face model predictions. To account for biases in soil param-
eters, the joint state and parameter assimilation framework
was used to estimate the model states and model parame-
ters jointly by updating the soil water content and soil tex-
ture properties such as % sand and % clay. Although this
approach has also significant limitations, related to the fact
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that we do not know well enough the relative importance of
systematic model errors and systematic errors in the mea-
surement data, an advantage is that we correct for possible
systematic model bias by modifying soil texture parameters.

Our main experiment consisted of two CLM-PDAF sim-
ulations: (a) an open-loop simulation (no data assimilation,
CLM-OL) and (b) an ensemble simulation with data assim-
ilation of ESA CCI-SM data (CLM-DA) at 100 random lo-
cations (Fig. 2a). We evaluated the results of both simula-
tions by a cross-validation with ESA CCI-SM data that were
not assimilated. The soil moisture validation of the CLM-
DA and CLM-OL simulations used all the available CCI-SM
data in the time period of 2000 to 2006. This approach not
only allowed us to independently cross-validate the SM val-
ues over grid cells that were not used in the data assimilation,
but also to produce updated soil moisture contents at other
locations (at the European scale), based on spatial correla-
tions, and to investigate its impacts on runoff characterization
and whether soil moisture characterization between measure-
ment locations could also be improved. For SM comparison,
the average of simulated SWC in the top two layers (i.e., at
0.007 and 0.03 m depth) was used. Additionally, the monthly
runoff dataset E-RUN as described in Sect. 2.3 was used to
validate runoff as simulated by CLM-OL and CLM-DA.

To assess the skill of the assimilation experiments, statis-
tical evaluation including mean absolute error (MAE), the
root mean square error (RMSE), percentage bias (PBIAS)
and correlation coefficient (R) were used as validation mea-
sures. For runoff validation, Nash–Sutcliffe coefficient of ef-
ficiency (NSE) and Kling–Gupta efficiency (KGE) indices
were also used, which are typically used to evaluate model
performance for runoff and river flow. These measures are
expressed as follows.

MAE=
1
n

n∑
i=1

(∣∣Y i −Y obs,i
∣∣) , (6)
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√√√√1
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(
Y i −Y obs,i

)2
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where “cc” is the Pearson correlation coefficient calculated
as follows:

cc=

1
n

n∑
i=1

(
Y obs,i ×Y i

)
−µsim×µobs

σsim× σobs
, (12)

where n is the total number of time steps; Y i and Y obs,i rep-
resent the simulated ensemble mean and observation values
at time step i, respectively, and µsim and µobs represent mean
values, while σsim and σobs represent standard deviation for
the simulated and observed data for the whole modeled time
period. For NSE and KGE in Eqs. (10) and (11), a value
equal to 1 represents perfect agreement between simulated
and observed runoff, while a value less than 0 indicates that
the observed mean is a better predictor than the model.

In addition to these measures, a normalized error reduction
index (NER) was also used to evaluate the improvement of
the data assimilation approach. NER is calculated as follows:

NER% = 100×
(

1−
EDA

EOL

)
, (13)

where EDA and EOL represent the data assimilation and
open-loop model runs. E in Eq. (13) represents the statis-
tical error index for both RMSE and MAE in this study.
NER values range between negative infinity and 100 %. Pos-
itive NER values indicate improvement as a result of data
assimilation relative to open loop, while NER< 0 indicates a
degradation in assimilation results.

3 Results

In this section, the impact of assimilating the ESA CCI-SM
data at selected locations into CLM3.5 using the joint state–
parameter estimation on the terrestrial hydrologic cycle was
analyzed, focusing on soil moisture and runoff. The results
were presented for the complete EURO-CORDEX domain
and for eight predefined analysis regions from the “Predic-
tion of Regional scenarios and Uncertainties for Defining
European Climate change risks and Effects” (PRUDENCE)
project (Christensen and Christensen, 2007) as shown in
Fig. 1a. We referred to these regions as the “PRUDENCE”
regions.

3.1 Impacts of assimilation on soil moisture

3.1.1 Regional and seasonal mean comparison

Figure 3 showed a comparison of the seasonal mean volu-
metric SWC (mm3 mm−3) in the upper soil layer from the
CLM3.5 experiments (CLM-OL, CLM-DA) with the sea-
sonal mean of satellite CCI-SM data. The CLM-OL simula-
tion exhibited slightly higher SWC in all seasons over most
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Figure 3. Temporally averaged soil moisture (mm3 mm−3) content over the 2000–2006 period for (a) CCI-SM, (b) CLM-OL and (c) CLM-
DA, and the difference between (d) CLM-OL and CCI-SM and (e) CLM-DA and CCI-SM for DJF (December, January and February),
MAM (March, April and May), JJA (June, July and August) and SON (September, October and November) seasons.

parts of Europe (Fig. 3b) compared to the CLM-DA simula-
tions (Fig. 3c). The difference between CLM-OL and CCI-
SM were larger than the difference between CLM-DA and
CCI-SM, which indicates that assimilation of CCI-SM min-
imizes the overestimation of SWC in CLM-OL. Overall, the
mean difference between measured and simulated SWC was
reduced from 0.11 cm3 cm−3 (CLM-OL) to 0.06 mm3 mm−3

(CLM-DA) over most parts of Europe (Table 1). This illus-
trated the efficiency of CCI-SM assimilation to improve sim-
ulated SWC by CLM. Seasonally, the upper soil layer SWC
difference between CLM-OL and CCI-SM was larger for the
spring season than for other seasons, and this overestimation

was reduced in CLM-DA (i.e., from 0.11 to 0.08 mm3 mm−3;
Table 1). CCI-SM assimilation also improved SWC char-
acterization in other seasons, with the differences between
CCI-SM and CLM-OL for winter, summer and autumn sea-
sons being around 0.09 mm3 mm−3 and differences between
CCI-SM and CLM-DA in these seasons being reduced to a
magnitude lower than 0.05 mm3 mm−3.

Figure 4 showed the comparison of 2000–2006 tempo-
rally averaged SM estimated by CLM-OL and CLM-DA with
the CCI-SM dataset over PRUDENCE regions. Generally,
CLM-OL overestimated the SWC values for all subregions
and in all seasons. However, using data assimilation, this
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Table 1. Difference in CLM-OL and CLM-DA simulated mean seasonal SWC (mm3 mm−3) with CCI-SM data for all PRUDENCE regions
and all seasons, i.e., winter (DJF), spring (MAM), summer (JJA) and autumn (SON).

CLM-OL minus CCI-SM CLM-DA minus CCI-SM

Regions Winter Spring Summer Autumn Winter Spring Summer Autumn

BI 0.03 0.05 0.02 0.04 0.01 0.02 −0.02 0.00
IP 0.07 0.09 0.11 0.09 0.04 0.06 0.07 0.05
FR 0.03 0.06 0.06 0.05 0.01 0.03 0.02 0.02
ME 0.04 0.07 0.06 0.05 0.02 0.04 0.01 0.02
SC 0.07 0.08 0.02 0.03 0.04 0.05 −0.02 0.00
AL 0.03 0.05 0.04 0.02 0.01 0.02 0.00 −0.01
MD 0.05 0.07 0.08 0.06 0.03 0.04 0.04 0.03
EA 0.07 0.08 0.07 0.05 0.05 0.05 0.03 0.02
EU 0.09 0.11 0.09 0.09 0.07 0.08 0.05 0.06

Figure 4. Box plots showing the spread of seasonally averaged soil water content (mm3 mm−3) over the 2000–2006 time period and in the
PRUDENCE regions for (a) DJF, (b) MAM, (c) JJA and (d) SON seasons. The box plots illustrate the spatial distribution of SWC with
quartiles, median and extreme values marked by solid lines.

overestimation was reduced consistently in all subregions, as
can be seen from the CLM-DA results. Noticeably, assimila-
tion also helped to reduce the spatial variability, as indicated
by the narrow spread of CLM-DA estimated SWC quartiles
compared to CLM-OL in Fig. 4. Validating the simulations
with CCI-SM data, the improvements of the CLM-DA var-
ied within PRUDENCE regions and seasons. Improvements
were more prominent for the British Isles, France and central
Europe (for all seasons), while for other regions SWC was
slightly overestimated in spring (Fig. 4b) and underestimated
in summer and autumn (Fig. 4c and d). The underestimation
of SWC was particularly pronounced over the Iberian Penin-
sula and Scandinavia regions in the summer (Fig. 4c).

The goodness of fit values, including PBIAS, RMSE MAE
and correlation coefficient (R), between simulated SWC ac-
cording to CLM-OL or CLM-DA and CCI-SM (for the sur-
face layer) are provided in Table 2. These statistical mea-

sures were calculated over the PRUDENCE region and for
each season on the basis of cross-validation with CCI-SM
data that were not used in the data assimilation in order to
independently evaluate the impact of data assimilation on
improving soil moisture characterization. Note that for cal-
culating these statistics, model data were only used for the
days when satellite data were available. CLM-OL showed
higher PBIAS, RMSE and MAE values and lower R values
than CLM-DA with CCI-SM assimilation over the EU and
all PRUDENCE regions (Table 2). However, the CLM-DA
simulations compared well with the CCI-SM data based on
the decreased PBIAS, RMSE and/or MAE values combined
with a slightly improved R values over these regions.

In order to validate the skill of CLM-DA relative to CLM-
OL, the NER index was applied to show the improvement
with CCI-SM data assimilation in terms of RMSE and MAE
using daily values of surface layer SWC for each PRU-
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Table 2. Evaluation performance criteria for comparing CLM-OL and CLM-DA with CCI-SM (spatially averaged SWC of surface layer for
the EU and PRUDENCE regions).

EU BI IP FR ME SC AL MD EA

Soil moisture (CLM-OL)

PBIAS (%) 54.1 16.4 50.7 24.7 25.6 23.0 16.4 33.4 34.8
RMSE (mm3 mm−3) 0.10 0.05 0.10 0.07 0.07 0.06 0.05 0.07 0.08
MAE (mm3 mm−3) 0.09 0.04 0.09 0.06 0.06 0.05 0.04 0.07 0.07
R 0.48 0.41 0.75 0.60 0.51 −0.14 0.55 0.80 0.40

Soil moisture (CLM-DA)

PBIAS (%) 36.4 3.1 33.2 10.1 11.0 9.0 3.0 18.1 19.0
RMSE (mm3 mm−3) 0.07 0.03 0.07 0.04 0.04 0.05 0.03 0.04 0.06
MAE (mm3 mm−3) 0.06 0.03 0.06 0.03 0.03 0.04 0.03 0.04 0.05
R 0.51 0.40 0.76 0.61 0.54 −0.12 0.56 0.80 0.42

Figure 5. Normalized error reduction (NER) index of (a) RMSE
and (b) MEA for daily soil water content over different seasons
and PRUDENCE regions using CLM-OL and CLM-DA simula-
tions over the years 2000–2006.

DENCE region and each season, as shown in Fig. 5. As de-
scribed in Sect. 2.4, the positive NER signals indicate im-
provements while the negative NER signal presents degra-
dations in the assimilation performance. The NER of RMSE
(Fig. 5a) and MEA (Fig. 5b) were mostly positive over most
regions, indicating improvements in surface SWC estimates
through assimilation of CCI-SM data. Negative NER values
(for both RMSE and MAE) were found over Scandinavia,

reflecting a negative impact of CCI-SM data assimilation on
SWC characterization. This might be because of uncertain-
ties related to assimilated CCI-SM over this region due to
the limited amount of data because of longer winters with
frozen or snow cover conditions or larger measurement er-
rors as indicated by Dorigo et al. (2017). CLM-DA showed
higher positive NER values in the summer and autumn sea-
sons, and lower NER values in the winter season, related to
comparatively small SWC improvements (Fig. 5a and b).

3.1.2 Daily validation

The long-term (January 2000 to December 2006) daily SM
averaged over PRUDENCE regions in Europe, as simulated
by CLM-OL and CLM-DA and observed by CCI-SM, are
shown in Fig. 6. The assimilated CCI-SM data improved the
simulations of daily surface soil moisture in CLM-DA. The
daily soil moisture patterns simulated by CLM-DA compared
well with the CCI-SM observations, with peaks and troughs
generally coinciding for all regions and over the European
domain except for the years 2000 and 2001. The CCI-SM ob-
servations showed increased variability and drier soil mois-
ture values for the years 2000 and 2001 compared to the full
period. This can be explained by the strong contribution of
the X-band passive microwave data of SSM/I and TRMM
to the final CCI-SM product. Wang (1987) showed that X-
band data have a shallow soil penetration depth of a few
millimeters and are sensitive to vegetation cover. After im-
plementing the C-band radiometer data of AMSR-E in 2002
and Windsat in 2003 into CCI-SM, noise level and bias were
reduced (Dorigo et al., 2017). Regionally, the daily soil mois-
ture values estimated by the CLM-DA showed a slightly bet-
ter agreement with the CCI-SM data for western European
regions (i.e., Iberian Peninsula, France and Mid-Europe, de-
fined in Fig. 1) than the Scandinavian, Alpine, Mediterranean
and eastern European regions, where the winter season bias
was more pronounced. The overall small improvements in
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Figure 6. Spatially averaged daily soil water content (SWC) simulated with CLM-DA and CLM-OL and compared with CCI-SM data for
the years 2000–2006 over Europe and the PRUDENCE regions. The orange and gray lines are the CLM-DA and CLM-OL for 20 ensemble
members, respectively.

surface soil moisture as a result of data assimilation in these
regions might be due to the limited amount of CCI-SM data
in the winter season (Fig. 2b), dense vegetation, frozen soil
(e.g., in the Scandinavian regions) and/or CLM3.5 model
errors related to simulating soil moisture in colder regions
(Oleson et al., 2008; Zeng and Decker, 2009). Additionally,
the magnitudes of the bias and variance of the CCI-SM ob-
servational error could be important. As indicated by Dorigo
et al. (2017), the CCI-SM error variance is low where the
satellite track density increases and the error variance is high
in areas with more data gaps. Note that the setup of CLM-DA
in this study assumed a spatially uniform observational error
for CCI-SM.

3.2 Impact of soil moisture assimilation on runoff

The nonrouted gridded runoff observation data from the E-
RUN product were used to evaluate simulated surface and
subsurface runoff estimates. In order to compare with E-
RUN runoff data, the total runoff was calculated as the
sum of the surface and subsurface runoff for each grid cell.
Figure 7 showed runoff estimates of the two experiments,
i.e., CLM-OL and CLM-DA, compared to the E-RUN data.
CLM-OL simulated higher magnitudes of runoff (on aver-
age 1.16 mm day−1) over most parts of Europe compared to
CLM-DA (on average 0.76 mm day−1) in all seasons. Com-
pared to CLM-OL (Fig. 7b), regional runoff patterns sim-

ulated by CLM-DA (Fig. 7c) compared better with runoff
observations (Fig. 7a). The increasing difference in runoff
between E-RUN and CLM-OL simulations was more pro-
nounced in spring and summer seasons (Fig. 7d). CLM-DA
reduced this bias over most areas with respect to the E-RUN
runoff data (Fig. 7e), but underestimated runoff in winter
and spring, particularly in central Europe. Overall, the dif-
ference in runoff between CLM-OL and E-RUN was, on
average, 0.44 mm day−1 over Europe, which decreased to
0.03 mm day−1 (Table 3). At the seasonal scale, however, the
difference in winter runoff between CLM-DA and E-RUN
was −0.63 mm day−1 and higher than the differences be-
tween CLM-OL and E-RUN (on average −0.15 mm day−1).
Compared to the open loop, the deviation in other seasons’
runoff in CLM-DA was reduced with respect to E-RUN over
most part of Europe with the exception of the Scandina-
vian and Alpine regions, where negative differences became
larger in all seasons (Table 3).

The temporally averaged runoff for all grid cells over all
PRUDENCE regions for both CLM-OL and CLM-DA ex-
periments and comparison with E-RUN observation data is
presented in the box plots in Fig. 8. The box plots reflect
the distribution of runoff in which quartile and median are
marked by solid lines. In comparison with the E-RUN data
in the winter season, the CLM-DA simulations underesti-
mated runoff over most regions, while open-loop simulations
showed better agreement with E-RUN runoff over most of
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Figure 7. Temporally averaged monthly runoff (mm day−1) at log scale over the 2000–2006 period for (a) E-RUN, (b) CLM-OL and
(c) CLM-DA, and the difference between (d) CLM-OL and E-RUN and (e) CLM-DA and E-RUN for DJF, MAM, JJA and SON seasons.

the grid cells (Fig. 8a). However, the overestimation of runoff
in CLM-OL was more obvious in the spring season over
all regions (Fig. 8b), while assimilating CCI-SM data min-
imized this overestimation but introduced a dry bias as sug-
gested by lower values for CLM-DA runoff with respect to
CLM-OL and E-RUN observations. This underestimation of
runoff as a result of soil moisture assimilation was more pro-
nounced over the British Isles in all seasons and over Scan-
dinavia in summer and autumn seasons (Fig. 8c and d).

The time series of monthly runoff, as illustrated in Fig. 9,
showed that CLM-OL compared well with runoff observa-
tions over the British Isles, Iberian Peninsula, France and
the Mid-Europe regions, but overestimated the magnitude of

runoff in the Mediterranean, Scandinavian, Alpine and east-
ern European regions. When compared to open loop, CLM-
DA performed better than CLM-OL (compared to E-RUN)
in Mid-Europe, Scandinavia, the Alpine region and eastern
Europe in capturing peaks and low runoff, while in other re-
gions such as the British Isles, Iberian Peninsula, France and
the Mediterranean, peak runoff in winter was underestimated
whereas low runoff in summer was in correspondence with
observed monthly runoff data. The uncertain performance
of soil moisture assimilation on peak runoff simulations is
mainly due to the relatively weak dependence of runoff gen-
eration on antecedent soil moisture, because during high flow
periods, the soil moisture is nearly saturated and the runoff is
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Table 3. Monthly mean bias (CLM minus E-RUN) in mean seasonal runoff (mm day−1) for CLM-OL and CLM-DA for all PRUDENCE
regions and all seasons, i.e., winter (DJF), spring (MAM), summer (JJA) and autumn (SON).

CLM-OL minus E-RUN CLM-DA minus E-RUN

Regions Winter Spring Summer Autumn Winter Spring Summer Autumn

BI −1.68 −0.19 0.09 −1.26 −2.19 −0.79 −0.18 −1.60
IP 0.35 0.94 0.75 0.57 −0.12 0.37 0.49 0.27
FR −0.26 0.52 0.62 0.33 −0.77 −0.08 0.36 0.02
ME −0.02 0.63 0.51 0.36 −0.50 0.04 0.25 0.05
SC −0.11 −0.27 −0.98 −0.83 −0.58 −0.86 −1.25 −1.15
AL −0.25 −0.72 −1.04 −0.96 −0.72 −1.33 −1.32 −1.29
MD 0.14 0.88 0.70 0.45 −0.33 0.29 0.44 0.14
EA 0.66 0.90 0.54 0.56 0.19 0.30 0.27 0.24
EU 0.39 0.68 0.38 0.30 −0.08 0.09 0.12 −0.01

Figure 8. Box plots of temporally averaged runoff (mm day−1) over the years 2000–2006 for all PRUDENCE region and seasons,
i.e., (a) DJF, (b) MAM, (c) JJA and (d) SON. The box plots indicate the spatial distribution of monthly averaged runoff over each region.

largely controlled by precipitation. These results are consis-
tent with those of previous research; for example the studies
of Albergel et al. (2017) and Liu et al. (2018) showed that as-
similating ESA CCI satellite-derived soil moisture data into
the land surface models improved the surface soil moisture
but caused little improvement in discharge compared to the
open-loop simulations.

In terms of statistical measures, the runoff simulation
based on CLM-OL showed higher PBIAS than CLM-DA
over EU and most PRUDENCE regions, except the British
Isles, Scandinavia and the Alpine regions, where higher neg-
ative percentage biases were observed for CLM-DA, with
magnitudes of −60 %, −54 % and −58 % bias in runoff, re-
spectively (Table 4). Additionally, the NSE and KGE values
over these regions showed low positive to negative values for
the CLM-DA scenario. This indicated poor performance of
the CLM in simulating runoff in spite of soil moisture as-

similation. To better illustrate the impact of assimilating soil
moisture on model estimates of runoff, the NER index of
both RMSE and MAE showed positive values for the Iberian
Peninsula, France, the Mediterranean and eastern Europe, in-
dicating improvements in runoff (Fig. 10). However, negative
signals in NER were observed in winter for all regions except
in eastern Europe. Negative NER values were mainly located
over the British Isles, Scandinavia and the Alpine region in
all seasons. The negative impact of ESA CCI SM assimila-
tion on runoff simulation over Scandinavia and the Alpine
regions is probably related to their large proportions of the
dense forest and complex topography. Both dense forest cov-
erage and complex topography reduce the data quality of re-
motely sensed SM retrievals, thus impeding its performance
in DA.
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Table 4. Evaluation performance criteria for comparing CLM-OL and CLM-DA with E-RUN (spatially averaged runoff, EU and PRU-
DENCE regions).

EU BI IP FR ME SC AL MD EA

Total runoff (CLM-OL)

PBIAS 59.7 −38.6 130.8 34.2 46.1 −30.9 −37.4 87.5 130.3
RMSE (mm day−1) 0.5 1.3 0.8 0.7 0.6 0.9 0.9 0.7 0.7
MAE (mm day−1) 0.4 0.9 0.7 0.6 0.5 0.8 0.8 0.6 0.7
NSE −4.0 −0.2 −1.8 0.3 −0.3 −0.4 −0.4 −1.6 −10.2
KGE −0.1 0.1 −0.4 0.3 0.4 0.1 0.3 0.0 −0.6
R 0.9 0.5 0.6 0.7 0.6 0.3 0.7 0.5 0.6

Total runoff (CLM-DA)

PBIAS 4.4 −60.2 50.5 −13.3 −5.1 −54.1 −58.9 21.8 48.9
RMSE (mm day−1) 0.3 1.6 0.6 0.7 0.5 1.2 1.3 0.5 0.4
MAE (mm day−1) 0.2 1.2 0.5 0.5 0.4 1.0 1.2 0.5 0.3
NSE −0.7 −0.9 −0.6 0.1 −0.1 −1.2 −1.8 −0.6 −2.6
KGE 0.2 −0.1 0.0 0.2 0.3 0.1 0.1 0.1 0.0
R 0.6 0.4 0.2 0.4 0.3 0.5 0.6 0.1 0.4

Figure 9. Monthly time series of runoff from CLM-DA and CLM-OL simulation and compared with E-RUN runoff observation data for
the years 2000–2006 over Europe and PRUDENCE regions. The orange and grey lines are the CLM-DA and CLM-OL for 20 ensemble
members, respectively.

4 Discussion

This study demonstrated that the assimilation of coarse-scale
satellite CCI soil moisture data is beneficial and improves the
high-resolution CLM simulations of soil moisture and runoff
over a large spatial domain. This study also highlighted the

added value of merging coarse-resolution satellite observa-
tions through data assimilation with a land surface model to
generate higher spatial resolution, downscaled estimates of
the surface soil moisture profile with complete spatiotempo-
ral coverage and with a higher accuracy than that of the open-
loop model estimates. To the best of our knowledge, this is
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Figure 10. Normalized error reduction (NER) index of (a) RMSE
and (b) MEA for runoff over different seasons and PRU-
DENCE regions using CLM-OL and CLM-DA simulations over the
years 2000–2006.

the first study to provide a downscaled daily soil moisture
product over 7 years and at 3 km resolution over Europe.

An important challenge in the assimilation was the differ-
ence in spatial resolution between CCI-SM data and model
states. In this study, the coarser resolution CCI-SM data were
rescaled to the model resolution (3 km). To examine whether
the rescaling of the ESA CCI SM data to model resolution
may introduce biases in the data, we compared the original
0.25◦ against 0.0275◦ ESA CCI soil moisture. Only small
differences between the two resolutions were visible, partic-
ularly for the time period of 2003–2006 (Fig. S5). We found
some differences in the first two years (2000 and 2001) and
in the regions where the temporal coverage of the ESA CCI
data is less than 30 %. However, for the time period and re-
gions with a good coverage of ESA CCI soil moisture data,
the differences in the resolution were not significant. A fur-
ther possibility is the multiscale assimilation of the CCI-SM
data, which would allow various model grid cells covered by
a satellite observation to be updated (Montzka et al., 2012).
In multiscale assimilation, the average soil moisture content
for the group of grid cells covered by the satellite measure-
ment is compared with the satellite-based soil moisture con-
tent, which may result in slightly improved CLM simula-
tion results, but was beyond the scope of this study. In addi-
tion to discrepancies at the spatial scale, uncertainties in soil
moisture estimations may result from data gaps in satellite

soil moisture retrievals, which are limited in regions of pro-
nounced topography or standing water, areas of dense vegeta-
tion, frozen soil and snow-covered areas. Additionally, CCI-
SM is a merged product from a variety of sensors, leading to
inconsistencies due to differences in viewing angles, sensor
characteristics and soil moisture retrieval algorithms (Dorigo
et al., 2017). In future, more observations are needed to in-
dependently validate model and assimilation experiments. In
this work, the CCI-SM dataset was also used for verification
over grid cells that were not used in the data assimilation.
However, it would be preferable to validate with another in-
dependent dataset at the continental scale. The problem is
that at the model grid scale only very limited independent
(in situ) soil moisture data are available. Furthermore, it can
be difficult to compare the point-based observation with the
average value of coarse-resolution model grid cell.

Another challenge to implement the integrated hydrologic
and data assimilation framework at 3 km resolution was the
high computational cost associated with the EnKF, which re-
lies on an ensemble of realizations to estimate model uncer-
tainty. We evaluated the impact of the number of ensemble
members (i.e., 12 and 20) on the performance of EnKF by
comparing the surface soil layer SWC simulated by CLM-
DA for one test year (i.e., 2006). While some improvements
were observed in the simulated soil moisture when using
20 instead of 12 ensemble members, in general the simulated
soil moisture from the DA runs with 12 and 20 ensemble
members are quite close to the observed values (Fig. S5). It
should be noted that using an increased number of ensem-
bles is a big challenge for such a large-scale high-resolution
model because of the memory and storage requirements, and
to a lesser degree also because of the computational burden.
For example, one year of model runs with 20 ensemble mem-
bers required 680 GB of computer storage per output variable
(i.e., the equivalent of 5 TB of storage for 7 years of simula-
tions per variable at daily timescale) and resulted in the use of
76 800 CPU core hours (compare to 46 000 core hours with
12 ensemble members).

The assimilation framework used in this study explicitly
accounted for uncertainty in the model forcing data (e.g., pre-
cipitation) and soil texture properties (% sand and % clay)
and used the joint state and parameter estimation to reduce
parameter uncertainty. While parameter updating is expected
to correct part of the systematic model bias, there is a possi-
bility that other water balance terms like evapotranspiration
and also runoff may be degraded through data assimilation to
compensate for model structural and/or input data errors. To
investigate this, we evaluated the modeled total runoff (sur-
face and subsurface) with nonrouted gridded runoff observa-
tions. While we found overall improvement in percent bias
over the EU-CORDEX domain (i.e., from 60 % to 4 % over
Europe; Table 4) and smaller improvements over different
PRUDENCE regions after the assimilation, there was some
degradation of runoff estimates after soil moisture assimila-
tion (Fig. 10) for many regions. The differences in runoff be-
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Figure 11. Comparison of spatially averaged monthly simulated runoff components (surface and subsurface runoff) between CLM-OL and
CLM-DA over Europe and PRUDENCE regions for the time period of 2000–2006. Grey line represents 1 : 1 line.

tween CLM-DA and CLM-OL were small, since the fluxes
were often reproduced reasonably well in CLM-OL, with
an average correlation of 0.9 over the EU-CORDEX do-
main (Table 3). The degradation in runoff over some regions
and overall marginal improvements might be due to several
factors, including a lack of analysis updates of water flux
terms, model structure error (e.g., weak coupling of runoff
processes with water table dynamics and soil water storage)
and observation errors in the monthly data evaluation. From a
comparison of individual components of total runoff between
CLM-OL and CLM-DA, we found that the assimilation of
soil moisture into CLM has greater impacts on subsurface
runoff than on surface runoff (Fig. 11). As shown in Fig. 11,
assimilation of CCI-SM data resulted in an underestimation
of subsurface runoff over all regions, but has less impact on
the surface runoff. This underestimation might be related to
the CLM limitations in correctly representing processes con-
trolling the partitioning of subsurface and surface flow in the
model and/or to the exponential form of runoff parameteri-
zation. For example in the CLM, the overall saturation status
of the soil column is the controlling factor for both surface

and subsurface runoff generation. Thus any changes in the
surface layer soil moisture will also have more profound ef-
fects on the subsurface flow. In addition, the surface runoff
generation is based on the assumption of saturation excess
runoff, meaning that the water table needs to intersect the
surface before the surface runoff is generated. This assump-
tion is problematic at the large spatial scales, especially in
arid and semiarid regions. In dry regions, assimilation of soil
moisture data may result in reduction of soil moisture values
close to the residual water content values, which may lead
to small surface runoff generation. For example, Sheng et al.
(2017) also found that CLM exhibited limitations in water-
limited areas where surface runoff is determined by ground-
water dynamics and identified the saturation excess surface
runoff assumption as the main cause of these limitations. Ad-
ditionally, the assumption of topographically controlled sur-
face runoff generation in the CLM is problematic in areas
with flat topography, thick soils or deep groundwater (Li et
al., 2011). Another reason may be uncertainties in E-RUN
runoff data used in this study, which were derived from grid-
ded atmospheric variables and flow observations at coarser
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resolution (0.5◦× 0.5◦ grid resolution). In the future, addi-
tional observational data need to be explored in assimilation
experiments.

This study only considered uncertainty with respect to soil
texture parameters, while other soil and ecosystem parame-
ters were assumed to be deterministic. In data assimilation, it
is preferable to account for additional model parameter un-
certainties that show a high sensitivity towards runoff. Alter-
natively, prior model calibration can be considered to con-
strain model parameters better and reduce systematic biases
and uncertainties in CLM3.5 before the assimilation frame-
work is applied. For the improvement of hydrologic predic-
tions, joint assimilation of additional datasets such as river
discharge and snow data may also be considered in future
research.

5 Conclusions

A soil moisture data assimilation framework at the conti-
nental scale was applied to generate daily soil moisture and
runoff estimates as part of a terrestrial system monitoring
framework for Europe at 3 km resolution for the years 2000
to 2006. An ensemble was generated by perturbing precip-
itation and soil texture properties. These ensembles were
used as input in the CLM-PDAF data assimilation framework
(Kurtz et al., 2016) and used to assimilate CCI-SM soil mois-
ture data. The impact of satellite soil moisture assimilation
on daily soil moisture and monthly runoff was evaluated and
cross-validated with CCI-SM data and gridded runoff from
E-RUN observations at regional and seasonal scales. Using
this high-resolution CLM-PDAF setup, the conclusions of
this study are as follows:

1. Assimilation of satellite SM improved the soil mois-
ture simulations over most parts of Europe relative to
open-loop simulations. Open-loop simulations overesti-
mated SM in most parts of Europe and in all seasons.
For the study domain, on average, the RMSE for near-
surface SWC was reduced from 0.10 mm3 mm−3 in the
open-loop simulations to 0.07 mm3 mm−3 with SM as-
similation.

2. Regionally, significant improvements were achieved for
soil moisture across most regions, except over Scandi-
navia. The low performance of CLM-DA in these re-
gions might be due to the lack of data in space and time,
as caused by satellite track changes, radio-frequency in-
terference, dense vegetation, snow and frozen soil limit-
ing the assimilation of soil moisture data in land surface
process simulations. Analogously, CLM-DA performed
poorly for years 2000 and 2001, which appears to be
related to large data gaps and higher noise levels in the
CCI-SM satellite data in these years. This indicates the
suitability of ESA CCI-SM for data assimilation stud-

ies from 2002 onwards, whereas the accuracy and noise
level of earlier data are not appropriate for this purpose.

3. At the seasonal timescale, the CLM-DA simulations
performed better in the summer and autumn seasons
than in the winter and spring seasons. This might be
again related to large data gaps in the winter season or
model limitations to correctly represent complex cold
region processes such as frozen soil.

4. The assimilation of CCI-SM data into CLM3.5 led
to an overall marginal improvement in the simu-
lated total runoff over Europe. Improvements in runoff
were more prominent over the Iberian Peninsula,
the Mediterranean and eastern Europe, where CLM-
DA, on average, minimized the difference to E-RUN
from 0.65, 0.54 and 0.66 mm day−1 to 0.25, 0.14 and
0.25 mm day−1, respectively (Table 3). The improve-
ments over other regions, such as the British Isles,
France, Mid-Europe, Scandinavia and the Alpine re-
gion, were comparatively small. These findings indi-
cated the potential of satellite soil moisture assimilation
in CLM3.5 to improve other terrestrial components of
the water cycle as a basis for more accurate water bal-
ance analyses.

The results from this study are not only useful as a stan-
dalone high-resolution reanalysis product over Europe, but
can also be used as an independent dataset for validation
of other land surface models. In this study, the soil mois-
ture estimates, with improved spatial resolution obtained via
data assimilation, offer a new product for monitoring soil
water content and have distinct benefits over the original
CCI-SM data. In addition, by selecting the ESA CCI soil
moisture product for assimilation, the potential impact of the
long term soil moisture observations on hydrologic simula-
tions can be assessed for climate change studies. Recently,
with the availability of COSMO-REA6, the time period can
be extended to 2000–2015 in future studies using the pro-
posed methodology to derive a land surface reanalysis at
3 km resolution for continental Europe. Moreover, CLM3.5
is also part of the fully coupled Terrestrial Systems Model
Platform (TerrSysMP) (Gasper et al., 2014; Keune et al.,
2016; Shrestha et al., 2014) that simulates the full terrestrial
hydrologic cycle including feedbacks between atmosphere,
land-surface and subsurface compartments of the water cy-
cle. The impact of satellite soil moisture assimilation on other
water cycle variables across the soil–vegetation–atmosphere
system using TerrSysMP and its effects on the accuracy of
model simulations at the continental scale remains to be ex-
plored.

Data availability. The data used in this study can be provided to
the readers upon request to the corresponding author.
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