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Abstract. Automatic samplers represent a convenient way to
gather rain samples for isotope (δ18O and δ2H) and water
quality analyses. Yet, most commercial collectors are expen-
sive and do not reduce post-sampling evaporation and the as-
sociated isotope fractionation sufficiently. Thus, we have de-
veloped a microcontroller-based automatic rain sampler for
timer-actuated collection of integral rain samples. Sampling
periods are freely selectable (minutes to weeks), and the de-
vice is low-cost, simple, robust, and customizable. Moreover,
a combination of design features reliably minimizes evapo-
ration from the collection bottles. Evaporative losses were
assessed by placing the pre-filled sampler in a laboratory
oven with which a diurnal temperature regime (21–31 ◦C)
was simulated for 26 weeks. At the end of the test, all bottles
had lost less than 1 % of the original water amount, and all
isotope shifts were within the analytical precision.

These results show that even multi-week field deploy-
ments of the device would result in rather small evaporative
mass losses and isotope shifts. Hence, we deem our sampler
a useful addition to devices that are currently commercially
available and/or described in the scientific literature. To en-
able reproduction, all relevant details on hard- and software
are openly accessible.

1 Introduction

The stable isotopes 18O and 2H represent nearly ideal trac-
ers that are frequently applied in hydrology and other dis-
ciplines. Yet, most applications require data on the isotope

composition of precipitation (Bowen and Revenaugh, 2003;
Hughes and Crawford, 2013).

Although isotope analyzers have become field-deployable,
enabling high-resolution on-site rain analyses (Berman et al.,
2009; Herbstritt et al, 2018a; Munksgaard et al., 2011, 2012;
Pangle et al., 2013; von Freyberg et al., 2017; Windhorst et
al., 2017), many researchers hesitate to take their analyzer
to the field due to the risk of damaging the expensive device
and due to logistical constraints such as high power demand
(Herbstritt et al., 2018b). Hence, most samples are still ob-
tained in more traditional ways for subsequent analysis in the
laboratory. They are collected manually (e.g., in intra-event
studies; Conroy et al., 2016; Michelsen et al., 2015), with
cumulative rain collectors (summarized in Michelsen et al.,
2018), or with automatic samplers.

Such automatic samplers, initially mostly developed for
precipitation chemistry studies, cover a broad range of de-
signs (see reviews by Krupa, 2002; Laquer, 1990; Robertson
et al., 1980). Simple versions of the “linked collection ves-
sels” type (Robertson et al., 1980), featuring a set of serially
connected bottles that are consecutively filled, are inexpen-
sive and easy to construct. They have no moving parts and
collect samples on a volume basis (Laquer, 1990). Partic-
ularly the designs by Kennedy et al. (1979) and Vermette
and Drake (1987) are still used nowadays (Fischer et al.,
2016, 2017; Hervé-Fernández et al., 2016; Muñoz-Villers
and McDonnell, 2013; Saffarpour et al., 2016), albeit some-
times with modifications (Buda and DeWalle, 2009; Qu et al.,
2017). Drawbacks of this sampler type comprise the lack of
an efficient evaporation reduction mechanism, possibly caus-
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ing post-sampling fractionation (Fischer et al., 2017), and a
potential for cross-contamination of samples.

More complex “automatically segmenting samplers”
(Robertson et al., 1980) are commercially available but usu-
ally expensive (several thousand euros; Tauro et al., 2018).
Further, they often do not minimize evaporation sufficiently
(Hartmann et al., 2018; Tauro et al., 2018; Williams et al.,
2018). To overcome the latter problem, researchers have oc-
casionally added paraffin oil to the collection bottles of such
commercial samplers (Birkel et al., 2011; van Huijgevoort et
al., 2016; Sprenger et al., 2017; Tunaley et al., 2017), as rec-
ommended by Fergusson (1921). However, a quantitative oil
removal is not easy, and oil traces might cause problems dur-
ing laboratory analyses (Gröning et al., 2012), particularly in
laser spectroscopy (IAEA, 2014). Fischer et al. (2016) thus
explicitly avoided the oil method and preferred to empty their
automatic samplers directly after rainfall events.

The isotope community also developed various custom-
made automatic samplers, mostly for high-resolution sam-
pling of rainwater and/or surface water (e.g., Camacho
Suarez et al., 2015; Conroy et al., 2016; Coplen et al., 2008;
Muller et al., 2015; Neuhaus, 2016, 2018; Siebert, 2015;
Terzer-Wassmuth et al., 2018; Zannoni et al., 2019). While
some of these collectors are outlined in the corresponding
patent specifications (Coplen, 2010; Neuhaus, 2016; Siebert,
2015), several others are only briefly described or not at all.
We can imagine that, at least in some of these cases, the re-
searchers did not provide details because they saw their col-
lectors as means to an end, i.e., as tools helping to generate
data on which they eventually concentrated.

Notable exceptions in this context are Hartmann et
al. (2018) and Nelke et al. (2018), who do provide sufficient
details on their devices to enable reproduction. The former
authors use a peristaltic pump to inject water directly into
airtight vials. Nelke et al. (2018), by contrast, utilize two
peristaltic pumps to direct water into aluminum-lined bags
using solenoid valves. Both collectors apparently focus on
continuously flowing media (e.g., dripwater, surface water;
instead of discontinuous media such as precipitation) and
take discrete “snapshot” samples (instead of integral sam-
ples) of small to moderate size (12 and 250 mL, respectively).
Moreover, their designs have in common that they are rather
sophisticated. Yet, complexity can be a double-edged sword.
While their technical solutions are certainly elegant, the ad-
vanced designs might be somewhat difficult to reproduce.

Another noteworthy open-source device is the autonomous
rainfall sampler by Ankor et al. (2019), which collects daily
and monthly samples. Here, the water flows by gravity
through the partly 3-D printed system and is elegantly guided
by a split tipping bucket and a “water switch” into the daily
and monthly bottles with volumes of 225 mL and 2 L, respec-
tively. Unfortunately, a 13-week field test (mean temperature:
25.3 ◦C) revealed evaporative losses from the pre-filled bot-
tles, resulting in remarkable δ18O changes. The latter ranged
from about 1.10 ‰ to 2.63 ‰, depending on the bottle cap

material. Only when paraffin oil was used in the collection
bottles (see above) were the isotopic changes acceptable (ap-
prox. 0.14 ‰ for δ18O). To mitigate the evaporation effect,
the authors suggest a coupled hydrologic–isotopic model that
takes advantage of the combined daily and monthly sam-
ple collection and allows a back-calculation of the original
sample volumes and isotopic compositions. Although such
an approach might be an option, we think it would be more
straightforward to minimize evaporation from the collection
bottles in the first place.

Here, we describe a complementary automatic rain sam-
pler. Our simple, robust, and low-cost collector allows the
timer-actuated collection of integral rain samples, with time
intervals ranging from minutes to weeks. A combination of
design features effectively reduces post-sampling evapora-
tion. In the spirit of open science (see Ankor et al., 2019;
Hartmann et al., 2018; Nelke et al., 2018), we provide a de-
tailed description of our customizable collector and its com-
ponents. Moreover, we present the results of a 26-week test
addressing the evaporation reduction capacity of the device
in a warm climate.

2 Design

The following section gives an overview of the sampler de-
sign. Further details (bill of materials, technical drawings,
circuit diagram, code, and manuals) enabling reproduction
are provided in the Supplement and on the website at https://
www.ufz.de/index.php?en=44048 (last access: 15 June 2019)
(section Documentation).

The sampler collects rain by a funnel from which the water
flows into a distribution unit, the core of the device (Fig. 1).
It consists of two custom-made uniaxial discs (separated by
a 2 mm neoprene rubber seal) with drill holes that are posi-
tioned opposite each other. The upper disc (PTFE) is the rotor
(rotates clockwise) and has two drill holes fitted with push-
in ports. The outer port is the rain inlet, and the inner port is
the air outlet. The lower disc (PVC-U) is the stator (remains
static) and features 36 ports that are arranged in two circles.
The ports of the outer circle are connected to water tubes, and
the ports of the inner circle are connected to air tubes (LDPE;
see section “Pre-test of tubing materials” in the Supplement,
incl. Fig. S1, Table S1).

Water coming from the funnel flows through the rain inlet
into the distribution unit and then through a water tube, into
the first 500 mL sampling bottle. All tubes are guided through
the bottle caps by means of cable grommets (Fig. S2), ensur-
ing a tight connection. With respect to the bottles, we recom-
mend thick-walled HDPE bottles that effectively reduce dif-
fusive water losses (Spangenberg, 2012; Gröning, 2019). For
our purposes, we selected 500 mL HDPE wide-mouth bottles
by Labsolute (Renningen, Germany; wall thickness approx.
1.7 mm).
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Figure 1. Overview of the automatic sampler principle (photo by
André Künzelmann, UFZ). Water (blue arrows) flows from the rain
inlet through the distribution unit and into the first bottle (cutaway
view). Displaced air (red arrows) leaves the bottle and flows through
the distribution unit and the air outlet into a 15 m long pressure equi-
libration tube. At the end of the sampling interval, the rotor is turned
(grey arrow), leading the rain into the second bottle.

To minimize post-sampling evaporation, we adapted the
concept of an evaporation-free cumulative collector (Grön-
ing et al., 2012), which has been successfully tested under hot
and arid conditions (Michelsen et al., 2018) and is advocated
by the IAEA (2014). In this concept, an inlet tube extends to
the bottom of the bottle. A few millimeters of rainfall is suf-
ficient to cause a water level rise into the tube, thus decou-
pling the bottle headspace from the atmosphere. This process
can be amplified by inserting the end of the inlet tube into a
small container (Gröning et al., 2012; or a short piece of bent
tubing; see Fig. 1), reducing the amount of rain needed to
decouple the air in the bottle from the atmosphere. The air
displaced by the inflowing water leaves the bottle through
the air tubing that, unlike the inlet tube, extends just below
the bottle cap. The air tubing leads from the bottle cap back
to the distribution unit. Here, the air is pushed through the
air outlet into a 15 m long pressure equilibration tube (see
Gröning et al., 2012; IAEA, 2014).

At the end of the freely selectable sampling interval, a
microcontroller (Texas Instruments; for details, see Supple-

ment) triggers a stepper motor to turn the rotor of the dis-
tribution unit by 20◦. Through this rotation, the first sam-
pling bottle is isolated from the atmosphere – the rotor disc
closes the water and air tubes of this bottle. In turn, rain can
now flow into the second bottle. The air thus displaced from
the second bottle is pushed into the aforementioned pressure
equilibration tube; i.e., this tube is shared by all bottles. A
tight fit of the rotor is ensured through a spring above the
disc, providing sufficient pressure to avoid leakages.

The microcontroller features a display and buttons for con-
venient programming, avoiding the necessity of a notebook
during field setup or maintenance. Moreover, the microcon-
troller has a set of low power modes that are excessively used.
In fact, the microcontroller and the accompanying stepper
motor driver are only active during initial setup and between
sampling periods, while the distribution unit is driven to the
next sampling port. The fact that the distribution unit con-
sumes virtually no power during sampling allows for week-
long sampling periods on just two AA batteries for the logic
unit and another eight AA batteries for the stepper motor.

The stepper motor and the control unit (microcontroller
with accessories and batteries) are each located in a dust- and
waterproof enclosure and connected by a waterproof cable
(IP68). This robust design loosens the requirements for the
overall enclosure. For field deployments (not presented here),
a simple plastic storage box was chosen to be sufficient to
house the sampling bottles and the automatic collector.

3 Evaporation experiment

3.1 Methods

After initial tests targeting the functional capabilities of the
sampler (timing, rotation angles, etc.), we studied the evapo-
ration reduction efficiency of the device.

To this end, five HDPE bottles (500 mL; Labsolute, Ren-
ningen, Germany) were partially filled with water of known
isotopic composition (δ18O=−8.53 ‰, δ2H=−60.7 ‰ re-
lated to Vienna Standard Mean Ocean Water, V-SMOW) and
connected with water and gas tubing to the distribution unit
(Table 1). The latter was not coupled to the microcontroller
unit; i.e., the rotor did not move during the test.

Bottle 1 (filled with 100 mL) was connected to the open
ports; i.e., its water and air tubes led to the ports beneath the
rain inlet and the air outlet, respectively (Fig. 2). A 2 m long
rain tube (without funnel) was connected to the rain inlet, and
a 15 m long pressure equilibration tube was connected to the
air outlet. With this bottle, we wanted to assess how long a
sampling bottle can be left “exposed” to the atmosphere (ex-
posed via the rain tube and the pressure equilibration tube).

Bottles 2 to 5 contained different water amounts (100, 200,
300, and 400 mL), and their water and air tubes led to stator
ports that were blocked by the rotor disc. Here, the goal was
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Table 1. Overview of collected samples and associated water losses and isotopic shifts. Water losses 1m are given as absolute mass losses
(g) and as percentages of the original water amount (% orig). Isotopic signatures (δ18O and δ2H) and isotopic shifts away from the original
composition (1δ18O and 1δ2H) are given in ‰ V-SMOW. Note that the analytical precisions for δ18O and δ2H account for ±0.15 ‰ and
±0.6 ‰ (±1σ), respectively.

ID Description t 1m 1m δ18O δ2H 1δ18O 1δ2H
(weeks) (g) (% orig) (‰) (‰) (‰) (‰)

Orig. Original water 0 n/a n/a −8.53 −60.7 n/a n/a

Bottle 1 exposed, 100 mL 6 0.17 0.17 −8.32 −60.2 0.21* 0.5*
16 0.56 0.56 −8.50 −60.6 0.03* 0.1*
26 0.94 0.94 −8.44 −60.2 0.09* 0.5*

Bottle 2 blocked, 100 mL 6 0.20 0.20 −8.42 −60.4 0.11* 0.3*
16 0.56 0.56 −8.23 −60.0 0.30* 0.7*
26 0.93 0.93 −8.46 −60.2 0.07* 0.5*

Bottle 3 blocked, 200 mL 6 0.16 0.08 −8.49 −60.7 0.04* 0.0*
16 0.46 0.23 −8.49 −60.6 0.04* 0.1*
26 0.81 0.40 −8.59 −60.9 −0.06* −0.2*

Bottle 4 blocked, 300 mL 6 0.43 0.14 −8.53 −60.8 0.00* −0.1*
16 1.16 0.39 −8.50 −60.5 0.03* 0.2*
26 2.04 0.68 −8.57 −60.7 −0.04* 0.0*

Bottle 5 blocked, 400 mL 6 0.53 0.13 −8.53 −60.8 0.00* −0.1*
16 1.47 0.37 −8.55 −60.7 −0.02* 0.0*
26 2.41 0.60 −8.60 −60.6 −0.07* 0.1*

Bottle 6 closed, 100 mL 6 0.05 0.05 −8.60 −60.9 −0.07* −0.2*
16 0.14 0.14 −8.65 −60.9 −0.12* −0.2*
26 0.24 0.24 −8.66 −60.9 −0.13* −0.2*

Bottle 7 open, 100 mL 6 5.27 5.27 −6.85 −56.1 1.68 4.6
16 14.18 14.18 −3.70 −46.9 4.83 13.8
26 24.42 24.42 0.70 −35.2 9.23 25.5

n/a: not applicable. * 1δ within analytical precision (| ± 1σ | = 2σ ).

Figure 2. Photograph of the evaporation experiment setup. Note
that the bottles were pre-filled with water of known isotopic compo-
sition; i.e., no water flowed through the tubing, and the distribution
unit did not rotate during the test.

to determine how long a sample can remain in the collector
without undergoing critical evaporative mass loss.

This setup was placed for 26 weeks (see Hartmann et
al., 2018) in a laboratory drying oven (T 6120 by Heraeus,
Hanau, Germany) with which a diurnal temperature regime
was simulated (Michelsen et al., 2018). A socket timer trig-
gered a daily 12 h heating period (31 ◦C). After this phase,
the oven was allowed to cool down to room temperature (ap-
prox. 21 ◦C). To accelerate this cooling process, the oven was
opened daily for 3 h. Temperature and relative humidity in
the oven were logged in 10 min intervals (DK320 HumiLog
ruggedPlus by Driesen + Kern GmbH, Bad Bramstedt, Ger-
many).

For comparison, two additional bottles were placed into
the oven – bottles 6 and 7 (both filled with 100 mL). Bottle 6
was closed, thus representing a best-case scenario. With this
approach, potential diffusion through the bottle material was
tested. Bottle 7, by contrast, was “open”; i.e., it featured two
holes (diameter 6 mm) in its cap, to represent the worst case
(no evaporation suppression).
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Moreover, three identical LDPE tubing loops (häberle
LABORTECHNIK, Lonsee-Ettlenschieß, Germany) were
included in the oven experiment. They were partially filled
with 0.5 mL of water and the tubing ends were connected to
each other with a connector. All three loops had a circumfer-
ence of 25 cm, which corresponds to the lengths of the tubing
between the bottles and the distribution unit. This allowed for
an estimate of diffusive water fluxes through the tubing ma-
terial.

To determine evaporative mass losses during the experi-
ment, the bottles and the tubing loops were weighed repeat-
edly (Voyager Pro VP2102C by Ohaus, Pine Brook, USA).
Bottles 1 through 5 were disconnected from the distribution
unit for this purpose. Samples for isotope analyses (1.6 mL
in 2 mL vials) were gathered after 6, 16, and 26 weeks. In
the case of bottles 1 to 5, water was withdrawn through the
water tube with a syringe. Bottle 6 was sampled through a
gastight sampling port in its cap (Mininert by VICI Precision
Sampling, Baton Rouge, LA, USA) with a syringe. Samples
from bottle 7 were taken with a Pasteur pipette through one
of the holes in the cap. To account for these artificial mass
losses, the bottles were weighed before and after sampling.

At the end of the test, the obtained water samples were an-
alyzed for their isotopic composition using laser cavity ring-
down spectroscopy (L2130-i by Picarro, Santa Clara, CA,
USA). The results were expressed in per mil (‰) using the
conventional delta notation relative to V-SMOW. The exter-
nal precisions (±1σ ), determined by repeated analyses of a
control sample, were ±0.15 ‰ and ±0.6 ‰, for δ18O and
δ2H, respectively.

3.2 Results

3.2.1 Evaporative mass losses

The applied diurnal temperature regime (21–31 ◦C; see
Fig. S3) mostly resulted in small but measurable evaporative
mass losses that increased over time (Table 1).

After 26 weeks, absolute mass losses ranged between 0.8
and 2.4 g for the bottles connected to the distribution unit
(bottles 1 through 5). Bottle 6 (closed), representing the best
case, showed a lower mass loss of 0.24 g, and in the case of
bottle 7 (open; worst case), a loss of 24.42 g was encountered.
The three tubing loops (each 25 cm long) lost about 0.14 g
over the same time period (see Table S2).

These data suggest that the diffusive loss through the tub-
ing material of the connected bottles (two tubes per bottle,
hence 0.28 g; see tubing loop data) is similar to the flux
through the bottle material of bottle 6 (0.24 g). As all con-
nected bottles exhibited greater absolute mass losses, addi-
tional leakages, e.g., at the cable grommets in the bottle caps
or at the distribution unit, seem likely. In this context, pres-
sure fluctuations, induced by the diurnal temperature regime,
probably play a role. It is also noteworthy that the blocked
bottles, bottles 4 and 5, containing 300 and 400 mL of wa-

ter, showed the greatest losses (>2 g). This observation could
point towards an influence of the bottle surface area in con-
tact with liquid water on the diffusive water flux through
the plastic. Nevertheless, the overall absolute losses are still
rather small, particularly when compared to the worst-case
scenario, an unprotected bottle (bottle 7).

This becomes clearer when the data are put in perspective
with the original water amounts. Fractional losses of bottles
1 through 5 range from 0.40 % to 0.94 % orig; i.e., even after
half a year the maximum loss was below 1 %. As expected,
these values are somewhat higher than in case of the closed
bottle (bottle 6; 0.24 % orig) but far below the loss recorded
for the open bottle, bottle 7, which lost nearly a quarter of its
water (24.42 % orig).

3.2.2 Isotopic shifts

The bulk of the obtained δ values scatter around the original
isotopic signature (δ18O=−8.53 ‰, δ2H=−60.7 ‰; see
Table 1). The calculated isotopic shifts, 1δ18O and 1δ2H,
mostly range between −0.07 ‰ and 0.30 ‰ and between
−0.2 ‰ and 0.7 ‰, respectively (bottles 1 through 5).

These shifts are rather small. Keeping in mind that the re-
ported external 1σ precisions, ±0.15 ‰ (δ18O) and ±0.6 ‰
(δ2H), apply to the original water and the water after oven ex-
posure, the encountered shifts practically all lie within the an-
alytical error. This also holds true for the shifts of the closed
bottle, bottle 6.

The open bottle, bottle 7, by contrast, showed substan-
tial shifts. After 26 weeks, the δ18O and δ2H values had in-
creased by about 9.23 ‰ and 25.5 ‰, respectively.

4 Discussion

Following a “keep it simple” approach, we have designed an
elementary and robust sampler, deliberately avoiding com-
plexity such as pumps, solenoid valves, or remote controls
(cf. Coplen et al., 2015; Hartmann et al., 2018; Nelke et al.,
2018). Avoiding such complexities greatly reduces the fail-
ure risk in the field. We also avoided components that perma-
nently consume power (e.g., normally closed solenoid valves
during the “open” phase) and complex tubing systems that
would possibly require parts of the sampling water to be used
for tubing flushes. Hence, our collector is relatively easy to
reproduce, although some technical skills are required.

Compared to other devices (Coplen et al., 2008; Hartmann
et al., 2018), it has fewer but bigger bottles. The latter aspect
implies that analyses do not have to be restricted to δ18O and
δ2H, but other parameters such as 3H and major ions (incl.
bicarbonate by titration), etc., could in principle be studied
as well.

Most importantly, our device gathers integral samples over
freely selectable collection periods (minutes to weeks) and
effectively reduces post-sampling evaporation. In combina-
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tion with the low power consumption, these features render
it a potential candidate for autonomous rain sampling at re-
mote, unmanned sites. Traditionally, precipitation samples
for isotope analyses are mostly collected on a monthly in-
tegral basis (e.g., in the Global Network of Isotopes in Pre-
cipitation, GNIP; IAEA/WMO, 2019). Yet, due to the ad-
vent of laser-based isotope analyzers and the associated de-
creasing costs for analyses (Berman et al., 2009; Herbstritt et
al., 2012; Wassenaar et al., 2018), shorter collection periods
(e.g., weekly integral samples) have become more popular
(e.g., Otte et al., 2017). An important advantage of sampling
schemes with a higher temporal resolution is the gain in flexi-
bility. They allow, for example, a correlation between isotope
signature and meteorological variables (Akers et al., 2017;
Hughes and Crawford, 2013; Rao et al., 2008), but data can
still be aggregated to precipitation-weighted monthly values
for seamless comparison with other monthly data sets (e.g.,
GNIP).

Due to the relatively low costs (parts < EUR 600), several
automatic collectors can be deployed simultaneously to ad-
dress spatial variability. A number of researchers reported
pronounced spatial variability of the isotopic composition of
rain in small catchments (Fischer et al., 2017; Kato et al.,
2013) or at the city scale (Chen et al., 2017). In these studies,
δ18O values partly varied by several ‰ within short distances
(a few hundred meters to a few kilometers). In the case of
throughfall, δ18O values can even differ significantly on the
plot scale, i.e., within meters, and differences of more than
1 ‰ (Allen et al., 2014, 2015; Kato et al., 2013) or even sev-
eral ‰ (Hsueh et al., 2016) have been observed. Further, it
has been shown that ignoring the spatial variability impairs
isotope-based hydrograph separations (Cayuela et al., 2019;
Fischer et al., 2017). These findings highlight the need for
collector arrays or networks (see Lutz et al., 2018; Scholl et
al., 1995, 1996). Using expensive, commercial equipment in
such networks might be prohibitively expensive for many re-
searchers. Rodgers et al. (2005), for instance, report resource
constraints preventing the installation of a second sampler in
their catchment to capture the local altitude effect. In such
cases, an affordable custom-made alternative is extremely
useful. This also applies to study areas in which vandalism or
theft of monitoring equipment might be an issue (see Kongo
et al., 2010; Otte et al., 2017; Pramana and Ertsen, 2016). In
such settings, researchers on a limited budget would possibly
hesitate to leave expensive equipment unattended at a remote
site for longer time periods, and a low-cost alternative would
be appreciated.

Although this work focused on the isotopes 18O and 2H,
gathered samples could also be analyzed for other isotopes
or their hydrochemistry. Since the funnel is permanently ex-
posed, the sampler would act as a bulk sampler (collect-
ing wet and dry deposition). Hydrochemical analyses could,
for instance, include chloride for recharge estimations via
the chloride mass balance method (e.g., Eriksson and Khu-
nakasem, 1969; Guan et al., 2010).

5 Potential modifications

While the presented sampler suits our purposes, we acknowl-
edge that other researchers might have different expectations
towards such a collector. Thus, we explicitly encourage oth-
ers to modify our design and tailor it to their specific needs.

Potential modifications might address the number of bot-
tles and their size. In addition, the tubing can be changed, but
we suggest the use of opaque tubing for the exposed section
from the funnel to the sampler itself to reduce the risk of al-
gae growth, which has occasionally caused problems in rain
collectors (Scholl et al., 1995). Although it might be tempting
to replace the push-in ports by ordinary barbed hose fittings,
we suggest not to do so for the following reasons. (1) Given
the potential risk of disconnection of tubing, the used ports
are deemed a safe option. (2) Their handling is easier, par-
ticularly when dealing with tens of connections in a confined
space. (3) They do not introduce an additional constriction.

Although we used a Texas Instruments microcontroller, we
can imagine that the functionality of the sampler could also
be achieved with parts from the popular Arduino ecosystem,
though probably at the cost of greater power consumption.

Moreover, one could transform the timer-actuated into a
volume-controlled rain sampler, for instance by means of
a microcontroller-based tipping bucket system. The latter
would calculate the filling status of a sampling bottle based
on the recorded number of tips and automatically direct the
water into the next bottle when the first one is full (see Muller
et al., 2015).

Also, a transformation into a surface water sampler is fea-
sible. To this end, one could combine the current device with
a timer-triggered peristaltic or submersible pump. The mi-
crocontroller provides several unused input/output and com-
munication pins and further unutilized resources to allow for
such customizations.

6 Summary and conclusions

Our microcontroller-based automatic rain sampler enables
timer-actuated integral rain sampling. The simple, low-cost
device is robust and effectively minimizes post-sampling
evaporation from the collection bottles and the associated
isotope fractionation. The excellent performance of the de-
vice during an extensive evaporation experiment in a labo-
ratory oven (26 weeks; 21–31 ◦C) suggests that even multi-
week field deployments in warm climates are feasible. In
the spirit of open science, we share all relevant details on
our sampler and encourage others to adapt it to their specific
needs.

Data availability. All details needed to copy our sampler are
freely available (Supplement and https://www.ufz.de/index.php?
en=44048, last access: 15 June 2019, section Documentation). Data
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on the evaporation experiment, enabling a performance evaluation,
are given in the main article and the Supplement.

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/hess-23-2637-2019-supplement.
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