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Abstract. Paleovalleys are buried ancient river valleys that
often form productive aquifers, especially in the semiarid
and arid areas of Australia. Delineating their extent and hy-
drostratigraphy is however a challenging task in groundwa-
ter system characterization. This study developed a method-
ology based on the deep learning super-resolution convolu-
tional neural network (SRCNN) approach, to convert electri-
cal conductivity (EC) estimates from an airborne electromag-
netic (AEM) survey in South Australia to a high-resolution
binary paleovalley map. The SRCNN was trained and tested
with a synthetic training dataset, where valleys were gener-
ated from readily available digital elevation model (DEM)
data from the AEM survey area. Electrical conductivities
typical of valley sediments were generated by Archie’s law,
and subsequently blurred by down-sampling and bicubic in-
terpolation to represent noise from the AEM survey, inver-
sion and interpolation. After a model training step, the SR-
CNN successfully removed such noise, and reclassified the
low-resolution, converted unimodal but skewed EC values
into a high-resolution paleovalley index following a bimodal
distribution. The latter allows us to distinguish valley from
non-valley pixels. Furthermore, a realistic spatial connectiv-
ity structure of the paleovalley was predicted when compared
with borehole lithology logs and a valley bottom flatness
indicator. Overall the methodology permitted us to better
constrain the three-dimensional paleovalley geometry from

AEM images that are becoming more widely available for
groundwater prospecting.

1 Introduction

A paleovalley is the remnant of an inactive ancient river val-
ley filled by unconsolidated, semi-consolidated or lithified
sediments, which often have a higher porosity and perme-
ability than the surrounding rocks (Jackson, 2005). Paleoval-
leys are important in mineral exploration as they may con-
tain remobilized gold, uranium, and heavy minerals (Hou et
al., 2008) and in groundwater exploration, as they often form
productive aquifers (Samadder et al., 2011; Mulligan et al.,
2007; Knight et al., 2018). However, delineating the geome-
try and connectivity of paleovalleys at the regional scale (tens
to hundreds of kilometers) with a high resolution (tens of
meters in horizontal plane) is challenging (Holzschuh, 2002;
Lane, 2002). This is mainly because surface geophysical sur-
veys and borehole data often do not yield the required spatial
resolution and coverage to reliably and cost-effectively map
connected paleovalleys at a regional scale.

Aerial geophysical surveys, such as airborne electromag-
netic (AEM) surveys, can be inverted to provide depth pro-
files of electrical conductivity (EC) at a regional scale over
tens to hundreds of kilometers (Fitterman et al., 1991). Their
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horizontal resolution depends on the distance between flight
lines (typically between 250 m and 30 km), which can be tai-
lored to the problem at hand, while vertical resolution ranges
from meters to tens of meters. Classification of geophysi-
cal properties into paleovalleys and non-valley zones is most
often done manually, although several methods have been
developed to automate the identification of lithofacies from
electrical conductivity estimates. Most of these methods as-
sume a simplified petrophysical relationship between electri-
cal conductivity and hydraulic parameters (e.g., porosity and
permeability) (Vilhelmsen et al., 2014; Marker et al., 2015;
Pollock and Cirpka, 2010). Using synthetic borehole data,
Christensen et al. (2017) converted AEM data to lithofacies
at a scale of kilometers by use of Markov Chain Monte Carlo
and sequential indicator simulation methods.

Electrical conductivity values estimated from AEM sur-
veys are subject to uncertainties introduced by variations in
land cover during surveys, inversion processes, and the in-
terpolation of EC values to the required resolution (Viezzoli
et al., 2008; Robinson et al., 2008). Consequently, the rela-
tionship between EC and lithofacies is complex and difficult
to identify. In this paper, we introduce a deep-learning (neu-
ral network)-based methodology (including training dataset
generation, and neural network construction and training) for
automatic classification of high-resolution binary paleovalley
maps from AEM-derived EC data with noise.

Artificial neural networks (ANNs), which can express the
complex and nonlinear relationship between input and out-
puts, were previously applied for the inversion of EC values
from original AEM data (Ahl, 2003) and to classify lithology
from AEM-derived EC data (Gunnink et al., 2012). However,
the large number of weights involved in ANN make it diffi-
cult to train the network and often leads to overfitting prob-
lems (Tu, 1996). Deep learning approaches based on con-
volutional neural networks with sharing weights were estab-
lished in 2006 (Gu et al., 2017), and are now well accepted
in the field of visual recognition, speech recognition and lan-
guage processes. They provide efficient high-dimensional in-
terpolators that cope with multiple scales and heterogeneous
information (Marcais and de Dreuzy, 2017), and have been
applied in geoscience for earthquake detection based on seis-
mic monitoring (Perol et al., 2018), object and disaster recog-
nition from remote-sensing data (Längkvist et al., 2016; Amit
et al., 2016), and mineral prospectivity evaluation by the fus-
ing of different geophysical datasets (Granek, 2016; Meller
et al., 2013). Furthermore, a super-resolution convolutional
neural network (SRCNN) approach composed merely of
convolutional layers was established to directly capture the
relationship between low- and high-resolution images (Dong
et al., 2016). The SRCNN was found to be accurate, robust
and fast for removing noise from low-resolution images and
reconstructing a super-resolution image (Hao et al., 2018;
Tuna et al., 2018; Luo et al., 2017).

In this study, concepts from the SRCNN approach are
used to identify paleovalleys at high spatial resolution

from a regional-scale AEM survey. The objective is to de-
velop a methodology based on SRCNN to generate a high-
resolution, regional-scale map of paleovalleys from low-
resolution AEM-derived EC data that (1) reproduces paleo-
valley connectivity and (2) accounts for noise in the EC data.
The method is applied to an arid region of South Australia to
identify paleovalleys at depths up to 100 m, i.e., the depth up
to which the AEM-derived EC has a sufficient signal-to-noise
ratio. The paper is organized as follows; Sect. 2 presents the
data availability in our study area. Section 3 introduces the
methodology, which is followed by performance analyses in
Sect. 4. Section 5 concludes the major findings.

2 Study area and dataset

Australian landscapes are ancient, featuring the product of
subdued tectonics, long-term subaerial exposure and an ex-
tremely limited extent of Quaternary glaciation. This often
manifests itself in an extensive paleovalley network with
deep weathering profiles and thick accumulation of uncon-
solidated alluvium and colluvium. The widespread paleoval-
ley networks in today’s arid landscape are remnants of the
Early Cenozoic inset valleys with Tertiary sedimentary in-
fill and a thin and variable Quaternary cover (Magee, 2009).
In the intracontinental Cenozoic sedimentary basins, paleo-
valley infill sediments typically consist of Eocene sediments
overlain by more finely grained sediments of Oligocene to
Miocene age. The Eocene sediments are dominantly coarsely
grained fluvial sands and basal gravels, deposited under wet
climatic conditions. The Oligocene to Miocene sediments
were deposited by relatively lower-energy drainage systems
under drier climatic conditions. During the Quaternary, eo-
lian sediments with maximum observed thickness of 15 m
covered portions of the paleovalleys at a time when fluvial or
lacustrine deposition had ceased (Magee, 2009).

This study focuses on the Anangu Pitjantjatjara Yankunyt-
jatjara (APY) lands, which are part of the Musgrave province
in northern South Australia (Fig. 1). This area features an
arid climate with very low and unreliable rainfall averaging
about 230 mm yr−1 (Jones et al., 2009). However, an exten-
sive paleovalley system with sedimentary faces aligning with
the Cenozoic sedimentary basins above represents a shal-
low dynamic groundwater system exhibiting reliable water
resources for local communities and mining (English et al.,
2012; Munday et al., 2013).

Within the study area 128 bores, drilled between 1970 and
2018, with lithological information were retrieved from the
South Australia Government WaterConnect database (https://
www.waterconnect.sa.gov.au/Pages/Home.aspx, last access:
3 January 2019). Three lithological classes were derived
from the logs.

1. Bedrock. Basement at surface or covered with in situ
weathering products (clays, broken basement frag-
ments).
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Figure 1. (a) Electrical conductivity at 100 m depth ranging from 1 to 80 mS m−1, as interpreted from airborne electromagnetic surveys in
the Anangu Pitjantjatjara Yankunytjatjara (APY) lands, Australia; (b) inset shows details of EC map at a spatial resolution of 400 m×400 m
(Soerensen et al., 2016).

2. Alluvium (sediments in paleovalleys). Basement cov-
ered with more than 15 m of unconsolidated sediments
consisting of sand and gravel with minor silt and clay,
showing indication of alluvial sediment transport.

3. Transition. Basement covered with up to 15 m of eolian
sands or lacustrine sediments consisting of silt and clay
with minor amounts of sand or gravel, showing limited
indication of transport.

While the information content in these logs was often lim-
ited, they provided independent lithological data to verify the
predicted paleovalley network in this study (see further).

Two AEM surveys were flown in the APY lands in 2016,
covering a total area of 33 500 km2 and featuring a line spac-
ing of 2 km in the north–south direction (Soerensen et al.,
2016). An area 80 km by 80 km in a central-east section of
the APY lands is selected and used to test mapping paleoval-
leys based on a SRCNN analysis of electrical conductivity
(EC) generated from the AEM survey (Fig. 1). In this area,
the AEM survey was undertaken using the helicopter-borne
SkyTEM312FAST system (Soerensen et al., 2016). The aver-
aging trapezoidal filter was used to reduce the noise in low-
and high-moment amplitude response data. Aarhus Work-
bench software was used to invert AEM data to obtain EC
(Auken et al., 2009, 2014). In a final step, ordinary kriging
was used to interpolate EC values to a spatial resolution of
400 m× 400 m in the horizontal plane and 10 m in the verti-
cal cross section (Ley-Cooper and Munday, 2013; Soerensen
et al., 2016). The constraint on the lateral resolution of the
AEM data was determined by the line spacing of the sur-
vey (2 km). In the APY lands, it was gridded to a cell size

of a fifth of the line spacing (i.e., 400 m), to maintain the fi-
delity. The depth interval is commonly between 5 and 10 m
increasing exponentially with depth because AEM is a diffu-
sive technology (Yang et al., 2013; Spies, 1989). In the APY
lands the vertical resolution is 10 m for the first 100 m depth
interval to avoid generating too many interval conductivity
slices. Only the EC values in the first 10 depth slices, up to
100 m depth, are used in this study to construct the binary
paleovalley pattern per slice, which are then stacked up to a
quasi-3-D image of the paleovalley.

Bulk electrical conductivity of the subsurface depends on
both the solid phase (i.e., the rock mass) and the liquid phase
(i.e., soil water and groundwater). It is further influenced by
the porosity, tortuosity of the pore space and degree of water
saturation. Unweathered rocks are generally a poor electrical
conductor with EC values typically less than 1 mS m−1 for
igneous and metamorphic rock, and 1 to 1000 mS m−1 for
regolith (e.g., gravel, sand, silt and clay) (Lane, 2002); saline
groundwater with a salinity level similar to seawater has an
EC of around 3000–5000 mS m−1, while freshwater EC is up
to 150 mS m−1 (Lane, 2002; Rhoades et al., 1976; Purvance
and Andricevic, 2000).

Previous hydrogeological characterization studies in the
APY lands study area indicated that paleovalley poros-
ity values are relatively high (from 10 % to 30 %) with
the mean salinity of the pore fluid reaching 4500 mg L−1

(700 mS m−1); the surrounding rocks (fractured granites and
gneiss) have a much lower porosity (<1 %) and water salin-
ity values (<1000 mg L−1, 160 mS m−1 ) (Varma, 2012;
Taylor et al., 2015). It is reasonable to assume that a clear
distinction exists in this study area between EC values of
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the valley and non-valley lithologies, and thus only EC is
used to distinguish paleovalleys from surrounding basement.
However, due to the data smoothing methods used during in-
version of the AEM data and EC interpolation, and the con-
tinuous variation in water salinity near the interface between
paleovalley and fractured bedrocks, the resulting EC values
vary continuously (Fig. 1b), which makes the boundary be-
tween valley and non-valley lithologies rather diffuse. Our
novel methodology allows us to automatically identify the
boundaries between valley and non-valley lithologies based
on convolutional neural networks.

3 Methodology

The method developed in the present study to identify pale-
ovalleys is comprised of three key steps. (1) A deep neural
network training dataset is generated by creating synthetic
paleovalley networks from a digital elevation model (DEM)
of the study area; the paleovalley network is converted to EC
values by applying Archie’s law (see further) to the water-
bearing formations, while EC values for the non-valley zone
composed of fractured bedrock are obtained as a volume-
weighted average of EC values of rock and fluid components;
(2) the SRCNN is trained and validated using the synthetic
EC and corresponding paleovalleys to remove noise and es-
tablish a nonlinear relationship between the EC image and
paleovalley image; (3) the SRCNN is then applied to predict
the paleovalley in the APY lands based on measured AEM
data. The algorithm of training dataset generation and SR-
CNN and the performance metrics to evaluate SRCNN pale-
ovalley classification are described in detail below.

3.1 Synthetic training data generation

Australia is well known for its relative tectonic stability
and is a stable continent located in an intraplate position.
The paleovalley networks are coherent, dominantly dendritic,
and largely concordant with modern topographic expres-
sion (Magee, 2009). Although paleovalleys in the arid zone
are partly covered by Quaternary eolian deposits, the to-
pographic expression of the paleovalley pattern is still evi-
dent in high-resolution digital elevation model (DEM) data
(Magee, 2009). In the APY lands, crustal architecture has
been preserved since the Cenozoic, and it is considered
to have been unaffected by later tectonic events (Drexel
and Preiss, 1995). Previous studies in the study area have
considered that the paleovalleys are coincident with topo-
graphic lows that characterize the contemporary landscape,
with AEM images being particularly useful for locating the
position of the deeper portions of the older valley system
(Munday et al., 2013). It is thus assumed that the present-
day valley pattern indicated by topographic lows in the study
area is comparable to the paleovalley pattern according to the
principle of uniformitarianism (Simpson, 1970), but shifts in

valley width, orientation and connectivity between present-
day valley and paleovalley are allowed. Following this prin-
ciple, we generate a synthetic paleovalley image based on a
digital elevation model (DEM).

First, a DEM of the study area with a resolution
of 30 m×30 m (https://earthexplorer.usgs.gov/, last access:
23 December 2018) is used to generate 15 sets of paleovalley
images, mimicking paleovalleys of various spatial densities
and width over an area of 80 km×80 km based on the hydro-
logical analysis in ArcGIS (Fig. 2a) (details in Maidment and
Morehouse, 2002). For convenience in the subsequent neural
network operation, each resulting valley image is downscaled
by the bicubic interpolation method to contain 800×800 pix-
els with spatial resolution of 100 m. Valley widths range from
1 to 10 pixels (i.e., 100 to 1000 m). The 15 images generated
from the DEM were rotated between zero and 360◦ and ran-
domly cropped into 20 000 small training images with a size
of 50× 50 pixels (Fig. 2b). Thus, the potential differences in
the width and orientation of present-day valley and paleoval-
ley induced by several uncertain factors, e.g., variation in the
river discharge and geomorphology, can be addressed in the
training images. The recombination of small training images
allows recreation of valley patterns beyond those 15 full-size
images generated from DEM data. A broad range of likely
paleovalley patterns at varying principle orientations, widths
and connectivity are available in the SRCNN training image
pool.

The properties in the porous paleovalley sediments are
then converted to EC values using Archie’s law (Archie,
1942):

R = R0θ
−m, (1)

where R is the electrical resistivity of the water-bearing for-
mation (�m), R0 is the electrical resistivity of the pore water
relating to water salinity (�m), θ is the porosity and m is a
constant relating to the lithology (with value ranging from
1.8 to 2.0) (Worthington, 1993). Electrical conductivity val-
ues are calculated as the inverse of resistivity values (i.e.,
EC= 1/R). In the present study area, R0 is considered to
range from 1.4 to 1.7�m, corresponding to water salinities
of 3000 to 6000 mg L−1 (Varma, 2012), while θ is consid-
ered to range from 10 % to 30 % (Taylor et al., 2015; Varma,
2012). As a result, paleovalley EC values are estimated to be
within the range of 6 to 80 mS m−1, which is in the range of
AEM-derived EC values in Fig. 1.

In contrast, the non-paleovalley zone is predominantly
fractured rock with solid-phase EC values <1 mS m−1,
characteristic porosity of <1 % and fluid salinity val-
ues of <150 mS m−1 EC (1000 mg L−1) (Olhoeft, 1981;
Parkhomenko, 2012). The bulk EC values in the non-
paleovalley zones were estimated as the volume-weighted
average of EC in fractured rock and fluid, following

EC= ECs · (1−ϕ)+ECf ·ϕ, (2)
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Figure 2. Workflow diagram of methodology used to generate training and validation datasets. (a) Synthetic paleovalley networks gen-
erated from DEM data of the study area. (b) Rotation and cropping to randomly generate 20 000 sub-images from 15 initial paleovalley
networks. (c) Conversion of valley images to EC values using Archie’s law in valley and weighted averaging in non-valley zone. (d) Down-
sampling of resulting 50× 50 pixel EC spatial distributions to 10× 10 pixel resolution (20 000), 20× 20 pixels (20 000), 30× 30 pixels
(20 000) and 40× 40 pixels (20 000), respectively, and reconstructed to obtain 80 000 blurred EC images. A total of 70 000 EC images are
randomly selected from original EC images (c) and reconstructed EC images (d), forming 70 000 image pairs including 20 000 binary valley
images (with some EC images corresponding to the same valley image) to train the SRCNN.
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where EC is the bulk electrical conductivity, ECs is the EC
value of rocks, ECf is the EC of fluid and ϕ is the ratio of
fracture void volume to total volume. The resulting bulk EC
values are lower than 2.5 mS m−1. Again, these synthetic EC
values are similar to the AEM-derived values for the pre-
sumed fractured bedrock areas (Fig. 1).

Furthermore, to represent the effects from data smoothing
and inherent noise associated with the AEM survey, inversion
and data interpolation, artificial noise is generated by ran-
domly sampling EC values in the non-paleovalley zones (fol-
lowing a uniform distribution ranging from 1 to 10 mS m−1)
and in the paleovalley zones (following a uniform distribu-
tion ranging from 6 and 80 mS m−1). It is also noted that
the upper-limit EC values in fractured bedrock areas are en-
larged artificially from 2.5 to 10 mS m−1, to assure that in the
training images paleovalley and non-paleovalley zones over-
lap in EC by 4 mS m−1 (5 % of the total range of EC values
between 1 and 80 mS m−1) (Fig. 2c). The SRCNN can then
learn to identify this overlap in EC between paleovalley and
non-valley zones. However, Appendix A1 shows that setting
the overlapping size in EC too large results in the trained
SRCNN overestimating the extent of the non-valley zones,
which make the predicted paleovalleys disconnected.

The overlap in EC near the boundary between paleoval-
ley and non-valley is further enhanced by data smoothing:
the resultant EC images of 50× 50 pixels is first downscaled
into images with a smaller number of pixels, i.e., 40× 40
(20 000 images), 30×30 (20 000 images), 20×20 (20 000 im-
ages) and 10× 10 (20 000 images) pixels, respectively, by
nearest-neighbor interpolation. These resulting 80 000 im-
ages are then upscaled by bicubic interpolation to yield
blurred images with the original resolution of 50× 50 pix-
els (Fig. 2d). In this manner, the EC values in the paleovalley
and non-paleovalley zones are smoothed and the boundary
between paleovalley and non-paleovalley becomes blurred.

We then randomly selected 70 000 EC images from a total
of 100 000 images, composed of 20 000 pre-interpolation EC
images (Fig. 2c) and 80 000 reconstructed blurred EC images
(Fig. 2d) with a size of 50× 50 pixels, as input to the neural
network (see further), with the original synthetic paleovalley
images (pixel code 1) and non-paleovalley (pixel code 0) pix-
els (Fig. 2b) as output. From the random set of 70 000 im-
ages, 60 000 pairs of EC (Fig. 2c and d, as input) and pale-
ovalley images (Fig. 2b, as output) are used as a “training
dataset” for training the SRCNN. A total of 6000 pairs are
used as “validation dataset” for validation and another 4000
are used as “testing dataset” to demonstrate the performance
of the trained SRCNN in removing the noise in EC images
and lithofacies (paleovalley and non-paleovalley) classifica-
tion.

3.2 SRCNN algorithm

To quantify the relationship between EC images and pa-
leovalley images, the super-resolution convolutional neural

network (SRCNN) algorithm is employed. Neural networks
are regression models that provide a general way of identi-
fying nonlinear relationships between two sets of variables
(Bishop, 1996; Moysey et al., 2003), where one set of vari-
ables is considered to be the input (herein electrical conduc-
tivity) and another is a network output (binary paleovalley).
The SRCNN algorithm can directly train the relationship be-
tween a low-resolution (input) and a high-resolution image
(output) (Dong et al., 2016). A typical SRCNN is composed
of three convolution layers (Fig. 3), representing patch ex-
traction and representation, nonlinear mapping, and recon-
struction.

In the patch extraction and representation layer, the input
is a normalized 50× 50 pixel EC image, which is operated
by a convolution process:

H1 (X)=max
(

0,
〈
XW1

〉
+ b1

)
, (3)

where H represents the output images, <> is the convolu-
tion operator, X represents the input EC image, and W and
b represent the weight filter and bias, respectively. W1 cor-
responds to n1 filters with a size of f1× f1 and b1 is an n1-
dimensional vector. After convolution, H1 contains n1 gen-
erated 50× 50 pixel images that are input into the nonlinear
mapping layer. It is then convoluted by

H2
(

H1
)
=max

(
0,
〈
H1W2

〉
+ b2

)
(4)

to generate H2 composed by n2 50×50 pixel images, where
W2 contains n2 filters with a size of n1×f2×f2 and b2 is a
n1× n2 matrix.

Finally, an output paleovalley index (with values ap-
proaching zero indicating a non-valley pixel and values ap-
proaching unity indicating a paleovalley pixel) can be recon-
structed from H2 by

H3
(

H2
)
=G

(〈
H2W3

〉
+ b3

)
. (5)

H3 contains one 50× 50 pixel paleovalley index image, and
W3 contains one filter with a size of n2× f3× f3 and b2 is
a n2× 1 matrix. G(·) is a sigmoid function to assist the pa-
leovalley classification and accelerate the training processes,
which is written as

G(·)= exp(·)/[1+ exp(·)]. (6)

In this study, f1, f2 and f3 are referred to as filter size with
values of 9, 1 and 5, respectively, and n1 and n2 are the
layer width (the number of images contained in each layer)
with values of 64 and 32, respectively, following the classical
structure of SRCNN used in Dong et al. (2016). The influ-
ence of the filter size and width on the quality of the output
images was investigated in Appendix A3. The filter size in
the SRCNN controls the spatial correlation length of EC val-
ues that can be considered in the neural network operator. As
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Figure 3. Algorithm of converting (a) low-resolution EC image to (b) high-resolution paleovalley image based on (c) the super-resolution
convolutional neural network. (d) Convolutional processes of data from an input image to an output image by a filter with a size of 2, moving
through the input image 1 pixel at the time.

illustrated in Fig. 3d, in each calculation, the EC values in the
filter are convoluted to form a value at a single pixel in the
output image. An EC image convoluted by the filter with the
size of 2 and stride of 1 (i.e., filter moving 1 pixel at the time)
and one hidden layer, leads to a paleovalley index at 1 pixel
of the output image that relates to EC values from 3× 3 pix-
els in the input image. In this example, the spatial correlation
scale able to be addressed is equal to 3 pixels multiplied by
the size of each pixel (meter). In addition, the width of each
layer determines the degree of the nonlinear relationship be-
tween input and output, while the depth of the network af-
fects both the spatial correlation length and the nonlinearity
(see further in Appendix A3).

The initial weight values are randomly generated, follow-
ing a standard normal distribution, while initial bias values
are given as 0.1. Both weight and bias values for each of
the three convolutional neural network layers are optimized
simultaneously using the adaptive moment estimation algo-
rithm (Kingma and Ba, 2014) to minimize the loss function,
L, which is defined as the mean sum of squared residuals:

L
(

W1,W2,W3,b1,b2,b3
)
=

1
N

N∑
i=1

∥∥∥H3
−Y

∥∥∥2
, (7)

where Y is the known binary paleovalley pattern (0 repre-
sents non-paleovalley, 1 corresponds to the paleovalley) in
the training data, and N is the number of image pixels in
each training.

3.3 Performance metrics of the SRCNN algorithm

To verify the performance of the SRCNN, the following im-
age quality indices are calculated.

1. Peak signal-to-noise ratio (PSNR) (Wang and Bovik,
2002):

PSNR=−10log10

[
1
N

N∑
i=1
(Ỹi −Yi)

2

]
, (8)

where Y represents the synthetic binary paleovalley in-
dex generated from the DEM (0 for non-paleovalley and
1 for paleovalley) (Fig. 2b) and Ỹ is the calculated pale-
ovalley index (Eq. 5) from SRCNN using EC images as
input, and the term between brackets is the mean square
error. PSNR is a traditional approach to image quality
assessment. A high PSNR represents a high-quality pa-
leovalley generation; e.g., a PSNR= 20 value is equiv-
alent to a mean-square error of 0.01.

2. Structure similarity index (SSIM) (Wang et al., 2004):

SSIM=
2µYµỸ + ε

µ2
Y +µ

2
Ỹ
+ ε
·

2cov
(
Y, Ỹ

)
+ ε

σ 2
Y + σ

2
Ỹ
+ ε

, (9)

where µ is the mean, σ 2 the variance, and cov(·) the
covariance of the synthetic or calculated paleovalley in-
dex and ε is a small number (10−6). SSIM is comple-
mentary to PSNR, but focuses on structural similarity
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between a reference and distorted image. It ranges theo-
retically from 0 to 1.0. The higher the SSIM, the higher
the resolution of the paleovalley network being recon-
structed.

3. Connectivity function (Pardo-Igúzquiza and Dowd,
2003; Renard and Allard, 2013):

τ (h)=
N (u↔ u+h|u,u+h ∈ S)

N (u,u+h ∈ S)
, (10)

where N(uu+h ∈ S) is the number of paleovalley pix-
els in a certain direction within the distance h, while
N(u↔ u+h|uu+h ∈ S) is the number of connected
paleovalley pixels in this direction. It ranges from 0 to
1.0, and high values indicate a strong spatial connectiv-
ity.

4 Results and discussion

We here (1) monitor both PSNR and SSIM between the pale-
ovalley index generated from SRCNN and DEM for 60 000
training and 6000 validation datasets to test for the overfitting
problem; (2) generate paleovalley index maps from synthetic
EC images in 4000 testing datasets to demonstrate the per-
formance of SRCNN in identifying the noise in EC images
and classification and recreate the connectivity of the pale-
ovalley; (3) infer binary paleovalley maps by applying the
trained SRCNN to the AEM-based EC values in the study
area; and (4) compare the resulting paleovalley image with
borehole lithology logs and existing paleovalley indicators,
i.e., multiple-resolution valley bottom flatness.

4.1 Training and preliminary testing

The training dataset composed of 60 000 pairs of EC and
valley images in Fig. 2 is divided into 1200 batches (inner
number of iterations) with each batch containing 50 images.
The epoch (outer number of iterations) is set to 5, and the
60 000 training image pairs are resorted at the beginning of
each epoch. In this scenario, weights and biases in the SR-
CNN are updated by 6000 iterations (5×1200), according to
the loss function calculated based on 50 pairs of images in
each batch.

After each iteration, the PSNR (Eq. 8) and SSIM (Eq. 9)
for 50 training images in each batch are calculated (Fig. 4a
and b). Moreover, the PSNR and SSIM for 6000 validation
images are calculated for every 50 iterations. It is illustrated
that PSNR for each training batch fluctuates near 18 (which
corresponds to a mean-square error of 0.015 based on Eq. 8),
while the SSIM stabilizes at 0.96. The PSNR and SSIM val-
ues for the validation images agree well with those of the
training images. This suggests that the SRCNN is sufficiently
trained to recreate the paleovalley with a high accuracy with-
out overfitting problems, and importantly preserving struc-
tural similarity.

Figure 4. (a) PSNR and (b) SSIM values between paleovalley in-
dex generated from SRCNN and DEM recorded for both training
(60 000 images) and validation (6000 images) datasets. For SRCNN
training 50 images are used per iteration.

4.2 Performance of SRCNN for noise removal,
lithofacies classification and recreating connectivity

The trained SRCNN is then applied to generate paleovalley
images based on 4000 testing EC images; we here randomly
selected four images to demonstrate the ability of SRCNN.
The synthetic paleovalley images from DEM and their corre-
sponding blurred EC images are illustrated in Fig. 5a and b,
respectively. The histogram of EC values for all 4000 im-
ages (each containing 50× 50 pixels) in the testing dataset
follows a unimodal, right-skewed distribution (Fig. 5c). It is
not trivial to define an EC threshold value from such uni-
modal distribution that can be used to distinguish the pale-
ovalley and non-paleovalley cells from Fig. 5b. After cali-
bration of the SRCNN, a paleovalley index map is obtained
(Fig. 5d). However, the histogram of the resultant paleoval-
ley index displays a bimodal behavior, with peaks centered at
0 and 1 (Fig. 5e). By selecting a threshold paleovalley index
value of 0.5, the paleovalley and the non-paleovalley data can
be differentiated and converted to a binary paleovalley map
(Fig. 5f). The resultant paleovalleys compare well with the
reference (i.e., synthetic) paleovalleys in Fig. 5a. The selec-
tion of a threshold paleovalley index in the range of 0.2 to 0.8
does not have a significant influence on the resultant binary
paleovalley pattern.

Moreover, the resultant paleovalley index is less noisy in
both paleovalley and non-paleovalley parts (Fig. 5d). The
SRCNN is able to create connected paleovalley networks
from the poorly connected EC values generated by bicubic
interpolation (Fig. 5b), which is one of the most challenging
features in geostatistics. Figure 5 demonstrates three advan-
tages of applying SRCNN: (1) it removes the noise in EC
values, (2) it recreates the connectivity of the paleovalleys,
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Figure 5. (a) DEM-generated synthetic paleovalley used as reference image in testing the SRCNN; (b) normalized electrical conductivities
corresponding to the paleovalleys following (c) a skewed distribution (based on 4000 images in the test dataset). (d) Paleovalley index
generated through processing EC images via the SRCNN; (e) bimodal distribution of paleovalley index (based on 4000 images in the test
dataset); (f) the paleovalley index map converted into a binary paleovalley map by arbitrarily selecting the paleovalley index threshold as 0.5.

and (3) it classifies the paleovalley and non-paleovalley com-
ponents, which allows the selection of a threshold index to
define paleovalley and non-paleovalley zones.

4.3 SRCNN performance under different image
resolutions

The next synthetic example considers 400 m wide synthetic
paleovalleys generated in ArcGIS from the DEM in the zone
about 60 km southwest of the study area in Fig. 1a. The
total extent of each synthetic paleovalley image is 80 km
by 80 km, with the resolutions ranging from 200× 200 to
2000× 2000 pixels. The paleovalley image (Fig. 6e) with
200×200 pixels is converted to EC values based on Archie’s
law (Fig. 6a), with EC values overlapping by 2.5 % between
paleovalley and non-paleovalley zones. This low-resolution
EC image is upscaled to a high-resolution EC image by bicu-
bic interpolation (Fig. 6b), which is then cropped to images
of 50× 50 pixels and used as an input image for the SR-
CNN. Subsequently, the paleovalley index and histogram at
different resolutions are obtained (Fig. 6c). Following the
histogram of the paleovalley index, it is easy to select an ar-
bitrary threshold in the range 0.25–0.8 to convert the paleo-
valley index (Fig. 6c) to a binary paleovalley (Fig. 6d). The
choice of threshold in this range does not affect the resultant
binary paleovalley pattern, as after SRCNN processing, the
paleovalley index is already well grouped. The calculation of
the paleovalley index at the resolution of 2000× 2000 pixels
takes 52 s.

It is worth noting that as the resolution of the resultant
paleovalley increases, the PSNR and SSIM goodness-of-fit
metrics and connectivity do not change significantly (Fig. 7).
Both PSNR and SSIM increase with the resolution from

200× 200 to 800× 800 pixels because the bicubic interpo-
lation smoothes the EC values and reduces the noise in EC
values. When the image resolution further increases from 800
to 2000, PSNR degrades weakly from 18.48 to 17.09 (corre-
sponding to an increase in mean-square error from 0.014 to
0.019) and, similarly, SSIM decreases from 0.8919 to 0.8522.

Because each image has a fixed extent of 80 m×80 km,
as the resolution increases, the distance between pixels and
the real geological scale of 50× 50 pixel images decreases.
When the resolution increases from 200× 200 to 2000×
2000 pixels, the distance between pixels decreases from 400
to 40 m and the real scale of each training image decreases
from 20 km×20 km to 2 km×2 km. When training the SR-
CNN, the distance between pixels was not accounted for.
The training images in the training dataset include images
without any paleovalley and images being fully occupied by
the paleovalleys, with the narrowest paleovalley occupying
merely 1 pixel. These paleovalley patterns are unrelated to
the real scale of the training image, i.e., across the range
from 20 km×20 km to 2 km×2 km. Thus, the trained SR-
CNN works well to infer paleovalleys across different reso-
lutions and scales.

4.4 Application to APY lands AEM data

Following the training and testing of the SRCNN method
based on synthetic DEM-derived paleovalley networks, we
now apply the trained network to an area in the APY lands
to convert EC values at a spatial resolution of 400 m×400 m
to identify paleovalleys at a resolution of 40 m×40 m in an
area of 80 km×80 km. The methodology was first applied to
a single depth AEM image (i.e., 100 m) to illustrate the pro-
cedure and discuss the main findings. In a second step we
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Figure 6. Workflow for generating a binary paleovalley map: (a) upscaling the 200× 200 pixel electrical conductivity image to (b) a
2000× 2000 pixel image using bicubic interpolation; (c) SRCNN processing; (d) generating a binary paleovalley at resolution of
2000× 2000 pixels; (e) binary paleovalley with characteristics comparable to the original synthetic paleovalley.

will apply the methodology to the AEM images from all 10
depths to extract specific information on the depth structure
of the paleovalley network.

Figure 8 summarizes how the previously trained SRCNN
successfully converts the low-resolution EC values resulting
from an AEM survey to a binary map composed of paleo-
valleys and non-paleovalley areas (Fig. 8a). First, the bicubic
interpolation generates a high-resolution EC image charac-
terized by a right-skewed distribution of normalized EC val-
ues (Fig. 8b). This map does not yet allow a clear differentia-
tion of the paleovalley from the surrounding fractured rocks.
However, once we apply the SRCNN, a paleovalley index
map with the paleovalley index following a binomial distri-
bution is produced (Fig. 8c). Selecting an appropriate index
(0.5 here) separates paleovalley from non-paleovalley pixels
(Fig. 8d).

Inversion of AEM-derived EC maps at 10 depths within
the first 100 m below the land surface (at 10 m intervals) is
shown in Fig. 9a. EC values available at 10 layers are con-
verted to binary paleovalley images by SRCNN, based on
the premise that both the paleovalley pattern and bulk elec-
trical conductivity from the 100 m depth interval can be rep-
resented in training images. As shown in Fig. 9a, normalized
EC values derived from the AEM survey are characterized
by a right-skewed distribution. However, once we apply the
SRCNN, the resulting paleovalley index map (Fig. 9b) dis-
plays a binomial distribution of paleovalley indices. Select-
ing an appropriate index (0.5 here) generates a regional-scale
3-D binary paleovalley image with a horizontal resolution of
40 m and vertical resolution of 10 m (Fig. 9c).

In the subsequent discussion we first test the derived pale-
ovalley map with independent, yet limited, borehole data and
auxiliary land surface maps. Next we extract further informa-

tion from Fig. 9c about the depth structure of the paleovalleys
to better constrain the areas for groundwater prospection.

To compare the paleovalley map (Fig. 9c) with borehole
logs and an alternative indictor of the location of valley in the
land surface (i.e., the multiple resolution valley bottom flat-
ness index; Gallant and Dowling, 2003), we aggregated the
10 depth slices of Fig. 9c into a 2-D paleovalley index map,
with values ranging from zero (i.e., no paleovalley within the
10 depth layers) to 10 (i.e., paleovalley detected across all
depth layers) (Fig. 10a).

The resulting paleovalley index map in Fig. 10a is first
compared to the Multiple Resolution Valley Bottom Flatness
(MRVBF) index in Fig. 10b, which was originally calculated
by Gallant and Dowling (2003) based on a digital elevation
model with a spatial resolution of 100 m. High MRVBF val-
ues indicate a high probability of deposition of alluvium sed-
iments. It was used by Munday et al. (2013), together with
field observations of regolith, to obtain a hydrofacies map
(black line in Fig. 10a). A comparison of the contours of the
SRCNN paleovalley index 10 and 6 with the MRVBF index
shows the emergence of similar patterns (Fig. 10a and b).
While this confirms that the SRCNN paleovalley index map
is not inconsistent with the MRVBF index, the latter contains
insufficient information for testing the paleovalley map.

The degree to which the MRVBF index can be used to
identify the main three hydrofacies (bedrock, alluvium and
transition material) is discussed on the basis of Fig. 10d. High
MRVBF values correspond to bores with both alluvial lithol-
ogy and transition material lithology, while a large number of
bedrock boreholes also show high MRVBF values. In other
words, the alluvial (i.e., paleovalley) and bedrock/transition
material (non-paleovalley) lithology classes could not be
fully identified by the MRVBF index.
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Figure 7. The PSNR, SSIM and connectivity of paleovalleys generated by SRCNN for different resolutions of upscaling the low-resolution
EC image to a high-resolution binary paleovalley.

Figure 8. Steps to derive a binary paleovalley network in an 80 km×80 km region in APY lands, Australia. (a) Raw EC map at a depth of
100 m; (b) EC map after bicubic interpolation; (c) paleovalley channel index map after application of the trained SRCNN method; (d) binary
paleovalley map.

In contrast, the AEM survey and the paleovalley classi-
fication based on automatic neural networks in this study
have improved our capability of identifying the position of
paleovalleys. The boxplot of Fig. 10c shows that the bore-
holes classified as “alluvium” correspond to a higher median
SRCNN paleovalley index of 4, compared to the two other
lithology classes of median paleovalley index of 0 and 2,

respectively. For 128 boreholes identified in the study area,
(i) those drilled in bedrock (66 boreholes) had the smallest
SRCNN paleovalley index (median of 0), (ii) those drilled in
alluvium (57 boreholes) had the largest SRCNN index (me-
dian of 4) and (iii) those drilled in transition zones (five bore-
holes) had the next largest SRCNN index (median of 2). De-
spite the relatively small dataset of borehole logs (three per
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Figure 9. (a) Rescaled AEM-derived EC map and corresponding histogram of normalized EC values within the depth interval of 100 m in
an 80 km×80 km region in APY lands, Australia; (b) paleovalley indices map and corresponding histogram after application of the trained
SRCNN; (c) binary paleovalley map.

100 km2), there is a clear trend that bores in alluvial sedi-
ments correspond to the areas with the highest SRCNN in-
dex. It is reasonable to assume that these alluvial sediments
represent paleovalleys, although the lithological classifica-
tion did not provide this level of detail. However, for 11 al-
luvial boreholes, only a low corresponding paleovalley index
of<2 was identified. This may be due to the limited litholog-
ical and sedimentary information captured by the downhole
logs, which were mainly recorded in the 1970s with limited
description of the subsurface environment. The same is true
for the boreholes in bedrock and transition zones, which may
have been misclassified due to insufficient data.

The paleovalley network shown in Fig. 10a is based on
an analysis of 10 depth layers and hence gives greater confi-

dence about the location of deep paleovalleys than the anal-
ysis of a single-depth paleovalley map (Fig. 8). A significant
proportion of the image has a maximum index of 10, mean-
ing that a paleovalley has been detected throughout the full
investigation depth. This is thus an area with a high certainty
(i.e., all pixels with index 10 have 10 layers identified as pa-
leovalley) that at least a 100 m deep paleovalley is present.
For the subsequent indices, e.g., 8, 6 and 4, at least eight,
six and four depth layers with a paleovalley were identified,
respectively.

Moreover, the burial depth of the paleovalley (defined by
the vertical distance between the uppermost parts of the pa-
leovalley to the land surface) is calculated based on the 3-D
binary paleovalley. It is shown in Fig. 11a that a wide range
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Figure 10. (a) SRCNN paleovalley index by aggregating the binary paleovalley in the vertical direction within 100 m; (b) multiple resolution
valley bottom flatness (MRVBF) indicating the position of alluvium sediment accumulation. The black lines show the boundary between
paleovalley and non-paleovalley interpreted from (b), while the white lines represent the contour lines of SRCNN paleovalley index from (a).
The boxplot of SRCNN paleovalley index (c) and MRVBF (d) with respect to the borehole logs showing bedrock, alluvium and transition
between bedrock and alluvium.

of the paleovalleys are buried up to a depth of 10 to 20 m,
which cannot be observed directly from the land surface, but
can be revealed by the methodology proposed in this work
based on geophysical prospecting (here 3-D AEM data).

We finally calculate the thickness of paleovalley lay-
ers (potentially representing the thickness of an alluvium
aquifer) from the 10 depth layers with paleovalley indices.
As a result, the thickness of the paleovalley calculated by the
distance between bottom (lowest part) and top (uppermost
part) of the paleovalley (Fig. 11b) is identical to the paleoval-
ley index (Fig. 10b) multiplied by the layer thickness of 10 m.
This indicates that except for those pixels that were shown to
have a 10 to 20 m cover of non-paleovalley sediments (see
burial depth in Fig. 11a), all other pixels had uninterrupted
paleovalley layers starting from the land surface. In those pa-
leovalley zones without surface sediment cover, the SRCNN
paleovalley indices 8, 6 and 4 of Fig. 10a are representative
for uninterrupted paleovalley sediments in the depth intervals
0–80, 0–60 and 0–40 m, respectively.

Note that in Fig. 10a at any pixel with given paleovalley in-
dex n (from 0 to 10), the probability of finding n consecutive
paleovalley layers can be inferred; in our test case area this
was 100 % everywhere – except for the buried pixels with
10 to 20 m cover of non-paleovalley sediments – as no in-
terruption was detected in the sequence of paleovalley layers

identified. This demonstrates that despite expected vertical
lithological heterogeneities within paleovalleys (Knight et
al., 2018), AEM images combined with our SRCNN method-
ology are able to identify and differentiate a broad series of
sediments that make up a paleovalley from the surrounding
bedrock. The SRCNN paleovalley index map thus provides
an improved tool for groundwater prospectivity.

5 Conclusions

The super-resolution convolutional neural network (SR-
CNN) approach is one of many deep learning methods de-
veloped recently to sharpen image quality and to extract par-
ticular features from images. This study was one of the first
SRCNN approaches to resolve a long-standing challenge in
the earth sciences: how to generate high-resolution binary
paleovalley maps from low-resolution electrical conductiv-
ity data derived from airborne electromagnetic surveys. The
training images were generated using present-day valley pat-
terns derived from DEM data as analogues to the paleovalley
patterns at different depths, together with Archie’s equation
and bicubic interpolation to generate the corresponding elec-
trical conductivity images. The large training image dataset
featured the responses of airborne electromagnetics (AEM)
data to the paleovalley system with noise. Following a su-
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Figure 11. (a) Burial depth and thickness (>40 m) of the allu-
vium sediments in paleovalleys inferred from the 3-D binary val-
ley image of Fig. 9c with a 10 m vertical resolution. The hollow
zone in (a) represents no identified paleovalleys within the depth of
100 m in the study area.

pervised learning, SRCNN successfully removed noise from
AEM-derived electrical conductivity (EC) data and classi-
fied EC values into two separate paleovalley index groups:
one close to zero (the non-paleovalley areas) and another one
near unity (the paleovalley areas). The resultant bimodal his-
togram of paleovalley index was then used to select threshold
values to convert paleovalley indices to a binary paleoval-
ley and non-paleovalley image. SRCNN can accommodate
the spatial correlation between EC and paleovalley index by
moving filters to recreate the connectivity of the paleovalley
network. Moreover, the high-resolution of paleovalley pat-
terns can be inferred from low-resolution EC images via SR-
CNN, as long as their relationship is addressed in the training
image dataset.

However, there are several limitations to the method that
require more work. In applying the SRCNN methodology,
only EC images were used here to identify the paleoval-
ley network. In those areas where paleovalley and non-
paleovalley zones contain fluid with similar salinity, lead-
ing to similar bulk EC values, more geophysical information,
e.g., gravity and magnetics, can be used as inputs in SRCNN
to distinguish the position of the paleovalley. To generate a
large training image pool, SRCNN was based on 2-D training
images derived from DEM data. The trained SRCNNs were

employed at different depth slices independently, where they
were stacked up into a quasi-3-D paleovalley image. How-
ever, the vertical relationship between EC and paleovalley
index could not be addressed. In the future, the 3-D paleo-
valley patterns in the training dataset could be generated by
process-based methods (e.g., sedimentary processes model-
ing) or multiple geostatistical approaches, and 3-D images
could be used in SRCNN to address horizontal and vertical
correlations between EC and paleovalley index simultane-
ously. In addition, when applying the SRCNN methodology
to a new study area, the training images need to be updated
according to the factors influencing the relationship between
target geobody and electrical conductivities (i.e., porosity,
water content and sediment components in Archie’s equa-
tion).

Data availability. The data that support the plots within this paper
and other findings of this study are available from the corresponding
author upon reasonable request.
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Appendix A: Robustness testing of the SRCNN
methodology

The neural network settings used in this study were as fol-
lows: f1 = 9, f2 = 1 and f3 = 5 and n1 = 64, n2 = 32 and
n3 = 1, where f represents the filter size and n represents
number of output images from layer 1, layer 2 and layer 3, re-
spectively, the size of input image is 50, and the overlapping
size of EC values between paleovalley and non-paleovalley
zone is 5 %. We now modify each of these parameters in-
dividually while fixing the others to investigate the robust-
ness of the SRCNN as quantified by the performance metrics
PSNR, SSIM and connectivity.

A1 Overlapping size

In this study, an overlap in EC values between paleovalley
and non-paleovalley zones is induced to reflect impact by
factors such as noise and smoothing in the AEM data inter-
pretation and interpolation; the maximum overlapping size
discussed is 5 % of the range of EC values (1–80 mS m−1).

As shown in Fig. A1, the EC overlap between non-
paleovalley and paleovalley zones in the training dataset only
alters the speed at which the metrics PSNR and SSIM stabi-
lize, but it does not affect the final PSNR and SSIM values.
When the overlap size in the training dataset is comparable
to that in the testing dataset (i.e., 5 %), the SRCNN can be
trained to generate images with a similar accuracy. Further-
more, a cross test in Fig. A2 illustrated that the trained SR-
CNN can identify the paleovalley in the testing dataset with
an overlap size smaller than that of the training image. How-
ever, if a small overlap size was employed in the training
dataset (e.g., overlap size of 1 %), the trained SRCNN failed
to identify the paleovalley cells in the testing dataset that had
a larger overlap size (e.g., 5 %).

This indicates that the SRCNN can be trained to remove
noise in EC and identify the paleovalley cells based on train-
ing datasets, despite a certain degree of overlap in EC values
between paleovalley and non-paleovalley. As a general rule,
for the SRCNN to be successful, the overlap size in the train-
ing dataset should be larger than that in the testing dataset.

However, this does not mean that the larger degree of over-
lapping in a training dataset is always expected. As shown
in Fig. A3, when compared to the synthetic paleovalley, the
connectivity of paleovalleys resulting from SRCNN decays
with the increase in the degree of overlapping in training
dataset. This is because when a large degree of overlap-
ping is contained in the training dataset, SRCNN considers
more pixels with similar EC in both paleovalley and non-
paleovalley zones as noise. After training, SRCNN removes
too much noise and the resultant paleovalleys are discon-
nected (Fig. A3c). In contrast, when the degree of over-
lapping in the training dataset is low, the resulting image
can contain noise in both paleovalley and non-paleovalley
zones (Fig. A3b), but a better paleovalley connectivity is ob-

tained. This suggests that although SRCNN can be trained
to identify paleovalleys from EC images with a certain de-
gree of overlapping, it is still desirable to constrain the degree
of overlapping EC between paleovalley and non-paleovalley
zones based on field data, e.g., the groundwater salinity,
porosity and major minerals in rocks.

Moreover, the overlapping EC values here do not indicate
that paleovalley and non-paleovalley cells have the same EC;
otherwise, the AEM data will not contain enough informa-
tion to separate the paleovalley and non-paleovalley zones.
Furthermore, we need additional geophysical data, e.g., seis-
mic velocity or gravity, to further constrain the paleovalley
position. The inherent flexibility in the SRCNN methodol-
ogy allows us to add more geophysical data, e.g., gravity and
seismic velocity to the input image, to obtain an improved
training of the relationship between the binary paleovalley
image and multiple geophysical datasets. Demonstrating the
information content of such datasets is beyond the scope of
this paper.

A2 Input image size

The EC and binary paleovalley images with a size of 30×30
to 100× 100 pixels are used to train the weights in the SR-
CNN. Although a larger input image size results in a higher
PSNR metric, it does not significantly affect the SSIM met-
ric (Fig. A4). Given the same number of iterations (6000) and
batch size (50), the loss function is calculated at more pixels
per iteration based on the larger input image. Consequently,
longer computation times are required to train the SRCNN.
Considering 6000 iterations takes merely 51 min to train the
30× 30 pixel images, but 766 min is required to train the
100× 100 pixel images (Fig. A5). Using large input images
to train the SRCNN with fewer iterations has the same effects
as using a small input image with more iterations.

However, as is evident from Fig. A5, the connectivity of
SRCNN-generated paleovalleys decreases for input images
of 30×30 pixels. This is because the correlation scale of EC
and paleovalley index exceeds the input image size. In other
words, the small-size training image limits the ability of SR-
CNN to address the spatial correlation of EC values and to
recreate spatial connectivity. When the image size exceeds
50×50 pixels, the connectivity of generated paleovalleys cor-
responds well with the synthetic paleovalley. Further increas-
ing the image size does not significantly affect the resultant
paleovalley pattern.

A3 SRCNN depth, width and filter size

A larger filter size and network depth means more weights to
be updated in the network, which potentially enhances the
ability of the SRCNN in reproducing the paleovalley and
non-paleovalley feature at each pixel. However, there is no
strict criterion to determine the number of weights that yield
a successful SRCNN model. It is reasonable to select the
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Figure A1. (a) PSNR and (b) SSIM calculated by SRCNN based on testing datasets in 400 iterations.

Figure A2. Effect of different degrees of EC overlap between paleovalley and non-paleovalley cells on model performance using (a) PSNR
and (b) SSIM metrics.

number of weights (i.e., unknowns) close to the size of train-
ing datasets (i.e., 60 000 knowns). Fewer weights could limit
the capability of the SRCNN, while too many weights could
cause overfitting risks in the SRCNN.

In the three-layer network with a filter size of 5-1-5, and
output images of 64-32-1, the number of weights is 6592.
When the filter size in the first layer increases to 9 and the
depth of the network increases to 5, the number of weights
becomes 59 328. Both are fewer than the size of the training
dataset (60 000). While the increase in filter size and depths
of SRCNN yield slightly higher PSNR and SSIM (Figs. A6
and A7), the drawback is that longer computation times are
required (Fig. A7). With the total number of weights get-
ting close to the size of the training dataset, the rate at which
PSNR improves with increasing network depth slows down
(Fig. A6). Conversely, a too deep network may remove too
much noise from the paleovalley part, which makes the pale-
ovalleys disconnected and the connectivity of the calculated
paleovalley (green line in Fig. A7) diverts from the reference
(black line in Fig. A7).

The filter size determines the spatial correlation length of
EC values accounted for. Since we increase the filter size in
the second layer to 5, a peak in PSNR and SSIM values and
connectivity function are obtained in the full-size synthetic
test (Fig. A7), although the number of weights in the network
structure of 9(64)-5(32)-5(1) is not the largest among the five
networks discussed. This suggests that a larger filter size is
desirable to better address the spatial correlation of the EC
values for paleovalley cells. However, it is also noted that for
the size of the output image to be the same as that of the input
image, part of the filter covers the zone outside the input im-
age, where EC values of zero are used. This may cause errors
in paleovalley index calculation, which is referred to as edge
effect and can increase with filter size.

The depth of the network can also increase the correlation
scale that is accounted for; the degree of this influence is de-
termined by the filter size in each layer. In contrast, the width
of each layer is unrelated to the correlation scale of EC and
paleovalleys; it merely alters the degree of nonlinearity of the
network by affecting the number of weights.
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Figure A3. (a) Connectivity function in the northwest to southeast direction when applying the trained SRCNN to generate synthetic pale-
ovalleys. Resultant paleovalley patterns using trained SRCNN with various degrees of overlap (1 % b and 5% c) in comparison with a real
paleovalley (d).

Figure A4. Performance criteria PSNR (a) and SSIM (b) calculated by the SRCNN for the testing dataset under varying input image sizes
(30, 50 and 100).

www.hydrol-earth-syst-sci.net/23/2561/2019/ Hydrol. Earth Syst. Sci., 23, 2561–2580, 2019



2578 Z. Jiang et al.: High-resolution paleovalley classification by deep learning

Figure A5. The connectivity function of the paleovalley generated by SRCNN, with the weight and bias values learned from the training
images with sizes of 30, 50 and 100, respectively.

Figure A6. Model performance PSNR (a) and SSIM (b) calculated for the test dataset with varying SRCNN filter depths and filter sizes.
Numbers are as follows: 5-1-5 in 5(64)-1(32)-5(1) represents the filter size in layers 1, 2 and 3, respectively, and (64)-(32)-(1) represents the
number of output images of layers 1, 2 and 3.

Figure A7. Connectivity of paleovalley generated by SRCNN with multiple depths and filter sizes. Computation cost is the time taken to
train the SRCNN.
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