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Abstract. There are various methods available for annual
groundwater recharge estimation with in situ observations
(i.e., observations obtained at the site/location of interest),
but a great number of watersheds around the world still
remain ungauged, i.e., without in situ observations of hy-
drologic responses. One approach for making estimates at
ungauged watersheds is regionalization, namely, transfer-
ring information obtained at gauged watersheds to ungauged
ones. The reliability of regionalization depends on (1) the
underlying system of hydrologic similarity, i.e., the similar-
ity in how watersheds respond to precipitation input, as well
as (2) the approach by which information is transferred.

In this paper, we present a nested tree-based modeling ap-
proach for conditioning estimates of hydrologic responses at
ungauged watersheds on ex situ data (i.e., data obtained at
sites/locations other than the site/location of interest) while
accounting for the uncertainties of the model parameters as
well as the model structure. The approach is then integrated
with a hypothesis of two-leveled hierarchical hydrologic sim-
ilarity, where the higher level determines the relative im-
portance of various watershed characteristics under different
conditions and the lower level performs the regionalization
and estimation of the hydrologic response of interest.

We apply the nested tree-based modeling approach to in-
vestigate the complicated relationship between mean annual
groundwater recharge and watershed characteristics in a case
study, and apply the hypothesis of hierarchical hydrologic
similarity to explain the behavior of a dynamic hydrologic
similarity system. Our findings reveal the decisive roles of
soil available water content and aridity in hydrologic similar-
ity at the regional and annual scales, as well as certain condi-
tions under which it is risky to resort to climate variables for

determining hydrologic similarity. These findings contribute
to the understanding of the physical principles governing ro-
bust information transfer.

1 Introduction

Groundwater resources supply approximately 50 % of the
drinking water and roughly 40 % of the irrigation water
worldwide (National Ground Water Association, 2016). Yet
the groundwater has increasingly been depleted since the late
20th century (Wada et al., 2010). Therefore, groundwater
recharge, here broadly defined as the replenishing of wa-
ter to a groundwater reservoir, plays a critical role in sus-
tainable water resource management (de Vries and Simmers,
2002). Several studies have reviewed and compared multiple
methods for recharge estimation at a wide spectrum of tem-
poral and spatial scales, including lysimeter tests, seepage
tests, water table fluctuation, chemical and heat tracers, base-
flow analysis, water budget, and numerical modeling (Scan-
lon et al., 2002; Healy, 2010; Heppner et al., 2007). However,
the aforementioned methods rely on in situ data, while many
watersheds worldwide still remain effectively ungauged (i.e.,
ungauged, poorly gauged, or previously gauged) (Loukas and
Vasiliades, 2014).

This fact leads us to a critical question: how can one es-
timate hydrologic responses without in situ data? Studying
ungauged watersheds has been a popular research topic for
more than a decade, especially since the Prediction in Un-
gauged Basins (PUB) initiative by the International Asso-
ciation of Hydrological Sciences (IAHS) (Sivapalan et al.,
2003). Facing the lack of in situ data, studies have attempted
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transferring ex situ information from gauged watersheds to
ungauged ones; this data transfer is also termed “regional-
ization”. Regionalization has been applied to constrain the
estimates of the parameters of hydrologic models (especially
rainfall–runoff models), which could then be used to make
predictions at ungauged watersheds (Kuczera, 1982; Singh
et al., 2014; Razavi and Coulibaly, 2017; Wagener and Mon-
tanari, 2011; Blöschl et al., 2013). Such constraining is ex-
pected to lead to more accurate and precise estimates, and
could be in the form of (1) relationships between model pa-
rameters and watershed characteristics, (2) subsets of the pa-
rameter space, or (3) plausible parameter values from mod-
els built for other hydrologically similar watersheds (Singh
et al., 2014).

However, the application of regionalization is not with-
out challenges. One of the key factors of predictive uncer-
tainty identified by the PUB initiative is the unsuitability of
information transfer techniques, due to a lack of compar-
ative studies across watersheds and a lack of understand-
ing of the physical principles governing robust regionaliza-
tion (Hrachowitz et al., 2013). Different regionalization tech-
niques have been applied in different cases with different as-
sumptions. For example, Li et al. (2018) attempted a simple
form of regionalization, where kernel density estimation was
applied on recharge values obtained from various hydrolog-
ically similar sites, in order to build an ex situ prior distri-
bution (i.e., a prior distribution conditioned on ex situ data).
However, one limitation in Li et al. (2018) was that hydro-
logic similarity was treated as a Boolean variable, and there-
fore, there was no way to systematically distinguish a highly
similar site from a slightly similar site. To pursue this further
in this study, we must ask the following question: how can
we tell that two watersheds are hydrologically similar? Saw-
icz et al. (2011) applied Bayesian mixture clustering to wa-
tersheds across the eastern US. They found that spatial prox-
imity was a valuable first indicator of hydrological similarity
because it reflected strong climatic control in their study area.
Oudin et al. (2008) reported similar findings based on 913
French watersheds, despite acknowledging the lack of some
key physical descriptors in their data set. However, Smith
et al. (2014) attempted regionalization of hydrologic model
parameters in eastern Australia, and suggested that spatial
proximity was an unreliable metric of hydrological similar-
ity. For their part, Tague et al. (2013) presented successful
regionalization of hydrologic parameters based on geologic
similarity at watersheds in the US Oregon Cascades, a moun-
tain range that features geological heterogeneity. Although
not directly shown, their findings also went against the use of
applying spatial proximity, for they discussed the sharp con-
trasts in hydrology at proximal watersheds based primarily
on geological differences. The indication from these findings
is that, although spatial proximity is of practical importance
due to its common use, its simplicity, and its demonstrated
effectiveness in specific areas (Smith et al., 2014), it is not
the true controlling factor, but rather a confounding factor.

One can resort to other physical characteristics of water-
sheds for the determination of hydrologic similarity. How-
ever, what those characteristics are may be a complicated
question. Razavi and Coulibaly (2017) tested the effect of
combinations of neural-network-based classification tech-
niques and regionalization techniques in Canada, and found
that classifying watersheds before regionalization improves
regionalization for streamflow, baseflow, and peak flow pre-
dictions, but also discovered that the best combination of
techniques varied from one watershed to another. Singh et al.
(2014) applied classification and regression tree to deter-
mine the relationship between catchment similarity and re-
gionalization in the US, finding that the dominant controls
of successful regionalization vary significantly with the spa-
tial scale, with the region of interest, and with the objective
function used. Similarly, Kuentz et al. (2017) found that dif-
ferent physiographic variables controlled various flow char-
acteristics across Europe, showing how different descriptors
could account for different dominant hydrologic processes
and flow characteristics. These studies indicate an important
challenge, that the factors determining hydrologic similar-
ity may vary under different conditions, and a universal sys-
tem of hydrologic similarity still remains unavailable. Loritz
et al. (2018) suggested an interesting perspective describing a
dynamic hydrologic similarity system, where similarity and
uniqueness are not mutually exclusive; rather, they suggested
that hydrologic systems operate by gradually changing to
different levels of organization in which their behaviors are
partly unique and partly similar.

In this study, we would like to integrate the perspective
in Loritz et al. (2018), that similarity and uniqueness are not
mutually exclusive, into our regionalization framework for
groundwater recharge estimation at ungauged watersheds.
It is thus critical to identify a number of plausible control-
ling factors. Although few studies have directly identified
the controlling factors, some insights can be learned from
previous studies. For example, the effective recharge (i.e.,
the net source term in the groundwater flow equation) in a
steady, depth-integrated, and unbounded groundwater flow
was found to be correlated with the spatial distributions of
transmissivity and hydraulic head (Rubin and Dagan, 1987a,
b). From a recharge-mechanism-based perspective, previous
studies have also found a list of plausible controlling factors
of recharge via recharge potential mapping (Yeh et al., 2016,
2009; Naghibi et al., 2015; Rahmati et al., 2016). These vari-
ables include watershed topography, land cover, soil prop-
erties, and geology. At the regional scale, climate variables
have been found to be among the primary controlling fac-
tors of groundwater table depth (Fan et al., 2013), mean an-
nual groundwater recharge (Nolan et al., 2007), and mean
annual baseflow (Rumsey et al., 2015), the latter of which is
often used as a surrogate of recharge under the steady-state
assumption. Other examples include Xie et al. (2017), who
showed that evapotranspiration data provided more condi-
tioning power and more uncertainty reduction than soil mois-
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ture data in long-term mean recharge estimation, and Hart-
mann et al. (2017), who reported variations of the sensitivity
of annual groundwater recharge to annual precipitation with
aridity. Although these studies did not apply regionalization
explicitly and did not target ungauged watersheds directly,
their findings provide guidance for us to identify some wa-
tershed characteristics – especially climate variables – that
might play an important role in the regionalization process
for recharge estimation.

Given a set of watershed characteristics, the next important
question is how the regionalization is carried out. Gibbs et al.
(2012) provided a generic framework of regression region-
alization, which involves a multi-objective optimization for
calibration, a sensitivity analysis to determine the most im-
portant model parameters, and a final step relating watershed
characteristics to model parameters. The framework is capa-
ble of assimilating information from exogenous variables and
accounting for the interaction between parameters. However,
the framework does not include a straightforward quantifi-
cation of uncertainties in calibration and in regionalization.
In comparison, Bayesian approaches offer a solution to the
quantification of uncertainty by outputting conditional distri-
butions. Despite the lack of in situ data, one can still apply
Bayesian approaches to establish prior distributions that are
informed by data from previous studies or well-established
databases (Woodbury and Rubin, 2000; Woodbury, 2011;
Hou and Rubin, 2005). More advanced pooling of informa-
tion from multiple sampled sites has also been demonstrated
with the application of Bayesian hierarchical models (Smith
et al., 2014; Cucchi et al., 2019), which can account for both
intra- and inter-site uncertainty of the parameters. However,
the aforementioned Bayesian approaches have several disad-
vantages, including (1) requiring a system of hydrologic sim-
ilarity that helps us decide which sampled sites or databases
are suitable as “information donors”, (2) requiring known or
assumed distributional forms of the parameters, and (3) dif-
ficulties in accounting for complicated and highly nonlinear
dependence on exogenous variables. Adding onto the chal-
lenge is that uncertainty arises from a lack of knowledge
about how to represent the watershed system in terms of
both model structure and parameters (Beven, 2016). Uncer-
tainty about the model structure has been identified and stud-
ied (e.g., Beven, 2006; Beven and Freer, 2001; Nowak et al.,
2010), but not under the context of ungauged watershed, re-
gionalization, and hydrologic similarity. The lack of in situ
data does not justify a presumed model structure: even with-
out in situ data, the modeler can still consider simultaneously
multiple potential model structures, instead of wrongly as-
suming a fixed structure (Rubin et al., 2018).

To that end, the objectives of this study are 2-fold. First,
to address the aforementioned challenges in regionalization
technique, we propose a nested tree-based modeling ap-
proach, which features (1) nonlinear regression in order to
model the predictor–response relationship, (2) full Bayesian
quantification of parameter uncertainty, and (3) proposal–

comparison-based consideration of model structure uncer-
tainty. Second, we integrate the nested tree-based modeling
approach with a hypothesis of hierarchical hydrologic sim-
ilarity. We apply the approach to estimate a groundwater
recharge signature at ungauged watersheds in a case study,
and we invoke the hypothesis of hierarchical similarity to
reveal the key controlling factors of a dynamic hydrologic
similarity system, which could ultimately contribute to ro-
bust information transfer in future applications.

2 Methodology

The data-driven, Bayesian, and nonlinear regression ap-
proach proposed in this study is powered by Bayesian
Additive Regression Tree (BART) at its core. The details
of BART, including the establishment of prior distribution
(which we term prior), the calculation of likelihoods, and the
posterior inference statistics, are well documented in Chip-
man et al. (2010) and in Kapelner and Bleich (2016). Here,
we provide a brief conceptual introduction to the implemen-
tation and advantages of BART, as well as how BART is aug-
mented in this study.

2.1 BART

Consider a fundamental problem of making inference about
an unknown function that estimates a response variable of
interest using a set of predictor variables. The general form
of this problem can be expressed as follows:

R = R̂+ ε = f (θ ,x)+ ε, (1)

where R is the response variable, f (·) is a model that out-
puts the estimate of the response variable, R̂ is the estimate,
θ is the vector of model parameters, x is the vector of predic-
tors, and ε is a Gaussian white noise with finite variance, i.e.,
ε ∼N (0, σ 2). The observation of R is denoted by r . BART
solves this problem by applying a Bayesian version of the
additive ensemble tree model. To put it simply, BART can be
understood as Bayesian inference done for many individual
regression tree models. The main difference between typical
regression tree models and BART is that the former is cali-
brated with data by searching for the best model parameters
that lead to the least error, while the latter is conditioned on
data by obtaining conditional distributions of model parame-
ters via Bayesian inference.

To understand BART, first one needs to understand the
build-up of the additive ensemble tree model from individual
classification and regression tree (CART) models (Breiman,
1984). A schematic diagram of a CART model is shown in
Fig. 1a, which resembles an upside-down tree (root on top
and leaves at the bottom). The root node of the tree repre-
sents the space spanned by the predictor(s). As one moves
downward from root to leaves, the said space is recursively
partitioned by a sequence of binary partitioning rules. This

www.hydrol-earth-syst-sci.net/23/2417/2019/ Hydrol. Earth Syst. Sci., 23, 2417–2438, 2019



2420 C.-F. Chang and Y. Rubin: Hierarchical hydrologic similarity and mean annual recharge ungauged watersheds

Figure 1. Schematic diagrams of (a) a regression tree model, (b) an ensemble tree model which consists of J additive regression tree models,
and (c) the loops structure that BART uses to draw MCMC simulations (indexed by l), consisting of an inner loop for J additive regression
tree models and an outer loop that continues until we have a total of LMCMC simulations after convergence toward a stationary distribution.

partitioning and the corresponding partitioning rules define
the tree structure and can be represented by the tree structure
variable, denoted by T . After partitioning, output response
values are assigned to each and every leaf, where each leaf
represents a partitioned subspace. These output values can be
collectively denoted byM . A tree model can be fully defined
by knowing its T and M .

To further improve the predictive performance on an indi-
vidual CART, an additive ensemble tree model can be built
as the sum of J individual trees (Fig. 1b), each of which has
its tree structure (Tj , j = 1, . . . , J ) and its set of leaf values
(Mj , j = 1, . . . , J ), shown as follows:

R̂ = f (θ ,x)=

J∑
j=1

g
(
Tj ,Mj ,x

)
, (2)

where θ = {T1, M1, . . . , TJ , MJ } and g(·) denotes an indi-
vidual tree. The output of an additive ensemble tree model is
the sum of the outputs from the J trees.

As mentioned above, instead of searching for the best Tj
and Mj for every j that lead to the least error, BART takes
on a different way of model fitting, the Bayesian way. It starts
by defining the following joint prior of all the tree structures,
all the sets of leaf values, and the variance of the white noise
defined in Eq. (1):

p
(
T1,M1, . . ., TJ ,MJ ,σ

2
)
= p

(
σ 2
) J∏
j=1

p
(
Tj
)
P
(
Mj |Tj

)
. (3)

BART then applies a tailored version of the backfitting
Markov chain Monte Carlo (MCMC) simulation algorithm

to condition the prior on the response data (r), where back-
fitting means the j th tree model is iteratively updated with its
partial residual. The stationary distribution toward which the
MCMC simulations converge is then used to approximate the
true posterior distribution (which we term posterior):

p
(
T1,M1, . . ., Tj ,Mj ,σ

2
|r
)
. (4)

A schematic diagram of the MCMC simulation iteration
procedure is shown in Fig. 1c. Within each MCMC simu-
lation, both Tj and Mj for the j th tree are iteratively simu-
lated using a Metropolis-within-Gibbs sampler, illustrated by
the loop in the blue circle in Fig. 1c. After simulating all the
trees, the error variance (σ 2) is simulated with a Gaussian-
Gamma-conjugate Gibbs sampler. The sampling of σ 2 marks
the end of one MCMC simulation. We can see by the loop in
the red square in Fig. 1c that the MCMC simulation is contin-
uous until the simulated values converge to a stationary dis-
tribution. These post-convergence simulated values approxi-
mate realizations from Eq. (4), and thus we approximate the
true posterior in Eq. (4) by the stationary distribution ob-
tained by MCMC simulation. At this point, we have reached
a BART model that is conditioned on the response data, be-
cause all the BART parameters (tree structures, leaf node val-
ues, and the white noise variance) have been conditioned on
the response data.

Given the aforementioned conditioned BART model, we
now turn our attention to estimating a new response that was
not included in the data on which the BART model was con-
ditioned. This is done by inputting the vector of the new pre-
dictors, denoted by x̃, into the predictor–response relation-
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ship we learned with the BART model. Firstly, Eq. (1) can be
rewritten as

R ∼N
(
R̂,σ 2

)
. (5)

Both the mean and the variance in Eq. (5) are uncertain
and have their respective posteriors. By combining Eqs. (2)
and (5), and after plugging in the post-convergence MCMC
simulated values and x̃, we obtain a plausible realization (in-
dexed by the superscript l, l = 1, . . . ,L) of predictive distri-
bution as follows:

N

(
R̂(l),

(
σ 2
)(l))

=N

(
f
(
θ (l), x̃

)
,
(
σ 2
)(l))

=N

(
J∑
j=1

g
(
T
(l)
j ,M

(l)
j , x̃

)
,
(
σ 2
)(l))

. (6)

The collection of many plausible realizations yields an ap-
proximated posterior of predictive distributions. Thus, for re-
sponse of interest, we have now obtained a fully Bayesian
Gaussian predictive model, where the mean and the variance
have their respective posteriors.

2.2 Advantages of BART

The key advantage of BART is that it combines the nonlin-
ear regression for the predictor–response relationship with
Bayesian inference, allowing for the determination of a full
Bayesian posterior of predictive distribution, rather than one
or a few estimates/predictions.

The estimation and regionalization processes are data-
driven. Prior knowledge of the underlying physics is only
minimally accounted for in terms of the composition of the
predictor sets and the user-defined prior of the splitting rules
(which are embedded in the tree structure variable, Tj ). The
underlying physics is inferred from the ex situ data by ob-
taining conditional simulations of the tree structures and the
leaf nodes (similar to the calibration stage), and thus is im-
plicitly embedded rather than explicitly defined. Therefore,
the extent to which physics could be inferred is restricted by
the training data, here, the ex situ data, which is a common
limitation of data-driven approaches.

However, in compensation, we avoid one disadvantage of
the application of physically based models in the case of un-
gauged watersheds. The available data at the ungauged wa-
tershed are limited, and it is unrealistic to expect that certain
watershed characteristics should be known. Data availabil-
ity could hinder the implementation of powerful hydrologic
models (Razavi and Coulibaly, 2017) because some of the
required model inputs may be unavailable at the ungauged
watersheds (Xie et al., 2017; Gemitzi et al., 2017). It is pos-
sible to treat missing inputs as parameters and run simula-
tions to impute them or apply stochastic methods to estimate

them. Nonetheless, the corresponding computational demand
grows in power law with the number and the plausible range
of the missing inputs, which is of great practical importance
when evaluating the pros and cons of an approach.

Note that in this study there is no intention to show the
superiority of either the data-driven or physically based ap-
proaches. As Wagener and Montanari (2011) pointed out, the
ultimate goal of predictions at ungauged watersheds is not to
define parameters of a model, but rather to understand what
behavior we should expect at the ungauged watersheds of in-
terest. We have simply shown why our approach is suitable
for ungauged watersheds.

2.3 Nested tree-based modeling approach

As shown above, BART offers an elegant way to account
for model parameter uncertainty of an additive ensemble
tree model. However, uncertainty exists not only for the
model parameters, but also for the models themselves, i.e.,
the model structure uncertainty. A significant factor of model
structure uncertainty for BART could be the composition of
the vector of predictors. Accounting for model structure un-
certainty can be done by proposing a prior probability mass
function of plausible BART models, which can then be eval-
uated and compared with each other. In the present study, we
accomplish this by using a proposal–comparison procedure,
which we termed the nested tree-based modeling approach.
The details are as follows.

We start by proposingK plausible BART models, denoted
as Bk , k = 1, . . . ,K , each of which is built using a unique set
of predictors and is conditioned on available data. The model
structure uncertainty is accounted for by obtaining a prob-
ability mass function of the K plausible BART models, de-
noted by p(Bk). The determination of p(Bk) can be informed
by the data (namely, in an empirical Bayes way, where the
prior is informed by the data). At each available data point,
we evaluate the performance of the plausible BART mod-
els by a performance metric (a typical example is the mean
squared error). Then, a label is given to each data point, indi-
cating which BART model has the highest performance mea-
sured by the metric. Finally, we use a CART model to clas-
sify the data points based on their labels. The CART model
outputs an empirical multinomial distribution of the K plau-
sible BART models at each leaf. Thus, one can study the
variation of p(BK) with various predictors. A very simple
example is illustrated in Fig. 2, where we compare the per-
formances of two BART models (K = 2) using one predic-
tor and a simple two-leveled classification tree. The predictor
space is partitioned into the positive subspace and the nega-
tive subspace by the partitioning rule indicated in the dia-
mond box. Thus, for any new data point with positive predic-
tor value, we would use p(B1)= 0.76 and p(B2)= 0.24 as
the probability mass function of plausible models. In real ap-
plications, of course, one can use an arbitrary number of pre-
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dictors to compare an arbitrary number of plausible BART
models.

Up to this point, we have introduced the nested tree-based
modeling approach, which is general and data-driven. For
estimation purposes, one would be interested in accounting
for model structure uncertainty by averaging the estimates
over p(Bk), which can be done by invoking Bayesian model
averaging. However, the capability of the nested tree-based
modeling approach does not stop here, as the approach also
outputs the variation of p(Bk) under various conditions. This
could be an indication of the behavior of a dynamic hydro-
logic similarity system, and will be explained in detail in
Sect. 2.4.

2.4 Hypothesis of hierarchical similarity

To facilitate the interpretation of the variation of p(Bk), we
propose a hypothesis of hierarchical similarity that has two
levels.

1. The lower level is termed the predictor similarity, mean-
ing that if two vectors of predictors are similar in some
parts, their corresponding response will be similar. In a
hydrology context, if two watersheds have some simi-
lar characteristics, then their hydrologic responses will
be similar. This lower level corresponds to the BART
models in the nested tree-based modeling approach.

2. The higher level is the regionalization similarity, mean-
ing that if two vectors of predictors are similar in some
parts, their corresponding predictor–response relation-
ships will be similarly controlled. In a hydrology con-
text, if two watersheds have some similar characteris-
tics, then their hydrologic responses will be governed by
similar functions/mechanisms. This higher level corre-
sponds to the classification tree in the nested tree-based
modeling approach.

Put simply, regionalization similarity determines the
predictor–predictor relationship and tells us which predictors
to extract information from, while predictor similarity
determines the predictor–response relationship that actually
estimates the response using the said extracted information.
Note that the two sets of predictors respectively determining
the two levels of similarity are not mutually exclusive: they
may or may not overlap. To elaborate on the difference
between the two levels of similarity, we present the follow-
ing two example statements within the context of recharge
estimation.

1. Systematic trends in recharge rates are often associated
with climatic trends (Healy, 2010). This is a statement
of predictor similarity, indicating a predictor–response
relationship. One would be informed of association
recharge rates with climatic variables.

2. In arid regions, focused recharge from ephemeral
streams is often the dominant form of recharge (Healy,

2010). This is a statement of regionalization similar-
ity, indicating a predictor–predictor relationship. One
would be informed to pay more attention to the dom-
inant factors of ephemeral streams if the study area of
interest is in arid regions.

Having explained the hypothesis of hierarchical similar-
ity, now suppose that we have gone through the process de-
scribed in Sect. 2.3 and have obtained K plausible BART
models and one CART model. Each plausible BART model
was built with a unique set of predictors, and we use the
BART models to explore predictor similarity with different
predictor sets. Moving up a level, we use the classification
tree to explore regionalization similarity by investigating the
variation of p(Bk) under various conditions. Note that as the
condition changes, the best-performing BART model may
change, and so does the set of dominant predictors in the
predictor–response relationship. This may explain why, un-
der different conditions, the hydrologic similarity may be
controlled by different watershed characteristics. We test our
hypothesis of hierarchical similarity in a case study, which
will be explained in Sect. 3.

3 Case study

In this case study, we are going to apply the methodology
described in Sects. 2.1 through 2.4 to investigate the predic-
tor similarity and the regionalization similarity in the study
area, and to test the hypothesis of hierarchical similarity. It is
important to note that this case study is not aimed at a thor-
ough investigation of the recharge mechanism, nor is the goal
obtaining the most accurate recharge estimates. Rather, the
primary goals are the demonstration of the power of our ap-
proach and showing how the approach helps us understand
the dynamic behavior of hydrologic similarity in the study
area. This section provides the details about the case study
setup, including the watersheds, the recharge data, the wa-
tershed characteristics data, the partitioning of data, and the
evaluation metrics.

3.1 Watersheds and recharge estimates

The conterminous US can be divided into eight major river
basins (MRBs), each of which consists of thousands of wa-
tersheds (United States Geological Survey, 2005; Brake-
bill and Terziotti, 2011). At each and every watershed,
watershed-average annual recharge estimate and watershed
characteristics data are retrieved from publicly available
databases, and will be described in the following subsections.
In our work, the recharge estimates are used as the target re-
sponse, while the characteristics are used as predictors in the
regionalization process.

In 2002, annual groundwater recharge at each watershed
was estimated via baseflow analyses by the US Geological
Survey (USGS) (Wieczorek and LaMotte, 2010h; Wolock,
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Figure 2. Schematic diagrams of an example of nesting two BART models under a simple two-leveled CART model, using only one predictor.
The partitioning rule is expressed in the diamond box, and the leaves are represented in blue boxes.

Figure 3. The study area includes (a) MRB 1 and (b) MRB 2 in the eastern US, colored by the estimated annual groundwater recharge in the
year of 2002 (Wolock, 2003). For the details of the delineation of MRBs, please refer to United States Geological Survey (2005).

2003, also shown in Fig. 3). Streamflow-based estimation
of recharge, such as baseflow analysis, is commonly used
in humid regions. As put forward by Healy (2010), there
are three key questions that should be carefully checked be-
fore applying baseflow analysis: (1) is all recharging water
eventually discharged into the stream where the baseflow is
measured? (2) Do low flows consist entirely of groundwater
discharge? (3) Does the contributing area of the aquifer dif-
fer significantly from that of the watershed? Without a rig-
orous proof, we make a working assumption about the re-
liability of baseflow analysis. Fortunately, from a post hoc
check, the recharge estimates fall within the typical scales at
which baseflow analysis is more suitable: a recharge scale
from hundreds to thousands of millimeters per year, a spatial

scale of hundreds of m2 to hundreds of km2, and temporal
scales from months to decades (Scanlon et al., 2002).

The more arid US Midwest may have more pronounced
localized recharge (de Vries and Simmers, 2002), which can-
not be effectively captured by baseflow analysis (Scanlon
et al., 2002). This, then, does not fit well with our working
assumption. Therefore, following the suggestion of Nolan
et al. (2007), our study area includes only the relatively hu-
mid eastern parts of the US, namely MRB 1 and 2 (Fig. 3).
After excluding watersheds with less desirable data cover-
age, we consider a total of 3609 watersheds in MRB 1 and
7413 watersheds in MRB 2. The distributions of the recharge
data from all the watersheds in the study area are shown in
Fig. 4a.
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Figure 4. Histograms of (a) annual recharge in 2002, (b) annual precipitation in 2002, (c) long-term average annual precipitation, (d) long-
term average annual potential evapotranspiration, (e) normalized recharge, and (f) logit normalized recharge (LNR) at all the watersheds in
MRB 1 and 2. The black curves are estimates of the distributions based on kernel density estimation.

3.2 Climate

At each watershed included in the study, the following data
are retrieved from publicly available databases: the long-term
average annual precipitation (P ) averaged from 1970 to 2000
(Wieczorek and LaMotte, 2010a), the annual precipitation in
the year 2002 (P ) (Wieczorek and LaMotte, 2010b), and the
long-term average annual potential evapotranspiration (Ep)
averaged from 1960 to 1990 (Title and Bemmels, 2017).
Note that, limited by data availability, the average periods
of P and Ep are different. Thus, we also make a working
assumption that at the decadal scale the averaged climate
variables remain steady, with which we ignore the potential
effect of climate change on the difference between the av-
erage from 1960 to 1990 and that from 1970 to 2000. Given
the precipitation and evapotranspiration, we obtained two ad-
ditional climate variables: the long-term aridity index, esti-
mated as φ = Ep/P , and the 2002 aridity index, estimated as
φ = Ep/P . Given that the recharge data are based on base-
flow analysis for the year 2002, P and φ represent the climate
controls of that same year, while P , Ep, and φ represent cli-
mate controls over the long term. The distributions of P , P ,
and Ep are shown in Fig. 4b–d, respectively.

Normalization and transformation of recharge using
precipitation

The annual recharge data (in volume of water per unit water-
shed area) can be normalized by P (also in volume of water
per unit watershed area), as in Fig. 4e. This stems from the
concept of water budgets and has been commonly used in
hydrological studies worldwide (e.g., Magruder et al., 2009;
Rangarajan and Athavale, 2000; Obuobie et al., 2012; Hep-

pner et al., 2007; Takagi, 2013; Yang et al., 2009). Here, we
apply logit transformation, which is common for proportions
or probabilities (Gelman et al., 2014), to that normalized
recharge, relaxing the physical bounds (0 and 1) of the val-
ues of the target variable (Fig. 4f). This step is advantageous
as it opens the opportunity to estimate recharge with para-
metric statistical models without special accommodations for
the bounds. Therefore, in this case study the logit normalized
recharge (LNR) is used as the target response variable.

3.3 Non-climate watershed characteristics

We also consider various non-climate watershed characteris-
tics in this study, including topography, land cover, soil prop-
erties, and geology. The land cover is based on data published
in 2001, which we feel is close enough to 2002 to provide the
appropriate information. The other characteristics are based
on raw data obtained in different years before 2002; it is as-
sumed that they remain steady at sub-century timescales. We
provide the details of these watershed characteristics in the
following subsections.

3.3.1 Topography and land cover

The topographic predictors are taken from publicly available
databases (Wieczorek and LaMotte, 2010g); they are sum-
marized in Table 1. The land cover variables are the per-
centages of watershed area corresponding to each land cover
class (Wieczorek and LaMotte, 2010f); these are summa-
rized in Table 2. The land cover classes are based on the
2001 National Land Cover Database (NLCD2001), the cate-
gories of which include water, developed land, barren land,
forest, shrubland, herbaceous land, cultivated land, and wet-
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Table 1. Watershed topography predictors.

Variable Explanation

Basin index Watershed area divided by watershed perimeter squared (dimensionless).
Stream density Reach length divided by watershed area (m−1).
Sinuosity Reach length divided by the length of the straight line connecting the beginning and the ending of the reach (dimensionless).
Slope Mean watershed slope calculated from digital elevation data (degree).

Table 2. Land cover classification by NLCD2001.

Class Subclass

Water
Open water
Perennial ice

Developed

Open space
Low intensity
Medium intensity
High intensity

Barren Barren land

Forest
Deciduous
Evergreen
Mixed

Shrubland
Dwarf shrub
Shrub/scrub

Herbaceous

Grassland
Sedge
Lichens
Moss

Cultivated
Pasture/hay
Crops

Wetlands
Woody wetland
Emergent herbaceous wetland

land, with each having its own sub-classes. The details of
NLCD2001 can be found in Homer et al. (2007).

3.3.2 Soil property

The soil property predictors include watershed-scale statis-
tics (e.g., average, upper bound, and lower bound) of
soil properties (Wieczorek and LaMotte, 2010e); these are
summarized in Table 3. The spatial statistics of the soil
properties within each watershed were obtained over grid-
ded source data values from the State Soil Geographic
database (STATSGO) (Schwarz and Alexander, 1995), which
were depth-averaged over all soil layers (Wolock, 1997).

3.3.3 Geology

The geology predictors used in this study were retrieved
from publicly available databases (Wieczorek and LaMotte,
2010c, d), and they can be classified into two subcategories:

surficial geology (surface sediment) and bedrock geology. As
the predictors, we used fractions of the watershed area cor-
responding to each of the 45 surficial geology types (Wiec-
zorek and LaMotte, 2010d; Clawges and Price, 1999) and
each of the 162 bedrock geology types (Wieczorek and
LaMotte, 2010c; Schruben et al., 1994). Details regarding
each geology type can be found in Wieczorek and LaM-
otte (2010c) and Wieczorek and LaMotte (2010d). Note that
in geological terminology, rock type or rock composition
data are referred to as lithology data. Compared to lithol-
ogy, structural geology data might be more informative for
groundwater studies (e.g., orientation, fracture properties,
discontinuity). However, structural geology information usu-
ally requires in situ investigation, which cannot be expected
at ungauged watersheds. Therefore, we consider only lithol-
ogy data in this study.

3.4 Data partitioning

This section explains the setup of the holdout method specific
to the case study, as well as the partitioning of the predictors
into various subsets in order to evaluate the effects of differ-
ent predictors.

3.4.1 Watershed partitioning

Because we cannot evaluate the predictive accuracy at real
ungauged watersheds (due to the lack of in situ data to com-
pare against), we adopt the holdout method to partition the
watersheds described in Sect. 3.1 into two mutually exclu-
sive subsets: the training watersheds and the testing water-
sheds. The testing watersheds will be treated as if they were
ungauged, and we only condition the BART models on data
from the training watersheds (which are the ex situ data, with
respect to the testing watersheds).

In this study, we define the watersheds in MRB 1 as the
testing watersheds and the watersheds in MRB 2 as the train-
ing watersheds. The ex situ data (i.e., data in MRB 2) are
used to fit multiple BART models, which are then used to
obtain predictive distributions of LNR at all the testing wa-
tersheds. There are two reasons for this MRB-based data par-
titioning.

– For reasons touched on in Sect. 1, we do not consider
spatial proximity as a predictor in this study. Separat-
ing the two MRBs partly ensures the exclusion of the
confounding effect of spatial proximity, and thus the re-
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Table 3. Soil property predictors.

Soil property Unit Statistics∗

Calcium carbonate equivalent % Lower/higher bounds
Cation exchange capacity cmolc kg−1 Lower/higher bounds
Depth to the seasonally high water table m Average and lower/higher bounds
Soil thickness m Lower/higher bounds
Hydrologic soil group classification % Average
Soil erodibility factor dimensionless Average
Permeability m h−1 Average and lower/higher bounds
Available water content fraction Average and lower/higher bounds
Bulk density g cm−3 Average and lower/higher bounds
Organic matter content % Average and lower/higher bounds
Clay soil content % Average and lower/higher bounds
Silt soil content % Average
Sand soil content % Average
Percent finer than nos. 4, 10, and 200 sieve % Average and lower/higher bounds

∗ Spatial statistics calculated across the watershed.

gionalization is solely based on the watershed charac-
teristics.

– Considering the distributions of LNR (Fig. 4f), the
range of values in MRB 2 fully covers the range of val-
ues in MRB 1. However, the reverse is not true. It is thus
advantageous to train the models with MRB 2 to avoid
poor model fitting due to lack of data coverage.

After partitioning the watersheds, we now turn our attention
to the partitioning of predictors.

3.4.2 Predictor partitioning

As mentioned in Sect. 1, climate variables are among the
most important factors in hydrologic similarity at the re-
gional scale, but there might be other controlling factors to
consider as well, and the dominance of climate variables may
not be always present. To investigate the various effects of
different predictors, we conceptually divide the predictors
into four sets: (1) climate controls that determine the input
amount of water into the system, (2) surface controls that de-
termine the distribution of water at the surface, (3) soil con-
trols that determine the infiltration of water, and (4) lithology
controls that indicate the properties of the aquifer. We fur-
ther break up the first set into three subsets to investigate the
effect of dimensionless predictors. Therefore, we define a to-
tal of six different predictor sets to build six unique BART
models, which are indexed by k, k = 1, 2, . . . 6 (Table 4).

Note that the determination of the six predictor sets is
guided by a conceptual division of predictors and the idea of
testing the relative importance of different categories of pre-
dictors under different conditions, instead of aiming for high
accuracy and precision. Therefore, by no means is Table 4
an exhaustive list of all possible sets, nor does it necessarily
include the best set that leads to the best predictive perfor-

Table 4. Table of the six different predictor sets.

k Predictors included Number of
predictors

1 φ and φ 2
2 P̄ , P , and Ep
3 All climate predictors: P , P , Ep, φ, and φ 5
4 Topography and land cover predictors 20
5 Soil predictors 48
6 Geology predictors 206

mance. The design of the six predictor sets simply facilitates
the investigation of the effects of various categories of pre-
dictors on predictive accuracy and uncertainty.

3.4.3 The benchmark model: without any predictor

In addition to the six BART models, we also build a simple
model by using the estimated distribution of LNR at the train-
ing watersheds via kernel density estimation (R Core Team,
2018; Sheather and Jones, 1991), without considering any
predictor. In other words, this is simply using the distribution
of LNR at all the training watersheds as the predictive dis-
tribution. This is a model that ignores hydrologic similarity
altogether, and it can be considered an extreme case of the
ex situ prior in Li et al. (2018), with a lot more watersheds
and much less stringent criteria of similarity. From this point
forward, we refer to this model as the benchmark model, for
it is used as a benchmark against which the BART models
are compared.
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3.5 Evaluation of predictive distributions

As mentioned in Sect. 2.3, we label each testing watershed by
the best-performing model, where the performance is mea-
sured based on a metric. Thus, the metric with which we
evaluate predictive distributions matters.

In this study, two different accuracy metrics are adopted.
The first is the root mean squared error (RMSE), defined as

Ei,k =

√√√√ 1
L

L∑
l=1

(
R̂
(l)
i,k − r̃i

)2
, (7)

where r̃i is the LNR data at the ith testing watershed, and
Ei,k is the RMSE of the kth model at the ith testing water-
shed. Note that R̂(l)i,k is obtained by following Eq. (6), but now
subscripts are added to indicate that we plug in the predictors
from the ith testing watershed to the kth model. This metric
evaluates the predictive performance in an estimation prob-
lem, where we wish to obtain a “best estimate” of LNR with
minimal expected error.

The second metric is the median log predictive probability
density (LPD) at the value of LNR observation, defined as

Li,k =medianl=1, ..., L

{
ln
[
p

(
R = r̃i |R̂

(l)
i,k,
(
σ 2
)(l)
k

)]}
,

(8)

where Li,k is the LPD of the kth model at the ith testing wa-
tershed. The subscript of (σ 2)

(l)
k indicates the kth model. This

metric evaluates the predictive performance in a simulation
problem, where we wish the realizations from the predictive
distributions are likely to be the same as the observation.

In addition to accuracy, we also quantify the predictive
uncertainty. This is done by first recognizing the two com-
ponents of uncertainty for the kth model at the ith testing
watershed:

1. σ 2
k , which we refer to as the predictive variance, and

which is approximated as the sample median of (σ 2)
(l)
k

over l = 1, . . . ,L, and

2. the posterior variance of R̂i,k , which we refer to as the
estimate variance, and which is approximated as the
sample variance of R̂(l)i,k over l = 1, . . . ,L.

The predictive variance indicates how informative the in-
ferred predictor–response relationship is, while the estimate
variance indicates how uncertain the said relationship is. In
this case study we weigh the two components equally, as we
wish to obtain an informative relationship with certainty. To
that end, we define the total predictive variance as the sum-
mation of the two components, and use it as the metric of
predictive uncertainty in this study.

4 Results

As discussed above, we built six BART models (Table 4)
with ex situ data. In situ predictors were then fed into the
models to yield posterior realizations of predictive distribu-
tions (Eq. 6). With the metrics of accuracy and uncertainty
defined, we are then able to quantify the predictive perfor-
mance of the BART models, and classify them based on ei-
ther the RMSE-based labels or the LPD-based labels with the
nested tree-based modeling approach. This allows for the in-
vestigation of the effects of various predictors under different
conditions, which will be presented in this section.

4.1 Evaluation of predictive distributions

The following subsections present the effects of different pre-
dictor sets on predictive accuracy and uncertainty.

4.1.1 Predictive uncertainty

The effect of regionalization with the different predictor sets
on predictive uncertainty is shown in Fig. 5. The estimate
variance (Fig. 5a) represents how well the BART models cap-
ture the predictor–response relationships. We see that the ge-
ology predictors lead to the lowest estimate variance, prob-
ably because of the significantly larger number of predic-
tors used (see Table 4). Yet there is a surprise in Fig. 5a.
First, at k = 1 and k = 2 the estimate variances are generally
quite low, despite the low number of predictors. However,
at k = 3, the estimate variances increase significantly. Intu-
itively, since aridity is the ratio of evapotranspiration to pre-
cipitation, one would expect that the variances at k = 3 would
be similar to, if not lower than, those at k = 1 and k = 2. One
plausible explanation here is that although aridity indices and
precipitation/evapotranspiration carry ample information to
be extracted and conditioned upon, the respective predictor–
response relationships we get might be significantly differ-
ent. When used together, the BART models were not able to
formulate a universal relationship. This will be revisited in
Sect. 5.3.

The predictive variance (Fig. 5b) represents how informa-
tive the predictor–response relationships are, which is a dif-
ferent aspect of uncertainty compared to the estimate vari-
ance. One could obtain a predictor–response relationship
fairly confidently (low estimate variance), but the relation-
ship is less informative (high predictive variance), like that
found at k = 6. The opposite case is that one could not confi-
dently obtain a predictor–response relationship, but once that
relationship is obtained it is quite informative, like that found
at k = 5.

The total predictive variance (Fig. 5c) provides an over-
all metric that considers the above two sources of uncertain-
ties. While the medians are rather similar, the spread of the
box plots does vary significantly with k. The condensed box
plots (e.g., k = 1 and k = 6) indicate that the total predictive
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Figure 5. The box plots of the estimate variances at the testing watersheds (a), the bar plot of the predictive variances with 95 % intervals
shown by the error bars (b), and the box plots of the total predictive variances at the testing watersheds (c). The red line indicates the variance
of the benchmark model for comparison.

variances are essentially constant throughout all testing wa-
tersheds, while the spread-out box plots (e.g., k = 5) indicate
that the effect of the predictors may vary significantly from
one testing watershed to another. This indicates that there
might not be one single predictor set that always leads to the
lowest uncertainty, and thus the effects of predictors on pre-
dictive uncertainty may vary from one condition to another.
That said, regardless of the testing watersheds and predic-
tor sets, the total predictive variance is always lower than the
variance of the benchmark model, which clearly shows that
regionalization using watershed characteristics definitely im-
proves predictive precision.

4.1.2 Predictive accuracy

The effect of regionalization with the different predictor sets
on RMSE is shown in Fig. 6. The RMSE of the benchmark
model (Fig. 6a) at each testing watershed is simply the differ-
ence between the sample mean of the ex situ LNR data and
the in situ LNR observation. For the BART models (Fig. 6b),
it is calculated by the root of the average squared errors over
post-convergence MCMC simulations.

Regardless of k, we see that, compared with the bench-
mark model, RMSE is reduced at least at half of the testing
watersheds. Surprisingly, the largest overall RMSE reduction

is observed when only the aridity indices are used for re-
gionalization, indicating that at most of the watersheds tested
in this study, aridity similarity implies LNR similarity at re-
gional and annual scales to a high degree. On the other hand,
we observe some outliers that have high RMSE reduction at
k = 4 through k = 6, indicating that topography, land cover,
soil properties, and geology may not have an overall effect
that is as strong, but under certain circumstances, they could
still be important factors.

The effect of regionalization with different predictor sets
on LPD is shown in Fig. 7. It is immediately clear that the
accuracy improvement is not as prominent as that in Fig. 6.
Only when k = 1 is LPD increased at most of the watersheds.
We also find that all of the distributions of LPD are heavily
negatively skewed with a lot of outliers.

Looking at Figs. 5 through 7 together, one can observe the
different effects of the predictor sets on predictive accuracy,
stemming from the different natures of an estimation and a
simulation problem. From the point of view of the overall ef-
fect, for k = 2 through k = 5 (i.e., the predictors other than
aridity indices), RMSE is reduced at more than half of the
testing watersheds, but LPD does not increase to the same
extent. This suggests that the predictive distributions are cen-
tered closer to the in situ observations due to regionalization,
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Figure 6. The box plot of the RMSE of the benchmark model at the testing watersheds (a) and the box plots of the RMSE reduction
introduced by applying the BART models at the testing watersheds (b). The red line indicates zero RMSE reduction for comparison.

Figure 7. The box plot of the LPD of the benchmark model at the testing watersheds (a) and the box plots of the LPD increase introduced
by applying the BART models at the testing watersheds (b). The red line indicates zero LPD increase, used for comparison.

but that the conditioning also significantly reduces the pre-
dictive variances, causing the predictive distribution to be too
narrow. Therefore, compared to a relatively flat, spread-out,
and uninformative or weakly informative distribution, the
predictive density decays too quickly when deviating from
the predictive mean, resulting in low LPD. This might be
a sign of over-conditioning or the disproportional reduction
of predictive uncertainty, as exemplified in Fig. 8. The cyan

curve is an example of an over-conditioned distribution. Al-
though its mean is somewhat close to the true value, the small
variance causes rapid decay of probability density; therefore,
at the true value (red vertical line) the predictive density is
no better than that of the weakly informative or uninforma-
tive distributions. How could this ever happen? Take k = 5 in
Fig. 5 as an example: the predictive variance is small, mean-
ing that the predictive distribution should be rather peaked
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Figure 8. An example of over-conditioning: the probability den-
sity at the true value (indicated by the red vertical line) of the
over-conditioned distribution is not higher than that of the non-
informative distribution or that of the weakly informative distribu-
tion, not because the conditioning does not work, but because of the
disproportional reduction of the variance of the distribution.

(just like the cyan curve in Fig. 8). The only way one can get
a high predictive density is then to make the predictive mean
close to the true value. Nonetheless, this would be very diffi-
cult at some of the watersheds where the estimate variance is
large. The only predictor set that improves both RMSE and
LPD at most of the testing watersheds is k = 1, the aridity
indices, and one could expect the corresponding predictive
distributions to be somewhat similar to the case of the ideal
dark blue curve in Fig. 8.

Over-conditioning can occur when model fitting or model
calibration leads to constrained parameters that are, in fact,
subject to different forms of model uncertainty (Hutton et al.,
2014; Beven et al., 2008), which is an indication of why the
determination of p(Bk) is important. In this case study, we
focused more on the variation of p(Bk) under various con-
ditions (to be shown shortly) and less on improving the esti-
mates. However, in another application where the estimates
are to be improved, model structure uncertainty should be
and can be considered in order to refine the estimates (e.g.,
via Bayesian model averaging).

4.2 Regionalization similarity

The box plots in Figs. 5 through 7 showed different distribu-
tions of the predictive performance metrics for the different
predictor sets. An interesting follow-up question here would
be how model performance varies with watershed character-
istics. It was shown that, consistent with previous studies,
aridity is indeed the most important controlling factor at re-
gional and annual scales on average, but there are few cases
where this aridity dominance is replaced. In other words, how
might we identify the conditions under which a specific pre-
dictor set could be more informative than others?

To investigate this further, we give each testing watershed
two labels: the model with the lowest RMSE and the model
with the highest LPD; we refer to these labels as the RMSE
labels and the LPD labels, respectively. The possible values
of each label include k = 1 through k = 6 and benchmark,
representing the six BART models and the benchmark model,
respectively. Then, using all the available predictors, we built
two CART models to classify watersheds based on the RMSE
labels (Fig. 9) and the LPD labels (Fig. 10).

4.2.1 Nesting by RMSE

Figure 9 shows the variation of the top two best-performing
BART models and the corresponding p(Bk) values under
various conditions, where the performance of each BART
model is defined by the RMSE. This variation indicates the
regionalization similarity in the study area. At first glance,
the available water content (AWC) stands out as the first in-
dicator of regionalization similarity (Fig. 9, node 1): at wa-
tersheds with high AWC, aridity stands out as the dominant
factor, which is consistent with the previous studies cited in
Sect. 1. However, there is a potential risk if one uses arid-
ity as the primary indicator of hydrologic similarity regard-
less of AWC. In previous studies, AWC was found to be an
important predictor correlated with surface runoff, baseflow,
and groundwater recharge (Arnold et al., 2000), and it was
among the most important parameters to which water bal-
ance models are sensitive (Finch, 1998). In the current study,
we are not claiming that AWC cannot be a predictor, but
rather, we are suggesting a hierarchical structure in which
AWC is placed – together with other predictors – to help
estimate LNR at ungauged watersheds. Since AWC is gov-
erned by field capacity and wilting point, it is an indicator
of the storage capacity of the soil for usable/consumable wa-
ter: the larger the storage capacity, the higher the degree to
which the system is supply-limited, thus pointing to aridity.
If the storage capacity is low, on the other hand, the more
complicated interplay among various predictors needs to be
considered, and one cannot simply assume that aridity is the
primary indicator of hydrologic similarity. We also found the
soil organic matter content a quite competitive surrogate for
AWC, meaning that if organic matter content was used here
instead of AWC, we would end up with a slightly less accu-
rate but overall similar classification. We conjecture that this
is because of the high positive correlations between organic
matter content and AWC (Hudson, 1994).

Further down the classification tree, watersheds with lower
AWC are classified roughly as arid or humid watersheds by
the long-term aridity index. For the more humid watersheds
(Fig. 9, nodes 4 through 14), regionalization similarity is con-
trolled by different predictors, but the dominant predictors
for LNR estimation are almost always the climate variables
(nodes 6, 8, 11, and 12, which contain 1576 watersheds in
total). Only at a handful of watersheds (nodes 13 and 14,
which contain only 185 watersheds in total) are aridity in-
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Figure 9. CART model classifying the RMSE labels of the testing watersheds. Splitting rules are shown in white nodes, while leaf nodes are
colored based on the classification results. For each leaf node, the brightness of the coded color indicates the node impurity (the brighter the
more impure), where impurity is defined as the probability that two randomly chosen watersheds within the node have different labels. On
top of every node, in brackets, is the node number, provided for convenient referencing. The predictors in the splitting rules are expressed
in code names for convenience; a reference table is provided in the upper right. For each leaf node, the model of the highest multinomial
probability of having the best performance is shown first, which also determines the classification result, followed by the model of the second
highest probability, also to indicate the impurity. Underneath each leaf node box is the number of watersheds belonging to the leaf. Note that
the legend does not include benchmark because the benchmark model is never the best-performing model at any testing watershed. k = 5 is
marked as “unused” in the legend because there is no leaf node where p(B5) is the highest.

dices not dominant. However, some interesting conjectures
can be made by taking a closer look at these two nodes.

Node 14 is a small but unique cluster, featuring water-
sheds that have low AWC, are humid, and have relatively ho-
mogeneous paragneiss and/or schist bedrock. Both of these
bedrock types belong to the category of crystalline rock and
often feature layering in a particular orientation. The ground-
water movement in such a rock formation often depends on
foliation, i.e., rock breaks along approximately parallel sur-
faces, which affect the direction of the regional groundwater
flow (Singhal and Gupta, 2010). Hence we observe a con-
dition where the ample water supply cannot be substantially
held by the soil due to low AWC, and the regional ground-
water movement might be controlled by bedrock layering
and foliation. Low AWC is an indication of less clayey soils,
and implies that infiltration/percolation through the soil layer
might be facilitated by relatively higher permeability. Water
could thus easily enter the bedrock layer, which is rather hori-
zontally homogeneous. To that end, those predictor sets other
than k = 6 become less informative, while the predictor set
k = 6 becomes relatively more informative. In fact, these wa-
tersheds are mostly the positive outliers at k = 6 in Fig. 6b,
where the predictive power of the geology predictors is at its
best.

Node 13 features watersheds that have low AWC, are hu-
mid, are not dominated by homogeneous paragneiss and/or

schist, have a relatively steep average slope, and have a
large amount of annual precipitation. The low aridity is pri-
marily driven by precipitation rather than evapotranspira-
tion. In fact, these watersheds are mostly outliers featuring
an extremely low aridity index (below 0.65) due to ample
precipitation. Under such conditions, evapotranspiration is
expected to operate to its full potential; i.e., it is shifting
from a water-limited state to an energy-limited and canopy-
controlled state. In addition, as evapotranspiration is near its
full potential, the drainage of the excess precipitation would
be controlled by the topography of the watershed (e.g., the
slope and the sinuosity of the stream). Fast drainage leaves
less water available for infiltration and recharge, and vice
versa. To that end, the land cover type and topography now
start to play a dominant role in hydrologic similarity. It is
noteworthy to point out node 20 here. Node 20 features wa-
tersheds that are relatively humid among the arid watersheds
(φ in the range from 0.9 to 0.99) and have ample precipita-
tion. The similarity of node 20 to node 13 supports our con-
jecture that the dominance of land cover and topography pre-
dictors is due to the precipitation-driven humid environment
that is relatively more capable of catering to the evapotran-
spiration water demand and features excess precipitation.

On the other side of the tree (Fig. 9, node 15 through 21),
the resulting classification is quite diverse, and the impurity
of each node is relatively high. Aridity no longer plays the
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dominant role, and the hierarchical similarity structure be-
comes complicated, so that it is difficult to make straightfor-
ward physical interpretations. The most important message
we get is the significant risk one would face if one considers
aridity, or any climate variable in general, as the primary indi-
cator of hydrologic similarity when AWC is low and aridity
index is high. In summary, although climate predictors are
still the most important ones on average, within the context
of the hierarchical similarity we have identified certain con-
ditions under which either non-climate predictors become
dominant or no dominant predictor set can be straightfor-
wardly identified, all of which contribute to the understand-
ing of the dynamic hydrologic similarity.

4.2.2 Nesting by LPD

The classification of the LPD labels is shown in Fig. 10.
In general, the root part of the classification tree (nodes 1
through 3) is quite similar to that found in Fig. 9, where
AWC and long-term aridity define two sequential overarch-
ing separations of watersheds. However, further down the
tree the leaf part is significantly different. The classification
essentially leads to only three big clusters (Fig. 10, nodes 2,
7, and 9), and the other leaf nodes only contain a few wa-
tersheds. Node 9 features arid watersheds with low AWC,
where we end up with a highly impure leaf node, and even
the highest multinomial probability is only 0.27. No further
splitting rule could significantly reduce classification error.
This is supportive of our previous argument that when arid-
ity index is high and AWC is low, it is risky to resort to cli-
mate variables for hydrologic similarity, as shown here that
it is difficult to even identify a dominant predictor set. As
mentioned in Sect. 4.1.2, underestimation of the predictive
variance (σ 2

k ) leads to low LPD, and thus it is difficult to
make physical interpretation out of the results in Fig. 10, ex-
cept for nodes 1 through 3, which are quite similar to their
counterparts in Fig. 9. Therefore, with the LPD labels we are
only able to identify the overarching regionalization similar-
ity controlled by AWC and long-term aridity.

RMSE and LPD represent views of predictive accuracy
in an estimation problem and a simulation problem, respec-
tively. Intuitively, if one only considers unimodal predictive
distribution with limited skewness, a high predictive density
at a value directly implies a closeness of the distribution cen-
tral tendency to that value. However, the reverse is not neces-
sarily true: either overestimation or underestimation of vari-
ance might possibly lead to low predictive density, even if
the mean is close to the target value (e.g., Fig. 8). Based
on whether RMSE or LPD is used as the accuracy metric
– which implies the scope of LNR estimation – we can ob-
serve some common features as well as some distinctions of
the structure of the hypothesized hierarchical similarity.

Fortunately, regardless of the metric of predictive accu-
racy, in both Figs. 9 and 10 the first three nodes are remark-
ably consistent, and the effect of the metric of predictive ac-

Figure 10. Same as Fig. 9, except that here the classification is done
using the LPD labels. The predictors in the splitting rules are ex-
pressed in code names for convenience; please refer to the same
reference table in Fig. 9.

curacy is only manifested at watersheds with low AWC. This
supports the suggestion that AWC plays a pivotal role in hy-
drologic similarity for mean annual LNR estimation.

5 Discussion

In this section, we revisit the two research objectives pointed
out in Sect. 1 by discussing the key features of the approach,
the key findings from the case study, as well as the limitations
of the case study.

5.1 The nested tree-based modeling approach

The nested tree-based modeling approach proposed in this
study is essentially a coupling of BART and CART. As
demonstrated in Sect. 2, both BART and CART are in-
dependent of the physical background and are pure data-
driven machine learning techniques. Therefore, in principle
as long as there are data, the nested tree-based modeling
approach is applicable like any other data-driven approach.
However, one may argue that (1) the in-principle applica-
bility does not set the nested tree-based modeling approach
apart from other data-driven machine-learning approaches,
and that (2) it would be counter-intuitive to advocate a data-
driven approach with a seemingly data-rich case study (here
“data-rich” refers to the fact that each MRB consists of thou-
sands of watersheds; see Sect. 3.1) when the study actually
emphasizes ungauged watersheds.
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Our explanation starts with explaining two significant ad-
vantages of the nested tree-based modeling approach. First
of all, the greatest advantage of BART (as mentioned in
Sect. 2.2) is that it outputs the posteriors of the model pa-
rameters, which could lead to posteriors of the target re-
sponse. The advantage of having the posteriors is that the
users/modelers can then derive the desired information at
will, such as percentiles, moments, information gain, or the
posterior mean and variances, like what was demonstrated
in the case study. Conditional simulation is also made easy
when the posteriors are available, opening the door for Monte
Carlo analyses. Second, following the statement that one can
obtain the statistics or representative metric of interest, the
nesting of BART models under CART can be done with the
said metric, resulting in the corresponding probability mass
function of the plausible BART models. For example, the
classification shown in Fig. 9 is based on RMSE, which is
then based on the posterior mean values. This is essentially
a proposal–comparison-based consideration of model struc-
ture uncertainty.

How do the aforementioned two advantages of the nested
tree-based modeling approach justify the use at ungauged
watersheds? First, of course the performance of the model
depends on the quality and the quantity of training data. In
this sense all modeling approaches are the same, and ap-
plying BART does not disproportionally enhance the predic-
tive accuracy when the data are limited. However, what sets
BART apart is the Bayesian feature that accounts for model
parameter uncertainty properly in the form of conditional dis-
tribution, which cannot be done as easily with only a few
point estimates or a few posterior statistics. Second, uncer-
tainty exists not only for the model parameters, but also for
the models themselves. The nested tree-based modeling ap-
proach can help us obtain an informed empirical probability
mass function, p(Bk), of the plausible BART models (which
was also exemplified in the case study). The fact that at un-
gauged watersheds in situ data are absent and ex situ data can
be limited in quantity and/or quality accentuates the impor-
tance of uncertainty quantification, and the nested tree-based
modeling approach offers a Bayesian solution to that, making
itself not only applicable, but also advantageous, at ungauged
watersheds.

One may then argue how a modeler would make an in-
formed proposal of plausible BART models in the first place.
This is where physical knowledge comes into play, and the
proposal is indeed case specific. This is why we proposed
the hypothesis of hierarchical similarity, which can be inte-
grated with the nested tree-based modeling approach to study
the behavior of a dynamic hydrologic similarity system, like
what was demonstrated with the case study. Unlike the gen-
erality and the merits of the nested tree-based modeling ap-
proach, our findings regarding the variation of p(Bk) and the
shifts in dominant controlling factors of recharge are indeed
specific to the context of the case study, which will be dis-
cussed next.

5.2 The hierarchical similarity hypothesis and the shift
in dominant physical processes

With BART’s ability to simultaneously model nonlinear
and/or interaction effects and present uncertainty in a fully
Bayesian fashion, we are able to show how the controlling
factors of hydrologic similarity vary among different water-
sheds, among different conditions, and among different accu-
racy metrics. These are all manifested in the case study under
the context of the hierarchical similarity hypothesis.

Climate variables have been identified as the dominant fac-
tors in previous studies (see Sect. 1), and they are indeed on
average the most dominant factors in our case study. How-
ever, the hierarchical similarity shows potential risks if one
resorts to climate variables to define hydrologic similarity
without considering other physical watershed characteristics,
especially the soil available water content.

The details of the hierarchical similarity are inferred from
the data in the fashion of supervised machine learning, using
six BART models and one benchmark model nested under
one classification tree. It is of great importance to have two
levels in such a system, as it allows for identification of the
shifts of dominant factors under different conditions. These
shifts indicate shifts in dominant physical processes, as ex-
emplified by nodes 13 and 20 in Fig. 9, where we observed
the shift from water-limited evapotranspiration to energy-
limited evapotranspiration. Therefore, we conjecture that it
is the shift in dominant physical processes that is driving,
and thus is reflecting, the shift in the controlling factors of
hydrologic similarity under different conditions.

5.3 Limitations of the case study

Here, we provide discussions about the limitations of the case
study from the aspects of the data set, the target response, and
the partitioning of data.

5.3.1 The scale of the target response

A major limitation of the case study is that the target hy-
drologic response is the logit normalized watershed-averaged
annual groundwater recharge. This is a large-scale spatiotem-
porally homogenized response, and in this study, the data
were based on baseflow analyses. To that end, a working as-
sumption about the reliability of the baseflow analysis was
made without rigorous proof (see Sect. 3.1). The findings
of the case study are all under the context of this work-
ing assumption, and thus, they should not be applied to
recharge/LNR at other spatiotemporal scales or to other hy-
drologic responses without careful considerations.

5.3.2 The MRB-based partitioning of watersheds

Although we tried to justify the MRB-based partitioning by
the reasons listed in Sect. 3.4.1, we acknowledge that this
may not be the best partitioning method for demonstrating
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the full potential of the estimating power of BART. An as-
sociated limitation is identified, which stems from the data
not covering a desirable range of values. An example was
already presented in Sect. 3.4.1 and Fig. 4. As discussed in
Sect. 5.1, the limitations in the data accentuate the advan-
tage of our approach regarding the consideration of uncer-
tainty, but it is also recognized that it could be challenging
to discover the same findings if MRB 1 provided the training
data for MRB 2, which is part of the reason why we kept the
MRB-based partitioning.

Another case of lack of data coverage can be found in our
climate predictor data. Since aridity index is the ratio of po-
tential evapotranspiration to precipitation (φ = Ep/P ), one
might be surprised by the differences among the cases of
k = 1, k = 2, and k = 3 in the results. The main reason is
revealed in Fig. 11. The Ep values at the training and test-
ing watersheds are so distinct that, essentially, all the testing
watersheds are outliers from the point of view of a BART
model trained at the training watersheds. On the other hand,
the φ values at the training and testing watersheds share the
range from about 0.6 to 1.2, and only differ at the two ex-
treme ends. In other words, the predictor–response relation-
ships inferred by using φ can be transferred due to the over-
lapping range (Fig. 11c), but the relationships inferred us-
ing Ep > 1000 mm cannot be effectively transferred to wa-
tersheds with Ep < 1000 mm (Fig. 11b). Although it is not
shown, a similar case can be found by comparing φ with Ep.

Although this might have been avoidable by using a more
sophisticated design of cross-validation, we kept the MRB-
based holdout method on purpose. In addition to the reasons
that were explained in Sect. 3.4.1, another motivation is that,
in reality, the data at hand come in as is. This means there
is no guarantee that the measurements will cover a particular
range or that the watershed characteristics of the ungauged
watersheds of interest are within a desirable range. The pre-
vailing superiority of φ and φ over P , P , andEp found in our
results shows an important advantage of dimensionless pre-
dictors, that they tend to be more transferable from one site
to another, and hence, they may be more suitable for studies
targeting ungauged watersheds.

5.3.3 Limited temporal data coverage

Another limitation is the lack of temporal coverage. Given
limited data coverage along the time axis, in the case study
we only studied the LNR in the year of 2002, and we consid-
ered two types of climate predictors: those from the same
year and those from the long-term average. However, the
recharge process being highly nonlinear, it is not impossible
that some predictors representing the antecedent conditions,
such as precipitation from years prior to the year of 2002,
could affect the LNR in the year of 2002. Not having multi-
ple years of climate data prevents us from testing the effects
of antecedent conditions or the effects that take place at vari-
ous multi-year scales, and thus it is clearly a limitation of the

Figure 11. Distributions of (a) P , (b) Ep, and (c) φ at watersheds
in MRB 1 (the testing watersheds) and MRB 2 (the training water-
sheds).

case study. Because of this limitation, we made a steady-state
working assumption (mentioned in Sect. 3.1), with which we
assume that the effects of climate predictors from the pre-
vious years are captured by the long-term average predic-
tors, and we also assume negligible effect of climate change.
While acknowledging the inclusion of multiple years of cli-
mate data could have made an impact, note that the highly
consistent roots of the trees in Figs. 9 and 10 are based on
soil AWC and the long-term average aridity index, both of
which are expected to be relatively insensitive to the inter-
annual variation of climate predictors. Therefore, we expect
the findings corresponding to the roots of the trees in Figs. 9
and 10 to be relatively less affected by the limitation of not
having multiple years of climate data.

5.3.4 Non-comprehensive list of plausible models

The proposal of plausible BART models was guided by a
conceptual understanding and grouping of the available pre-
dictors. As mentioned in Sect. 3.4.2, our proposal does not
cover a comprehensive list of plausible models, nor does it
necessarily include the “best” or “true” model. The effect of
different proposals of plausible BART models, which repre-
sents different perspectives of the conceptual understanding
of the underlying physics, was not investigated in the case
study, and remains an interesting follow-up that could be pur-
sued in future studies.
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6 Conclusions

In this work, we proposed a nested tree-based modeling
approach with three key features: (1) full Bayesian quan-
tification of parameter uncertainty, (2) nonlinear regres-
sion in order to model the predictor–response relationship,
and (3) proposal–comparison-based consideration of model
structure uncertainty. We applied the nested tree-based mod-
eling approach to obtain logit normalized recharge estimates
conditioned on ex situ data at ungauged watersheds in a case
study in the eastern US. We hypothesized a hierarchical simi-
larity to explain the variation of the probability mass function
of plausible models, and thus to investigate the behavior of a
dynamic hydrologic similarity system.

The findings of this study contribute to the understanding
of the physical principles governing robust regionalization
among watersheds. Firstly, consistent with previous studies,
we found that the climate variables are on average the most
important controlling factors of hydrologic similarity at re-
gional and annual scales, which means a climate-based re-
gionalization technique is on average more likely to result
in better estimates. However, with our hierarchical similarity
hypothesis we revealed certain conditions under which non-
climate variables become more dominant than climate vari-
ables. In particular, we demonstrated how soil available wa-
ter content stood out to be the pivotal indicator of the variable
importance of aridity in hydrologic similarity. Moreover, we
showed that with hierarchical similarity one could identify
shifts in dominant physical processes that are reflecting shifts
in the controlling factors of hydrologic similarity under dif-
ferent conditions, such as water-limited evapotranspiration
versus energy-limited evapotranspiration, or homogeneous
and foliated bedrock versus heterogeneous bedrock. As the
controlling factors change from one condition to another, the
suitable regionalization technique also changes. We demon-
strated how the hierarchical similarity hypothesis could indi-
cate mechanisms by which available water content, aridity,
and other watershed characteristics dynamically affect hy-
drologic similarity. The nested tree-based modeling approach
can be applied to identify plausible sets of watershed charac-
teristics to be considered in the regionalization process.

The contributions of this study may be viewed differently
depending on individual cases. In a situation where ground-
water recharge is the ultimate target variable at ungauged
watersheds, the nested tree-based modeling approach offers
a systematic way to obtain informative predictive distribu-
tions that are conditioned on ex situ data. In a different case,
where recharge estimation at ungauged watersheds is but one
component of a greater project, the aforementioned informa-
tive predictive distributions can be treated as informative ex
situ priors, which could be further updated and/or integrated
into simulation-based stochastic analyses where recharge is
an input/component of other models/functions. At ungauged
watersheds that will become gauged in the foreseeable fu-
ture, the informative predictive distributions again serve as

informative ex situ priors that could guide the design of the
sampling campaign, as different recharge flux magnitudes re-
quire different quantifying techniques (Scanlon et al., 2002;
Healy, 2010). The hierarchical similarity hypothesis offers
one plausible explanation of the dynamic nature of hydro-
logic similarity, which affects the application of regionaliza-
tion. Lastly, it should be pointed out that the nested tree-
based modeling approach is independent of the target re-
sponse and the predictors of interest, so it could be integrated
into future studies within or beyond the field of hydrology to
study hierarchical predictor–response relationships.
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