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Abstract. The area to be cropped in irrigation districts needs
to be planned according to the available water resources to
avoid agricultural production loss. However, the period of
record of local hydro-meteorological data may be short, lead-
ing to an incomplete understanding of climate variability and
consequent uncertainty in estimating surface water availabil-
ity for irrigation area planning. In this study we assess the
benefit of using global precipitation datasets to improve sur-
face water availability estimates. A reference area that can be
irrigated is established using a complete record of 30 years
of observed river discharge data. Areas are then determined
using simulated river discharges from six local hydrological
models forced with in situ and global precipitation datasets
(CHIRPS and MSWEP), each calibrated independently with
a sample of 5 years extracted from the full 30-year record.
The utility of establishing the irrigated area based on simu-
lated river discharge simulations is compared against the ref-
erence area through a pooled relative utility value (PRUV).
Results show that for all river discharge simulations the ben-
efit of choosing the irrigated area based on the 30 years of
simulated data is higher compared to using only 5 years of
observed discharge data, as the statistical spread of PRUV
using 30 years is smaller. Hence, it is more beneficial to cal-
ibrate a hydrological model using 5 years of observed river
discharge and then to extend it with global precipitation data
of 30 years as this weighs up against the model uncertainty
of the model calibration.

1 Introduction

As water becomes scarce, efficient decision-making based on
solid information becomes increasingly important (Svend-
sen, 2005). Solid information on climate variability and cli-
mate change is key to adequately estimating the availability
of water for human livelihoods, the environment and agricul-
tural development (Kirby et al., 2014, 2015), especially for
irrigated agriculture, which by volume is the largest user of
freshwater (de Fraiture and Wichelns, 2010). Available cli-
matological records used for estimation of water resource
availability in the irrigation sector are, however, often short
(Kaune et al., 2017), and may not be representative of the
full distribution of climate variability. This may particularly
be so in developing countries, where the need to develop ir-
rigation areas is greatest and can lead to sub-optimal deci-
sions, such as the overestimating or underestimating of the
area that can be planted. Local authorities deciding on the ir-
rigated area clearly prefer to use the true record of climate
variability to estimate the adequate irrigation area to be able
to justify their decision based on expected economic benefits,
but these records may often be short.

Recent studies show that hydrological information from
remote-sensing datasets can be effectively used for esti-
mation of surface water availability (Peña-Arancibia et al.,
2016), for water accounting (Karimi et al., 2013) and to help
improve detection of droughts at basin scale (Linés et al.,
2017). Combined with local data, these datasets can poten-
tially provide improved information to support decisions in
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irrigated agriculture. Global hydrological models have been
used to estimate the river discharge at basin level for the de-
velopment of irrigated areas and to assess the risk of wa-
ter scarcity (Kaune et al., 2018), and although these show
promising results in large basins, the use of a calibrated local
hydrological model may be more suitable in smaller basins
(López López et al., 2016) as a finer spatial resolution may
then be used and local hydrological processes better repre-
sented.

Such local models will typically require some level of cal-
ibration, and the challenge is to calibrate these when the pe-
riod of record of the observed data from available in situ sta-
tions is limited. If the period of record is short, then the data
may not provide full representation of the true climatic vari-
ability, and the water resource estimate will be conditional
on whether the available data are from a relatively wet, nor-
mal or relatively dry period. This is particularly relevant in
climates that are influenced by phenomena such as the El
Niño–Southern Oscillation (ENSO).

Using hydrological models forced by a longer period of
record from available precipitation datasets may help im-
prove discharge estimates for reliably determining the irri-
gated area, as the climatic variability can be better repre-
sented. However, model uncertainty, as well as the uncer-
tainty of the representativeness of the model given the data
used in model calibration, will need to be taken into ac-
count. Recently, several global precipitation datasets have
become available, based on remote sensing as well as re-
analysis models, with periods of record spanning 30 plus
years. Examples include the CHIRPS precipitation dataset
(Funk et al., 2015), which integrates in situ meteorologi-
cal data and global earth observations, and the recently de-
veloped MSWEP precipitation dataset (Beck et al., 2017b),
which integrates in situ meteorological data, global earth ob-
servations and the ERA-Interim re-analysis datasets. Both
have been widely used to assess water availability and the
risk of water scarcity and drought events (López López et
al., 2017; Shukla et al., 2014; Toté et al., 2015; Veldkamp et
al., 2015).

Despite the opportunities these modern datasets offer, they
have largely been neglected by the irrigation sector for the
estimation of water resource availability and variability (Tur-
ral et al., 2010), which relies primarily on in situ datasets,
even when the availability of these datasets is often limited.
Assessing the potential benefit of combining data from avail-
able in situ stations, global earth observations and reanaly-
sis datasets to better estimate surface water availability can
therefore be of considerable value to irrigation managers.

In this paper we hypothesize that the simulated river dis-
charge for a period of record of 30 years using a calibrated
local model forced by datasets such as CHIRPS or MSWEP
provides more reliable estimates of water resource availabil-
ity and the area to be irrigated than when considering the
shorter time series of observed discharge that is used to cal-
ibrate the model. This is evaluated through an extended ver-

sion of the hydro-economic Expected Annual Utility frame-
work that determines the value of using each of the different
datasets in determining the areas that can be irrigated as a
function of the estimated availability of water.

2 Methods

The pooled relative utility value, PRUV, used in this study
is defined as a joined vector of six samples of the rela-
tive utility value. This value includes the irrigation areas for
river discharge simulations derived using different precipita-
tion datasets, the monthly probability of water scarcity using
these areas, and the potential yield reduction due to water
deficit for rice. The workflow of this study is shown in Fig. 1.

2.1 Coello Irrigation District, Colombia

We apply our analysis to the Coello Irrigation District
in Colombia. The Coello Irrigation District is an existing
irrigation district located in the upper Magdalena basin,
in the Tolima Department, a region subject to consider-
able climate variability and that is vulnerable to droughts
(IDEAM, 2015). The average monthly temperature in the
Coello District is 28 ◦C, with maximum daily temperatures
reaching 38 ◦C (station 21215080). The reference evapo-
transpiration is between 137 mm/month in November and
173 mm/month in August with a mean annual evapotranspi-
ration of 1824 mm/year. The irrigation district serves an irri-
gated flatland of approximately 250 km2, comprising mainly
irrigated rice, which is planted continually throughout the
year (Urrutia-Cobo, 2006). Rice total growth length is 4
months with high sensitivity to water deficit at the flower-
ing stage. Resulting yields are between 5.5 and 6.8 t ha−1

(DANE, 2016; Fedearroz, 2017). The local authority in
charge of the water management of the irrigation district
(USOCOELLO) reports a gross irrigation demand rate of
0.2 m3 s−1 km−2. This is a high demand rate mainly due to
low application and conveyance efficiencies, and high evap-
otranspiration demand.

The water available for irrigation depends on the to-
tal discharge of two rivers from neighbouring mountainous
basins: the Coello and Cucuana rivers (Fig. 2). The Coello
basin has an area of 2000 km2, and the Coello River has
a length of some 112 km starting at 5300 m.a.s.l. and flow-
ing into the Magdalena River at 280 m.a.s.l. with an av-
erage flow of 23 m3 s−1 (Vermillion and Garcés-Restrepo,
1996). In the Coello basin the precipitation is bimodal
with two peak months in May (186 mm/month) and Oc-
tober (127 mm/month) and two low months in January
(50 mm/month) and August (90 mm/month). The mean an-
nual precipitation is 1268 mm/year. The Cucuana basin has
similar physical characteristics to the Coello basin. In this
research, we focus only on the Coello basin to estimate the
surface water availability for irrigation, as the available dis-
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Figure 1. Workflow of the study to determine the pooled relative utility value using different irrigation areas obtained from in situ, CHIRPS
and MSWEP precipitation datasets.

charge data from the Cucuana River (Corea Station) are too
short for the purpose of our experiment.

2.2 Hydro-meteorological data

In situ precipitation and temperature data were obtained
from the network of meteorological stations operated by the
Instituto de Hidrología, Meteorología y Estudios Ambien-
tales (IDEAM), the Colombian hydro-meteorological insti-
tute, and interpolated to a gridded dataset with 0.1◦ spa-
tial and daily temporal resolution for the whole Magdalena–
Cauca basin (Rodriguez et al., 2017). The temperature data
were used to estimate potential evapotranspiration with the
Hargreaves method (Hargreaves, 1994).

Two global precipitation datasets were considered: (i) the
Climate Hazards Group InfraRed Precipitation with Sta-
tion data (CHIRPS; Funk et al., 2015) and (ii) the Multi-

Source Weighted-Ensemble Precipitation (MSWEP; Beck et
al., 2017). CHIRPS precipitation is a remotely sensed and
ground-corrected dataset available globally at 0.05◦ resolu-
tion, while MSWEP precipitation is a merged gauge, satellite
and reanalysis dataset available globally at 0.25◦ resolution.
A total of 14 stations were used for the in situ product. For
CHIRPS and MSWEP, seven stations and three stations were
used, respectively.

All precipitation, temperature and potential evapotranspi-
ration datasets are available for the 1983–2012 period. A
preliminary evaluation of the global precipitation datasets
was done. The global precipitation datasets (CHIRPS and
MSWEP) were compared against in situ data in the se-
lected basin. The performance indicators Kling–Gupta effi-
ciency (KGE), percentage of bias (Pbias) and Pearson cor-
relation (r) were used. The evaluation was done for multi-
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Figure 2. Map of the Coello and Cucuana river basins and the Coello irrigation district, and their location in the Magdalena macro-basin in
Colombia. The points indicate discharge stations and the squares indicate meteorological stations.

Figure 3. KGE, Pbias and r performance metric for monthly CHIRPS and MSWEP precipitation in the Coello basin for 30 years (1983–
2012).

annual monthly precipitation for the selected 30-year pe-
riod (Fig. 3). KGE results show that MSWEP performs bet-
ter than CHIRPS from October to May. Only in July does
MSWEP perform poorly (KGE=−0.1, Pbias= 100 %). We
cannot discard the use of MSWEP or of CHIRPS. At this
stage, we can recommend the use of each dataset for specific
months.

Daily river discharge data for the 1983–2012 period were
obtained from the stations operated by IDEAM at gauging
station Payande (21217070) in the Coello River.

2.3 Hydrological modelling

The Dynamic Water Balance Model (Zhang et al., 2008), a
lumped conceptual hydrological model based on the Budyko
framework (Budyko, 1974), was selected to simulate the
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Figure 4. Obtaining hydrological model simulations from the six
samples of 5 years of observed river discharge.

river discharge in the Coello basin at a monthly timescale.
The Dynamic Water Balance Model has been applied in sev-
eral basins around the world (Kaune et al., 2015; Kirby et al.,
2014; Tekleab et al., 2011; Zhang et al., 2008), showing reli-
able river discharge simulations at a monthly timescale. The
model has a simple structure without routing, simulating the
basin hydrological processes with a reduced number of pa-
rameters. There are only four model parameters: basin rain-
fall retention efficiency α1 (–), evapotranspiration efficiency
α2 (–), recession constant d (1/month), and maximum soil
moisture storage capacity Smax (mm). Low (high) values of
basin rainfall retention efficiency or evapotranspiration effi-
ciency implies more (less) direct runoff. The recession con-
stant d characterizes baseflow, with parameter values ranging
between zero and one. The maximum soil moisture storage
capacity relates to the root soil depth and soil texture of the
basin. As the Coello basin is small, routing processes can be
ignored when estimating monthly water availability, which is
calculated as the accumulated runoff in the basin upstream of
the point of interest.

In this study, surface water availability for irrigation was
established as the discharge in the Coello River, consider-
ing an environmental flow of 25 % from the available water
resources. An average maximum soil moisture storage ca-
pacity Smax of 176 mm was determined for the Coello basin
based on the soil texture and the depth of roots in the region.
The soil texture and the depth of roots were derived from
soil and vegetation maps provided by the Instituto Geográ-
fico Agustín Codazzi in Colombia at a scale of 1 : 500 000.
Typical values of the available water storage capacity of the
soil in millimetres per metres of depth were used based on
the soil texture (Shukla, 2013). These values were multiplied
by the depth of roots to determine the maximum soil mois-
ture storage capacity in the basin.

The hydrological model was forced with the different pre-
cipitation datasets (described in detail in Sect. 2.2). Although

river flow data were available for the full 1982 through 2012
period, to explore the influence of limited availability of ob-
served discharge data, six independent samples of 5 years
were extracted from the 30-year dataset (1983–1987, 1988–
1992, 1993–1997, 1998–2002, 2003–2007 and 2008–2012).
Each sample of 5 years was used for calibration of the model
parameters (Fig. 4). These samples were extracted as con-
tiguous samples of 5 years to represent different climatolog-
ical periods, and were applied to calibrate six sets of models,
each using one of the observed discharge samples. Prelim-
inary Monte Carlo simulation was developed to obtain the
full period of samples and then extract each sample for cali-
bration; 10000 model parameter sets (α1, α2, and d with val-
ues uniformly distributed between 0 and 1) were generated
and subsequently forced with the full dataset of 30 years of
in situ precipitation data (1983–2012). From this simulation,
the five best-performing model parameter sets are selected
for each of the 5-year samples based on the comparison of
the simulated and observed discharges for the corresponding
period. Model performance is measured using the KGE met-
ric (Gupta et al., 2009). This resulted in five calibrated mod-
els for six 5-year samples, which were used to provide sim-
ulated discharge data at the Payande station for the full 30-
year period, forced by each of the three precipitation datasets.
Performance metrics of the mean discharge simulation of the
five models were calculated separately for each month across
the six periods to evaluate the hydrological performance, in-
cluding KGE, Pearson’s correlation coefficient (r), and per-
cent bias (Pbias).

2.4 Determining the irrigated area

Similar to Kaune et al. (2018), the area that can be irrigated
is determined based on an operational target monthly water
supply reliability (R = 75 %), which means that the monthly
demand is met for on average 75 % of the years (Eq. 1). The
target reliability depends on local requirements and agreed
terms. We selected 75 % based on local consultation. The
monthly irrigation demand varies depending on the irriga-
tion area, which is the variable to be obtained. A fixed de-
mand rate of 0.2 m3 s−1 km−2 was used in the Coello Irriga-
tion District (Kaune et al., 2017).

R ≤ p {(Qa−Ai · r)≥ 0} , (1)

where R is the water supply reliability (or probability of non-
occurrence of water scarcity, pr {NWS}), p is the relative fre-
quency, Qa is the multi-annual monthly surface water avail-
ability (considering an environmental flow of 25 % from the
available water resources), Ai is the planned irrigation area
for dataset i (simulated or observed), and r is the demand
rate.

The water availability distribution for each calendar month
is established using the multi-annual monthly river dis-
charge, which may be obtained from either the observed or
simulated data. Given the small sample size of 30 years, the
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empirical distribution of water availability is obtained by ap-
plying a bootstrap resampling with replacement procedure,
with the size of the bootstrap set at 25 000. The bootstrap re-
sampling is applied for each month for the sample of 30 wa-
ter availability values (multi-annual monthly values). From
this sample we randomly draw X values, and leave these out
of the dataset. These are then replaced with X values drawn
from the remaining values, thus maintaining the same size of
the dataset. This process is repeated 25 000 times. The size of
the bootstrap is determined iteratively using a progressively
increasing sample size until a stable estimate of the empirical
distribution is achieved.

A reference irrigated area is established using the empiri-
cal distribution derived from the observed monthly river dis-
charges of 30 years (1983–2012). The areas that can be irri-
gated for each of the six calibrated models are similarly de-
termined but now using the discharge simulations for the full
30-year period. Irrigated areas are additionally obtained for
the six 5-year samples of observed discharge, and for com-
parison also using the 5-year period of simulated discharges
for each of the six calibrated models, where the period is
commensurate with the period used for calibration. For each
irrigation area that is obtained, the real probability of water
scarcity is determined using the observed surface water avail-
ability (which is also a multi-annual monthly bootstrap re-
sample), and the demand calculated using the estimated area
(Eq. 2).

pr{WS} = p
{(
Q̂a−Ai · r

)
< 0

}
, (2)

where pr{WS} is the probability of occurrence of water
scarcity, p is the relative frequency, Q̂a is the observed sur-
face water availability, Ai is the planned irrigation area ob-
tained from Eq. (1), and r is the demand rate. These proba-
bilities are then used to determine the expected annual utility
to evaluate the economic value (Table 1 and Sect. 2.5).

2.5 Evaluating the cost of choosing the irrigation area

The cost of choosing the irrigation area was evaluated with
an extended version of the hydro-economic framework de-
veloped by Kaune et al. (2018) based on the economic utility
theory (Neumann and Morgenstern, 1966). The cost is cal-
culated as the opportunity cost when the irrigation area is
selected to be too small, or the production loss due to water
scarcity when the irrigation areas are selected to be too large.
When the area selected is equal to the reference area, then
the cost is zero. Similarly to Kaune et al. (2018), the relative
utility value, RUV, is used to compare the expected annual
utility between the reference and the irrigated area derived
using either the simulated discharge or the shorter 5-year ob-
served discharge sample (Eq. 3).

RUV=
(Ui −Ur)

Ur
, (3)

where Ur is the expected annual utility (revenue) obtained
with the reference irrigation area from observed river dis-
charge, and Ui is the expected annual utility obtained with
any of the irrigation areas obtained from the discharge simu-
lations described in Sect. 2.4.

The expected annual utility U is defined as the ex-
pected annual crop production, given monthly probabilities
of (non-)water scarcity and considering a loss in crop produc-
tion if water scarcity does happen in any one month (Eq. 4).

U = pr {WS} · (PNWS−LWS)+ (1−pr {WS}) ·PNWS, (4)

where pr {WS} is the monthly probability of water scarcity
defined in Sect. 2.4; PNWS is the expected annual crop pro-
duction (PNWS = c ·Ai ·ye) which includes the irrigation area
Ai obtained from Sect. 2.4 and converted into hectares, price
of the crop per ton ($ t−1) and the expected crop yield ye
(t ha−1), and LWS is the annual production loss if water
scarcity happens in any one month.

To determine the annual production lossLWS, an approach
is applied where each month corresponds to the growth stage
distribution of the crop based on information provided by the
Coello Irrigation District. We assume that only rice is grown
in the Coello Irrigation District with a growing length of 4
months sown over the entire year. The loss in annual rice
production LWS due to water scarcity happening in any one
month is determined with Eq. (5):

LWS = c ·Ai ·
∑

month
(ye− ya) , (5)

where ye is the expected harvested crop yield in a month
(t ha−1) and ya is the actual harvested crop yield in a month
(t ha−1) due to water shortage happening in any one month.
Water shortage happening in any one month of the 4-month
crop period will lead to a yield reduction. The actual har-
vested crop yield ya obtained is determined with the FAO
water production function in Eq. (6) (FAO, 2012):(

1−
ya

ye

)
=Ky

(
1−

ETa

ETp

)
, (6)

where Ky is the weighted average yield reduction value per
month calculated from established yield reduction factors
due to water deficit for each growth stage of rice (FAO,
2012) and the distribution of growth stages as reported by
the Coello Irrigation District; ETa is the actual evapotran-
spiration and ETp is the potential evapotranspiration. In our
experiment, the actual evaporation is unknown, as this will
depend on irrigation scheduling and practice as well as pre-
cipitation. As this detail is beyond the scope of this paper,
we assume the reduction in evapotranspiration

(
1− ETa

ETp

)
to

be 20 % for the reference irrigation area when water short-
age occurs; 20 % is selected as this is the evapotranspiration
deficit that rice farmers can easily cope with (FAO, 2012). To
account for the increased deficit for irrigation areas selected
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Table 1. Evaluating the expected annual utility using the planned irrigation area from selected river discharge information relative to expected
annual utility using the reference irrigation area.

Using reference irrigation area Using planned irrigation area

Monthly probability Annual production under probability Higher or lower annual production
of water scarcity of water scarcity under probability of water scarcity

Monthly probability Annual production under probability Higher or lower annual production
of no water scarcity of no water scarcity under probability of no water scarcity

Expected annual utility Higher or lower expected annual utility

to be larger than the reference area, the evapotranspiration
reduction is increased proportionally, assuming the available
water is uniformly distributed in the new irrigation area. For
irrigation areas selected to be smaller, the reduction is de-
creased proportionally. An average price of 329 $ t−1 and an
expected rice yield of 6.8 t ha−1 based on national statistics
(DANE, 2016; Fedearroz, 2017) are used to estimate the ex-
pected annual rice production.

If RUV is equal to zero, then the expected annual utilities
obtained with the reference and simulated irrigation areas are
the same, and there is thus no cost associated with using the
simulated information. A negative RUV entails an opportu-
nity cost due to the planning of too small an irrigation area
(defined as cost type 1). A positive RUV entails an agricul-
tural loss due to the area being planned larger than can be
supported by water availability and water shortages thus oc-
curring more frequently than expected (defined as cost type
2). The statistical spread of RUV is derived from the boot-
strap resample. The spread depends on the probability of wa-
ter shortage being larger compared to the reference and on
the yield response factor, entailing that the production loss
incurred depends not only on the increased occurrence of wa-
ter shortage, but also on the sensitivity of the crop to water
deficit.

RUVs are pooled so as to give a PRUV to evaluate the
cost of choosing the irrigation area from the six possible irri-
gation areas obtained for a river discharge simulation. This is
done as it is not a priori clear, when only 5 years of observed
data are available, from which part of the full climatological
record these may be. The PRUV is a concatenated vector of
the RUV obtained for each calibration sample (Eq. 7).

PRUV= {RUV1‖RUV2‖. . .‖RUV6} , (7)

where PRUV is the pooled relative utility value and RUVx is
the relative utility value for each calibration sample (in this
case six samples).

Similar to RUV, the PRUV is a hydro-economic indica-
tor that can be larger than (cost type 2), equal to (no cost)
or smaller than zero (cost type 1). The statistical spread of
PRUV encompasses the variability of RUV among the six
calibration samples. If the statistical spread of PRUV is large,
then the variability of planned irrigation areas is large among

samples. This means that the cost of choosing the irrigation
area based on the available information is high. If on the other
hand the statistical spread of PRUV is small, then the vari-
ability of planned irrigation areas is also small and the cost
of choosing the irrigation area based on the available infor-
mation is low.

3 Results

3.1 Discharge simulations

The monthly observed and simulated discharges calculated
with the different precipitation datasets from the calibration
samples are shown in Fig. 5 (only CHIRPS with the samples
for the 1993–1997 and 1998–2002 periods are shown) and in
the Supplement (all samples and in situ and MSWEP). Dis-
charge simulations change depending on which precipitation
dataset is used as forcing and which sample is used to cali-
brate the hydrological model. In general, however, the mean
discharge simulations show an overall agreement with obser-
vations.

The performance metrics for each month are shown in
Fig. 6 and in the Supplement. In all months using the dis-
charge simulations with different precipitation datasets, pos-
itive KGE values are obtained with the exception of sim-
ulations with MSWEP in April and November, which are
both wet season months. In February (dry season) the highest
KGE value is obtained using the simulations with observed
precipitation (0.75). For all samples in February (dry season),
the KGE value is higher for discharge simulations with ob-
served precipitation and CHIRPS than those using MSWEP,
with the exception of one sample (2008–2012).

In terms of Pbias, simulations with MSWEP consistently
overestimate the discharge between October and May for all
samples. The largest overestimation occurs in April (wet sea-
son) (Pbias= 75 %). For simulations with observed precipi-
tation and CHIRPS, monthly Pbias follows a similar trend,
overestimating discharge in April for most samples and un-
derestimating discharge between January and April for only
two samples (1983–1987 and 1998–2002). Between May
and September underestimated discharges are obtained using
simulations with in situ and CHIRPS datasets for all samples.
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Figure 5. Observed and simulated discharge for the Coello River at Payende with 30 years (1983–2012) of CHIRPS precipitation (Sim 30 yr
PCHIRPS) for calibration samples 1993–1997 and 1998–2002, with the sample used to calibrate the model indicated in the header.

Simulations with MSWEP in June and July are also underes-
timated, with the exception of sample 1998–2002 (Pbias pos-
itive for all months).

The correlation values vary among simulations and for
each month. The correlation values range between 0.25 and
0.85. In February, using in situ precipitation, correlation val-
ues are above 0.6. Simulations with CHIRPS and MSWEP
result in correlation values between 0.7 and 0.8 in February.
The largest difference between correlations occurs in March
(CHIRPS correlation is 0.5, MSWEP correlation is 0.6, and
in situ correlation is 0.8).

Simulations with in situ precipitation and CHIRPS are
found to behave similarly, which is not surprising as CHIRPS
uses station-corrected data. MSWEP also includes station-
corrected data, but they are derived in part from the ERA-
Interim data which in themselves are not good at capturing
convective precipitation (Leeuw et al., 2015). This explains
the poor simulation performance with MSWEP in April and
November as these are wet months in a tropical region with
predominant convective precipitation.

As our work is focused on determining the critical irri-
gation area under monthly water scarcity, we are less con-
cerned with the simulation performance in wet months, but
focus rather on the more critical dry months (e.g. February),
which have shown to perform well for the selected precipita-
tion datasets.

3.2 Estimating the area that can be irrigated

The areas that can be irrigated based on the water availabil-
ity of the Coello River are established using the simulated
discharges from Sect. 3.1., a defined environmental flow, a
fixed demand rate per unit area cropped, and a water sup-
ply reliability target of 75 %. Irrigation areas are established
for the reference discharge (observed 30 years); for each of
the 30-year discharge simulations using the models derived

with each calibration sample; as well as using the observed
discharges for each of the six 5-year samples. Finally, for
comparison, irrigated areas are derived using only 5 years of
simulated data for each of the six 5-year samples, where the
simulated 5 years are the same as the 5 years used in cal-
ibration. The areas that can be irrigated given the simulated
(or observed) discharges are found to vary significantly when
compared to the reference irrigated area (which was estab-
lished as 67.45 km2), with areas ranging from 2 % to 40 %
smaller to 1 % to 69 % larger (Table 2). In the case of the
30-year simulations, the irrigation areas obtained are found
to be always larger than the reference area, with the overesti-
mation ranging from 3 % to 69 % (Table 2), with the excep-
tion of one sample where an underestimation of 3 % when
using the observed precipitation is found. The largest esti-
mates of areas that can be irrigated is obtained with MSWEP
simulation (69 %), which agrees with discharge model per-
formance (Sect. 3.1), as KGE and r values are the lowest
for this model, while the bias values are the highest of all
the simulations. For simulations with CHIRPS and observed
precipitation, Pbias is positive for sample 1998–2002 in the
dry months (e.g. February), leading to an overestimation of
the irrigation area of 40 %. For sample 1993–1997, Pbias is
negative for these simulations (close to −10 % in February),
resulting in a lower estimation of the irrigated area. In this
case, an underestimation of 3 % in the area is found for the
simulation with observed precipitation, but an overestimation
of 3 % in the area is found for the simulation with CHIRPS.
This is related to the difference in variability as the water
availability is derived based on the distribution and not on
the mean.

The areas that can be irrigated that are obtained using
the observed discharges for each of the six 5-year periods
show relatively small variation when compared to the ref-
erence area, ranging from 19 % smaller to 11 % larger. The
average area of the six 5-year samples is slightly smaller at
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Figure 6. KGE, Pbias and r performance metric for simulated river discharge for the complete time period of 30 years (1983–2012) using
three different precipitation datasets (in situ, CHIRPS and MSWEP) in the Coello basin. Two calibration samples are shown (1993–1997,
1998–2002), with the sample used to calibrate the model indicated in the header.

Table 2. Irrigation areas obtained using different datasets of river discharge information in the Coello basin. The observed river discharge
from the complete period of record of 30 years (1983–2012) is the reference information. The irrigation areas are obtained for an agreed
water supply reliability of 75 % in any one month.

Six samples of observed river discharge of 5 years

Hydrological information used 1983–1987 1988–1992 1993–1997 1998–2002 2003–2007 2008–2012

Size of the irrigation area (km2)

Observed river Q30 years (reference) 67.45
discharge Q5 years 67.93 54.66 65.92 75.18 60.82 65.43

Pin situ30 years 98.97 85.24 65.48 93.93 79.07 84.77
Pin situ5 years 51.53 47.68 57.76 79.14 42.70 52.48

PCHIRPS30 years 92.38 81.72 69.37 94.56 78.32 80.97
PCHIRPS5 years 47.84 40.20 61.47 84.13 43.13 45.80

PMSWEP30 years 105.90 99.58 86.94 113.97 94.53 98.47
PMSWEP5 years 58.56 58.40 74.17 109.09 55.61 59.69

64.99 km2, just 2.5 % smaller than the reference. Conversely,
the areas derived using the simulations for each of the 5-
year periods show that these vary quite considerably, with
an overestimation ranging from 10 % to 62 % and an un-
derestimation ranging from 9 % to 40 % across all precipi-
tation sources. This range is comparable for all three precip-
itation forcing datasets, indicating that the variability can be
attributed primarily to model error, conditional on the 5-year
dataset used in calibration.

3.3 Probability of water scarcity

The probabilities of water scarcity using the irrigation areas
obtained for each of the simulated and observed discharges
for the 5-year periods as well as for the reference are shown
in Figs. 7 and 8 (samples 1993–1997 and 1998–2002) and
in the Supplement (all samples). The probabilities of water
scarcity using the irrigation area obtained using the observed
discharges are shown in Fig. 7. As expected, the probabil-
ity of water scarcity in February, which is the most critical
month, shows a median value equal to 25 % and probabilities
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Figure 7. Probability of water scarcity using the reference irrigation area obtained with the observed river discharge of 30 years (Obs 30 yr)
and the reference surface water availability. Probability of water scarcity using the irrigation area obtained with the observed river discharge
of 5 years (Obs 5 yr) and the reference surface water availability. Boxplots show the median, interquartile range and minimum–maximum
range.

lower than 25 % for the other months when using the irriga-
tion area obtained with the reference discharge (30 years).
The spread of the probability of water scarcity indicated by
the box–whiskers plot, showing the mean, interquartile range
and minimum and maximum, is due to the distribution of the
bootstrap, representing the uncertainty in the estimate due to
the 30-year period of record.

Figure 7 similarly shows the probability of water scarcity
for irrigation areas obtained using observed discharges for
the 5-year periods: 1993–1997 and 1998–2002 (results for
the other four periods included in the Supplement). This
shows that for the period 1993–1997, the median value is
lower than 25 % for all months, while for the period 1998–
2002 the median value is higher than 25 % for January and
February. This reflects the smaller or larger irrigated areas
established with each of these datasets. Figure 8 shows the
probability of water scarcity for irrigation areas obtained us-
ing the discharge simulations of 30 years. The probability
of water scarcity in February shows median values higher
than 25 %, commensurate with the overestimation found in
the hydrological model, with the exception of one simulation
using observed precipitation, calibrated with the 1993–1997
sample of observed discharge data. Between April and June
and in October to November, using the irrigation areas ob-
tained with the discharge simulations, the probability of wa-
ter scarcity is always found to be lower than 25 %, as these
are the two wet seasons of the bimodal climate. For all sam-
ples, the probability of water scarcity is highest for the simu-
lations using MSWEP precipitation. Using the irrigation ar-
eas obtained from the simulations calibrated with the 1983–
1987 and 1998–2002 samples shows higher probabilities of
water scarcity for all months when compared to the simula-
tions calibrated with the other samples. This shows that these
years were relatively wet, influencing discharge simulations
and resulting in larger irrigation areas being selected. The
pattern for sample 1993–1997 is more similar to the pattern

found using the reference area found with the 30 years of
observed discharge.

The probabilities of water scarcity for irrigated areas ob-
tained with simulated discharges of only 5 years are shown in
Fig. 8 (again, results for the 1993–1997 and 1998–2002 sam-
ples are shown, with the remaining four periods provided in
the Supplement). The monthly probabilities of water scarcity
show large differences between samples. In this case, four
out of the six samples do not show a median probability of
water scarcity higher than 25 % for any month, meaning that
the irrigation area is underestimated compared to the ref-
erence. For the 1998–2002 sample, the probability of wa-
ter scarcity is highest, with a median probability of water
scarcity between 50 % and 75 % in February.

3.4 Relative utility value

The annual expected utility is calculated using the economic
return of the rice crop and the estimated yield determined
using the irrigated areas established with the simulated dis-
charge information, and the probability of water scarcity in
each month for the 30-year period based on the observed dis-
charges. Relative utility values are then found by comparing
these against the annual expected utility calculated using the
reference area and discharge information.

Figure 9 shows the relative utility values obtained for areas
determined using the 5-year samples of observed discharge
for the 1993–1997 and 1998–2002 periods (again, the re-
maining four periods are provided in the Supplement), with
median estimates of −0.02 and 0.11, respectively.

Relative utility values obtained for areas determined using
discharge simulations of 30 years are shown in Fig. 10 (and
in the Supplement), with median estimates between −0.03
and 0.65. The relative utility values closest to zero are found
for simulations using both the observed and CHIRPS pre-
cipitation datasets, −0.03 and 0.03, respectively, both when
using the 1993–1997 sample for model calibration. Of the
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Figure 8. Probability of water scarcity using the irrigation area obtained with simulated river discharge information (Sim 30 yr Pin situ, Sim
30 yr PCHIRPS, Sim 30 yr PMSWEP; Sim 5 yr Pin situ, Sim 5 yr PCHIRPS, Sim 5 yr PMSWEP) and the reference surface water availability.
Boxplots show the median, interquartile range and minimum–maximum range.

six samples, this 5-year period was already noted to be most
representative of the whole 30-year period.

For all samples, the relative utility values for simulations
using the MSWEP dataset are found to be largest, with values
between 0.3 and 0.65, indicating a higher production loss due
to the higher probability of water scarcity. For simulations
using the 30-year observed precipitation, consistent median
values between 0.18 and 0.45 are obtained, with the excep-
tion of one sample (−0.03). Those obtained with CHIRPS
simulations are consistent with those found using the ob-
served precipitation.

The relative utility values obtained using irrigated areas
determined with the simulated discharges of only 5 years
(Fig. 10 and the Supplement) show median estimates be-
tween −0.2 and 0.6 (MSWEP), which are larger than the
simulations of 30 years. The RUVs closest to zero are found
for simulations with CHIRPS (−0.09), while results for sim-
ulations using the observed precipitation show more consis-
tent values closer to zero. In this case, results show more neg-
ative RUVs for each simulation forcing, and results are less
consistent between samples compared to the results obtained
with the 30 years.

For the 1993–1997 period, the RUV obtained for the irri-
gated area determined with observed discharges of 5 years
(−0.02) and the RUV obtained for the area determined with
simulated discharges of 30 years using either CHIRPS or the
observed precipitation (0.03 and−0.03) are similar and close
to zero. The extended precipitation period compensates for
the model uncertainty and results in reliable RUV estimates.

A large statistical spread in RUV is found in months where
the probability of water scarcity is higher than the reference.
This is clearly shown for MSWEP simulations, which have
the largest estimates of the irrigated area. For months where
the probability of water scarcity is lower than the reference,
the statistical spread in RUV is low. In these cases the statis-
tical spread of RUV is a result only of the spread of the ref-
erence annual expected utility, resulting from the distribution
of the probability of water scarcity. The statistical spread of
the RUVs is lower when the simulated annual expected util-
ity and the reference annual expected utility are more similar,
which means that the RUV is closer to zero, as shown when
using the 1993–1997 sample. An absence of statistical spread
for the RUVs reflects zero probability of water scarcity in
both the simulated and reference expected annual utilities.
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Figure 9. Relative utility value using an observed river discharge of 5 years for water scarcity happening independently in any one month.
Ky is the sensitivity of the crop to water deficit. Boxplots show the median, interquartile range and minimum–maximum range.

Figure 10. Relative utility value using simulated river discharge of 30 and 5 years for water scarcity happening independently in any one
month. Ky is the sensitivity of the crop to water deficit. Boxplots show the median, interquartile range and minimum–maximum range.

Even though the probability of water scarcity is not the
highest in November, the statistical spread of the RUV is
the largest when water scarcity happens in that month. This
is due to the high sensitivity of the crop to water deficit
(Ky = 1.4) in November, which then becomes the determin-
ing factor for obtaining a large statistical spread. On the other

hand, the smallest statistical spread, or no statistical spread,
of the RUV is found when water scarcity happens in February
or May. We select February, May and November as the repre-
sentative months for further analysis with the pooled relative
utility value.
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Figure 11. Pooled relative utility value using observed river dis-
charge of 5 years for water scarcity happening independently in
February, May or November. Ky is the sensitivity of the crop to
water deficit. Boxplots show the median, interquartile range and
minimum–maximum range.

3.5 Pooled relative utility value

The PRUV is obtained from the RUVs for each of the six
samples in Sect. 3.4. In Figs. 11 and 12, the PRUV results
for areas estimated using the observed discharges, and for
the simulated discharges for 5 and 30 years, are shown for
November, February and May. These are the representative
months identified in Sect. 3.4, with similar results found for
PRUVs when water scarcity happens independently in each
month.

The statistical spread of PRUVs represents the risk of ran-
domly choosing one irrigation area out of the six possible ir-
rigation areas given by the six calibration samples of 5 years.
Results for the 5-year simulations show a large statistical
spread of the PRUVs, with the distribution positively skewed.
This skewness is due to the influence of one high RUV sam-
ple out of the six RUV samples, resulting in a maximum pos-
itive PRUV for each precipitation dataset, 0.18, 0.25, and 0.6.
The statistical spread of PRUV for the 5-year simulations
with MSWEP precipitation is the largest among the simu-
lations, implying that the cost of choosing the irrigation area
using this dataset is the highest. Using 30 years of simulated
discharges does reduce the statistical spread in PRUV when
compared to the 5-year simulations. For observed precipi-
tation, simulations with 5 years show the range of PRUV
to be between −0.38 and 0.18, with an interquartile range
between −0.3 and −0.15, while simulations with 30 years
show the range of PRUV to be between −0.03 and 0.5, with
an interquartile range between 0.18 and 0.4. For CHIRPS and
MSWEP precipitation, the reduction in the statistical spread
in PRUV with 30-year simulations is more evident. For the
30-year simulations, the smallest statistical spread in PRUVs
is found for CHIRPS precipitation (between 0.03 and 0.4).

This means that the cost of choosing the irrigation area is
lower when using simulations with CHIRPS compared to
simulations with in situ and MSWEP precipitation. In addi-
tion, using CHIRPS leads to median PRUVs closer to zero;
thus, choosing among the irrigation area samples results in
an irrigation area closer to the reference irrigation area.

The statistical spread in PRUV when using observed dis-
charge of 5 years (−0.20 to 0.12) is similar to the statisti-
cal spread in PRUV when using the best simulation with 30
years (CHIRPS, 0.03 to 0.4). Again, using the longer pre-
cipitation record to provide a longer record of simulated dis-
charge results in a reduction in the statistical spread in PRUV
and compensates for the model uncertainty. This means that
using the 30-year simulation is beneficial, as the cost of
choosing the irrigation area is similar to the cost when us-
ing the 5-year observed discharge.

4 Discussion

Results of PRUV show that using the CHIRPS global pre-
cipitation dataset in discharge simulations reduces the risk of
choosing the irrigation area compared to discharge simula-
tions with in situ and MSWEP precipitation.

In the Coello basin we have the good fortune to have a long
period of record of hydrological data (1983–2012) to use as a
reference for establishing the climatological availability and
variability of the available water resource. This may not be
the case in other basins. Water resource estimation may then
need to be done with the limited information that is avail-
able. To help understand the risk of estimating the available
water resources when only limited information is available,
we used observed discharge with a shorter period of record
(5 years) to calibrate a local hydrological model and apply
this to obtain simulated discharge with a longer period of
record (30 years) either using a precipitation dataset based
on observed data (Rodriguez et al., 2017) or a global pre-
cipitation dataset, including CHIRPS and MSWEP (Beck et
al., 2017; Funk et al., 2015). We establish six samples of 5
years to calibrate the parameters of a hydrological model,
and simulate six possible discharges of 30 years to imitate a
setting where information about how representative the short
record of available observed discharge is not known a priori.
For each sample the annual expected utility is determined,
including the monthly probability of (non-)water scarcity us-
ing different irrigation areas from different discharge simula-
tions and the annual crop production with water scarcity (not)
happening in a month. Positive and negative relative utility
values were found with different discharge simulations. Pos-
itive values indicate a crop production loss due to unexpected
water scarcity for too large an irrigation area being planned.
Negative values indicate an opportunity cost due to the plan-
ning of too small an irrigation area.

Results show that the RUV varies depending on which
month water scarcity happens in. While the spread in the es-
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Figure 12. Pooled relative utility value using simulated river discharge of 5 and 30 years for water scarcity happening independently in
February, May or November. Ky is the sensitivity of the crop to water deficit. Boxplots show the median, interquartile range and minimum–
maximum range.

timates of probability of water scarcity is found to be largest
in the month of February, the spread in RUV is larger when
water scarcity happens in November. This is due to the differ-
ence in sensitivity of the crop yield to water deficit, depend-
ing on the growing stage of the crop. In the Coello basin,
rice has an average growing length of 4 months and is sown
during the entire year. This means that if water scarcity does
happen in a particular month, four different growth stages

will be affected each with a different yield reduction fac-
tor resulting in an average yield reduction value. If water
scarcity happens in November, the average yield reduction
value from the four growing stages of rice is 1.4. This means
that the average yield reduction in November under an equal
degree of water deficit is 1.75 times higher than in February
(Ky = 0.8). If water scarcity occurs in February, even though
the probability of water scarcity is higher than the reference
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25 %, the statistical spread in RUV is low due to the low av-
erage yield reduction value. Using different sources of river
discharge information to estimate the irrigation area will in-
deed change the estimates of the monthly probability of wa-
ter scarcity changing the RUVs. However, the impact on an-
nual production may be low if water scarcity occurs in the
month where the sensitivity of the crop to water deficit is low.
Reducing agricultural production losses depends not only on
using adequate river discharge information to estimate the ir-
rigation area, but also on adequate planning of the crop stage
distribution.

For an irrigated area selected based on the estimate of wa-
ter availability using simulated discharges, a decision maker
takes an additional risk due to not knowing a priori how
representative the data used for calibrating the model are
of climatic variability. This is why we introduce the pooled
relative utility value, PRUV, in order to evaluate the risk
of choosing an irrigation area derived from different river
discharge simulations. If the statistical spread of PRUV is
low (high), then the cost incurred by choosing an irrigated
area based on the results of the simulations is equally low
(high). The pooled relative utility value results using the
global precipitation CHIRPS showed a lower cost in choos-
ing the irrigation area compared to PRUV results using both
a dataset based on observed precipitation as well as the
MSWEP global precipitation dataset. This would suggest
that the CHIRPS precipitation should be used instead of both
observed and MSWEP precipitation when determining the
surface water availability for irrigation area planning to avoid
the risk of agricultural production loss due to a poorly cho-
sen irrigated area that can be supported based on water avail-
ability. This is not a general conclusion, as it is closely re-
lated to how representative the precipitation dataset used is
of the true precipitation amount and variability in the basin.
The CHIRPS dataset does include observed data (Funk et al.,
2015), which is similar to that used in our study to establish
the in situ precipitation dataset. In that sense, it is also an in-
terpolated dataset, but with additional information from the
satellite. This may well provide additional detail on the vari-
ability of precipitation in a tropical mountainous basin such
as the Coello.

It is important to mention the fact that CHIRPS and
MSWEP are gauge corrected. This would mean that they
would both be expected to perform quite well. However,
the datasets used to correct each product may differ. That
is the reason we compare the number of stations used in
the Coello basin for each of the precipitation products (in
situ, CHIRPS and MSWEP). This is helpful for discussing
the PRUV results. Even though the number of stations used
is lower for correction in the CHIRPS product (7 stations)
compared to the number of stations used in the in situ prod-
uct (14), the results indicate that the satellite information
included in CHIRPS still provides a reasonable represen-
tation of the basin precipitation. For the MSWEP product
the only three stations are used for correction, resulting in a

poorer representation of the rainfall in the basin. In summary,
the basin precipitation dataset derived from CHIRPS for the
Coello basin is better than the MSWEP. The higher resolution
of the CHIRPS dataset when compared to that of MSWEP
no doubt also contributes in this medium-sized, mountainous
basin. The poorer comparison of the MSWEP data we found
not to be immediately obvious when evaluating the precipita-
tion data using common indicators (e.g. KGE, bias), but was
only found when evaluating the hydrological information for
determining the irrigated area.

Interestingly, the performance of the model using the ob-
served precipitation dataset is similar to that of the model
using the CHIRPS precipitation dataset when considering
common model performance statistics such as Kling–Gupta
efficiency (KGE), percentage bias (Pbias) and the correla-
tion coefficient (r). The MSWEP product includes reanalysis
datasets in addition to observed and satellite datasets, but in-
stead of providing a benefit, its local application in this small-
to medium-sized basin in Colombia has a negative influence
on the representation of the climate variability. In that sense,
our results match with previous research where the perfor-
mance of reanalysis datasets in regions dominated by tropi-
cal warm rain processes is not the best (Beck et al., 2017b),
attributed in part to the poor prediction of convective precip-
itation (Leeuw et al., 2015). Moreover, the 0.25◦ resolution
might be too coarse to represent the spatial variability in the
basin, which undervalues the potential use of these datasets
in such conditions. The further development of the MSWEP
dataset, including an improved resolution of 0.1◦, may in-
crease its value for applications such as that explored in this
paper (Beck et al., 2017a). Additionally, the period of record
of consistent data for datasets such as MSWEP, but also
of CHIRPS, continues to increase. For now, in Colombia,
where the availability of observed precipitation is reasonable
(IDEAM, 2015; Kaune et al., 2017), the CHIRPS dataset ap-
pears to provide the best estimates of surface water availabil-
ity in basins larger than 2000 km2 for determining the irriga-
tion area. The benefit of CHIRPS, MSWEP and other such
global precipitation datasets can be evaluated in other case
studies around the world using the proposed framework. Cer-
tainly there is a new opportunity for the irrigation sector in
using modern hydro-meteorological data and information to
improve water allocation decisions considering the economic
impacts of uncertainty in those datasets.

An irrigation manager may be reluctant to use simulated
information instead of the observed information until it is
proven that the additional period of record of precipitation
from for example global datasets compensates for the un-
certainty of the use of a hydrological model. In that sense,
PRUV results provide evidence that using discharge simu-
lations with 30-year precipitation (CHIRPS) is equivalent to
using observed discharge of 5 years as the risk of choosing
the irrigation area is similar. As the period record of datasets
such as CHIRPS increases, this risk will be expected to re-
duce further.
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Using a longer period of record of observed discharges
will help make better estimates of the irrigated area that can
be supported by the available water resources, but when the
availability or quality of observed discharge is limited, ex-
tending the period of record using model-based discharge
simulations provides an alternative to estimating the area to
be cropped. The results of the model used in the Coello basin
also show that the overestimation or underestimation of the
planned irrigation area depends in part on the model bias,
particularly in the ability of the calibrated model to provide
reliable simulations for low-flow periods, which are the most
critical in this application. In the case presented here, we
use a very simple model structure, and using simulated dis-
charges from an enhanced model structure can be explored
to obtain more accurate results.

5 Conclusions

We apply an extended hydro-economic framework to assess
the benefit of using global precipitation datasets in surface
water availability estimates to reduce the risk of choosing
the area that can be irrigated with available water resources
based on limited available information. We estimate irriga-
tion areas using observed river discharge with a period of
record of 30 years (reference), and simulated river discharges
from a hydrological model forced with in situ and global
precipitation datasets (CHIRPS and MSWEP). The hydro-
logical model is calibrated using independent observed river
discharge samples of 5 years extracted from the reference
time period of 30 years to emulate a data-scarce environment,
as well as the uncertainty of the available data with a short
period of record being fully representative of climate vari-
ability. The relative utility value of using a particular dataset
is determined based on the reference and simulated annual
expected utility, which includes the monthly probability of
(non-)water scarcity using the irrigation areas obtained and
the annual crop production with water scarcity (not) happen-
ing in a month. The monthly probability of water scarcity
will depend on the true (reference-observed) water resource
availability. Additional production losses are incurred if the
irrigation area planned is too large, as then water scarcity
conditions will occur more frequently (cost type 2), while
too small an area will result in an opportunity cost (cost type
1). The production loss also depends on how sensitive the
crop is to water deficit in a particular month. The benefit of
using either the in situ, CHIRPS or MSWEP datasets in re-
ducing the cost of choosing the irrigation area, irrespective of
the available sample of observed data used in calibrating the
model, is evaluated through a pooled relative utility value, a
joined estimate of the relative utility value of the samples of
5 years.

In the Coello basin in Colombia where the framework was
applied, it was found that while the performance metrics of
the discharge simulations relate to the relative utility value,

the pooled relative utility value provides a complete hydro-
economic indicator to assess the risk of choosing the irri-
gation area based on observed or simulated discharge data.
We find that for the Coello basin, the CHIRPS precipitation
dataset is more beneficial than in situ or MSWEP precipita-
tion, as the risk of choosing the irrigation area is lower due
to a better estimate of climate variability. For all precipita-
tion datasets evaluated, using a dataset with a length of 30
years leads to a lower risk when compared to using a length
of only 5 years. The risk of choosing the irrigation area based
on discharge simulations with 30 years of CHIRPS precipi-
tation is found to be similar to using the observed discharge
of 5 years. Hence, extending the period of record using an
extended precipitation dataset to provide a longer record of
discharge simulations (from 5 to 30 years) compensates for
the model uncertainty of the model calibration.

In the Coello basin, the global precipitation data CHIRPS
are recommended instead of global precipitation data from
the MSWEP dataset for estimating surface water availabil-
ity to support the planning of irrigation areas. This dataset
provides a good representation of the climatic variability in
this medium-sized tropical basin, in part due to the correction
of the dataset using observed station data. While the perfor-
mance of the available global precipitation datasets would
need to be evaluated, the application of the extended hydro-
economic framework using global precipitation datasets to
force a locally calibrated hydrological model is shown here
to support decisions on adequate selection of irrigated areas
in Colombia, and can be applied in data-scarce basins around
the world. Ensuring the use of adequate hydrological infor-
mation for the estimation of surface water availability will
promote improved decisions for irrigation area planning and
prevent economic losses.
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