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Abstract. Worldwide, groundwater resources are under a
constant threat of overexploitation and pollution due to an-
thropogenic and climatic pressures. For sustainable manage-
ment and policy making a reliable prediction of groundwater
levels for different future scenarios is necessary. Uncertain-
ties are present in these groundwater-level predictions and
originate from greenhouse gas scenarios, climate models,
conceptual hydro(geo)logical models (CHMs) and ground-
water abstraction scenarios. The aim of this study is to quan-
tify the individual uncertainty contributions using an ensem-
ble of 2 greenhouse gas scenarios (representative concen-
tration pathways 4.5 and 8.5), 22 global climate models,
15 alternative CHMs and 5 groundwater abstraction scenar-
ios. This multi-model ensemble approach was applied to a
drought-prone study area in Bangladesh. Findings of this
study, firstly, point to the strong dependence of the ground-
water levels on the CHMs considered. All groundwater ab-
straction scenarios showed a significant decrease in ground-
water levels. If the current groundwater abstraction trend
continues, the groundwater level is predicted to decline about
5 to 6 times faster for the future period 2026–2047 compared
to the baseline period (1985–2006). Even with a 30 % lower
groundwater abstraction rate, the mean monthly groundwater
level would decrease by up to 14 m in the southwestern part
of the study area. The groundwater abstraction in the north-
western part of Bangladesh has to decrease by 60 % of the
current abstraction to ensure sustainable use of groundwater.
Finally, the difference in abstraction scenarios was identified
as the dominant uncertainty source. CHM uncertainty con-

tributed about 23 % of total uncertainty. The alternative CHM
uncertainty contribution is higher than the recharge scenario
uncertainty contribution, including the greenhouse gas sce-
nario and climate model uncertainty contributions. It is rec-
ommended that future groundwater-level prediction studies
should use multi-model and multiple climate and abstraction
scenarios.

1 Introduction

Groundwater is one of the major sources of high-quality
freshwater across the world and one of the most important
but scarce natural resources in many arid and semi-arid re-
gions. However, these resources are under a constant threat
of overexploitation and pollution all over the world due to
anthropogenic and climatic pressure. Globally, groundwater
provides 45 %–70 % of irrigation water (Döll et al., 2012;
Shamsudduha et al., 2011; Taylor et al., 2013; Wada et al.,
2013, 2014; Wisser et al., 2008), and the use of groundwa-
ter is continuously increasing. Overexploitation of ground-
water for irrigation is worldwide one of the main causes of
groundwater-level depletion (Mustafa et al., 2017b; Rodell
et al., 2009; Scanlon et al., 2012; Wada et al., 2014). Climate
change will probably also have an impact on the future avail-
ability of the groundwater resources (Brouyère et al., 2004;
Chen et al., 2004; Goderniaux et al., 2009, 2011; van Roos-
malen et al., 2009; Scibek et al., 2007; Taylor et al., 2013;
Woldeamlak et al., 2007).
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Food security of Bangladesh is highly dependent on sus-
tainable use of groundwater for irrigation. However, in the
northwestern part of Bangladesh, these resources are un-
der a constant threat of overexploitation due to anthro-
pogenic pressure. Mustafa et al. (2017b) report that over-
exploitation of groundwater for irrigation is the main cause
of groundwater-level decline in the northwestern part of
Bangladesh. In this context, the government of Bangladesh
has plans to use more surface water instead of groundwater.
However, the amount of groundwater that can be sustainably
used for irrigation is still unknown. Also, the probable impact
of shifting to more surface water use instead of groundwater
is also unknown. Hence, research is needed to quantify the
amount of groundwater that can be abstracted sustainably for
irrigated agriculture in the northwestern part of Bangladesh.

Accurate predictions of groundwater systems, as well as
sustainable water management practices, are essential for
policy making. Transient numerical groundwater flow mod-
els are used to understand and forecast groundwater flow
systems under anthropogenic and climatic influences. They
provide primary information for decision-making and risk
analysis. However, the reliability of groundwater model pre-
dictions is strongly influenced by uncertainties resulting
from the model parameters, input data, and conceptual hy-
dro(geo)logical model (CHM) structure (Refsgaard et al.,
2006). Also, formulation of unknown future conditions, such
as climatic change scenarios and groundwater abstraction
strategies, increases the uncertainty in groundwater model
predictions.

It is important to assess the different sources of uncer-
tainty to ensure accurate prediction and reliable decision sup-
port in sustainable water resource management. The conven-
tional treatment of uncertainty in groundwater modelling fo-
cuses on parameter uncertainty. Uncertainties due to model
structure and due to scenario change are often neglected
(Gaganis and Smith, 2006; Rojas et al., 2010). However,
many researchers have recently acknowledged that the un-
certainty arising from the CHM structure has a significant
effect on model prediction (Neuman, 2003; Refsgaard et al.,
2006). The incomplete and biased representation of the pro-
cesses and the complex structure of a geological system of-
ten result in uncertainty in model prediction (Refsgaard et
al., 2006; Rojas et al., 2008). Højberg and Refsgaard (2005)
presented a case of a multi-aquifer system in Denmark by
building three different CHMs using three alternative geo-
logical assumptions. They found that CHM structure uncer-
tainty dominated over parameter uncertainty when the mod-
els were used for extrapolation. Many studies have recently
suggested that uncertainty derived from the definition of al-
ternative CHMs is one of the major sources of total uncer-
tainty, and the parameter uncertainty does not cover the entire
uncertainty range (Bredehoeft, 2005; Neuman, 2003; Refs-
gaard et al., 2006; Rojas et al., 2008; Troldborg et al., 2007).
Therefore, neglecting the CHM uncertainty may result in un-

reliable prediction and underestimate the total predictive un-
certainty.

Studies using a single CHM may fail to adequately sample
the relevant space of plausible CHMs. Single model tech-
niques are unable to account for errors in model output re-
sulting from the structural deficiencies of the specific model.
Rojas et al. (2010) noted that a CHM is assumed to be cor-
rect when the model is calibrated and validated success-
fully following an appropriate method as described by Has-
san (2004a, b). However, a well-calibrated model does not al-
ways accurately predict the behaviour of the dynamic system
(Van Straten and Keesman, 1991). Bredehoeft (2005) pre-
sented different examples where data collection and unfore-
seen elements challenged well-established CHMs. Choosing
a single model out of equally important alternative models
may contribute to either type I (reject true model) or type II
(fail to reject false model) model errors (Li and Tsai, 2009;
Neuman, 2003).

Although the concept of using alternative CHMs is
increasingly applied among surface water modellers, in
groundwater modelling the use of multi-model methods is
limited. Recently, some studies have used multi-model meth-
ods in groundwater modelling to quantify the CHM uncer-
tainty (Li and Tsai, 2009; Rojas et al., 2010). However, con-
ceptual model uncertainty arising from the simplified repre-
sentation of the hydro(geo)logic processes, geological strat-
ification and/or boundary conditions has received less at-
tention (Refsgaard et al., 2006; Rojas et al., 2010). Rojas
et al. (2010) investigated uncertainty related to alternative
CHM structures and recharge scenarios in groundwater mod-
elling. However, the uncertainty arising from other sources
such as general circulation models (GCMs), regional circu-
lation models (RCMs), downscaling methods and abstraction
scenarios in groundwater flow modelling still needs to be in-
cluded in such approaches.

Climate change may significantly impact groundwa-
ter recharge. Recharge is one of the major input data
in groundwater-level simulation. The future groundwater
recharge is unknown, so it should be estimated based on
different future climate scenarios. The GCMs project differ-
ent climate scenarios based on the greenhouse gas emission
scenarios (GHSs). The Special Report on the Emission Sce-
nario, SRES (Nakicenovic et al., 2000), has reported differ-
ent GHS emission scenarios. Besides, there are many GCMs
to predict climate scenarios, and different GCMs use a differ-
ent representation of the climate system (Flato et al., 2013;
Gosling et al., 2011; Teklesadik et al., 2017). That means
that different GCMs develop different climate projections
for a single GHG emission scenario. Therefore, uncertain-
ties arise in climate projections from GCMs and GHG emis-
sion scenarios. Another important source of uncertainties in
climate projection is the internal variability of the climate
system, i.e. the natural variability of the weather (Deser et
al., 2012). Future climate change uncertainty arises from
three main sources: external forcing, climate model response
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and internal variability (Hawkins and Sutton, 2009; Tebaldi
and Knutti, 2007). Using an ensemble of climate scenarios
has become common practice in analysis of climate change
impact in the field of hydrology. Uncertainty analysis of
groundwater simulations related to climate change has re-
ceived relatively limited attention (Goderniaux et al., 2009;
Taylor et al., 2013). Holman et al. (2012) recommended that
climate scenarios from multiple GCMs or RCMs should be
used to predict the impact of climate change on groundwa-
ter. Recently, several researchers have studied the impact of
climate change on the groundwater system, incorporating un-
certainty from the input of different GCM or RCM scenarios
and different greenhouse gas emission scenarios (Ali et al.,
2012; Dams et al., 2012; Jackson et al., 2011; Neukum and
Azzam, 2012; Stoll et al., 2011; Sulis et al., 2012). The un-
certainty analysis is, however, usually limited to the climatic
part. Very recently, Goderniaux et al. (2015) included uncer-
tainty related to model calibration in predicting groundwa-
ter flow along with uncertainty from the GCMs and RCMs
and downscaling methods. However, the uncertainty arising
from other sources, such as the model conceptualization and
abstraction scenarios, is not evaluated.

Groundwater levels are often heavily influenced by the
groundwater abstraction rate. For example, in the Indian sub-
continent, groundwater abstraction has increased from 10–
20 km3/year to approximately 260 km3/year during the last
50 years (Shamsudduha et al., 2011). In the northwestern part
of Bangladesh, about 97 % of the total groundwater abstrac-
tion is used for irrigated agriculture (Mustafa et al., 2017b;
Shahid, 2009). Shahid (2011) found an increasing trend in
irrigation application rate in Boro rice, the major irrigated
crop in the area. Details on current groundwater abstraction,
trends in the abstraction and irrigated area can be found in
Mustafa et al. (2017b). This increasing trend is ascribed to
climate change. In contrast, improvement in agricultural wa-
ter use efficiency can reduce the water use in irrigated agri-
culture. Therefore, multiple abstraction scenarios should be
used to predict a reliable uncertainty band.

Existing literature on future groundwater-level prediction
uncertainty quantification has focused on hydrological model
calibration and climate model uncertainty considering one
single CHM and parameter uncertainty. As far as the au-
thors are aware, little research has been done so far to quan-
tify future groundwater-level prediction uncertainty consid-
ering the uncertainty arising from the CHM structure, climate
change and groundwater abstraction scenarios. This is the
first attempt to evaluate the combined effect of CHM struc-
ture and the climate change and groundwater abstraction sce-
narios on future groundwater-level prediction uncertainty.

The general objective of this study is to quantify
groundwater-level prediction uncertainty in climate change
impact studies using a multi-model ensemble, i.e. an ensem-
ble of representative concentration pathways, global climate
models, multiple alternative CHMs and abstraction scenar-
ios to provide probabilistic and informative predictions of

groundwater levels. The specific objectives to achieve the
general goal of this study are to (i) quantify the groundwater-
level prediction uncertainties arising from the definition of
alternative CHMs; (ii) analyse the effect of climate change on
the groundwater levels using ensemble global climate mod-
els and estimate the uncertainty linked to climate scenar-
ios; (iii) analyse the effect of groundwater abstraction sce-
narios on the future groundwater levels; (iv) quantify the
amount of water that can be abstracted sustainably for ir-
rigated agriculture in the northwestern part of Bangladesh;
(v) evaluate the combined effect of CHM structure and the
climate change and groundwater abstraction scenarios on fu-
ture groundwater-level prediction uncertainty; and (vi) com-
pare the uncertainty arising from the alternative CHMs and
climate scenarios and abstraction scenarios.

2 Methodology

2.1 Study area

The study area is located in the northwestern part of
Bangladesh (Fig. 1a). The study area is a subtropical region
with two distinct seasons: the dry winter season (Novem-
ber to April) and the rainy monsoon season (May to Oc-
tober). The average annual precipitation amount varies be-
tween 1400 and 1550 mm, but is not uniformly distributed
over the year (Fig. S2 in the Supplement). Almost 83 % of
the total annual amount occurs in the monsoon season. The
average temperature varies between 25–35 ◦C for March to
June and 9–15 ◦C for November to February. Groundwater
depth in the study area is continuously increasing (Fig. S3).
The study area consists of six northwestern districts (Ra-
jshahi, Naogaon, C’Nawabganj, Joypurhat, Bogra and Na-
tor) and covers about 7112 km2. In comparison to other dis-
tricts of Bangladesh, these districts are more affected by
drought (Shahid and Behrawan, 2008). The study area is sit-
uated between latitude 24◦19′0′′ to 25◦12′0′′ N and longitude
88◦6′36′′ to 89◦31′12′′ E. The surface elevation in the study
area varies from 11 to 40 m (Fig. S1). There is a mild gradi-
ent towards the southeastern corner, and this corner is close
to a large wetland.

The aquifer in the study area is comprised of several lay-
ers such as clay, loamy clay, fine sand, medium sand, coarse
sand and gravel with a dominance of medium to coarse sand
(Fig. 1c). The thickness of each stratigraphic unit more-
over varies spatially. The top layer consists of clay, clayey
loam and fine sand with an average thickness of 18 m. It is
underlain by a 20 m thick medium sand layer. Below the
medium sand layer, a 35 m thick layer of coarse sand and
coarse sand with gravel is present. The upper aquifer is un-
confined or semi-confined with a thickness ranging from 10
to 40 m (Asad-uz-Zaman and Rushton, 2006; Faisal et al.,
2005; Jahani and Ahmed, 1997; Michael and Voss, 2009b;
Rahman and Shahid, 2004). The area is dominated by agri-
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Figure 1. Description of the study area: (a) location of the study area in the northwestern part of Bangladesh; (b) study area with precipitation
measurement stations (triangles) and groundwater observation wells (circles); (c) stratigraphy of the study area; (d) cross-sectional (A–A’)
view of different models: (a) one-layered model (L1), (b) two-layered model (L2), and (c) three-layered model (L3).
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culture and almost 80 % is crop land. Irrigated agriculture
plays an important role in the food production and secu-
rity of Bangladesh, home to over 150 million people. In the
northwestern part of Bangladesh irrigated agriculture is the
major user of groundwater and accounts for 97 % of total
groundwater abstraction (Shahid, 2009). Overexploitation of
groundwater for irrigation, particularly during the dry sea-
son, causes groundwater-level decline in areas where abstrac-
tion is high and surface geology inhibits direct recharge to the
underlying shallow aquifer (Mustafa et al., 2017b).

2.2 Data

Thirty-two years (1979–2011) of weekly groundwater-level
and daily precipitation data of the Bangladesh Water Devel-
opment Board (BWDB) and Bangladesh Meteorological De-
partment (BMD) were collected from the Water Resources
Planning Organization (WARPO), Bangladesh, for, respec-
tively, 140 and 30 sites in the study area. Available river dis-
charge data of the BWDB for the existing small rivers within
the study area were also collected from WARPO. Daily min-
imum and maximum temperature, wind speed and other cli-
matic data were collected from the BMD for all the available
stations in the country. Reference evapotranspiration (ET0),
considered potential evapotranspiration in this study, was cal-
culated using the FAO Penman–Monteith equation from the
observed climatic data (Allen et al., 1998; Mustafa et al.,
2017b).

The monthly observed groundwater head data of 50 obser-
vation wells were used for model calibration and validation
and are plotted in a box-plot (Fig. S2). The groundwater lev-
els vary between 3 and 22 m above mean sea level (a.m.s.l.)
and display a clear seasonal variation. The groundwater level
is relatively low in April and high in October.

The hydraulic properties of the aquifers were selected
based on observed data and previous reports on the geology
and lithology of the study area (Michael and Voss, 2009a,
b). Topography and borehole data were collected from
the Barind Multipurpose Development Authority (BMDA),
Bangladesh. The log data from 23 boreholes within the study
area were collected from the BMDA.

The climate model data are available through the website
of the Earth System Grid Federation (https://esgf.llnl.gov,
last access: 8 May 2019).

2.3 MODFLOW model

Processing MODFLOW or PMWIN (Chiang and Kinzel-
bach, 1998) is a physically based, fully distributed, grid-
based, integrated simulation system for modelling ground-
water flow and pollution. PMWIN was designed as a pre-
and post-processor for groundwater flow model MODFLOW
(Harbaugh and McDonald, 1996; McDonald and Harbaugh,
1988) to bring various codes together in a simulation sys-
tem. The MODFLOW model is a physically based, fully dis-

tributed three-dimensional finite-difference numerical flow
model developed by the U.S. Geological Survey (USGS).
MODFLOW solves the three-dimensional partial-differential
groundwater flow equation for porous media using a finite-
difference method.

2.4 Multi-step multi-model methodology

A four-step methodology was used to achieve the objectives
of the study (Fig. 2). In the first step, the climate model data
for precipitation, minimum, mean and maximum tempera-
ture and ET0 were extracted and downscaled as explained in
Sect. 2.6. In the second step, monthly groundwater recharge
was simulated using a spatially distributed water balance
model (WetSpass) (Abdollahi et al., 2017; Batelaan and De
Smedt, 2001) for the baseline period and for different sce-
narios as explained in Sects. 2.5.2 and 2.7. In the third step,
15 alternative conceptual hydrogeological models were con-
structed using different geological interpretations and bound-
ary conditions. All alternative CHMs were calibrated using
observed groundwater-level data. The performance of each
model was evaluated based on different performance eval-
uation coefficients and information criterion statistics. The
Bayesian model averaging (BMA) method was applied to ob-
tain an average prediction from the alternative models. Also,
the performance of alternative models was evaluated based
on the maximum likelihood BMA weight of each model. The
better-performing models among the alternative models were
used to project groundwater levels under different climatic
and abstraction scenarios. The averaged projection and its
uncertainty were estimated using BMA of the ensemble of al-
ternative CHMs. In the final step, climate change impact was
assessed. The details of the different materials and methods
of each step are described in the following sections.

2.5 Alternative conceptual groundwater flow models

To estimate the uncertainty due to the conceptualization of
groundwater models, 15 different alternative CHMs were de-
veloped based on geological stratification and boundary con-
ditions. The cross-sectional (A–A’) view of the models is
shown in Fig. 1d. First, three simplified alternative concep-
tual groundwater models were defined based on the geolog-
ical stratification. The three models are a one-layered (L1),
two-layered (L2) and three-layered (L3) model. In the one-
layered model (L1), the entire model domain was considered
as one hydro-stratigraphic unit and the hydraulic properties
are assumed homogeneous and isotropic. The two-layered
model (L2) consists of two layers where the average thick-
ness of the top layer was 10 m (clay and loamy clay soil) and
the rest of the thickness was considered as the bottom layer.
The model domain was divided into three different hydro-
stratigraphic units to develop a three-layered model (L3). Be-
low the top layer, a fine sand layer with an average thickness
of 8 m was added in the three-layered model. The bottom
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Figure 2. Multi-step multi-model methodology. GCM: general circulation model; RCP: representative concentration pathway; ET0: potential
evapotranspiration; P : precipitation; T : temperature; DEM: digital elevation model; BMA: Bayesian model averaging.

layer of the three-layered model consists of medium sand,
coarse sand and coarse sand with gravel.

Boundary conditions strongly influence the CHM uncer-
tainty (Wu and Zeng, 2013). They are often very uncertain,
and, moreover, strongly influence the model results. Previ-
ous studies in the Bengal Basin (Michael and Voss, 2009a,
b) identified a north-to-south groundwater flow direction. On

the other hand, there is a large wetland at the southeast-
ern corner of the study area as well as a large river (known
as Ganges/Padma) within a few kilometres of the southern
boundary. Since exact boundary conditions were not known,
based on the above information, five different potential sets
of boundary conditions were conceptualized and shown in
Fig. 3. For boundary condition B1, a no-flow boundary con-
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dition was assumed on every side of the model. In other
words, there is no interaction between the model domain and
the environment (Michael and Voss, 2009a, b). For bound-
ary condition B2, a constant head boundary is assumed at the
northern side where most of the river branches originated,
assuming that groundwater flow direction is parallel to the
river flow and perpendicular to the model boundary. No-flow
boundary conditions were assumed for all other sides. For
boundary condition B3, a constant head boundary was con-
sidered on the northern side like for B2 and the southeastern
side, i.e. the side where a large wetland is located. Boundary
condition B4 is based on boundary condition B3. The con-
stant head boundary in the southeastern part of the model was
extended to the southern part of the model domain in bound-
ary condition B4 because the great Ganges/Padma River is
very near to the southern boundary. In boundary condition
B5, a constant head boundary was considered at the north-
ern and northwestern boundary and also at the southeastern
corner of the model domain based on the information that
groundwater is flowing from north and northwest to south
(Michael and Voss, 2009a, b). A constant head is assigned
at the southeastern corner of the model domain represent-
ing the Chalan Beel wetland as well. No-flow boundaries are
assumed at the southern and northeastern boundaries since
these boundaries are parallel to the groundwater flow direc-
tion (Michael and Voss, 2009a, b). The long-term monthly
average groundwater levels (normal) were considered as the
constant groundwater heads for the constant head boundary.
As there is seasonal variability in the groundwater level of
this study area, every month was assigned a different con-
stant groundwater head corresponding to the long-term aver-
age groundwater level for that month.

In total, 15 alternative groundwater models were devel-
oped using 5 different boundary conditions and 3 different
layer types. A list of the 15 models is included in Table S1.

2.5.1 Model setup

The BIock Centered Flow Package (BCF) of MODFLOW-96
within the PMWIN interface was used for groundwater flow
simulation. The study area covers an area of 7112 km2 dis-
cretized into smaller cells with 117 rows and 118 columns.
The grid cell dimension is 900 m×900 m. All models are
transient with a monthly time step. A no-flow boundary
is considered at the model domain bottom as the vertical
groundwater flow is restricted by the relatively impermeable
hard rock below the aquifer in the study area. On the model
top surface, a spatially distributed recharge boundary is con-
sidered.

The initial groundwater heads correspond to a long-term
average groundwater table obtained by running the models
in steady-state conditions.

The range of hydrogeological parameter values was
selected based on typical values for aquifer materials
(Domenico and Mifflin, 1965; Domenico and Schwartz,

1998; Johnson, 1967) and previous research findings in the
study area (Michael and Voss, 2009a, b). They are listed
in the Supplement. Michael and Voss (2009a) used 9.4×
10−5 m−1 as a specific storage value for the Bengal Basin.
The initial specific storage was taken as 9.4×10−5 m−1 when
it is within the specific storage limits of the aquifer materi-
als according to the literature. Otherwise, the initial specific
storage was taken as the average of the maximum and min-
imum values of the aquifer materials found in the literature.
The rivers in the study area are typically small and mainly
driven by precipitation runoff. Generally, there is no flow in
the rivers during dry months (January to March). The “River
flow package” of MODFLOW was used to define rivers in
the model domain and a third-type boundary condition was
assumed for the rivers. Riverbed conductance is indeed de-
fined as a lumped parameter in MODFLOW defined as

CRIV=
Kriv×L×W

Mriv
, (1)

where CRIV is riverbed hydraulic conductance (L2T −1),
Kriv is riverbed sediment hydraulic conductivity (LT −1), L
is length of the river within a grid cell (L), W is width of
the river within a grid cell (L) and Mriv is thickness of the
riverbed within a grid cell (L).

From the equation, it is clear that riverbed hydraulic
conductance depends on grid size, riverbed sediment hy-
draulic conductivity and thickness of the riverbed. Mehl and
Hill (2010) have reported that riverbed conductance depends
heavily on the grid size of the model. Due to a lack of field
data for riverbed materials, the riverbed conductance was ob-
tained through manual calibration: riverbed conductance is
0.18 m2 s−1, while riverbed thickness is 0.5 m.

2.5.2 Simulation of spatially distributed groundwater
recharge

Spatially distributed monthly groundwater recharge was sim-
ulated using the WetSpass-M model (Abdollahi et al., 2017;
Batelaan and De Smedt, 2001) on the same grid as the
groundwater flow (MODFLOW) model. WetSpass-M is a
physically based distributed model, in which the groundwa-
ter recharge is estimated from a grid-based water balance. To
allow land cover heterogeneity within each cell, every raster
cell is split into four fractions: vegetated, bare-soil, open-
water and impervious. The water balances of each fraction
are used to calculate the total water balance of a raster cell,
whereas recharge is calculated as the residual term of the
water balance for each cell. The inputs of the model are spa-
tially distributed maps of land cover, soil texture, topography,
groundwater depth and climatic data. Precipitation (includ-
ing of rainy days), ET0, temperature and wind speed were
used as climatic information. Details on model setup and
data preparation for groundwater recharge calculation data
can be found in Mustafa et al. (2017b). Monthly groundwater
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Figure 3. Boundary conditions used to develop alternative conceptual models (dark blue line indicates a constant head boundary). B1: no-
flow boundary; B2: constant head at the northern boundary; B3: constant head at the northern and southeastern boundaries; B4: constant
head at the northern, southern and southeastern boundaries; B5: constant head at the northern, northwestern and southeastern boundaries.

recharge was simulated for 22 years (1985–2006) and con-
sidered the baseline groundwater recharge.

2.5.3 Groundwater abstraction estimation

Groundwater abstraction for irrigation was calculated from
the available data. Unfortunately, detailed groundwater ab-
straction information, e.g. amounts of water pumped from
individual wells, co-ordinates of the abstraction wells, capac-
ity of the pumps or duration of pumping, were not available.
Hence, the groundwater abstraction was assessed based on
the irrigated area by shallow tube wells (STWs), deep tube
wells (DTWs) and other irrigation equipment. Upazila-wise
(an upazila is the second lowest tier of regional adminis-
tration in Bangladesh) yearly seasonal groundwater abstrac-
tion for irrigation from the groundwater was calculated using
an empirical equation based on Boro rice irrigation require-
ments and the irrigated area. The irrigation water withdrawal
was considered to be the total abstraction for each upazila. To
obtain monthly abstraction for each upazila, the calculated
seasonal abstraction values are initially equally divided over
the months of the dry seasons (November to April). Also,
as the location of the pumps is unknown, the total abstrac-
tion from each upazila is initially considered uniformly dis-
tributed over the full upazila. Considering the individual up-
azila as 1 zone of abstraction, a total of 34 abstraction zones
were considered. Details on the irrigation data can be found
in Mustafa et al. (2017b) and Shamsudduha et al. (2015).

2.5.4 Calibration and validation of alternative CHMs

All alternative CHMs were calibrated for the period 1990–
1994. Model parameters were estimated using manual cal-
ibration and automatic calibration. During auto-calibration,
PEST (Doherty, 1994) was used to optimize the model pa-
rameter values.

The initial values, allowable ranges and optimized values
of the parameters of the different models are given in the
Supplement (Tables S2, S3, S4). One-layered-type models
were calibrated for three parameters: horizontal hydraulic
conductivity, specific storage and specific yield. The two-
layered and three-layered models were calibrated for, respec-
tively, 8 and 12 parameters. The process of selecting ini-
tial values and the allowable range of the different param-
eters is described in Sect. 2.5.1. The optimized horizontal
hydraulic conductivity of the one-layered models varies be-
tween 4.45×10−3 and 6.00×10−3 m s−1. This high value of
horizontal hydraulic conductivity corresponds to well-sorted
coarse sand and gravel (Fetter, 2001). We consider these val-
ues to be realistic since a major portion of the aquifer consists
of coarse sand and coarse sand with gravel. The average hor-
izontal hydraulic conductivity of the Bengal Basin found by
Michael and Voss (2009a) was also high (5× 10−4 m s−1).
They also reported that, based on the drill-log analysis, hor-
izontal hydraulic conductivity of the Bengal Basin may vary
from 6× 10−6 to 3.00× 10−3 m s−1. The area of the Ben-
gal Basin is about 2.8× 105 km2, but the study area is only a
small part of the Bengal Basin. Therefore, it is possible that
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the horizontal hydraulic conductivity is relatively higher in
our study area. Bonsor et al. (2017) have also reported in their
review that aquifer materials in the Bengal Basin are highly
permeable. Mustafa et al. (2018) have also reported that the
average horizontal hydraulic conductivity of this study area
is high and around 2.5× 10−3 and 4.5× 10−3 m s−1.

Additionally, spatial variability of horizontal hydraulic
conductivity has not been considered in this study. We con-
sider an average horizontal conductivity for all individual
layers. This might be another reason for high horizontal hy-
draulic conductivity.

The optimized specific storage of the one-layered model
with boundary condition-5 (L1B5) was 4.92× 10−5 m−1.
Michael and Voss (2009a) also reported a similar specific
storage value (9.4× 10−5 m−1) for the Bengal Basin. How-
ever, different conceptual models suggest different specific
storage values within the typical values for aquifer materials
depending on the number of layers and boundary conditions
(Tables S2, S3, S4).

The optimized value of specific yield varies between 0.17
and 0.35 for different conceptual models. The results are in
line with previous findings of specific yield values in the area
which indicate that specific yield in the study area varies
between 0.08 and 0.32, with higher values in the southern
part of the Barind area (Jahan et al., 1994; Mustafa et al.,
2018). However, the optimized values of specific yield for
some conceptual models are equal to the upper boundary of
the pre-defined parameter range. This could be because of
the simplified representation of hydrogeological layers and
properties of the system defined in some of the conceptual
models. However, even with different conceptual models,
the optimized value of specific yield is equal to the upper
boundary of the parameter range, indicating that the cali-
brated values of the specific yield could not reach the real
optimum. This could be because of uncertain groundwater
abstraction and recharge data in this study area. Mustafa
et al. (2018) have proven that groundwater abstraction and
groundwater recharge data in space and time in this study
area are highly uncertain. They have also reported that input
uncertainty (uncertainties arising from groundwater abstrac-
tion and recharge) has a significant impact on the specific
yield values. However, in this study, uncertainty of the in-
put data has not been considered. Additionally, spatial and
seasonal variability of the groundwater abstraction has not
been considered in this study. This might be another rea-
son for the high specific yield value. Further improvement
of model calibration would require additional and more reli-
able groundwater abstraction and groundwater recharge data,
such as time series of pumping discharge from individual
wells and exact locations of all abstraction wells.

Using the optimized parameters, each of the alternative
CHMs was validated for the period of 1995 to 1999.

2.5.5 Model performance evaluation

The performance of alternative conceptual groundwater
models (CHMs) was evaluated using information criteria,
statistical indicators and graphical presentation of simulated
groundwater levels. Root mean square error (RMSE) and
Nash–Sutcliffe efficiency (NSE, Eq. 2) of the alternative
CHMs were calculated using the formula reported by Mo-
riasi et al. (2007). The notation of Mustafa et al. (2017a) has
been followed.

NSE= 1−
∑n
i=1(Oi − Si)

2∑n
i=1(Oi −O)

2
(2)

Here, Oi and Si represent observed and simulated values,
respectively, O is the mean of Oi and n is the number of
observations.

NSE varies from −α to +1 and is dimensionless. NSE
values closer to 1 mean better simulation efficiency. NSE
values>0.7, 0.35–0.7, 0.0–0.35 and <0.0 represent, respec-
tively, excellent, good, fair and poor performance.

Information criteria are often used for model ranking
(Zhou and Herath, 2017). Different information criteria such
as the Akaike information criterion (AIC), corrected Akaike
information criterion (AICc), Kashyap information criterion
(KIC) and Bayesian information criterion (BIC) were used to
evaluate the alternative CHMs.

The Akaike information criterion is defined as (Zhou and
Herath, 2017)

AIC= n ln
(
σ 2
)
+ 2p, (3)

AICc= n ln
(
σ 2
)
+ 2p+

2p(p+ 1)
n−p− 1

, (4)

σ 2
=

SWSR
n

, (5)

where n is the number of observations (same for all models),
p is the number of model parameters= NPE+ 1, NPE is the
number of process model parameters and σ 2 is the residual
variance. SWSR is the sum of weighted squared residuals.

The Bayesian information criterion (BIC) and Kashyap in-
formation criterion (KIC) are defined in Eqs. (6) and (7), re-
spectively (Zhou and Herath, 2017):

BIC= n ln(σ 2)+p ln(n), (6)

KIC= (n− (p− 1)) ln
(
σ 2
)
− (p− 1) ln(2π)

+ ln
∣∣∣XTωX

∣∣∣ , (7)

where X is the sensitivity matrix (Jacobian matrix). The
weighted factor ω applies when the errors are independent
of each other.
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The different information criterion values were obtained
from MODFLOW by running PEST in sensitivity analy-
sis mode. The best model among the alternative CHMs has
a minimum information criterion value (minimum AIC or
AICc or BIC or KIC) (Zhou and Herath, 2017). A poste-
rior model probability (pk) was calculated using Eq. (8) for
each information criterion method for each alternative CHM.
The posterior model probability was used to select the best
CHMs. The better model corresponds to a larger posterior
model probability (Zhou and Herath, 2017).

pk =
e−0.51k∑K
j=1e

−0.51j
, (8)

1k = AICk −AICmin, (9)

where AICk is the AIC value for model k and AICmin is the
minimum AIC values of all models. The value of 1k was
also calculated for AICc, BIC and KIC.

2.5.6 Bayesian model averaging

BMA was used to deduce more reliable predictions of
groundwater levels than the predictions produced by the in-
dividual groundwater models. Draper (1995) and Hoeting et
al. (1999) present an extensive overview of BMA. Recently,
BMA has received attention of researchers of diverse fields
because of its more reliable and accurate predictions than
other model averaging methods. Vrugt (2016) has developed
a model averaging MATLAB toolbox called MODELAVG
for post-processing of forecast ensembles. The MODELAVG
has different model averaging methods including BMA and
was used in this study. Details of the model averaging method
are described in the MODELAVG manual (Vrugt, 2016). The
value of βBMA (maximum likelihood Bayesian weight) was
used as a criterion to select the better-performing models that
have a significant contribution in model averaging.

The general equation used to calculate the weighted av-
erage prediction in various model averaging strategies is as
follows:

ỹj =

K∑
k=1

βkDjk, (10)

where Djk is the bias-corrected point forecasts of each
model, k = {1, . . . , K} is model number and j = {1, . . . , n}
is forecast number, ỹj = {ỹ1, . . . , ỹn} is the weighted average
forecast for the j th forecast number, and β = {β1, . . . ,βk}

denotes the weight vector.

2.6 Climate change scenarios

The climate model data for precipitation and minimum, mean
and maximum temperature are extracted for the grid cells
covering the reference location within the catchment. This

reference location is set at 24.81◦ N and 88.95◦ E and is in-
dicated by a red dot in Fig. 1b. Using the FAO Penman–
Monteith equation based on the temperature from climate
model data, ET0 is calculated.

Within this case study, CMIP5 (Coupled Model Intercom-
parison Project Phase 5) climate model runs for RCP 4.5 and
RCP 8.5 are considered (Taylor et al., 2012; Van Vuuren et
al., 2011). RCP 8.5 is the highest RCP-based GHS and con-
siders a radiative forcing of 8.5 W m−2 by 2100. The cor-
responding global temperature rise ranges between 2.6 and
4.8 ◦C. RCP 4.5 is a more intermediate scenario, whereby
the radiative forcing is limited to 4.5 W m−2 by 2100 and cor-
responding temperature rise between 1.4 and 3.1 ◦C (IPCC,
2013). The total climate model ensemble includes 44 runs,
where the RCP 4.5 and RCP 8.5 sub-ensembles each include
22 runs. The considered climate model runs are listed in Ta-
ble S7.

Goal number six of the United Nations (UN) sustainable
development Goals (SDGs) states “Ensuring availability and
sustainable management of water and sanitation for all by
2030”. Based on this information, the climate change sig-
nals are defined between 1975 and 2035, where the control
and scenario periods range between 1961–1990 and 2021–
2050, respectively. The precipitation and evapotranspiration
changes are specified on a relative basis, while for the tem-
perature changes an absolute basis is considered. Using the
delta change method, the climate change signals are applied
to the observed time series (Ntegeka et al., 2014). The delta
change method is a simple statistical downscaling method
which applies mean monthly average changes (top box of
Fig. 2).

2.7 Future groundwater recharge scenario

The projected spatially distributed monthly groundwater
recharge was simulated for the 44 projected time series us-
ing the WetSpass-M model (Abdollahi et al., 2017; Bate-
laan and De Smedt, 2001) as explained in Sect. 2.5.2 and in
Mustafa et al. (2017b). Details about the considered climate
model runs for this study are explained in Sect. 2.6, and they
are listed in Table S7. The baseline groundwater recharge
was calculated for a period of 22 years (1985–2006). Future
groundwater recharge was simulated for the same number
of years (2026–2047). Simulated groundwater recharges of
the baseline period were compared to the simulated future
groundwater recharge to estimate the combined influence of
the greenhouse gas scenarios or representative concentration
pathways, climate models and internal variability.

2.8 Development of future groundwater abstraction
scenario

It is challenging to estimate future groundwater abstraction
scenarios because they largely depend on human activities as
well as on climate. In this study, we have developed differ-
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ent future abstraction scenarios. The groundwater abstraction
data of the study area show a linearly increasing trend during
1985 to 2006 (Fig. S4). The increasing rate is different in dif-
ferent groundwater abstraction zones. The average ground-
water abstraction rate in 2006 was about 5 times higher than
that in 1985. A similar increasing trend in groundwater ab-
straction in the study area was also found by Mustafa et
al. (2017b). Shahid (2011) predicts an increasing trend in
future irrigation application for Boro rice production due to
climate change. He also predicts that the length of the Boro
rice growing period may decrease in future, which may lead
to increased cropping intensity in the area. Increased crop-
ping intensity may increase the overall yearly groundwater
abstraction rate. Moreover, it is estimated that the popula-
tion of Bangladesh will increase from 145 million in 2008
to 182 million by 2030 (Qureshi et al., 2014). Thus, wa-
ter use for food production will increase tremendously. As
groundwater is the major source of water in the study area,
the groundwater withdrawal rate will be much higher.

However, there was no effective groundwater abstraction
policy before 2017. Recently, the Integrated Minor Irrigation
Policy 2017 and the Groundwater Management Law 2018
for agriculture were proposed to ensure sustainable irriga-
tion management. Both the Integrated Minor Irrigation Pol-
icy 2017 and the Groundwater Management Law 2018 have
recommended minimizing the groundwater abstraction in the
study area to maintain sustainable groundwater abstraction.
They also encourage use of surface water instead of ground-
water for the irrigation. Unfortunately, no quantitative or spe-
cific action, for example how much abstraction should be re-
duced, has been mentioned either in the proposed Integrated
Minor Irrigation Policy 2017 or in the Groundwater Manage-
ment Law 2018. The policy planning and management strate-
gies should be updated based on the quantitative or specific
information.

Groundwater abstraction can be reduced by improving
agricultural water use efficiency. The agricultural water use
efficiency is extremely low in Bangladesh. On average, crops
use only 25 %–30 % of applied irrigation water, and the rest
is lost due to inefficient irrigation systems (Karim, 1997;
Mondal, 2005, 2010). Using efficient irrigation distribution
and application techniques can increase agricultural water
use efficiency. The BMDA has introduced a buried PVC pipe
water conveyance system in the study area to increase con-
veyance efficiency to more than 90 %, whereas the national
average value is 40 % (Rahman et al., 2011). Alternate wet-
ting and drying (AWD) rice irrigation techniques can save
30 % to 70 % of water compared to conventional irrigation
methods (Rahman and Bulbul, 2015). Deficit irrigation in
wheat cultivation in the study area can save 121–197 mm of
water per season (Mustafa et al., 2017a). Food habit changes
and/or crop diversification may also have an impact on crop
water use efficiency.

Considering the uncertainties in the total groundwater ab-
straction amount, five different groundwater abstraction sce-

narios are developed (Table 1). The first scenario is devel-
oped based on the current increasing trend. The second sce-
nario assumes an improved irrigation water use. As such the
conveyance efficiency will compensate the increasing future
demand and the groundwater abstraction rate will remain
constant. In other words, this scenario considers the ground-
water abstraction rate for 2010. The third, fourth and fifth
scenarios assume, respectively, 30 %, 50 % and 60 % lower
groundwater abstraction, where the groundwater abstraction
rate in 2010 was considered as a basis.

2.9 Uncertainty estimation

The spread of the 95 % prediction interval was taken as the
uncertainty band of the ensemble. The uncertainty band was
estimated using Eq. (11).

Unband =D
n
97.5−D

n
2.5, (11)

Uavg =
1
N

N∑
n=1

Unband, (12)

where Unband is the uncertainty band of a time step, Uavg is
the average uncertainty band, N is the total number of pre-
dictions, and Dn97.5 and Dn2.5 represent the 97.5th and 2.5th
percentiles of the ensemble at a time step, respectively.

In the case of alternative CHM uncertainty quantification,
the same abstraction and recharge scenarios of the baseline
period were used to simulate groundwater levels of the 22-
year period. To quantify the recharge scenario uncertainty,
the groundwater level was simulated for 44 recharge scenar-
ios by the best-performing groundwater flow model where
the groundwater abstraction scenario was kept the same. The
groundwater level was simulated for five abstraction scenar-
ios by the best-performing groundwater flow model where
the same recharge scenario was used to estimate abstraction
scenario uncertainty. The groundwater levels in 50 observa-
tion wells for a period of 22 years were used to estimate the
spread of the 95 % prediction interval.

The contribution of the different sources of uncertainty in
future groundwater-level prediction was calculated consider-
ing all the probable combinations of the CHM, recharge and
abstraction scenarios. The average prediction interval at each
time step was calculated using the following equations:

UnCMavg
=

1
AS×RS

AS∑
AS=1

RS∑
RS=1

UnCMAS, RS
, (13)

UnRavg
=

1
K ×AS

K∑
K=1

AS∑
AS=1

UnRK,AS
, (14)

UnAavg
=

1
K ×RS

K∑
K=1

RS∑
RS=1

UnAK, RS
, (15)
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Table 1. Description of future groundwater abstraction scenarios.

Groundwater abstraction Description
scenario

PLinear Linear increase in groundwater abstraction rate based on current increasing trend
PConstant Groundwater abstraction rate of 2010 assumed to be constant in future
PReduced_30 30 % less groundwater abstraction than in 2010
PReduced_50 50 % less groundwater abstraction than in 2010
PReduced_60 60 % less groundwater abstraction than in 2010

where UnCMavg
, UnRavg

and UnAavg
represent the average predic-

tion interval at each time step due to CHMs, recharge sce-
nario and abstraction scenario, respectively. The K , AS and
RS represent the number of CHMs, abstraction scenarios and
recharge scenarios, respectively. The UnCMAS, RS

is the predic-
tion interval due to different CHMs for a particular recharge
and abstraction scenario. The UnRK,AS

and UnAK, RS
represent

the prediction interval due to different recharge scenario and
abstraction scenario, respectively, for a particular CHM and
abstraction/recharge scenario.

2.10 Data analysis

Details about the procedure followed for data analysis are
given in Sects. 2.4 to 2.9. For data analysis and plot-
ting, different Matlab, R and Python packages were used,
such as Pandas (McKinney, 2010), Scipy, ggplot2, Numpy
(Walt et al., 2011) and Matplotlib (Hunter, 2007). The
null hypotheses for equal distributions of simulated ground-
water levels of alternative CHMs were tested using two-
sample Kolmogorov–Smirnov tests (Chakravarti and Laha,
1967). The nonparametric modified Mann–Kendall trend test
(Hamed and Rao, 1998) was conducted to detect trends in
annual groundwater level, and the slope was estimated using
Sen’s method (Sen, 1968).

3 Results and discussion

3.1 Groundwater-level simulation

The simulated groundwater levels of each alternative ground-
water flow model were compared to the observed groundwa-
ter levels as well as to the simulated groundwater levels of
the other models. The null hypotheses for the equal distribu-
tion test between simulation results of alternative models in
the calibration and validation periods were tested (Fig. 4). A
significant difference (significance level of 0.05 or p<0.05)
between most of the alternative model’s simulation results
was observed. This indicates that the use of different ge-
ological stratifications and boundary conditions in ground-
water flow models can result in significant differences in
groundwater-level prediction and confirms the finding of Ro-

jas et al. (2010). In contrast, some of the models did not pre-
dict statistically different results.

3.1.1 Goodness of fit of alternative CHMs

Based on different statistical coefficients, the performance
was different for alternative models, and the models per-
formed differently in the calibration and validation periods
(Table S5).

Based on RMSE and the NSE value, the L2B3 model
was the best model in the calibration period, whereas in the
validation period it was L2B5. In general, the two-layered
models had a relatively lower RMSE than the one-layered
and three-layered models. Overall, based on both RMSE and
NSE, the two-layered models outperformed the one-layered
and three-layered models in the calibration and validation pe-
riods.

The simplified one-layered models have a comparatively
higher bias in prediction. Comparatively, a large number of
processed parameters made the three-layered models over-
parameterized. The three-layered models performed better
than the one-layered models during calibration, but they per-
formed similarly in most of the cases in the validation period.
The performance of the two-layered models also differed be-
tween the calibration and validation periods. It is difficult
to calibrate over-parameterized models efficiently (Willems,
2012), so the two-layered models with eight calibrated pa-
rameters can be a balance between oversimplified and over-
parameterized models.

Figure 5 shows the scatter plot for model L2B5. One of
the possible causes of the observed differences is the spatial
and temporal variation in groundwater abstraction. The zone-
wise spatially distributed groundwater abstraction rate was
one of the most important input data in this study. In reality,
groundwater abstraction varies spatially within those zones.
Agricultural and industrial areas abstract more groundwa-
ter than wetlands or forest areas. Moreover, groundwater
abstraction rate also varies in time following cropping sea-
sons and precipitation patterns. However, an average con-
stant groundwater abstraction rate was assumed for 6 months
(from November to April) in the model. The differences be-
tween observed and simulated groundwater level are high for
some observation wells. Those observation wells might be
located near abstraction wells. For observation wells close
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Figure 4. Significance of difference in simulation results for combinations of alternative conceptual models (p<0.05, two-sample K–S test)
for (a) calibration and (b) validation periods. L1, L2 and L3 represent, respectively, the one-, two- and three-layered model. B1, B2, B3, B4
and B5 represent, respectively, Boundary condition-1, -2, -3, -4 and -5. For example: L1B1: one-layered model with Boundary condition-1;
L3B5: three-layered model with Boundary condition-5.

to groundwater abstraction wells, drawdown by groundwa-
ter abstraction could affect observed groundwater heads.
This spatial and temporal difference in actual groundwa-
ter abstraction and modelled groundwater abstraction causes
spatial and temporal variation in simulated and observed
groundwater levels. The simplified representation of hydro-
geological layers and properties could be also a possible
cause of the differences between simulated and observed
groundwater levels. For simplification, the aquifer was as-
sumed to be homogeneous, but in reality the aquifer is hetero-
geneous, and this may affect groundwater flow in the aquifer.
Also, measurement errors in observation data may influence
model performance.

3.1.2 Model selection for future groundwater-level
simulation and uncertainty analysis

To select the best-performing model, the simulation results
of the calibration and validation periods were used to calcu-
late information criteria statistics. The posterior probability
(pk) was calculated using Eq. (8) for the AIC, AICc, BIC and
KIC methods. The L2B4 model obtained the highest poste-
rior probability of 1, whereas all other models had a negligi-
ble posterior probability for all information criteria as shown
in Fig. 6.

One of the objectives was to estimate future groundwa-
ter levels using model averaging. Ten years (1990–1999)
of monthly simulated groundwater levels of the alternative
models and observed data of 50 observation wells were used
as training data in MODELAVG to estimate the maximum
likelihood BMA weight (βBMA) of each alternative model.

The long training period was selected so that a reliable BMA
weight can be estimated for climate change impact analysis.

The performance evaluation statistics of BMA mean pre-
diction along with the best model and median are shown
in the Supplement (Table S6). The best model was selected
based on the information criteria ranking. The prediction of
the BMA method obtained better performance in all evalu-
ation criteria than the best model and ensemble median for
both periods. The results are in line with the findings of Ye et
al. (2004) and Poeter and Anderson (2005).

During the training period, the 95 % prediction interval
covers about 85 % of observed data, and the average spread
of the 95 % prediction interval is 6.23 m. The maximum
likelihood BMA weight (βBMA) of all alternative models is
shown in Fig. 6. It is observed that models L1B5 and L2B4
obtained higher βBMA than other models. The model L2B4
has both maximum posterior model probability and higher
βBMA. It is noteworthy that the L1B5 model obtained sig-
nificant βBMA, as it had a comparatively poor performance
in both the calibration and validation periods compared to
most of the other models. One possible cause could be the
relatively better performance of the one-layered model in the
model boundary area.

Figure 6 shows that only three models (L1B5, L2B4,
L2B5) together correspond to 91 % of the total weight and
another three models (L2B3, L3B4, L3B5) correspond to 8 %
of the total weight. The rest of the models had no significant
contribution. The models with low βBMA can be excluded
from the analysis to minimize the calculation time and ef-
fort (Vrugt, 2016). Therefore, models L1B5, L2B4 and L2B5
were selected to predict future groundwater levels under dif-
ferent scenarios. Ultimately, βBMA was recalculated using

www.hydrol-earth-syst-sci.net/23/2279/2019/ Hydrol. Earth Syst. Sci., 23, 2279–2303, 2019



2292 S. M. T. Mustafa et al.: Multi-model approach to quantify groundwater-level prediction uncertainty

Figure 5. Scatter plot for the simulated versus observed groundwater level for Model L2B5: (a) calibration period and (b) validation period.

Figure 6. Posterior probability (pk) and BMA maximum likelihood weight (βBMA) of alternative models calculated using 10 years of data.
The value above the bar represents the maximum likelihood Bayesian weight.

the prediction of those selected models and the new βBMA
of L1B5, L2B4 and L2B5 was 0.35, 0.39 and 0.26, respec-
tively. During this recalculation, the 95 % prediction interval
covers about 82 % of observation data, meaning exclusion of
12 models resulted in a loss of only 3 % of observed data.

3.2 Climate change impact on precipitation,
temperature and evapotranspiration

Figure 7 shows the changes in monthly climatic parameters
between the control and scenario periods ranging between
1961–1990 and 2021–2050, respectively. Figure 7a shows
the changes in the monthly precipitation amount. Small pos-
itive changes in monthly precipitation amounts are observed
for the wet season. For the dry season (November to April),
in contrast, the changes are less consistent: decreasing pre-
cipitation amounts are found for April and December, while

March displays a significant increase. The effect of the GHS
on the monthly precipitation amount changes is shown by
Fig. 7b. One would expect increasing/decreasing change sig-
nals under increasing GHSs. This unidirectional behaviour
is, however, limited to the months July, August, September
and November. Most likely, 2035 is situated before the time
of emergence, whereby the effect of the increasing GHS re-
mains mainly masked by noise inherent to the internal cli-
mate variability (Hawkins and Sutton, 2012). This, more-
over, indicates that the months July, August, September and
November are most likely more sensitive to the GHSs com-
pared to the other months.

Figure 7c presents the climate scenarios for minimum,
mean and maximum daily temperature. It shows the abso-
lute changes in monthly minimum, mean and maximum daily
temperature between the control and scenario periods. Gen-
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Figure 7. Climate impact signal for all selected climate models (1975–2035): (a) relative changes in monthly precipitation amount (all GHSs
combined), (b) relative changes in monthly precipitation amount as a function of the GHSs, (c) absolute changes in monthly minimum, mean
and maximum daily temperature (all GHSs combined), and (d) relative changes in potential evapotranspiration as a function of the GHSs.

erally, higher increases in minimum and mean daily tem-
peratures are projected during the wet season. An inter-
comparison between the different variables shows, further-
more, higher changes for the minimum daily temperature
than for the mean and maximum daily temperature.

The changes in monthly potential evapotranspiration are
shown in Fig. 7d. Except for May, increases are observed for
all months. For some months, the changes seem not sensitive
to the GHS. Changes for the months March, April, June, Oc-
tober and December seem particularly sensitive to the GHS.
Similarly to the precipitation results, a possible explanation
can be found in the “time of emergence” concept.

The climate change signals for a representative month in
the dry and wet seasons are included in Table S8.

3.3 Climate change impact on groundwater recharge

The changes in the monthly groundwater recharge due to
climate change are highly uncertain (Fig. 8a). Like precip-
itation, small increasing changes in monthly groundwater
recharge are observed for the wet season. For the dry sea-
son (November to April), in contrast, the changes are less
consistent. The majority of the global climate model runs
project generally an increasing groundwater recharge. How-
ever, for April and December, significant decreases are noted.
The effect of the GHSs on the monthly groundwater recharge
changes is shown by Fig. 8b. The months July, August,
September and November seem to be more sensitive to the
GHSs compared to the other months. For both RCP 8.5 and
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Figure 8. Change in groundwater recharge due to climate change: (a) relative changes in monthly groundwater recharge (all GHSs combined);
(b) relative changes in monthly groundwater recharge as a function of the GHSs.

RCP 4.5, April and December show decreasing changes in
monthly groundwater recharge.

Projected spatial variation of the mean groundwater
recharge change between the future and baseline periods due
to climate change is presented in Fig. 9. Spatial variation
is observed only for two extreme recharge scenarios: high
recharge scenario indicates maximum recharge at each time
step among all the ensembles and low recharge scenario in-
dicates minimum recharge. For both April and September,
the high recharge scenario shows a zero to positive change
in groundwater recharge, while the low recharge scenario
shows a zero to negative change in groundwater recharge.
No clear spatial trends are observed in the change in ground-
water recharge. In the high recharge scenario, mean monthly
groundwater recharge would increase by 25 mm (April) and
100 mm (September). In the low recharge scenario, mean
monthly groundwater recharge would decrease by 16 mm
(April) and 35 mm (September). Crosbie et al. (2010), also,
reported that changes in groundwater recharge due to climate
change are uncertain.

3.4 Future groundwater-level analysis

The baseline and future groundwater levels were simulated
using three selected groundwater flow models (L1B5, L2B4,
L2B5). Then, the model average was calculated by Eq. (1)
using simulated groundwater levels and the maximum like-
lihood Bayesian weight of the respective groundwater flow
models. The change in groundwater level for different sce-
narios is discussed below.

3.4.1 Baseline groundwater-level simulation

Groundwater levels in the baseline scenario show a decreas-
ing trend. The mean decreasing rate of groundwater level
is 0.18 m/year (Sen’s slope). The summary of the trend
analysis for 50 observation wells is shown in the Supple-
ment (Table S9). The calculated decreasing rate varies spa-

tially and ranges between 0.05 and 0.49 m/year. Mustafa et
al. (2017b) studied observed groundwater-level data of the
same study area and reported that the average groundwater
level dropped by 4.5–4.9 m over the last 29 years at a rate of
0.15–0.17 m/year. The annual groundwater-level fluctuation
of 3 to 5 m in the baseline scenario is also supported by the
findings of Shamsudduha et al. (2009). Overall, the simulated
groundwater levels correspond well to the findings of other
researchers for the baseline period. Therefore, the simulated
groundwater level of the baseline period was used for com-
parison with the simulated groundwater levels of the future
scenarios.

3.4.2 Impact of climate change on groundwater level

The impact of climate change on groundwater level is highly
uncertain in the study area (Fig. 10a). The uncertainty ranges
of the change in mean monthly groundwater level due to
different GCMs and GHSs obtained from the three selected
conceptual groundwater flow models are presented with the
box-plot for each month. Climate change could increase the
mean monthly groundwater level by up to 2.5 m and could
decrease it by 0.5 m. However, the SDGs suggest a 0–0.5 m
increase in groundwater level due to climate change. The im-
pact of climate change seems higher from May to Septem-
ber than from October to April. This seasonal variation of
climate change impact can be explained by the precipita-
tion pattern of the study area (Fig. S2a). Large precipitation
amounts occur from May to October in Bangladesh, so that
climate change has a higher impact in this period. Uncer-
tainty of groundwater level due to climate change is highest
from June to December. The precipitation pattern can also
explain the monthly variation of climate change impact un-
certainty. Groundwater levels increase more during the rainy
season in a high recharge scenario (high precipitation), but
in a low recharge scenario, groundwater levels decrease due
to the lack of recharge in the rainy seasons. Therefore, the
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Figure 9. Spatial variation of mean groundwater recharge change due to climate change for (a) a high recharge scenario in April, (b) a low
recharge scenario in April, (c) a high recharge scenario in September and (d) a low recharge scenario in September.

uncertainty band increases in this period for extreme scenar-
ios. Similarly to precipitation and groundwater recharge, the
effects of the GHSs are not very significant on groundwater-
level changes (Fig. 10b). Most of the GCMs project that the
increase in groundwater level would be higher for RCP 8.5
compared to RCP 4.5 for all months.

The impact of climate change on groundwater level also
varies spatially. The projected impact of climate change on
groundwater level is relatively higher in the southwestern
part (Fig. 11), although this pattern does not correspond to
the spatial pattern of groundwater recharge (Fig. 9). This can
be explained by the effect of the river on groundwater level.
In a high recharge scenario mean monthly groundwater level
would increase up to 4 m (April) and 8 m (September). How-
ever, in a low recharge scenario, mean monthly groundwater

level would decrease down to 1.6 m. Overall, the impact of
climate change on groundwater level was not linear.

3.4.3 Future groundwater levels under different
abstraction scenarios

The mean monthly groundwater level for the PLinear ab-
straction scenario decreases about 10 to 14 m compared to
the baseline period (Fig. 12a). The scenario of PConstant re-
sulted in a 4 to 7 m decrease in groundwater level (Fig. 12b).
For the 30 % reduced (PReduced_30) abstraction scenario, the
mean groundwater level would decrease about 1.5 to 3.8 m
(Fig. 12c). Even for the 50 % reduced (PReduced_50) abstrac-
tion scenario, the mean groundwater level would decrease
about 1.0 to 1.5 m (Fig. 12d). Groundwater abstraction in
the study area has to be reduced by 60 % compared to the
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Figure 10. Mean monthly change in groundwater levels in the simulated future period (2026–2047) compared to the baseline period (1980–
2006) due to climate change: (a) all GHSs combined, and (b) as a function of the GHSs.

Table 2. The summary of annual groundwater-level trend statistics of 50 observation wells for the baseline (1985–2006) and simulated future
(2026–2047) periods under different abstraction scenarios (PLinear, PConstant, PReduced_30) and recharge scenarios (low, high).

Simulated future period

Baseline PLinear PConstant PReduced_30

period Low High Low High Low High

Statistics Slope (m/year)

Mean −0.18 −1.10 −1.02 −0.50 −0.47 −0.37 −0.30
Maximum −0.05 −0.06 −0.06 −0.03 −0.04 −0.04 −0.09
Minimum −0.49 −3.89 −3.71 −1.88 −1.54 −1.13 −0.79
Median −0.15 −0.39 −0.38 −0.37 −0.35 −0.27 −0.18
Standard deviation 0.11 1.23 1.12 0.51 0.40 0.29 0.25

groundwater abstraction rate in 2010, to keep a sustainable
groundwater level (Fig. 12e). This indicates that the ground-
water abstraction rate of 2010 is much higher than the future
recharge potential. The situation will be worse if the current
increasing groundwater abstraction trend continues. A spa-
tial variation in groundwater-level change for different ab-
straction scenarios was also observed. In a low recharge sce-
nario, even for a 30 % reduced (PReduced_30) abstraction sce-
nario, groundwater level decreased about 14 m in the south-
western part of the study area. In a high recharge scenario,
on the other hand, groundwater level increased about 2 m in
the northeastern part of the study area for the PReduced_30 ab-
straction scenario. The results also show that a 50 % lower
groundwater abstraction than the 2010 rate is not enough to
stop groundwater level declining in the southwestern part of
the study area.

The summary of annual groundwater-level trend analy-
sis of 50 observation wells for the high- and low-recharge
scenarios and for different abstraction scenarios (PLinear,
PConstant, and PReduced_30) is shown in Table 2. Only the sig-
nificant (p<0.05) trends were considered in this analysis.

Scenarios PConstant and PReduced_30 have a mean decreasing
rate that is 2 to 3 times higher than the baseline scenario.
Therefore, proper groundwater abstraction policy is neces-
sary to maintain sustainable use of this resource.

3.5 Sources of uncertainty in groundwater-level
prediction

3.5.1 Alternative conceptual model (CHM) uncertainty

The 95 % prediction intervals of the three best-performing
models are shown in Fig. 13a. The average spread of the 95 %
prediction interval of the three alternative CHMs was about
3 m with a maximum spread of about 16 m. It is observed that
the spread of the prediction interval is wider for low and high
groundwater levels. This is not surprising as the one-layered
model overestimates low groundwater levels and underesti-
mates high groundwater levels in most of the observation
wells. The wide uncertainty band of the alternative CHMs
indicates that the use of a single model in groundwater-level
prediction may lead to biased conclusions.
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Figure 11. Spatial variation of mean groundwater-level change due to climate change for the (a) high recharge scenario in April, (b) low
recharge scenario in April, (c) high recharge scenario in September, and (d) low recharge scenario in September.

3.5.2 Recharge scenario uncertainty

The average spread of the 95 % prediction interval due to
recharge scenarios is 1.11 m with a maximum of 6.07 m. The
predictive uncertainty due to the recharge scenario is higher
during periods with high groundwater levels and recharge.
Although the mean uncertainty resulting from recharge sce-
narios is relatively lower than for other sources of un-
certainty, there is large temporal and spatial variation in
groundwater-level prediction due to recharge scenarios (as
described in Sect. 3.4.2). The recharge scenarios were devel-
oped using future climate scenarios of different climate mod-
els so that the uncertainty from recharge scenarios represents
the uncertainty from climate scenarios in groundwater-level
prediction. This uncertainty analysis suggests that all possi-

ble climate scenarios should be considered to predict ground-
water levels with a reliable uncertainty band.

3.5.3 Abstraction scenarios uncertainty

The 95 % prediction interval of groundwater level for differ-
ent abstraction scenarios increases with time (Fig. 13b). The
average spread of the 95 % prediction interval is 8.38 m and
the maximum is 43 m. The uncertainty of groundwater level
related to the abstraction scenario is very high.

3.5.4 Comparison of sources of uncertainties

The uncertainties due to alternative CHMs, recharge scenar-
ios and abstraction scenarios are compared (Fig. 14). The
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Figure 12. Monthly mean change in groundwater levels in the sim-
ulated future period (2026–2047) compared to the baseline period
(1985–2006) due to groundwater abstraction: (a) for the PLinear ab-
straction scenario; (b) for the PConstant abstraction scenario; (c) for
the 30 % reduced (PReduced_30) abstraction scenario; (d) for the
50 % reduced (PReduced_50) abstraction scenario; and (e) for the
60 % reduced (PReduced_60) abstraction scenario.

spread of the prediction interval of groundwater levels result-
ing from different CHMs, recharge scenarios and abstraction
scenarios was estimated using Eqs. (13), (14) and (15), re-
spectively. The contribution of each source was calculated
based on the median value of the spread of the prediction
interval. The contribution of an individual source is calcu-
lated as the ratio of the median value of the spread of the
prediction interval for the respective source to the median
value of the spread of the prediction interval for the to-
tal uncertainty. The abstraction scenarios are the dominant
source of the total uncertainty in groundwater-level predic-
tion in this overexploited aquifer. About 68 % of the total
uncertainty arises from the abstraction scenarios. CHM un-
certainty contributed about 23 % of total uncertainty. This re-
sult is in agreement with the findings by Rojas et al. (2008).
They reported CHM uncertainty contributions up to 30 %.
In this case, the alternative CHM uncertainty contribution

is higher than the recharge scenario uncertainty contribu-
tion, including the greenhouse gas scenario, climate model
and stochastic climate uncertainty contributions. Goderniaux
et al. (2015) reported that uncertainty related to the cali-
bration of hydrological models can be more important than
uncertainty related to climate models in groundwater mod-
elling. The uncertainty due to recharge scenarios was rela-
tively lower than the other sources, but the uncertainty arising
from recharge scenarios was very high in the southwestern
part of the study area (described in Sect. 3.4.2). Hence, use
of a single model or single recharge or abstraction scenario
may lead to biased estimation of groundwater levels. There-
fore, a multi-model and multi-scenario approach should be
used for reliable groundwater-level prediction.

4 Conclusions

The main objective of this study was to quantify
groundwater-level prediction uncertainty in climate change
impact studies using an ensemble of representative con-
centration pathways, global climate models, multiple alter-
native CHMs and abstraction. In this study, 15 alternative
CHMs, 22 climate model runs for representative concentra-
tion pathways 4.5 and 8.5 (in total 44 climate model runs)
and 5 groundwater abstraction scenarios were used to achieve
this aim. The BMA technique was used to predict reliable
groundwater level using predictions of alternative CHMs.

It was observed that different conceptual groundwater
models (CHMs) can simulate significantly different ground-
water levels due to differences in the number of layers and the
boundary conditions. The simple one-layered models were
unable to simulate seasonal variation, but had a relatively bet-
ter performance close to the model boundaries than the other
multi-layered models. The three-layered models were more
detailed, but the performance was not superior to the two-
layered models. The performance of the two-layered mod-
els was mostly better than the one-layered and three-layered
models.

Ranking of models differed in the calibration and valida-
tion period. The best model in the calibration period only got
the 4th rank in the validation period, suggesting the impor-
tance of the use of multiple CHMs for reliable prediction.

The impact of groundwater abstraction on groundwater
levels is very high. For 2026–2047, the groundwater level
would decline about 5 to 6 times faster than in the baseline
period (1985–2006) if the current increasing groundwater ab-
straction trend continues. Even with a 30 % lower ground-
water abstraction rate compared to the 2010-rate, the mean
monthly groundwater level would decrease by up to 14 m
in the southwestern part of the study area. Groundwater ab-
straction has to be reduced by 60 % compared to the 2010-
rate to keep groundwater level sustainable. This indicates that
the groundwater abstraction rate of 2010 was far higher than
recharge potential.
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Figure 13. The 95 % prediction interval of groundwater level of a representative observation well (BOG001) for (a) different conceptual
models and (b) different abstraction scenarios.

Figure 14. Comparison of uncertainties arising from alternative conceptual models, recharge scenarios and abstraction scenarios. The
recharge scenario uncertainty includes the greenhouse gas scenario uncertainty, the climate model uncertainty and the stochastic uncertainty.

The differences in groundwater abstraction scenarios were
the dominant source of uncertainty in groundwater-level
prediction. The uncertainty due to alternative CHMs was
also found to be significant and higher than the uncertainty
from the recharge scenarios. The uncertainty due to different
recharge scenarios was very high in the southwestern part

of the study area. Therefore, use of a single model and/or
single recharge and abstraction scenario can lead to biased
groundwater-level prediction.

This study suggests that a multi-model approach should
be used in groundwater-level prediction to avoid biased es-
timation of groundwater levels. The BMA is probably the
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most suitable technique for developing a multi-model aver-
age based on the best available data and future alternative
scenarios. This study recommends that the uncertainty due to
alternative CHMs, recharge and abstraction scenarios should
be considered in future groundwater-level prediction.

In this study, alternative conceptual models have been cal-
ibrated using PEST. However, different calibration methods
can result in different calibrated model parameters. Hence,
further studies could be conducted using different calibration
methods (e.g. global parameters’ optimization methods). We
also suggest that more field data be collected, such as reliable
groundwater abstraction data, river flow information, spa-
tially distributed horizontal hydraulic conductivity and de-
tailed information about the boundary conditions.

Keeping in mind that the complexity of hydrogeological
models is increasing, further studies should be conducted
on global sensitivity analysis (SA) to (i) identify the influ-
ential and non-influential parameters on the model predic-
tion and (ii) better understand the importance of the differ-
ent components of the complex model structure. Identifica-
tion of influential parameters will play an important role in
model parameterization and in reducing uncertainty due to
over-parameterization. The identification of non-influential
parameters using SA will be a very important step in sim-
plifying model structure.
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