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Abstract. Managing water resources in a complex adap-
tive natural–human system is a challenge due to the dif-
ficulty of modeling human behavior under uncertain risk
perception. The interaction between human-engineered sys-
tems and natural processes needs to be modeled explicitly
with an approach that can quantify the influence of incom-
plete/ambiguous information on decision-making processes.
In this study, we two-way coupled an agent-based model
(ABM) with a river-routing and reservoir management model
(RiverWare) to address this challenge. The human decision-
making processes is described in the ABM using Bayesian
inference (BI) mapping joined with a cost–loss (CL) model
(BC-ABM). Incorporating BI mapping into an ABM allows
an agent’s psychological thinking process to be specified by
a cognitive map between decisions and relevant preceding
factors that could affect decision-making. A risk perception
parameter is used in the BI mapping to represent an agent’s
belief on the preceding factors. Integration of the CL model
addresses an agent’s behavior caused by changing socioe-
conomic conditions. We use the San Juan River basin in
New Mexico, USA, to demonstrate the utility of this method.
The calibrated BC-ABM–RiverWare model is shown to cap-
ture the dynamics of historical irrigated area and streamflow
changes. The results suggest that the proposed BC-ABM
framework provides an improved representation of human
decision-making processes compared to conventional rule-
based ABMs that do not take risk perception into account.
Future studies will focus on modifying the BI mapping to
consider direct agents’ interactions, up-front cost of agent’s
decision, and upscaling the watershed ABM to the regional
scale.

1 Introduction

Managing water resources for growing demands of energy
and food while sustaining the environment is a grand chal-
lenge of our time, especially when we are dealing with a
complex adaptive natural–human system that is subject to
various sources of uncertainty. Nowadays, almost every ma-
jor basin in the world can be considered as a coupled natural–
human system (CNHS) where heterogeneous human activi-
ties are affecting the natural hydrologic cycle and vice versa
(Liu et al., 2007). The interaction between human activity
and the natural environment needs to be explicitly addressed
and the uncertainty within this complex system characterized
according to a formal approach if benefits toward improved
water resource management (Brown et al., 2015) are to be
realized.

Recently, agent-based modeling (ABM) has become a
commonly used tool in the scientific community to address
CNHS issues. An ABM framework identifies individual ac-
tors as unique and autonomous “agents” that operate accord-
ing to a distinct purpose. Agents follow certain behavioral
rules and interact with each other in a shared environment.
By explicitly representing the interaction between human
agents (e.g., farmers) and the environment (e.g., a watershed)
where they are located, ABM provides a natural bottom-up
setting to study transdisciplinary issues in CNHS. Applying
the ABM approach in water resources management began a
decade ago and became a popular topic in CNHS analyses
(Berglund, 2015; Giuliani et al., 2015; Giuliani and Castel-
letti, 2013; Hu et al., 2017; Khan et al., 2017; Mulligan et al.,
2014; Schlüter et al., 2009; Yang et al., 2009, 2012; Zech-
man, 2011).
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However, one major challenge of applying the ABM ap-
proach to water management decisions is the difficulty of
characterizing human decision-making processes and meet-
ing the real-world management intuition. The traditional ap-
proach through, for example, survey or interview with lo-
cal decision makers, is extremely limited (e.g., Manson and
Evans, 2007) in space and time. This study introduces the
theory of planned behavior (TPB), a well-known theory in
psychology used to predict human behavioral intention and
actual behavior (Ajzen, 1991), into the ABM framework to
quantify human decision-making processes. The TPB states
that an individual’s beliefs and behaviors can be expressed
in terms of a combination of attitude toward behavior, sub-
jective norms, and perceived behavioral control. Attitude to-
ward behavior and subjective norms specify an individual’s
perceptions of performing a behavior affected by their in-
ternal thinking processes and social normative pressures,
while perceived behavioral control describes the effects from
external uncontrollable factors (e.g., socioeconomic condi-
tions). If an individual has high belief about making a spe-
cific decision, then it has an increased confidence that she/he
can perform the specific behavior successfully. On the other
hand, the tendency of a person for making a specific de-
cision increases/decreases if social normative pressures de-
crease/increase.

Implementing the TPB into ABM requires that all the
three components be modeled explicitly. In this study, we
adapt the Bayesian inference (BI) mapping (Pope and Gim-
blett, 2015; Kocabas and Dragicevic, 2012) and the cost–loss
model (CL) (Thompson, 1952) for this task. The BI mapping
(also called Bayesian networks, belief networks, Bayesian
belief networks, causal probabilistic networks, or causal net-
works), built on the Bayesian probability theory and cogni-
tive mapping, calculates the likelihood that a specific deci-
sion will be made (Sedki and de Beaufort, 2012 via Pope
and Gimblett, 2015) while sequentially updating beliefs of
specific preceding factors (model parameters) as new infor-
mation is acquired (Dorazio and Johnson, 2003). By apply-
ing the BI mapping, an individual’s beliefs affected by their
internal thinking processes and perceptions of social norma-
tive pressures can be described as a cognitive map between
decisions and relevant preceding factors. Ng et al. (2011) de-
veloped an ABM using BI to model the farmer’s adaptation
of their expectations (or belief) and uncertainties of future
crop yield, cost, and weather. Yet the preceding factors were
assumed to be independent of each other, which is not al-
ways true, especially if two preceding factors are spatially
related (e.g., downstream reservoir elevation, and upstream
precipitation). More importantly, the internal thinking pro-
cesses of all farmers were assumed to be the same (i.e., no
spatial heterogeneity is modeled). As a result, a more realistic
framework of applying BI to ABM is still needed to improve
representation of human decision-making processes.

While BI mapping specifies the human psychological
decision-making process, the CL model addresses the ef-

fect of external socioeconomic conditions on an individ-
ual’s decision-making (i.e., perceived behavioral control in
the TPB). The CL model is frequently used as a sim-
ple decision-making model in economic analysis to quan-
tify human decision-making according to economic theory
(Thompson, 1952). CL modeling has been widely used in
estimating the economic value of weather forecasts (Keeney,
1982; Lee and Lee, 2007; Murphy, 1976; Murphy et al.,
1985). Tena and Gómez (2008) and Matte et al. (2017) in-
corporated the constant absolute risk aversion theory in CL
modeling to evaluate risk perception of decision makers since
the original CL model assumes a risk-neutral decision maker.
They used a parameter, the Arrow–Pratt coefficient, to repre-
sent risk-averse and risk-seeking decision makers but did not
specify how this parameter could be determined. They also
did not clarify what will happen if different decision mak-
ers in the system have different perceptions of risk (again, no
spatial heterogeneity).

To address these aforementioned research gaps, we devel-
oped an ABM based on the BI mapping and the CL model
as an implementation of the TPB (referred to as the “BC-
ABM” hereafter). The BC-ABM is two-way coupled with
a river-routing and reservoir management model: RiverWare
(details in Sect. 2.1). The four objectives of this study are
listed as follows: (1) use the BC-ABM to quantify human
decisions considering uncertain risk perception, (2) demon-
strate the improvement of BC-ABM compared to conven-
tional agent behavior rules, (3) use the coupled BC-ABM–
RiverWare model to explicitly model the feedback loop be-
tween human and nature systems, and (4) test the BC-ABM–
RiverWare for different scenarios. The San Juan River basin
in New Mexico, USA, is used as the demonstration basin
for this effort. The calibrated BC-ABM–RiverWare model
is used to evaluate the impacts of changing risk perception
from all agents to the water management in this basin. In
this study, multiple comparative experiments of a conven-
tional rule-based ABM (i.e., without using the BI and CL)
are conducted to demonstrate the advantages of the proposed
BC-ABM framework in modeling human decision-making
processes. We also evaluate the effect of changing external
economic conditions on an agent’s decisions.

The paper is structured as follows. We introduce our
methodology in Sect. 2. The background of the case study
area, the San Juan River basin, and calibration of the BC-
ABM–RiverWare are presented in Sect. 3. We show different
scenario results of the model in Sect. 4 (Results). The gener-
alization of the framework and current model limitations are
discussed in Sect. 5 (Discussion) followed by the Conclusion
section.
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2 Methodology

2.1 Develop a two-way coupled ABM–RiverWare
model

River-routing and reservoir management modeling is de-
signed to simulate the deliveries of water within a regulated
river system (Johnson, 2014). Many river-reservoir manage-
ment models have been developed to address different objec-
tives within a geographic region such as MODSIM, River-
Ware, CALSIM (Draper et al., 2004), IQQM (Hameed and
O’Neill, 2005), and WEAP (Yates et al., 2005). These mod-
els use a node–link structure to represent the entire river net-
work where “nodes” are important natural (sources, lakes,
and confluences) or human (water infrastructures and water
withdrawals) components and “links” represent river channel
elements.

RiverWare, developed in 1986 by the University of Col-
orado Boulder, is a model of water resource engineering
systems for operational scheduling and forecasting, plan-
ning, policy evaluation, and other operational analysis and
decision processes (Zagona et al., 2001). It couples water-
shed and reach models that describe the physical hydrologic
processes with routing and reservoir management models
that account for water use for water resources assessment.
RiverWare has a graphic user interface and uses an object-
oriented framework to define every node in the model as an
“object.” Each object is assigned a unique set of attributes.
These attributes are captured as “slots” in RiverWare. There
are two basic types of slots: time series and table slots for
each object to store either time series or characteristic data.
Details of the RiverWare structure and algorithm can be
found at Zagona et al. (2001) and the following website:
http://www.riverware.org/ (last access: 7 May 2019).

There is an emerging research topic in Earth system mod-
eling (Di Baldassarre et al., 2015; Troy et al., 2015) and
water resources system analysis (Denaro et al., 2017; Giu-
liani et al., 2016; Khan et al., 2017; Li et al., 2017; Mul-
ligan et al., 2014) to couple models together. Coupling an
ABM with a process-based model has been done before
but mostly focused on groundwater models such as Hu et
al. (2017) and Mulligan et al. (2014). One of the few exam-
ples that involve coupling with a surface water model, Khan
et al. (2017) developed a simple ABM that coupled with a
physically based hydrologic model, the Soil and Water As-
sessment Tool. In this paper, we perform a two-way cou-
pling (or sometimes called “tight” coupling) of models which
means data/information will be transferred back and forth be-
tween the ABM and RiverWare, where selected objects in
RiverWare are defined as agents. To facilitate the two-way
coupling, we utilize a convenient built-in tool within River-
Ware: the data management interface (DMI) utility which al-
lows automatic data imports and exports from/to any external
data source (RiverWare Technical Documentation, 2017; see
also Fig. S1 in the Supplement).

2.2 Quantify planned behavior with BI mapping and
CL model

The ABM developed in this paper, as an implementation of
the TPB, consists of two components: the Bayesian infer-
ence mapping and the cost–loss modeling. This unique setup
allows us to explicitly describe human decision-making pro-
cesses and associated uncertainty caused by information am-
biguity in water management decisions. We describe the de-
tails in this section.

2.2.1 The Bayesian inference (BI) mapping

In this study, the Bayesian inference (BI) mapping is ap-
plied to specify a decision maker’s (or agent’s) internal
thinking processes by building a cognitive map (also called
a causal structure) between decisions (or specific manage-
ment behaviors) and relevant preceding factors that could af-
fect decision-making (Dorazio and Johnson, 2003; Pope and
Gimblett, 2015; Schlüter et al., 2017). In this setting, the goal
of an agent is to develop a decision rule (or management
strategy) that prescribes management behaviors for each time
step that are optimal with respect to its objective function.
The uncertainty associated with these management behav-
iors is specified by a risk perception parameter (Baggett et
al., 2006; Pahl-Wostl et al., 2008) representing the extent to
which decision makers explicitly consider limited knowledge
or belief about (future) information in their decision-making
process (Müller et al., 2013; Groeneveld et al., 2017). This
is the definition of Knightian uncertainty which comes from
the economics literature where risk is immeasurable or the
probabilities are not known (Knight, 1921).

In the field of water resource management, a decision is
often made based on whether the preceding factor is larger
(or smaller) than a prescribed threshold (i.e., exceedance). A
simple example is that a farmer’s belief of changing the ir-
rigation area will be affected by the forecast of snowpack in
the coming water year or water availability in an upstream
reservoir at the beginning of the growing season. The prob-
ability of a preceding factor f (a random variable) exceed-
ing its threshold given a specific management behavior (or
making a decision) θ : P (f |θ) can be expressed using the
conditional probability equation shown in Eq. (1):

P (f |θ)=
P(f ∩ θ)

P (θ)
. (1)

The probability of θ being made when the preceding fac-
tor exceeds the given threshold: P(θ |f ) can be derived using
Eq. (1) and the equations of marginal probability (see Sup-
plement S1 for the derivation details).

P (θ |f )=
P (f |θ)×P(θ)

P (f |θ)P (θ)+P (f |θc)P (θc)
, (2)

where P (θc)= 1−P(θ) is the probability of not taking the
management behavior θ . In our case, the information of f
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is coming from RiverWare to ABM, and θ is the result the
ABM sends back to RiverWare. Similarly, θ being made
when the preceding factor does not exceed the threshold (f c)
may be expressed as

P
(
θ |f c)

=
P (f c

|θ)×P(θ)

P (f c|θ)P (θ)+P (f c |θc)P (θc)
. (3)

The overall probability of taking a management behavior
P (θ) relying on the preceding factor f can be expressed by
the law of total probability:

P (θ)= P (θ |f )×P (f )+P
(
θ |f c)

×P(f c). (4)

A solution of P(θ ) can be obtained by substituting Eqs. (2)
and (3) into Eq. (4):

P (θ)=
P (f |θ)×P(θ)

P (f |θ)P (θ)+P (f |θc)P (θc)
×P (f )

+
P (f c

|θ)×P(θ)

P (f c|θ)P (θ)+P (f c|θc)P (θc)
×P(f c). (5)

In this study, we rename the variables in Eq. (5) as follows
(Shafiee-Jood et al., 2017):
0pr = P (θ)

0pd = P (f )

λ= P (f |θ)

, (6)

where 0pr represents the decision maker or agent’s prior be-
lief of θ , 0pd the probabilistic forecast of preceding factor
f , and λ the rate of acceptance of new information which
represents a decision maker’s belief about the received in-
formation from f (belief of the forecast/measurement accu-
racy representing the degree of ambiguity of f ). By applying
the BI theory to Eq. (5) with the expressions in Eq. (6), the
agent’s prior belief of θ , 0tpr at time t can be expressed as

0tpr =
λ0t−1

pr

λ0t−1
pr + (1− λ)

(
1−0t−1

pr

)0tpd

+
(1− λ)0t−1

pr

(1− λ)0t−1
pr + λ

(
1−0t−1

pr

) (1−0tpd

)
. (7)

In Eq. (7), the agent’s prior belief of θ at timestep t , 0tpr, is
updated based on the prior belief at a previous timestep t−1,
0t−1

pr , and new incoming information or forecast at time t ,
0tpd. 0tpr lies in between 0t−1

pr and 0pd. Two extreme cases are
described here. When λ= 1, Eq. (7) reduces to 0tpr = 0

t
pd,

which indicates that the agent’s belief of taking management
behavior is purely based on the new incoming information,
which corresponds to a risk-seeking decision maker. In con-
trast, when λ= 0.5, Eq. (7) becomes 0tpr = 0

t−1
pr , suggesting

that a decision is made based on an agent’s previous expe-
riences alone (i.e., the decision maker’s most recent experi-
ence). This means that we have a risk-averse decision maker

who does not trust the new incoming information because it
could be uncertain and rather sticks with her/his own expe-
rience. In other words, these agents are not taking any risk
by changing their behavior. In this study, the 0tpr in Eq. (7)
at each time step is updated by applying the Bayesian prob-
ability theory to 0pr between two consecutive time steps to
take the temporal causality between the two decisions into
account.

In most water resources management cases, multiple pre-
ceding factors affect the probability of a single management
decision. In this paper, we assume that agents will make a
decision based on the most highly recognized preceding fac-
tor following the suggestion from Sharma et al. (2013). The
fundamental assumption is that a decision maker will pay
the closest attention to the most abnormal of any preceding
factors, such as the severity of droughts or floods, historic
low or high water levels of an upstream reservoir, or an ex-
treme upstream water diversion. The way we represent this
tendency is by calculating the “extremity” factors (V ) of pre-
ceding factors:

Vi =

∣∣∣∣ fifmax
− 0.5

∣∣∣∣ , (8)

where fi is the ith preceding factor and fmax is the maxi-
mal value of fi . After the extremities of all preceding factors
have been calculated, the agent will select the preceding fac-
tor with the highest Vi to update the prior belief of manage-
ment actions based on Eq. (7). In this study, the extremity of
each preceding factor is examined independently assuming
each preceding factor is independent of each other (consider
one not-joint probability of multiple factors in the BI map-
ping). Taking winter precipitation, a common preceding fac-
tor used by farmers as well as in this study to determine the
irrigated water demand for the coming year, as an example,
fi represents the winter precipitation of year i, while fmax is
the maximum historical winter precipitation until the current
year in Eq. (8).

2.2.2 The cost–loss (CL) model

The BI mapping method described in Sect. 2.2.1 character-
izes an agent’s behavioral intentions related to their internal
(psychological) decision-making processes. According to the
TPB, a real-world management decision or action also de-
pends on external uncontrollable factors such as socioeco-
nomic conditions. The CL model is applied in this study to
address this concern. The CL model measures the probability
of an adverse event affecting the decision of whether to take
costly precautionary action to protect oneself against losses
from that event. Based on the theory of cost–benefit analysis,
the probability of taking an action p is related to the expected
cost of taking action C and opportunity loss of not taking the
action L:

p ≥
C

L
= z, (9)
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where z is defined as the cost–loss ratio, and the precaution-
ary action will be taken only when this value is less than the
probability of the event occurring.

To fit the CL model into the proposed ABM framework,
we modify the above CL model following the concept of
Tena and Gómez (2008) and Matte et al. (2017) which added
the perception of risk into the decision-making process. We
define “C” as the expected cost of taking management action
that will potentially increase the gross economic profit and
“L” as the expected opportunity loss of not taking such man-
agement action. The CL ratio (z), as a measure of probability,
can be compared with the prior belief of an agent for taking
a management decision (0tpr in Eq. 7). When 0tpr is greater
than z, this decision will become real-world management ac-
tion since it makes economic sense.

0tpr ≥ z=
C

L

=
the expected cost of taking management action

opportunity loss of not taking management action
(10)

When z increases, it means the cost of taking management
action goes up or the opportunity loss of not taking manage-
ment action goes down. In either case, agents are less likely
to take action due to reduced profits. When z decreases, fol-
lowing the same logic, agents are more likely to take action.

Figure 1 summarizes the methodology in Sect. 2.2 applied
to this study. An agent’s decision-making and action process
will start when receiving information (0tpd) from RiverWare,
and the conditional probability of the agent’s decision 0tpr
will be computed after the most highly recognized preced-
ing factor is decided by the Vi values. This probability of an
agent’s decision will be compared with the CL ratio (z) to ac-
count for the external economic conditions where the agent
is located. The final management action from the agent will
depend on whether the probability of making a decision for
an agent is greater (take the action) or smaller (do not take the
action) than the CL ratio. This process is repeated annually
throughout the entire simulation period. We will use the case
study to demonstrate the capability of this proposed method
and diagnose the model with the historical data.

3 Case study

3.1 Background of the study area

The San Juan River basin (Fig. 2) is the largest tributary of
the Colorado River basin with a drainage area of 64 570 km2.
Originating as snowmelt in the San Juan Mountains (part
of the Rocky Mountains) of Colorado, the San Juan River
flows 616 km through the deserts of northern New Mexico
and southeastern Utah to join the Colorado River at Glen
Canyon. Most water use activities are located in the upper
part of the San Juan River basin in the states of New Mex-
ico and Colorado. There are 16 major irrigation ditches, four

cities, and two power plants (Fig. 2) located in this basin,
for which the San Juan River is the primary water source.
Major crops grown in the basin include hay, corn, and veg-
etables, and the main planting season runs from May to Oc-
tober (Census of Agriculture – San Juan County, New Mex-
ico, 2012). The Navajo Reservoir, located 70 km upstream of
the City of Farmington, NM, is the main water infrastructure
in the basin (Fig. 2) which is used for flood control, irriga-
tion, domestic and industrial water supply, and environmen-
tal flows. The reservoir is designed and operated by the US
Bureau of Reclamation (USBR) following the rules in the
Colorado River Storage Project (Annual Operating Plan for
Colorado River Reservoirs, 2017). The active storage of the
reservoir is 1.3 million acre-feet (1.6 billion cubic meters).
The maximum release rate is limited to 5000 cubic feet per
second (ft3 s−1) or 141.58 cubic meters per second (m3 s−1).

The Navajo Indian Irrigation Project (NIIP) is another ma-
jor water consumer within the basin beside the 16 major irri-
gation ditches. The NIIP supplies water to Native American
tribes in the region. San Juan-Chama Project manages trans-
basin water transfers into the Rio Grande Basin, augmenting
supply for Albuquerque, NM, irrigation and instream flow
needs. Finally, the San Juan River Basin Recovery Imple-
mentation Program (SJRIP) implemented by the Fish and
Wildlife Service manages environmental flows within the
basin, dictating timing and magnitude of releases from the
Navajo Reservoir and maintenance of a daily 500 ft3 s−1

(14.15 m3 s−1) minimum streamflow requirement (Behery,
2017).

To improve water planning and management in the basin,
several state and federal agencies established a steering com-
mittee with the main responsibility of overseeing the insti-
tutional complexity for the water plans operated under the
1922 Colorado River Compact and 1948 Upper Colorado
River Basin Compact. Although a regional water plan report
(RWP) was updated in 2016 (State of New Mexico Inter-
state Stream Commission, 2016) by interested stakeholders,
issues still exist under the terms of the 1948 Upper Colorado
River Basin Compact. For example, New Mexico’s entitled
642 380 ac-ft (0.793 billion cubic meters) consumptive use
is substantially greater than the corresponding consumptive
use.

The RWP summarizes the related information of water
planning such as water rights, future water supply and de-
mand projections, and newly available data. For example,
10 of the largest water users have cooperated to develop
a shortage sharing agreement to keep the Navajo Reser-
voir from drawing down the reservoir pool elevation be-
low 5990 ft (2041 m), which is the elevation required for
NIIP diversion. The agreement stipulates that all parties share
equally in shortages caused by drought (2013–2016 shortage
agreement is available at https://www.fws.gov/southwest/
sjrip/DR_SS03.cfm, last access: 2 May 2019). The RWP also
projected that the total water demand in the basin is expected
to increase due to the authorized expansion of the NIIP irri-
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Figure 1. The flow chart of agent decision-making process inside the two-way coupled ABM–RiverWare model (ABM.exe in Fig. S1).
Agents make their decisions with uncertainty based on the method developed in this paper (joint BI mapping and CL model), and RiverWare
runs the simulation based on these decisions.

gation area, while a reduction of future water supply is pos-
sible due to climate change (State of New Mexico Interstate
Stream Commission, 2016). Since irrigation activities are the
most consumptive components of water demand among oth-
ers (74.8 % of total water demand, State of New Mexico In-
terstate Stream Commission, 2016), collective adaptive ac-
tions of farmers will significantly affect the water planning
and management in the San Juan Basin and become a suit-
able test bed for our methodology.

3.2 The BC-ABM–RiverWare model setup

USBR developed a RiverWare model for the San Juan River
basin to support water management and resource planning
efforts. RiverWare includes 19 irrigation ditch objects, 21 do-
mestic and industrial use objects, 2 power plant objects, and
3 reservoir objects. Input data for the RiverWare model in-
clude historical tributary inflows, evapotranspiration rates for
each irrigation ditch limited by the crop water requirement,
historic water diversion for NIIP and the San Juan-Chama
Project, and reservoir operation rules. Ungauged local in-
flows were determined by the simple closure of the local
water budget. The model operates on a daily time step from
1 October 1928 to 30 September 2013 (85 years) with four
cycles of simulation. Each cycle is a complete model run for
the entire modeling period to fulfill part of the necessary in-
formation (e.g., some downstream water requirements need

to be precalculated for the Navajo Reservoir to set up the
release pattern). In this study, farmers that can make man-
agement decisions are quantified as 16 major irrigation ditch
objects in RiverWare. They are defined as agents in the study
and will decide whether to expand or reduce their irrigated
area (e.g., management behavior, θ in Sect. 2) for the com-
ing year at the end of every water year. We categorized the
16 agents into three groups based on their location (colored in
Fig. 2). Agents in group 1 (light blue) were located upstream
of the Navajo Reservoir, agents in group 2 (light green) were
located on the Animas River (a major tributary of the San
Juan River), and agents in group 3 (orange) were located
downstream of the Navajo Reservoir.

The BI mapping was applied to each group with different
causal structures. The climatic preceding factors considered
in this study include the mainstem (Navajo) upstream winter
precipitation, the tributary (Animas River) winter precipita-
tion, the mainstem downstream winter precipitation, the wa-
ter level in the Navajo Reservoir, and the flow violations at
the basin outlet (days below 500 ft3 s−1 or 14.15 m3 s−1 in a
water year). The social preceding factors considered in this
study include the cost–loss ratio, the NIIP diversions, and the
shortage sharing. Table 1 summarizes the number of agents
in each group and the proceeding factors they are consid-
ering. Given that agents are located at different places, the
preceding factors that affect agents’ decisions will also be
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Figure 2. The upper San Juan River basin. Different colors of the basin represent the geographical regions that this paper used to group major
irrigation districts (agents, marked as dots). The location of the Navajo Reservoir is marked as a triangle.

different. This is an advantage of using ABM to incorporate
spatial heterogeneity in the model.

In this study, the information of winter precipitation was
taken from NOAA ground-based rainfall monitoring gauges
where we used the coming year’s winter precipitation as a
proxy for the snowpack forecast in the causal structure. Win-
ter precipitation has a positive effect on snowpack but there
is an uncertainty about how much snow will be accumulated.
Therefore, when agents expect more winter precipitation, if
they believe it will lead to a lot more snowpack, they will be
more aggressive in the irrigated area expansion. Flow viola-
tion at the basin outlet and water level of the Navajo Reser-
voir are two system-wide preceding factors that are consid-
ered by all the three groups. When flow violation is too fre-
quent or water level is too low, agents tend to be more con-
servative in the irrigated area expansion. If a shortage were
declared, the RiverWare model would reduce the targeted
streamflow at the basin outlet to 250 ft3 s−1 (7.08 m3 s−1)
and the participating six agents would adjust their water di-

version to achieve this newly targeted streamflow. Under the
current model setting, agents follow the backward-looking,
forward-acting mode, which means that agents make de-
cisions based on their own past/current experiences (water
level in the Navajo Reservoir, stream flow violations at the
basin outlet, NIIP water diversion, and the previous decision
on the irrigated area) and their belief of the winter precipita-
tion forecast in the coming year. The detailed causal structure
of BI mapping for each type of agent is given in the Supple-
ment, where a standard Overview, Design concepts, and De-
tails+Decision (ODD+D) protocol for ABM development is
followed (Grimm et al., 2010).

To summarize, the data transfer from RiverWare to ABM
at the end of a water year included (1) irrigation areas for
the 16 irrigation agents, (2) the basin outflow, (3) water level
in the Navajo Reservoir, and (4) the NIIP water diversion.
After the completion of the ABM simulation, data transfer
from ABM to RiverWare included (1) updated irrigated areas
and (2) the corresponding water diversion of each agent. The
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Table 1. Name of agent groups, number of agents in each group, and the proceeding factors considered in decision-making processes.
Superscript “c” means climatic factors and superscript “s” means social factors. Numbers in the bracket are mean and standard deviation if
applicable.

Group Number of Factors considered in decision-making processes
agents

1. (upstream of the Navajo Reservoir) 2 – mainstem upstream precipitationc (180.1 mm, 125.3 mm),
– the water level in the Navajo Reservoirc (1845 m, 4.07 m),
– number of flow violation at the outletc (38.5, 38.8),
– cost–loss ratios

2a. (Animas River without shortage sharing) 5 – tributary (Animas) precipitationc (79.2 mm, 38.2 mm),
– mainstem upstream precipitationc (180.1 mm, 125.3 mm),
– the water level in the Navajo Reservoirc (1845 m, 4.07 m),
– number of flow violation at the outletc (38.5, 38.8),
– cost–loss ratios

2b. (Animas River with shortage sharing) 1 – tributary (Animas) precipitationc (79.2 mm, 38.2 mm),
– mainstem upstream precipitationc (180.1 mm, 125.3 mm),
– the water level in the Navajo Reservoirc (1845 m, 4.07 m),
– number of flow violation at the outletc (38.5, 38.8),
– shortage sharings,
– cost–loss ratios

3a. (downstream of the Navajo Reservoir
without shortage sharing)

3 – mainstem downstream precipitationc (82.9 mm, 96 mm),
– mainstem upstream precipitationc (180.1 mm, 125.3 mm),
– the water level in the Navajo Reservoirc (1845 m, 4.07 m),
– number of flow violation at the outletc (38.5, 38.8),
– NIIP annual diversions (0.197 billion cubic meters, 0.019 bil-
lion cubic meters),
– cost–loss ratios

3b. (downstream of the Navajo Reservoir with
shortage sharing)

5 – mainstem downstream precipitationc (82.9 mm, 96 mm),
– mainstem upstream precipitationc (180.1 mm, 125.3 mm),
– the water level in the Navajo Reservoirc (1845 m, 4.07 m),
– number of flow violation at the outletc (38.5, 38.8),
– NIIP annual diversions (0.197 billion cubic meters, 0.019 bil-
lion cubic meters),
– shortage sharings,
– cost–loss ratios

next section will demonstrate the capability of the proposed
model to recreate historical patterns in the San Juan Basin.

3.3 The BC-ABM–RiverWare model diagnostics

One of the major criticisms of ABM development is that
ABM results are difficult to verify or validate (Parker et
al., 2003; An et al., 2005, 2014; National Research Council,
2014). In this study, we address this concern by calibrating
the coupled BC-ABM–RiverWare model to recreate the his-
torical trend of (1) an individual agent’s irrigated area and
(2) San Juan River discharge. USBR provides the observed
irrigated acreage for all 16 ditches and the flow measure-
ments at two different locations along the San Juan River
(at the outlet of the San Juan River basin and directly down-
stream of the Navajo Reservoir) for the calibration purpose.
The calibrated parameters are the risk perception parameters

(λ) and CL ratio (z) of each individual agent. Each agent has
four λ’s characterized by the relative geographical location
with considered preceding factors. Unique values of λ are as-
signed to each preceding factor for each agent (through cal-
ibration) as different agents should have different levels of
risk tolerance for different preceding factors. Different val-
ues of z are assigned to each agent representing the spatial
heterogeneity of socioeconomic conditions. z is assumed to
be constant for each agent throughout the model period as
relative up-front cost information is unavailable. We also cal-
ibrate the irrigated areal increment of each agent to quantify
the capability of different farmers for expanding or reducing
their farmland. The actual irrigation area change at each year
for each farmer is specified by the calibrated irrigated areal
increment with an added uncertainty of 30 % representing the
execution uncertainty of farmers. The thresholds of each pre-
ceding factor are also calibrated for calculating the extremi-
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ties. A total of 102 parameters are manually calibrated (trial
and error) with details explained in the Supplement (Supple-
ment S2). In general, we calibrated the parameters sequen-
tially from upstream and tributary agents (i.e., groups 1 and
2) to downstream (i.e., group 3). Within a group, we cali-
brated agents with the largest irrigated areas first to capture a
better system-wide result.

The calibration results of irrigated areas are given in Fig. 3
and arranged by group (region). The blue curves are the
historical irrigated area. The red curves are the best-fit re-
sult among multiple (30) modeling runs (shown by the gray
curves, which represents the stochasticity) of each agent. In
general, BC-ABM captures the pattern and trend of irrigated
area for all agents, and we particularly focus on agents with
the largest irrigated areas since their decision can dominate
the basin. A figure showing the time variations of extremity
values for each group of agents is given in the Supplement
(see Fig. S2) to illustrate the preceding factors adopted by
different groups of agents for making decisions at each time
step.

The overall (area) weighted Nash–Sutcliffe efficiency
(NSE, Nash and Sutcliffe, 1970) of the best-fit result is 0.55,
which represents a reasonable calibration result. There are
a few cases where structural changes occurred with some of
the ditches that the model does not capture. Specifically, con-
struction of the Navajo Reservoir in the 1960s inundated the
New Mexico Pine River Ditch, while construction of the dam
made it possible to expand the Hammond Irrigation Ditch
(located directly downstream of the Navajo Reservoir). Sim-
ilar structural changes are evident with the Echo, New Mex-
ico, Animas, and Fruitland-Cambridge ditches. The model
limitation associated with the use of BI mapping in ABM is
discussed in the Discussion section.

To demonstrate the enhanced performance of the pro-
posed BC-ABM framework in representing human decision-
making processes, we conducted comparative experiments
with conventional rule-based, deterministic ABMs (such as
our previous work in Khan et al., 2017), referred to as the
non-BC-ABMs. In the non-BC-ABMs, agents make deci-
sions based on either past experience (e.g., flow violation
or NIIP diversion) or future forecast (winter precipitation)
alone, implying that agents have perfect foresight in terms
of received information. Using precipitation as an example,
an agent will expand irrigation area if the precipitation fore-
cast is greater than the given threshold, and vice versa. Ex-
cluding BI mapping implies that the agents make decisions
purely based on the forecast or new incoming information
and fully ignore the information from past experience, while
excluding the CL model means that the agents do not take
socioeconomic factors into account when making decisions.
Two non-BC-ABMs were tested and results are also shown
in Fig. 3. The black solid curve represents the non-BC-ABM
simulation still utilizing extremity for selecting the refer-
ence preceding factor, while the black dashed curve is the
non-BC-ABM using only the precipitation in the decision-

making processes. The better performance of the proposed
BC-ABM framework, compared to the non-BC-ABMs, is ev-
idenced by the closer agreements between the simulated and
historical patterns of irrigated area from BC-ABM as well as
weighted NSE (0.55 for BC-ABM vs.−1.25 for the non-BC-
ABM with extremity and −1.39 for the non-BC-ABM with
precipitation alone). Different non-BC-ABM simulations are
also compared with the BC-ABM simulations as shown in
Fig. S3.

The time variations of 0tpr and calibrated z for each agent
are shown in Fig. 4 to illustrate the characteristics of dif-
ferent agents, in terms of risk perception. The results show
that the agents in group 1 and 2 have a consistently lower
willingness to adjust irrigation area (0pr shown in red) com-
pared to the corresponding CL ratio (z shown in black). In
contrast, group-3 agents adjust irrigation area more often as
evidenced by the frequent crossover between red and black
curves, which suggest that agents in group 3 are relatively
risk-neutral compared to those in group 1 and 2. The calibra-
tion results of basin outflow and the Navajo Reservoir inflow
are given in Fig. 5. The results show that the simulated val-
ues agree closely with the historical observations evidenced
by the NSEs of 0.60 and 0.54, respectively. We do notice
that our coupled BC-ABM–RiverWare model misses peaks
of streamflow possibly due to the lower input streamflow data
of RiverWare. However, since our focus is the water-scarce
situation in this case study, this underestimation does not sig-
nificantly affect our following analysis.

4 Scenario results

The calibration results in Sect. 3.3 demonstrate the credibility
of the coupled BC-ABM–RiverWare model in representing
human psychological, uncertain decision-making processes.
The encouraging results suggest that we can apply the pro-
posed BC-ABM framework to test some extreme conditions
to perform different scenario analyses. Two scenarios are
tested in this section: the effect of changing agents’ risk per-
ception and the effect of changing socioeconomic condition.

4.1 The effect of changing agents’ risk perception

Different risk perception scenarios are tested by making a
stepwise change in all agents’ λ values from 0.5 (risk-averse)
to 1 (risk-seeking). The basin-wide results are summarized
in Fig. 6, which shows the key measure quantities including
the cumulative probability distribution of annual total irri-
gated area, the Navajo Reservoir water level in December,
annual total downstream flow violation frequency, and vol-
ume. The simulations under extreme risk-averse (λ= 0.5)
and risk-seeking (λ= 1) scenarios are shown in blue and
green, while those with calibrated historical risk perceptions
for each agent are shown in red, referred to as the baseline.
The gray curves lying between blue and green are the results
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Figure 3. The calibration results of the ABM–RiverWare model: individual agents’ irrigated area changes from 1928 to 2013 organized by
irrigation ditch and region (see groups in Fig. 3). Each figure includes the simulated irrigated area change from the best-fit BC-ABM (solid
red) and the corresponding Nash–Sutcliffe efficiency (NSE), multiple runs of BC-ABM (solid gray) to visualize the stochasticity (30 runs)
of agents’ random behavior, non-BC-ABM with extremity (dashed black), and non-BC-ABM using precipitation only (solid black) against
historical record (solid blue). 1 ac= 4046 m2.

Figure 4. Calibrated probability of expanding area (0pr) and cost–loss ratio (z) for each agent.
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Figure 5. The calibration results of the ABM–RiverWare model: (a) the basin outflow to the Colorado River; (b) inflow to the Navajo
Reservoir. Blue lines are historical data and red lines are modeling results. 1 ac-ft= 1234 m3.

corresponding to different λ values. The total irrigation area
generally increases with an increasing λ, indicating that the
agents become more risk-seeking if they are more confident
about new incoming information.

There are two interesting observations. First, it is clear
that when all agents become risk-seeking, their emerging
actions will result in a larger irrigated area in the basin
(Fig. 6a). Since all agents want to expand their irrigated area,
the Navajo Reservoir will reserve more water at the end of
each year, resulting in slightly higher water levels (Fig. 6b).
Streamflow violations show a somewhat counterintuitive re-
sult. The volume of violation under risk-seeking scenarios
increases as expected (green curve shifts to right in Fig. 6d),
but the frequency of violation decreases (green curve shifts
to left in Fig. 6c). This is due to the fact that the Navajo
Reservoir holds more water for irrigation season to satisfy
downstream increasing water demand, which results in much
fewer streamflow violation days during the irrigation season.
Although this operation slightly increases streamflow viola-
tion days in the following season, the total number of viola-
tion days still decreases (Fig. S4). Second, the baseline re-
sults (red curves) are closer to the “all agents risk-averse”
scenario results (blue curves). This is consistent with the
findings from previous studies (e.g., Tena and Gómez, 2008),
which suggest that farmers are commonly risk-averse when
the stakes are high (Matte et al., 2017).

We also look at the time variations of individual irrigated
area changes for characterizing risk perceptions of different
agents. Figure 7 shows the simulated irrigation area changes
for four selected large irrigation ditched since they are the
major players in the basin. The results clearly show that Ji-
carilla (group 1) and NMAnimas (group 2) are historically
risk-averse agents (red curves overlap with blue curves). In
contrast, Hammond and Hogback (group 3) are relatively
risk-neutral, compared to agents in group 1 and 2, as the
red curves lie in between the green and blue curves. Group-3
agents are located downstream of the Navajo Reservoir and
most of them consider the Navajo Reservoir as a steady water
source, so they can have relatively more aggressive attitudes
toward risk compared to their upstream counterparts. Also,
note that Jicarilla, Hammond, and Hogback under the risk-
seeking scenario eventually reach their maximum available
irrigated area. Therefore, their irrigated area flattens out at
the end of the simulation. The gray curves in Fig. 7 represent
the simulated irrigation area changes for agents correspond-
ing to different agents’ risk perceptions. It shows that the ir-
rigation area generally increases with an increasing λ for all
the four agents.

4.2 The effect of changing socioeconomic condition

The proposed BC-ABM framework allows us to quantify
the influences of external socioeconomic factors on human
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Figure 6. The cumulative density frequency throughout the entire simulation period of (a) the basin-wide irrigated area, (b) the Navajo
Reservoir end-of-year water level, (c) basin outlet annual streamflow violation days, and (d) basin outlet annual streamflow violation volume.
Results are given for the calibrated (green curves), risk-averse (blue curves), and risk-seeking (red curves) cases. The simulation results with
different values of agents’ risk perceptions (λ) between 0.5 and 1 are shown in gray.

decision-making processes by adjusting the CL ratio. In this
study, we conducted a sensitivity analysis on the cost–loss
ratio to test what happens if economic conditions change and
it becomes more expensive or cheaper to expand the irri-
gated area by systematically increasing (+10 % and +20 %)
or decreasing (−10 % and −20 %) z values for all agents.
When the z value goes up, it means that the cost of increas-
ing irrigated area goes up, or the opportunity loss of not in-
creasing irrigated area goes down. In either case, the situ-
ation should become harder for agents to expand their irri-
gated area. When the z value goes down, following the same
logic, the economic conditions become easier for agents to
expand their irrigated area. The modeling results shown in
Fig. 8 fit with this intuition quite well. All blue and cyan
curves (increasing z values) are located below, and purple
and magenta curves (decreasing z values) are located above
red curves (baseline). Modeling results also show that, in the
basin, groups 1 and 2 are less sensitive to the changes in eco-
nomic conditions but agents in group 3 are more sensitive to
the economic conditions. Of course, individual differences
exist inside each group.

According to the San Juan River basin regional water
plan, several strategies and constructions such as on-farm and
canal improvements and the municipal and irrigation pipeline
from the Navajo Reservoir will be authorized for meeting the
future water demand (State of New Mexico Interstate Stream
Commission, 2016). These strategies and constructions could
lead to a change in future socioeconomic conditions, in terms
of the cost of water usage and changing irrigated area (e.g.,
up-front cost) for stakeholders. In this study, we quantify
the effects of up-front cost on the changes of irrigation area
(i.e., irrigation water demand) using the proposed BC-ABM
framework. We can look at the influence of up-front cost
on human decision-making processes from two perspectives.
First, it directly changes the socioeconomic condition of an
agent (change of CL ratio). Second, it influences an agent’s
decision-making processes by introducing more information
(change of causal network in BI mapping). As a result, the
proposed BC-ABM framework can take up-front costs into
account without theoretical and technical difficulties if re-
lated information is available. Two scenarios assuming a gen-
eral increasing and decreasing up-front cost for agents over
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Figure 7. Individual agents’ irrigated area changes under calibrated (green curves), risk-averse (blue curves), and risk-seeking (red curves)
scenarios. The simulation results with different values of agents’ risk perceptions (λ) between 0.5 and 1 are shown in gray. 1 ac= 4046 m2.

time are tested in the study. For each agent, a time varied z
is generated by adding a positive/negative trend with a small
random fluctuation to the calibrated z to mimic the spatial
and temporal heterogeneity of up-front costs. Note that we
did not include up-front costs into the current BI mapping as
real-world stakeholders’ inputs are needed to recalibrate all
the model parameters.

The time variation of irrigated area for all 16 agents under
different up-front cost trends is shown in Fig. 9. The cyan and
green curves are the irrigated area change under an increasing
and decreasing z, respectively, while red curves are the base-
line which uses calibrated z values. The results show that the
influence of changing z on group-3 agents is relatively signif-
icant compared to group 1 and group 2. A consistently higher
(lower) green (cyan) curve as compared to the baseline is ob-
served. These preliminary results are expected as they fit the
economic intuition. In this specific case, farmers tend to ex-
pand their irrigation area earlier (by comparing cyan and red
curves) if they expect a corresponding increased cost in the
future. In contrast, if the cost of expanding irrigation area in
the future is expected to go down, farmers will defer the ac-
tions to pursue a lower cost.

5 Discussion

5.1 Generalized modeling framework and policy
implementation for other basins

The proposed BC-ABM framework in this paper is intended
to be a generalizable approach in water resources manage-
ment and other fields that need to quantify human decisions.
This framework directly addresses the four challenges sum-
marized by Scalco et al. (2018) about how to apply the
TPB in an agent-based setting. The model diagnostic pro-
cess and the use of the historical irrigated area answer the
first challenge: data and preliminary model assessment. Ap-
plying the BI mapping provides a stochastic representation
of the decision-making process which eliminates the con-
cern of working with a static model. Combing with the CL
model, we can mathematically calculate when does intention
become behavior. Finally, coupling the ABM with RiverWare
is our solution to address the feedback mechanisms chal-
lenge in a CNHS. The method can be applied to other basins
given that the required input data for BI mapping are publi-
cally available, such as the precipitation from NOAA and the
streamflow from USGS, and risk perception (λ) and CL ra-
tio (z) are calibrated parameters. However, the data required
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Figure 8. The sensitivity analysis of changing economic conditions on an agent’s decision on irrigated areas. Blue (+20 %) and cyan
(+10 %) curves represent increasing z values which make area expansion more expensive. Purple (−20 %) and magenta (−10 %) lines
represent decreasing z values which make area expansion cheaper. 1 ac= 4046 m2.

Figure 9. Irrigation area changes of each agent under the scenario of increasing (cyan) and decreasing (green) z. The calibrated results
(baseline simulation) are shown in red and observations are shown in blue. 1 ac= 4046 m2.
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for the model diagnostic and calibration, such as long-term
historical irrigated area time series, might not be available
in every basin. In this situation, if one intends to duplicate
the proposed method in other basins, some alternative data
source, such as land use and land cover change data from
USGS, can be used as a proxy of calibration targets.

The modeling results can be used to inform water manage-
ment policy. For example, the sensitivity analysis (see Fig. 8)
suggests that the collective action of farmers has the poten-
tial to influence the irrigation of 4.5× 104 to 6.1× 104 ac
(182.1 to 246.9 km2) of cropland with 9000 to 12 000 ac-ft
(11.1 to 14.8 million cubic meters) of water demand, which
is about 30 % to 39 % of the average annual water usage un-
der changing economic conditions (i.e., 20 % increase or de-
crease in up-front cost). A potential increase/decrease in fu-
ture irrigation cost could also influence farmers’ decisions.
Understanding such behavior is also critical to future water
resource planning and management in the San Juan River
basin as (1) threat of climate change will lead to a shift in
timing of flows associated with a mean decrease in future
water supply resulting from an anticipated reduced precipi-
tation and/or increased evaporation, and (2) there are several
settlement agreements with the tribal communities along the
San Juan River basin where their committed allotment of wa-
ter has yet to be put to full use (e.g., Navajo-Gallup pipeline
and Navajo Indian Irrigation Project that both require con-
struction and/or expansion of existing water delivery infras-
tructure to make full use of water rights).

5.2 Model limitations

Here we discuss two areas of limitation of the current study:
data availability and model structure. The lack of historical
data to serve as the calibration target is mentioned in the
above section. Another data limitation is the CL ratio calcu-
lation and the up-front cost. Currently, the CL ratio is treated
as a calibrated parameter in BC-ABM framework. The value
of the CL ratio can be estimated directly by acquiring rele-
vant data, if available. For example, the farm production ex-
pense data provided by the US Department of Agriculture
could be used as an approximation of the expected cost of
changing irrigation area (C in Eq. 10), while the farm in-
come and wealth statistics estimated from crop production
may be considered as a major part of opportunity loss (L in
Eq. 10). The third data limitation is the necessary data to cre-
ate the precise causal structure of BI mapping (Cheng et al.,
2002; Premchaiswadi et al., 2010). In general, an accurate
causal structure of BI mapping can be obtained by detailed
interviews with decision makers (O’Keeffe et al., 2016) or
learned from a dataset (Sutheebanjard and Premchaiswadi,
2010).

Regarding the model structure limitation, the farmer’s
belief is currently calculated using one single preceding
factor in the cognitive map that has the most extremity.
The use of extremity from a single preceding factor in the

decision-making processes assumes that the joint probabil-
ity of decision-making from multiple preceding factors is not
taken into account (the agent may not respond to the cumu-
lative effects of environmental conditions). Finally, the cur-
rent method does not explicitly consider direct interaction
among agents in the BI mapping. We do model agents as in-
teracting indirectly through irrigated water withdrawal (i.e.,
upstream agents’ water uses will affect downstream agents’
water availability). However, effects like peer pressure, word
of mouth, and potential water markets are not currently con-
sidered in the model.

6 Conclusions

Making water resources management decisions in a complex
adaptive natural–human system subject to uncertain informa-
tion is a challenging issue. The interaction between human
and natural systems needs to be modeled explicitly with asso-
ciated uncertainties quantified and managed in a formal man-
ner. This study applies a two-way coupled agent-based model
(ABM) with a river-reservoir management model (River-
Ware) to address the interaction between human and natural
systems. The proposed ABM framework characterizes hu-
man decision-making processes by adopting a perspective of
the theory of planned behavior implemented using Bayesian
inference (BI) mapping joined with cost–loss (CL). The ad-
vantage of ABM is that, by defining different agents, vari-
ous human activities can be represented explicitly while the
coupled water system provides a solid basis to simulate the
feedback between the environment and agents.

Combining BI mapping and CL modeling allows us to
(1) explicitly describe human decision-making processes,
(2) quantify the associated decision uncertainty caused by in-
complete/ambiguous information, and (3) examine the adap-
tive water management in response to a changing natural
environment as well as socioeconomic conditions. Calibra-
tion results for this coupled BC-ABM–RiverWare model, as
demonstrated in the San Juan River basin, show that this
methodology can capture the historical pattern of both hu-
man activities (irrigated area changes) and natural dynamics
(streamflow changes) while quantifying the risk perception
of each agent via risk perception parameters (λ). The sce-
nario results also show that the majority of agents in the basin
are risk-averse, which confirms the conclusion of Tena and
Gómez (2008). The improved representation of the proposed
BC-ABM is evidenced by the closer agreement of BC-ABM
simulations against observations, compared to those from
an ABM without using BI mapping and CL ratio. Chang-
ing economic conditions also yield intuitive agent behavior;
that is, when crop area expansion is more expensive/cheaper,
fewer/more agents will do it.

Future work can target further methodology development
to include direct agent interaction into the BI mapping. For
example, agents’ decisions can be affected by observing
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their neighbors’ actions, and this information will always be
treated with λ= 1. This means agents will always believe
their own observations (i.e., to see is to believe). In addition,
we only defined groups of farmers as agents in this study. Fu-
ture work can seek to add power plants, cities/municipalities,
and reservoirs as agents. The direct and indirect interaction
among these different types of agents (such as farmers and
power plants, who may or may not have to compete for wa-
ter from the reservoir) will provide a more comprehensive
picture in the entire food–energy–water–environment nexus.
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