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Abstract. Knowledge of spatio-temporal rainfall patterns is
required as input for distributed hydrologic models used for
tasks such as flood runoff estimation and modelling. Nor-
mally, these patterns are generated from point observations
on the ground using spatial interpolation methods. However,
such methods fail in reproducing the true spatio-temporal
rainfall pattern, especially in data-scarce regions with poorly
gauged catchments, or for highly dynamic, small-scale rain-
storms which are not well recorded by existing monitor-
ing networks. Consequently, uncertainties arise in distributed
rainfall-runoff modelling if poorly identified spatio-temporal
rainfall patterns are used, since the amount of rainfall re-
ceived by a catchment as well as the dynamics of the runoff
generation of flood waves is underestimated. To address
this problem we propose an inverse hydrologic modelling
approach for stochastic reconstruction of spatio-temporal
rainfall patterns. The methodology combines the stochastic
random field simulator Random Mixing and a distributed
rainfall-runoff model in a Monte Carlo framework. The sim-
ulated spatio-temporal rainfall patterns are conditioned on
point rainfall data from ground-based monitoring networks
and the observed hydrograph at the catchment outlet and aim
to explain measured data at best. Since we infer a three-
dimensional input variable from an integral catchment re-
sponse, several candidates for spatio-temporal rainfall pat-
terns are feasible and allow for an analysis of their uncer-
tainty. The methodology is tested on a synthetic rainfall-
runoff event on sub-daily time steps and spatial resolution
of 1km? for a catchment partly covered by rainfall. A set
of plausible spatio-temporal rainfall patterns can be obtained
by applying this inverse approach. Furthermore, results of a

real-world study for a flash flood event in a mountainous arid
region are presented. They underline that knowledge about
the spatio-temporal rainfall pattern is crucial for flash flood
modelling even in small catchments and arid and semiarid
environments.

1 Motivation

The importance of spatio-temporal rainfall patterns for
rainfall-runoff (RR) estimation and modelling is well known
in hydrology and has been addressed by several simula-
tion studies, especially since distributed hydrologic models
have become available. Many of those studies demonstrated
the effect of resulting runoff responses for different spatial
rainfall patterns (Beven and Hornberger, 1982; Obled et al.,
1994; Morin et al., 2006; Nicotina et al., 2008) or addressed
the errors in runoff prediction and the difficulties in param-
eterisation and calibration of hydrologic models if the spa-
tially distribution of rainfall is not well known (Troutman,
1983; Lopes, 1996; Chaubey et al., 1999; Andreassian et al.,
2001). As a consequence, studies were performed to inves-
tigate configurations of rainfall monitoring networks (Faures
et al., 1995) and rainfall errors and uncertainties for hydro-
logic modelling (McMillan et al., 2011; Renard et al., 2011).

In general, rainfall monitoring networks based on point
observations on the ground (station data) require interpo-
lation methods to obtain spatio-temporal rainfall fields us-
able for distributed hydrologic modelling. Traditional in-
terpolation methods fail in reproducing the true spatio-
temporal rainfall pattern, especially for (i) data-scarce re-
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gions with poorly gauged catchments and low network den-
sity; (ii) highly dynamic, small-scale rainstorms which are
not well recorded by existing monitoring networks; and
(iii) catchments which are partly covered by rainfall. Con-
sequently, uncertainties are associated with poorly identi-
fied spatio-temporal rainfall patterns in distributed rainfall—
runoff-modelling since the amount of rainfall received by a
catchment as well as the dynamics of runoff generation pro-
cesses are typically underestimated by current methods.

The effects of poorly estimated spatio-temporal rainfall
fields are visible in particular for semiarid and arid re-
gions, where rainstorms show a great variability in space and
time and the density of ground-based monitoring networks
is sparse compared to other regions (Pilgrim et al., 1988).
Based on an analysis of 36 events in a mountainous region
of Oman, Mclntyre et al. (2007) show a wide range of event-
based runoff coefficients, which underlines that achieving re-
liable runoff predictions by using hydrologic models in those
regions is extremely challenging. This is supported by sev-
eral simulation studies (Al-Qurashi et al., 2008; Bahat et al.,
2009), who address the uncertainties in model parameterisa-
tion due to uncertain rainfall input. In this context Gunkel
and Lange (2012) report that reliable model parameter esti-
mation was only possible by using rainfall radar. However,
this information is not available everywhere.

To address the inherent uncertainties described above,
stochastic rainfall generators are used intensively to cre-
ate spatio-temporal rainfall inputs for distributed hydrologic
models to transform rainfall into runoff. A large amount of
literature exists describing different approaches for space—
time simulation of rainfall fields, including multi-site tempo-
ral simulation frameworks (Wilks, 1998), approaches based
on the theory of random fields (Bell, 1987; Pegram and
Clothier, 2001), or approaches based on the theory of point
processes and its generalisation, which includes the popu-
lar turning-band method (Mantoglou and Wilson, 1982). En-
hancements were made in order to portray different rainstorm
patterns and distinct properties of rainfall fields, like spatial
covariance structure, space—time anomaly, and intermittency
(see Leblois and Creutin, 2013; Paschalis et al., 2013; Peleg
et al., 2017).

Applications of spatio-temporal rainfall simulations to-
gether with hydrologic models are straightforward Monte
Carlo types, where a large number of potential rainfall fields
are generated driven by stochastic properties of observed
rainstorms or longer time series. These fields are used as
inputs for distributed hydrologic model simulations to in-
vestigate the impact of certain aspects of rainfall like un-
certainty in measured rain depth, spatial variability, etc., on
simulated catchment responses. Rainfall simulation applica-
tions are performed in unconditional mode (reproducing rain
field statistics only) or conditional mode, where observations
(e.g. from rain gauges) are reproduced too. The latter are
commonly used for investigating the effect of spatial vari-
ability using fixed total precipitation and variations in spatial
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patterns (Krajewski et al., 1991; Shah et al., 1996; Casper
et al., 2009; Paschalis et al., 2014). However, stochastic rain-
fall simulations in combination with distributed hydrologic
modelling can be computationally demanding and can fail at
matching the observed streamflow if rainfall fields are condi-
tioned on rainfall point observations only.

On the other hand, inverse hydrologic modelling ap-
proaches have been developed to estimate rainfall time se-
ries based on observed streamflow data. Those approaches
require either an inversion of the underlying mathemati-
cal equations for the non-linear transfer function (Kirchner,
2009; Kretzschmar et al., 2014) or an application of the hy-
drologic model in a Bayesian inference scheme (Kavetski
et al., 2006; Del Giudice et al., 2016). Up to now, both ap-
proaches deliver time series of catchment-averaged rainfall
only, which gives no idea about the spatial extent and distri-
bution of rainfall. This is particularly important when con-
sidering events such as localised rainstorms, which might be
underestimated and not accurately portrayed.

The goal here is an event-based reconstruction of spatio-
temporal rainfall patterns which best explains measured
point rainfall data and catchment runoff response. For that
we looked for potential candidates for rainfall fields for sub-
daily time steps and spatial resolution of 1 km? which, to our
knowledge has not been done so far. To achieve this task, we
combined stochastic rainfall simulations and distributed hy-
drologic modelling in an inverse modelling approach, where
spatio-temporal rainfall patterns are conditioned on rainfall
point observations and observed runoff. The methodology
of the inverse hydrologic modelling approach consists of
the stochastic random field simulator Random Mixing and
a distributed rainfall-runoff model in a Monte Carlo frame-
work. Until now, Random Mixing, developed by Bardossy
and Horning (2016b) for solving inverse groundwater mod-
elling problems, has been used by Haese et al. (2017) for
reconstruction and interpolation of precipitation fields using
different data sources for rainfall.

After this introduction the methods are described in
Sect. 2. It gives an overview of the methodology and fur-
ther details for the applied rainfall-runoff model, the Ran-
dom Mixing and its application for rainfall fields. Section 3
aims to test the methodology. A synthetic test site is intro-
duced which is used to demonstrate and discuss (i) the lim-
its of common hydrologic modelling approaches (using rain-
fall interpolation) and (ii) the shortcomings of rainfall sim-
ulations which are not conditioned on the observed runoff.
In contrast, the functionality of the inverse hydrologic mod-
elling approach is illustrated and discussed. In Sect. 4, the
inverse hydrologic modelling approach is applied for real-
world data by an example of an arid mountainous catchment
in Oman. The test site is introduced and results are shown
and discussed. Finally, summary and conclusions are given
in Sect. 5.
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2 Methods
2.1 General approach

The methodology described here can be characterized as
an inverse hydrologic modelling approach. It aims to infer
potential candidates for the unknown spatio-temporal rain-
fall patterns from runoff observations at the catchment out-
let, known parameterisation of the rainfall-runoff model,
and rain gauge observations. The approach combines a grid-
based spatially distributed rainfall-runoff model and a con-
ditional random field simulation technique called Random
Mixing (Bardossy and Horning, 2016a, b). Random Mix-
ing is used to simulate a conditional rainfall field which
honours the observed rainfall values as well as their spatial
and temporal variability. Afterwards, an optimisation is per-
formed to additionally condition the rainfall field on the ob-
served runoff. Therefore, the initial field is used as input to
the rainfall-runoff model. The deviation between the simu-
lated runoff and the observed runoff is evaluated based on
the model efficiency (NSE) defined by Nash and Sutcliffe
(1970). To minimise this deviation the rainfall field is mixed
with another random field which exhibits certain properties
such that the mixture honours the observed rainfall values
and their spatio-temporal variability. This procedure is re-
peated until a satisfying solution, i.e. a conditional rainfall
field that achieves a reasonable NSE, is found. To enable a
reasonable uncertainty estimation the procedure is repeated
until a predefined number of potential candidates has been
found. In the following, rainfall is used interchangeably with
precipitation.

2.2 Rainfall runoff model

A simple spatially distributed rainfall-runoff model is used
as transfer function to portray the non-linear transforma-
tion of spatially distributed rainfall into runoff at catchment
outlets. The model is dedicated to describe rainfall-runoff
processes in arid mountainous regions, which are mostly
based on infiltration excess and Hortonian overland flow. The
model is working on regular grid cells in event-based modes.
It is parsimonious in the number of parameters, considers
transmission losses but has no base flow component. Pre-
state information at the beginning of an event is neglected
since runoff processes mostly start under dry conditions (Pil-
grim et al., 1988).

More specifically, only simple approaches known from
hydrologic textbooks for the simulation of single rainfall-
runoff events (no long-term water balance) are used (Dyck
and Peschke, 1983). Effective precipitation Pe(x, t) with lo-
cation x € D and time ¢ € T is calculated by an initial and
constant rate loss model applied on each grid cell which is
affected by rainfall. The initial loss I,(x) represents inter-
ception and depression storage. If the accumulated precipi-
tation exceeds I, (x) surface runoff may occur, which is re-
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duced by the constant rate f.(x) throughout an event to con-
sider infiltration. The calculated effective precipitation (or
surface runoff) is transferred to the next river channel section
considering translation and attenuation processes. Transla-
tion is accounted for with a grid-based travel-time function
to include the effects of surface slope and roughness. At-
tenuation is accounted for with a single linear storage unit
with recession constant f:(x). Both approaches are applied
on grid cells affected by effective precipitation only to fully
support spatial distributed calculations corresponding to the
spatial extent of the rain field. The properties of several land-
scape units are addressed by different parameter sets (for
I1,(x), fo(x), fr(x)) following the concept of hydrogeologi-
cal response units (Gerner, 2013) (since hydrologic processes
are mostly driven by hydrogeology in these regions). Runoff
is routed to the catchment outlet by a simple lag model in
combination with a constant rate (f;) loss model to portray
transmission losses along the stream channel. The RR model
is applied on an hourly time step on regular grids cells of
1 km by 1 km. Parameters are assumed to be known and fixed
during the inverse modelling procedure. The RR model is
linked to Random Mixing directly and named with the work-
ing title NAMarid.

2.3 Random Mixing for inverse hydrologic modelling

Random Mixing is a geostatistical simulation approach. It
uses copulas as spatial random functions (Bardossy, 2006)
and represents an extension to the gradual deformation ap-
proach (Hu, 2000). In the following a brief description of the
Random Mixing algorithm is presented. A detailed explana-
tion can be found in Horning (2016).

The goal of the inverse hydrologic modelling approach
presented herein is to find a conditional precipitation field
P(x, t) with location x € D and time ¢ € T which repro-
duces the observed spatial and temporal variability and
marginal distribution of P. This field should also honour pre-
cipitation observations at locations x; and times #;:

P(xj,tjy=pjiforj=1,....,Jandi=1,...,1, e))

Note that P denotes a spatial field and p denotes a pre-
cipitation value within that field. Furthermore, the solution
of a rainfall-runoff model using the field P as input variable
should approximately honour the observed runoft:

0,(P)~gq, fort=1,...,T, )

where Q; denotes the rainfall-runoff model and g; represents
the observed runoff values at time step 7. Note that Q,(P)
represents a non-linear function of the field P.

In order to find such a precipitation field P which fulfills
the conditions given in Egs. (1) and (2), Random Mixing can
be applied. Figure 1 shows a flowchart of the corresponding
procedure.

Using the given observations p; ;, a marginal distribution
G (p) has to be fitted to them. Note that in general any type
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Figure 1. Flowchart of the Random Mixing algorithm for inverse hydrologic modelling.

of distribution function (e.g. parametric, non-parametric, and
combinations of distributions) can be used. For the applica-
tions presented herein the selected marginal distribution con-
sists of two parts: the discrete probability of zero precipita-
tion and an exponential distribution for the wet precipitation
observations. It is defined as follows:

[ po if p=0,
G(p)= [ po+ po(1 —exp(—Ap)) otherwise, ©)

with p denoting precipitation values, py is the discrete proba-
bility of zero precipitation and A denotes the parameter of the
exponential distribution. Thus the parameters that need to be
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estimated are pg and A. Then, using the fitted marginal dis-
tribution the observed precipitation values are transformed to
standard normal:

if p=0,
otherwise,

<@ !(po) @
@~ (po + po(1 —exp(—Ap)))

where ®~! denotes the univariate inverse standard normal
distribution. Note that zero precipitation observations are not
transformed to the same value, but they are considered as in-
equality constraints as described in Eq. (4). Thus the spatio-
temporal dependence structure of the variable is taken into
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account as described in Horning (2016). Further note that
the transformation of the marginal distribution described in
Eq. (4) can be reversed via the following:

P(x,1)=G ' (®(W(x, 1), &)

where G~! denotes the inverse marginal distribution of P
and ¢ denotes the univariate standard normal distribution.
Also, note that W denotes the transformed spatial field while
w denotes a transformed observed value within that field.
Note that in this approach we assume that the precipitation
distribution is the same for each location x and each time-
step 7. One could use a location and/or time-specific distribu-
tion to take spatial or temporal non-stationarity into account;
however, this requires a relatively large amount of precipita-
tion observations and/or additional information.

As a next step we assume that the field W is normal, and
thus its spatio-temporal dependence is described by the nor-
mal copula with correlation matrix I';. In general copulas
are multivariate distribution functions defined on the unit hy-
percube with uniform univariate marginals. They are used to
describe the dependence between random variables indepen-
dently of their marginal distributions. The normal copula can
be derived from a multivariate standard normal distribution
(see Bardossy and Horning, 2016b, for details). It enables
modelling of a Gaussian spatio-temporal dependence struc-
ture with arbitrary marginal distribution. Note that its corre-
lation matrix I'; has to be assessed from the available ob-
servations. If no zero observations are present the maximum
likelihood estimation procedure described in Li (2010) can
be applied to estimate the copula parameters. If zero values
are present a modified maximum likelihood approach has to
be used (Bardossy, 2011). It uses a combination of three dif-
ferent cases (wet—wet pairs, wet—dry pairs, dry—dry pairs of
observations) for the estimation of the copula parameters.

As a next step, unconditional standard normal random
fields V; with [ =1, ..., L are simulated such that they all
share the same spatio-temporal dependence structure which
is described by I'¢ of the fitted normal copula. Such fields
can for example be simulated using fast Fourier transforma-
tion for regular grids (Wood and Chan, 1994; Wood, 1995;
Ravalec et al., 2000) or turning-band simulation (Journel,
1974). Here we used the spectral representation method in-
troduced by Shinozuka and Deodatis (1991, 1996). Using the
fields V}, the system of linear equations

L
ZO[]V[(XJ', t)=w; ;fori=1,...,1
=1

j=1,..,JwithL>N=1-J (6)

is set up. Note that «; denotes the weights of the linear com-
bination, w; ; = & 1(G( Dpi, j)) is the transformed precipita-
tion values and V;(x;, 1;) is the values of the random fields
at the observation locations. Using singular value decompo-
sition (SVD) (Golub and Kahan, 1965) to solve this equa-
tion system leads to a minimum L2 norm solution. In order
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to obtain a smooth, low-variance field a L2 norm Zalz <1
is required. If no such solution is found, an additional field
V141 is created, added to the system of linear equation and
the system is solved again. Note that with increasing degrees
of freedom (i.e. more fields) the L2 norm of the solution de-
creases.

Once a solution with an acceptable L? norm, i.e. Zozlz <
1 is found the resulting field is defined as follows:

L+M

W* = Z oV, (7
=1

where M denotes the number of additional fields added to the
equation system. Note that W* fulfills the conditions defined
in Eq. (1); however, it does not fulfill Eq. (2) and it does not
represent the correct spatio-temporal dependence structure.

The next step is to simulate fields Uy with k=1, ..., K
which fulfill the homogeneous conditions, i.e. Ug(x;, t;) =
0. Further all fields Uy need to share the same spatio-
temporal dependence structure, again described by I'¢. Such
fields can be generated in a similar way to W* (see Horning,
2016 for details). The advantage of these fields Uy is that
they form a vector space (they are closed for multiplication
and addition), thus

Wy, = W* + k(M) (MU + ...+ 21U, (8)

where A, denotes arbitrary weights and k(1) denotes a scal-
ing factor results in a field W, , which also fulfills the condi-
tions prescribed in Eq. (1). The scaling factor is defined as:

1— 2
k() = + /z—%“‘. 9)

It ensures that W), exhibits the correct spatio-temporal de-
pendence structure. Thus, transforming W, back to P using
Eq. (5) will result in a precipitation field which has the cor-
rect spatio-temporal dependence structure and marginal dis-
tribution, and honours the precipitation observations.

To also honour the observed runoff defined in Eq. (2) an
optimisation problem can be formulated:

1
00 = D (Q(G (@W) — g0’ (10)
i=1

which minimizes the difference between the modelled and
observed runoff by optimising the weights A;. As these
weights are arbitrary they can be changed without violating
any of the already fulfilled conditions; thus they can be op-
timized without any further constraints. If for a given set of
fields and weights and after a certain number of iterations
N no suitable solution is found, the number K of fields Uy
can be increased and the optimisation is repeated. A suitable
solution is found when the deviation between simulated and
observed runoff is smaller than the criterion of acceptance
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¢ (here, 1 — NSE is used). If a suitable solution is found the
whole procedure can be restarted using new random fields V;.
Thus multiple solutions can be obtained enabling uncertainty
quantification of spatio-temporal rainfall fields.

3 Test of the methodology
3.1 Synthetic test site

To test the ability of the methodology a synthetic example
was designed. The example consists of a synthetic catch-
ment partly covered by rainfall. The synthetic catchment has
a size of 211km? with elevations ranging between 100 and
1100 m a.s.1. and homogeneous landscape properties (Fig. 2).
A synthetic rainfall event of 6 h duration with an hourly time
step and a maximum spatial extension of 118 km? on a reg-
ular grid of 1km by 1 km cell size is used. Rainfall amounts
above 20 mmevent™! cover an area of 25km? with maxi-
mum rainfall of 36 mmevent~!' and maximum intensity of
12mmh~! (see Figs. 3 and SI in the Supplement). Based
on this known spatio-temporal rainfall input pattern and RR
model parameterisation the catchment response at the sur-
face outlet was simulated and designated as the known “ob-
served” runoff ¢; (see Fig. 6, blue graph).

Furthermore, 10 different cells were selected from the
spatio-temporal rainfall patterns to represent virtual moni-
toring stations of rainfall. They were chosen in a way that
the centre of the event is not recorded. They are designated
as the known “observed” rainfall P (x;, #;) at J monitoring
stations for 7' time steps and provide the data basis for in-
terpolation, conditional simulation, and inverse modelling of
spatio-temporal rainfall patterns. Figure 4 shows their course
in time. Note that virtual monitoring stations 2, 5, 9, and 10
measure 0 mm h~! rainfall only. Based on these observations
the fitted parameters for the marginal distribution (Eq. 3)
are po = 0.36 and A = 0.48. The fitted copula for the depen-
dency structure in space and time is a Gaussian copula with
an exponential correlation function with a range of 2.5 km in
space and a range of 1.5h in time. In comparison, using the
full synthetic dataset a range of 4.5 km in space and a range
of 2.5h in time are estimated.

3.2 Results and discussion
3.2.1 Common hydrologic modelling approach

At first, hourly rainfall data from virtual monitoring stations
were used to interpolate the spatio-temporal rainfall patterns
on a regular grid of 1km by 1km cell size by using the
inverse distance method, which is quite common in hydro-
logic modelling. Afterwards, the response of the synthetic
catchment was calculated by the RR model. Figure 5 shows
the interpolated pattern of the event-based rainfall amounts
as the sum over single time steps. The pattern looks quite
smooth and has only minor similarities with the true pattern
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Figure 2. Topography, watershed, and observation network of the
synthetic catchment.
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Figure 3. Rainfall amounts of the synthetic rainfall event. Virtual
monitoring stations are marked by crosses.

in Fig. 3. The maximum rainfall amount per event is equal to
the maximum of the observation at virtual station number 8
with 16.2 mmevent~!. Therefore, the extension of a rainfall
centre over 20 mmevent~! cannot be estimated. Due to low
rainfall intensities, the simulated response of the RR model
shows a significant underestimation of the observed runoff,
with an NSE value of —0.28 (see Fig. 6, green graph).

3.2.2 Performance of conditional rainfall simulations

The Random Mixing approach was used to simulate 200 dif-
ferent spatio-temporal rainfall patterns conditioned on the
virtual rainfall monitoring stations only. Resulting runoff
simulations are displayed in Fig. 6. They show a wide range
of hydrographs with peak values between 0.19m?s~! and
4.17m3 s~! and NSE values between —0.37 and 0.89. Com-
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Figure 4. Time series of rainfall intensities at virtual monitoring
stations.
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Figure 5. Interpolated rainfall amounts per event by using data of
virtual monitoring stations.

pared to the runoff observation, the timing of peaks is accept-
able, but the peak values are underestimated. Only four hy-
drographs have NSE values higher than 0.7. The correspond-
ing spatial event-based rainfall amounts for the top three
runoff simulations regarding the NSE values (a: 0.89, b: 0.78,
c: 0.73) is shown in Fig. 7. Their rainfall amounts range be-
tween 27.8 and 28.7 mmevent™!, with a spatial extent of 9
to 11 km? of rainfall above 20 mmevent~! and a maximum
intensity 10.5 to 15.1 mmh~!. Compared to the observation
(Fig. 3), the spatial patterns look similar, at least regarding
the spatial location of the event, and cover the maximum in-
tensity. But the rainfall amounts per event as well as their
spatial extent is too low. As a consequence, none of the sim-
ulated spatio-temporal rainfall fields conditioned at the vir-
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Figure 6. Runoff simulations based on simulated spatio-temporal
rainfall patterns conditioned at rainfall point observations only (grey
graphs) compared to its mean (red graph), runoff observation (blue
graph), and simulation based on interpolated rainfall patterns (green
graph).

tual rainfall monitoring stations only are able to match the
observed peak value in resulting runoff.

3.2.3 Inverse hydrologic modelling approach

The inverse modelling approach was used to simulate 107
different spatio-temporal rainfall patterns which are con-
ditioned on the virtual rainfall and runoff monitoring sta-
tions, and runoff simulation results better than NSE values
of 0.7. Afterwards a refinement was carried out by select-
ing only those simulations with nearly identical runoff sim-
ulation results compared to observations. These simulations
are characterized by NSE values larger than 0.995. Figure 8
shows the performance of the 20 selected realisations by grey
graphs that show only minor deviations during the flood peak
range compared to the observation (blue graph). Associated
rainfall patterns are displayed in Fig. 9 for six selected re-
alisations by their spatial rainfall amounts per event. Com-
pared to the true spatial pattern (see Fig. 3) none of them
reproduce the true pattern exactly, but all of them locate
the centre of the event in the same region as the true pat-
tern. This shows that by additional conditioning of spatio-
temporal rainfall patterns on runoff observation and consid-
eration of catchment’s drainage characteristic represented by
the RR model, the rainfall event can be localised and recon-
structed in its spatial extent as well as in its course in time
(see also Fig. S1). Most probably, if we would sample a large
number of rainfall fields conditioned on rainfall observation
only, we would find a realisation which matches the runoff
observation too. Due to additional conditioning on runoff we
find these realisations faster.

However, the inference of a three-dimensional input vari-
able by using an integral output response results in a
set or ensemble of different solutions. Rainfall amounts
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Figure 8. Comparison of hydrographs for the synthetic catchment
shown by the observed runoff (blue) and rainfall-runoff simulation
results based on interpolated rainfall patterns (green), a simulated
ensemble of spatio-temporal rainfall patterns conditioned at rainfall
and runoff observations (grey) and their mean value (red), and mean
ensemble rainfall patterns (black).

of the selected 20 realisations above 20 mmevent™! cover
an area of 13 to 25km? with maximum rainfall of 26.7
to 40.4mmevent”! and maximum intensities of 10.7 to
17.1mmh~!. The event-based areal precipitation of the
catchment ranges between 98.2 % and 114.7 % of the obser-
vation (see Fig. 3). Figure 9 presents spatial rainfall amounts
per event for (a) the realisation with the smallest area above
20 mm event ! and smallest intensity, (b) the realisation with
the largest area above 20 mm event ™!, (c) the realisation with
the highest intensity and rainfall amount per event, (d) the
realisation with the best NSE value in resulting runoff, and
(e)—(f) realisations with similar event statistics like the true
spatio-temporal rainfall pattern. Compared to the observed
pattern (see Fig. 3), the different realisations match the spa-
tial location as well as the shape of the observed pattern very
well. However, the spatial patterns of the realisations are not
such smooth and symmetric like the constructed synthetic
observation. Furthermore, the realisations show some scat-
tered low rainfall amounts, which are not of importance for
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the hydrograph simulation, since they are addressed by the
initial and constant rate losses of the RR model.

Deriving an average rainfall pattern by calculation of the
mean value per grid cell over all realisations of the ensem-
ble for each time step, a smoother pattern is obtained, which
looks more similar to the true one but has smaller rainfall
intensities. Using this mean ensemble pattern for calculat-
ing the runoff response leads to an underestimation of the
observed hydrograph as shown by the black hydrograph in
Fig. 8. Therefore, the ensemble mean of the hydrographs (red
line in Fig. 8) is a better representative for the sample than the
mean ensemble rainfall pattern.

In addition, data of the virtual monitoring stations (the ob-
servation) have been always reproduced and are equal for
each rainfall simulation. This means that each realisation re-
produces the point observation of rainfall without any un-
certainty. Only the grid points between the observation dif-
fer within the three-dimensional rainfall field and contain the
stochasticity given by rainfall simulations conditioned on the
observed values. In this context, the ensemble can be used as
a partial descriptor of the total uncertainty. It describes the
remaining uncertainty of precipitation if all available data
are exploited under the assumption of error-free measure-
ments, reliable statistical rainfall models, and known hydro-
logic model parameters.

4 Application for real-world data
4.1 Arid catchment test site

The real-world example is taken from the upper Wadi Bani
Kharus in the northern part of the Sultanate of Oman. It is the
starting point for the present study and part of our multi-year
research on hydrologic processes in this region. The head-
water under consideration is the catchment of the stream-
flow gauging station of Al Awabi, with an area of 257 km?,
located in the Hadjar mountain range with heights ranging
from 600 ma.s.l. to more than 2500 ma.s.l. The geology of
the area is dominated by the Hadjar group, which consists
of limestone and dolomite. The steep terrain consists mainly
of rocks. Soils are negligible. However, larger units of al-
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Figure 9. Selected realisations of spatial rainfall amounts per event with similar performance in resulting runoff, obtained by the inverse
modelling approach for simulating spatio-temporal rainfall pattern: (a) realisation with the smallest area above 20 mm event~! and smallest
intensity, (b) realisation with the largest area above 20 mm event ™1 (c) realisation with the highest intensity and rainfall amount per event,
(d) realisation with the best NSE value in resulting runoff, and (e)—(f) realisations with similar event statistics to the true spatio-temporal

rainfall pattern.

luvial depositions in the valleys are important for hydro-
logic processes, an issue which is addressed through spa-
tial differences in RR model parameters. Vegetation is sparse
and mostly cultivated in mountain oases. Annual rainfall can
reach more than 300 mm year~!, showing a huge variabil-
ity between consecutive years. Analysis of measured runoff
data over a period of 24 years shows that runoff occurred
on average only on 18daysyear™!. Figure 10 displays the
available monitoring network for sub-daily data. Runoff is
measured in 5 to 10 min temporal resolution. Rainfall mea-
surements vary from 1 min to 1 h. Therefore, a temporal res-
olution of 1 h was chosen for the event under investigation in
this study. Figure 11 shows the measurements of the rainfall
gauging stations and their altitudes for the rainstorm from
12 February 1999. Most of the rain was recorded on sta-
tions with lower altitudes located in the north-west and south-
eastern part of the catchment. Rainfall interpolation was per-
formed by the inverse distance method, since there was no
dependency of rainfall from altitude identifiable for this sin-
gle heavy rainfall event. Parameters for the inverse modelling
approach are pg = 0.17 and A = 0.14 for the marginal distri-
bution (Eq. 3). The fitted copula for the dependency structure
in space and time is a Gaussian copula with an exponential
correlation function with a range of 10km in space and a
range of 1 h in time.
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4.2 Results and discussion

The real-world data example was performed for the runoff
event from 12 February 1999 with an effective rainfall du-
ration of 3 h. The simulated runoff for the interpolated rain-
fall pattern shows an underestimation of the peak discharge
as well as a time shift of the peak arrival time compared to
the observation (Fig. 12). Applying the inverse approach by
conditioning spatio-temporal rainfall patterns on rainfall and
runoff observations, an ensemble of 58 different hydrographs
is obtained after refinement, with NSE values larger than 0.9.
As shown in Fig. 12, all of these hydrographs (grey graphs)
represent the observation well and overcome the time shift.
To explain this behaviour, differential maps are calculated
which show the difference between the simulated and the in-
terpolated rainfall pattern for each time step (Fig. 13; see
also Fig. S2 for comparison of event-based spatial rainfall
amounts). It is easy to see that the inverse approach allows for
a shift of the centre of the rainfall event from time step 1 to
time step 2 and towards the catchment outlet. This results in
a faster response of the catchment by its runoff compared to
the interpolated rainfall pattern. In general, the obtained en-
semble of spatio-temporal rainfall patterns is able to explain
the observed runoff without discrepancy in rainfall measure-
ments. Similar to the synthetic example, the ensemble mean
hydrograph (Fig. 12, red graph) is a better representative for
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Figure 11. Rainfall amounts and altitudes of rainfall gauging sta-
tions from 12 February 1999.

the sample than the hydrograph based on the mean ensemble
rainfall spatio-temporal pattern (black graph).

5 Summary and conclusions

An inverse hydrologic modelling approach for simulating
spatio-temporal rainfall patterns is presented in this paper.
The approach combines the conditional random field sim-
ulator Random Mixing and a spatial distributed RR model
in a joint Monte Carlo framework. It allows for obtaining
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Figure 12. Comparison of hydrographs for the real-world catch-
ment shown by the observed runoff (blue) and rainfall-runoft simu-
lation results based on interpolated rainfall patterns (green), a sim-
ulated ensemble of spatio-temporal rainfall patterns conditioned at
rainfall and runoff observations (grey) and their mean value (red),
and mean ensemble rainfall patterns (black).

reasonable spatio-temporal rainfall patterns conditioned on
point rainfall and runoff observations. This has been demon-
strated by a synthetic data example as well as a real-world
data example for single rainstorms and catchments which are
partly covered by rainfall.

The proposed framework was compared to the methods of
rainfall interpolation and conditional rainfall simulation. Re-
construction of event-based spatio-temporal rainfall patterns
has been feasible by the inverse approach, if runoff obser-
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Figure 13. Differential maps of spatio-temporal rainfall patterns for three consecutive time steps (simulation — interpolation).

vation and catchment’s spatial drainage characteristic repre-
sented by the RR model with spatial distributed travel times
of overland flow are considered. As shown by the synthetic
example, the rainfall pattern obtained by interpolation did not
match the observed rainfall field and runoff. If rain gauge ob-
servations do not portray the rain field adequately, a “good”
interpolation result in the least-square sense is not a solu-
tion of the problem. This is the case in particular for small
scale rainstorms with high spatio-temporal rainfall variabil-
ity and/or rainfall data scarcity due to insufficient monitor-
ing network density. By rainfall simulations conditioned on
rain gauge observation only, reasonable spatio-temporal rain-
fall fields are obtained, but with a wide spread in resulting
runoff hydrographs. A large number of simulated rainfall
fields is required to find those realisations which match the
observed runoff, since the amount of possible conditioned
rainfall fields is much higher than the amount of rainfall
fields matching point observation and runoff. By applying
optimisation, rainfall fields are conditioned on discharge too,
and appropriate candidates for spatio-temporal rainfall pat-
terns can be identified more reliably, faster, and with reduced
uncertainty.

The inference of a three-dimensional input variable by us-
ing an integral output response results in a set of possible
solutions in terms of spatio-temporal rainfall patterns. This
ensemble is obtained by repetitive execution of the optimi-
sation step within the Monte Carlo loop. It can be consid-
ered as a descriptor of the partial uncertainty resulting from
spatio-temporal rainfall pattern estimates (under the assump-
tion of error-free measurements, reliable statistical rainfall
models, and known hydrologic model parameters). Realisa-
tions of the ensemble vary in rainfall amounts, intensities,
and spatial extent of the event, but they reproduce the point
rainfall observation exactly and yield to similar runoff hydro-
graphs. This allows for deeper insights in hydrologic model
and catchment behaviour and gives valuable information for
the reanalysis of rainfall-runoff events, since rainstorm con-
figurations leading to similar flood responses become visi-
ble. As shown in the example, operating with an ensemble
mean is less successful in matching the runoff observation
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compared to an application of the whole ensemble due to
smoothing effects.

The approach is also applicable under data-scarce situa-
tions as demonstrated by a real-world data example. Here,
the flexibility of the approach becomes visible, since simu-
lated rainfall patterns also allow for overcoming a shift in the
timing of runoff. Therefore, the approach can be considered
as a reanalysis tool for rainfall-runoff events, especially in
regions where runoff generation and formation are based on
surface flow processes (Hortonian runoff) and in catchments
with wide ranges in arrival times at catchment outlets such
as mountainous regions or distinct drainage structures, e.g.
urban and peri-urban regions.

Nevertheless, further research and investigations are re-
quired. Examples presented in this paper are based on an
hourly time resolution and 1 km? grid size in space. In par-
ticular, for rainstorms in small fast-responding catchments,
finer resolutions in space and time are required. Here the lim-
its of the approach in the number of time steps and grid cells
need to be explored. Another point is the required amount
and quality of observation data as well as statistical model
selection to obtain space—time rain fields. Both impact the
simulation of rainfall amounts and of patterns by the derived
spatial and temporal dependence structure. In these exam-
ples Gaussian copulas are used, which might be not a good
estimator for the spatial dependency in any case of heavy
rainfall.

The proposed framework is a first step that only aims at
reconstructing spatio-temporal rainfall patterns under the as-
sumption of fixed hydrologic model structure and param-
eters. Certainly, hydrologic model uncertainty is of impor-
tance. But instead of changing the model to fit the observed
discharge, we estimate rainfall fields which fit the model and
the discharge by doing reverse hydrology. As such plausi-
ble rainfall fields can be identified, the corresponding model
and the rainfall field is plausible. Thus, the framework can
be applied to proof hypothesis about hydrologic model se-
lection or to explain extraordinary rainfall-runoff events by
using a well calibrated, spatial distributed hydrologic model
for the catchment of interest. In this context, further research
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is dedicated to providing a common interface within the
Monte Carlo framework to exchange the hydrologic model
and allow for broader use within the community. Also, fur-
ther sources of uncertainties (e.g. model parameters, obser-
vations) need to be considered to contribute for the solution
of the hydrologic modelling uncertainty puzzle.
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