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Abstract. The widespread application of deterministic hy-
drological models in research and practice calls for suitable
methods to describe their uncertainty. The errors of those
models are often heteroscedastic, non-Gaussian and corre-
lated due to the memory effect of errors in state variables.
Still, residual error models are usually highly simplified, of-
ten neglecting some of the mentioned characteristics. This is
partly because general approaches to account for all of those
characteristics are lacking, and partly because the benefits of
more complex error models in terms of achieving better pre-
dictions are unclear. For example, the joint inference of auto-
correlation of errors and hydrological model parameters has
been shown to lead to poor predictions. This study presents a
framework for likelihood functions for deterministic hydro-
logical models that considers correlated errors and allows for
an arbitrary probability distribution of observed streamflow.
The choice of this distribution reflects prior knowledge about
non-normality of the errors. The framework was used to eval-
uate increasingly complex error models with data of vary-
ing temporal resolution (daily to hourly) in two catchments.
We found that (1) the joint inference of hydrological and er-
ror model parameters leads to poor predictions when con-
ventional error models with stationary correlation are used,
which confirms previous studies; (2) the quality of these pre-
dictions worsens with higher temporal resolution of the data;
(3) accounting for a non-stationary autocorrelation of the er-
rors, i.e. allowing it to vary between wet and dry periods,
largely alleviates the observed problems; and (4) accounting
for autocorrelation leads to more realistic model output, as
shown by signatures such as the flashiness index. Overall,
this study contributes to a better description of residual er-
rors of deterministic hydrological models.

1 Introduction

Deterministic hydrological models are widely applied in re-
search and decision-making processes. The quantification of
their associated uncertainties is therefore an important task
with high relevance for the scientific learning process, as
well as for operational decisions with respect to water man-
agement. The total output uncertainty of those models is a
combination of (i) propagated input uncertainty (e.g. Sun
et al., 2000; Kavetski et al., 2003; Bárdossy and Das, 2008);
(ii) model structural errors (e.g. Butts et al., 2004), which
can be attributed to aggregation and parameterisation; and
(iii) parameter uncertainty (e.g. Freer et al., 1996; Wagener
et al., 2001). When performing inference, (iv) observation
errors are an additional source of uncertainty, which arise
for example due to errors in rating curves (e.g. Kuczera and
Franks, 2002). The sources (i–iv) usually result in residual
errors of predicted streamflow observations with the follow-
ing characteristics:

– Non-normality. Model residuals are seldom well repre-
sented by a normal distribution with constant mean and
variance. Instead, residuals are typically heteroscedas-
tic (increasing with streamflow), right-skewed due to
non-negativity of streamflow and characterized by ex-
cess kurtosis (fat tails) (e.g. Schoups and Vrugt, 2010).

– Autocorrelation. Several sources of error cause memory
effects. Such sources are inadequacy of model structure,
errors in internal states of the model (Kavetski et al.,
2003) or missed rainfall events, which can have an effect
on the residuals several days after the event has occurred
(e.g. Beven and Westerberg, 2011).
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– Non-stationarity. Model residuals can have very differ-
ent characteristics in time. For example, during wet pe-
riods dominated by rainfall, errors are generally less
correlated than during dry periods (Yang et al., 2007).
Schaefli et al. (2007) find that residuals are less cor-
related during high flows than during low flows in a
glacierised alpine catchment.

– Unequally spaced observations. Observations do not al-
ways take place at fixed time intervals. Particularly for
water quality, volume-proportional sampling strategies
are generally preferable to fixed-time strategies (e.g.
Schleppi et al., 2006). These strategies generate obser-
vations at unequal time intervals. Another cause of un-
equal observation intervals is missing data.

Various studies have investigated error models that con-
sider correlation, heteroscedasticity and non-normality of
errors of deterministic hydrological models. A typical ap-
proach, which is also applied in this study, is to describe
total output uncertainty in a lumped way (e.g. Schoups and
Vrugt, 2010; McInerney et al., 2017). Another group of ap-
proaches distinguishes among the different sources of total
uncertainty such as input, parametric and output measure-
ment uncertainty (e.g. Kavetski et al., 2006; Renard et al.,
2010). The latter approach is conceptually desirable, but it
can lead to identifiability problems and it is computation-
ally very intensive due to the required propagation of errors
through the model. For many applications we need a com-
putationally cheaper approach that can be achieved with a
lumped model. It is the goal of this paper to contribute to
the improvement of these lumped approaches. Current ap-
proaches to describe total output uncertainty in a lumped way
differ in if, and how, they deal with the various characteris-
tics of residual errors mentioned above. Some of the most
common approaches are the following:

– Heteroscedasticity is often considered in weighted
least-squares error models by parameterising the vari-
ance of the normal distribution as a function of the
streamflow (Thyer et al., 2009; Evin et al., 2013;
Bertuzzo et al., 2013). Another common approach is
to apply transformations such as Box–Cox to the ob-
served and modelled streamflow time series and for-
mulate a model for the residuals of the transformed
time series (e.g. Bates and Campbell, 2001; Del Giu-
dice et al., 2013; McInerney et al., 2017). However, this
transformation affects several properties of the residuals
simultaneously, including heteroscedasticity, skewness
and kurtosis.

– Typically, residual errors are represented as a stationary
process. The issue of stationarity has been the subject of
recent debate (Milly et al., 2008; Montanari and Kout-
soyiannis, 2014). Focusing on streamflow dynamics, an
example of representing non-stationarity of residual er-
rors is shown in the study of Yang et al. (2007), who

distinguish between wet and dry periods by applying a
continuous autoregressive process with different param-
eters for the wet and the dry periods to the Box–Cox
transformed residuals.

– A probabilistic model to deal with unequally spaced
data was proposed by Duan et al. (1988). A more nat-
ural formulation is to adopt a continuous-time formula-
tion of the autoregressive model, such as an Ornstein–
Uhlenbeck process (OU process; e.g. Kloeden and
Platen, 1995; Yang et al., 2007).

– Non-negativity of streamflow can be addressed by trun-
cating the error probability density function so that it
does not extend to negative streamflow. This leads to
zero probability for zero streamflow, which may not al-
ways be adequate. The truncation approach is seldom
followed, and in most applications the truncation occurs
“in prediction only” (McInerney et al., 2017).

Residual error models are usually highly simplified, in the
sense that they do not account for all the above-mentioned
characteristics of these errors. In particular, residual er-
ror models seldom go beyond using “variance stabilisa-
tion” techniques such as Box–Cox transformations. The
widespread use of relatively simple error models is due to
several reasons. In our opinion, the following are the most
important.

First, there is a lack of general approaches that can deal
with all the above-mentioned characteristics of error mod-
els simultaneously. One general error model that can accom-
modate various characteristics is the probabilistic model pro-
posed by Schoups and Vrugt (2010), which can deal with
residual errors that are correlated, heteroscedastic and non-
Gaussian with varying degrees of kurtosis and skewness.
They do this by describing the errors with an autoregressive
process with a skew exponential power (SEP) rather than a
normal distribution for the innovations. However, their ap-
proach is shown to produce unrealistically large predictive
uncertainties caused by the application of the autoregres-
sive process to non-standardised residuals (Evin et al., 2013).
Scharnagl et al. (2015) attempt to address this issue by apply-
ing an autoregressive process to the standardised residuals of
a soil moisture model, using a skewed Student’s t distribution
to describe the probability density of the innovations of the
autoregressive process. However, with this approach they ex-
perience problematic inference behaviour and biased results
similar to those mentioned by Evin et al. (2013). Further-
more, while the conventional approach of using normal in-
novations for the errors leads to a normal marginal of (poten-
tially transformed) streamflow, non-normal innovations lead
to marginal streamflow distributions which are generally not
available in closed form. An explicit marginal distribution of
streamflow (Krzysztofowicz, 2002) facilitates scientific com-
munication and discussion, since hydrologists are generally
more familiar with streamflow than with Box–Cox trans-
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formation parameters or distributions of the innovations of
residuals.

Second, there is limited guidance to the choice of a par-
ticular error model for a given application. In the past, the
choice has been generally ad hoc, with limited justification.
Only recently, there has been more systematic comparison
and testing which has resulted in some general recommen-
dations. For example, McInerney et al. (2017) compare vari-
ous residual error schemes, including standard and weighted
least squares, the Box–Cox transformation (with fixed and
calibrated power parameter) and the log-sinh transformation
using data from 23 catchments and concluded that Box–Cox
has on average the best behaviour.

Third, previous experience has shown that more realistic
error models, which are more complex, do not always re-
sult in better predictions. The additional parameters of some
of the more complex error models were found to have un-
desirable interactions with the parameters of the hydrologi-
cal model, leading to unrealistic parameter values and poor
predictions. For example, particularly in dry catchments, ac-
counting for autocorrelation produces worse predictions than
omitting it (Schoups and Vrugt, 2010; Evin et al., 2013). To
circumvent such problems, Evin et al. (2014) recommend
that autoregressive parameters are inferred sequentially, that
is, after having estimated all other parameters of the hydro-
logical and of the error model. Similarly, many uncertainty
analysis techniques are applied for fixed hydrological param-
eters, avoiding the re-calibration of hydrological models (e.g.
Montanari and Brath, 2004). The joint inference of hydrolog-
ical and error model parameters remains conceptually prefer-
able, as it recognises potential interactions between parame-
ters. The conditions under which this can be achieved remain
poorly understood.

Fourth, the potential advantages of more complex error
models are under-appreciated by the hydrological commu-
nity. For relatively simple uncertainty analysis, like the plot-
ting of uncertainty bands around hydrographs, the use of sim-
plified error models may appear justified. However, there are
several applications that go beyond this task, and for which
a simplified error model may lead to poor results. For ex-
ample, assuming uncorrelated errors may lead to unrealistic
extrapolations (Del Giudice et al., 2013) or too-strong short-
term fluctuations, which have a large effect on hydrograph
signatures that are sensitive to noise, such as the flashiness
index (Baker et al., 2004; Fenicia et al., 2018). The ability to
correctly represent signatures is not only important for con-
ceptual reasons, but also for practical purposes such as in
signature-based model calibration.

The goals of this study are the following:

1. Develop a flexible framework for likelihood functions
for hydrological models that accounts for the following
major characteristics of their errors: non-normality (het-
eroscedasticity, skewness and excess kurtosis), autocor-
relation, non-stationarity regarding wet and dry peri-

ods, unequally spaced observation time points, and non-
negativity of streamflow.

2. Use the flexible framework to do controlled experiments
by varying some of the assumptions and by perform-
ing joint inference of a hydrological model with error
models of increasing complexity. Investigate the effect
of the various assumptions on the quality of the predic-
tive distributions. In particular, with case studies in two
catchments, we investigate the following questions:

(a) Can we confirm previous findings about the prob-
lems related to joint inference of hydrological and
error model parameters?

(b) What are the causes of the problems encountered
in joint inference of hydrological and error model
parameters?

(c) Can we improve the joint inference by introducing
non-stationarity by allowing the autoregressive pa-
rameter to change between wet and dry periods?

(d) Does the consideration of autocorrelation lead to
more realistic predictions (e.g. in terms of better
representation of hydrograph signatures such as the
flashiness index)?

(e) Can parameters controlling the shape of the dis-
tribution of the errors be inferred jointly with the
hydrological model parameters to account for non-
normality?

The paper is structured as follows. The theoretical frame-
work for the probabilistic model, corresponding to Goal 1, is
presented in Sect. 2.1 and the performance metrics used to
evaluate it are described in Sect. 2.4. Section 3 describes the
case study set-up used to carry out the necessary investiga-
tions for Goal 2. The case study is based on two catchments
(Sect. 3.1), one hydrological bucket model (Sect. 3.2) and
three different time step sizes (daily, 6-hourly and hourly).
The results of those investigations are presented in Sect. 4
and discussed in Sect. 5. Section 6 lists the main conclusions
and sketches potential directions for future research.

2 Methods

2.1 Probabilistic framework

Suppose we choose the distributionDQ to describe the prob-
ability of observing streamflow Q, given the model output
Qdet (see Fig. 1). We believe that this is a natural place to
start the derivation of a probabilistic framework for hydro-
logical models, since it enables us to communicate and dis-
cuss the basic assumptions in a space that is most familiar
to hydrological modellers: the space of streamflow. Note the
major difference to transformation-based approaches (e.g.
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Bates and Campbell, 2001; Del Giudice et al., 2013; McIn-
erney et al., 2017) and approaches that use non-normal inno-
vations of the stochastic process (Schoups and Vrugt, 2010;
Scharnagl et al., 2015), both of which lead to DQ not be-
ing readily available in closed form. In particular, discussing
the possible distribution of streamflow given the output of a
hydrological model is easier than discussing Box–Cox trans-
formation parameters or the distribution of the innovations of
the model errors. Providing explicit control over DQ there-
fore facilitates the formulation of the model based on prior
knowledge resulting from past experience of hydrologists in
units they are familiar with. Wani et al. (2019) present an-
other approach in which DQ at subsequent output time steps
is accessed through copulas.

We assume that DQ is parameterised by Qdet and some
error model parameters ψ , i.e. Q(t)∼DQ(Qdet(t, θ), ψ),
where θ are the parameters of the deterministic hydrologi-
cal model. This implies that the observed streamflow at dif-
ferent time points can be described by different distributions
(e.g. with varying mean and standard deviation), but these
distributions belong to the same parametric family. The dis-
tribution DQ may extend to negative values. In this case, the
integrated probability of negative values is assigned to the
probability of observing a streamflow of zero. This leads to

pDQ(Qdet,ψ)

(
Q
)
=


fDQ(Qdet,ψ)

(
Q
)

if Q> 0,
FDQ(Qdet,ψ)

(
0
)

if Q= 0,
0 if Q< 0,

(1)

where fDQ and FDQ are the density and cumulative distribu-
tion function ofDQ, respectively, and p is a probability den-
sity forQ> 0 and a discrete probability forQ= 0. Note that
Eq. (1) reflects our prior knowledge thatQ≥ 0 when dealing
with non-tidal rivers. If the distribution chosen forDQ is lim-
ited to positive support, either by choosing a distribution with
positive support or by truncating at zero, only the first case in
Eq. (1) applies and we get zero probability for Q= 0. This
is a common approach that is fully covered by the presented
framework. However, especially in ephemeral catchments, a
finite probability for Q= 0 might be desirable (Smith et al.,
2010). This can be achieved by choosing a distribution DQ
that extends to negative values. Equation (1) then assigns the
negative tail to Q= 0. If correlation is absent or neglected,
Eq. (1) can be applied at each time step and the likelihood
function is simply the product of those mutually independent
terms.

Accounting for temporal correlation requires some addi-
tional conceptualisations. Consider the transformation func-
tion

ηtrans(Q, Qdet, ψ)= F
−1
N(0, 1)

(
FDQ(Qdet,ψ)(Q)

)
, (2)

which transforms the streamflow, Q, via its assumed
marginal distribution, DQ, which is dependent on the model
output, Qdet. If the distributional assumptions for DQ are

correct, the result of this transformation is a standard nor-
mally distributed variable. Applying Eq. (2) to a time series
of streamflow, Q(ti), leads to a time series of transformed
streamflows:

η(ti)= ηtrans(Q(ti), Qdet(ti), ψ), (3)

where ti are the time points of interest for inference or pre-
diction. Note that, if the distributional assumptions aboutDQ
hold at all points in time, η(ti) are a sample from a standard
normal distribution, except for the lower tail, which can be
lighter due to the truncation at zero at each individual time
step.

To describe autocorrelation in the deviations of Q from
Qdet, we assume that the corresponding time series of η are
discrete-time results of a continuous-time autoregressive pro-
cess:

η(ti)|η(ti−1)∼

N

(
η(ti−1)exp

(
−
ti − ti−1

τ(ti)

)
,

√
1− exp

(
−2
ti − ti−1

τ(ti)

))
(4)

where N is the normal distribution and the first and the sec-
ond argument is the mean and the standard deviation, respec-
tively. This so-called Ornstein–Uhlenbeck process (Uhlen-
beck and Ornstein, 1930) has a standard normal asymptotic
distribution and a characteristic correlation time, τ(ti), that
is assumed to be constant over the interval [ti−1, ti].

In summary, to transfer information between time points,
we transform the distribution DQ at time ti−1 to a standard
normal distribution ηi−1 according to Eq. (2), advance ηi−1
to ηi according to Eq. (4), and transform ηi back to DQ at
time ti .

Note that, for a constant time step 1t = ti − ti−1, Eq. (4)
becomes

η(ti |ti−1)∼ N
(
η(ti−1)φ,

√
1−φ2

)
, (5)

with

φ = exp(−
1t

τ
) or τ =−

1t

ln(φ)
. (6)

This is a discrete-time AR(1) process with autoregression
coefficient φ and white noise variance 1−φ2. The formu-
lation of a continuous-time autoregressive process with eval-
uation at discrete time points allows us to apply it to non-
equidistant time series. One advantage of this formulation is
that it combines autocorrelation with the possibility to easily
deal with missing data, which is considerably more difficult
when using the fixed-time version in Eq. (5). Note that the
continuous-time formulation assumes that η can be described
well by an autoregressive process of first order, where in fact
higher orders have been observed (Kuczera, 1983; Bates and
Campbell, 2001). Nonetheless, the first-order approxima-
tion has been used often throughout hydrological literature.
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In order to formulate the probability of the streamflowQ, we
used Eqs. (1) to (4) to derive the following conditional prob-
abilities forQ(ti) givenQ(ti−1) (see Appendix A for the full
derivation).

If Q(ti−1) > 0 :

pi
(
Q(ti)|Q(ti−1),θ , ψ

)

=



fDQ(Qdet(ti , θ),ψ)

(
Q(ti )

) fN
(
η(ti−1)exp

(
−
ti−ti−1
τ(ti )

)
,

√
1−exp

(
−2

ti−ti−1
τ(ti )

)) (η(ti ))
fN(0, 1) (η(ti ))

if Q(ti) > 0,

F
N
(
η(ti−1)exp

(
−
ti−ti−1
τ(ti )

)
,

√
1−exp

(
−2

ti−ti−1
τ(ti )

)) (η(ti))
if Q(ti)= 0.

If Q(ti−1)= 0 :

pi
(
Q(ti)|Q(ti−1), θ , ψ

)
=

 f
DQ

(
Qdet(ti , θ),ψ

)(Q(ti)) if Q(ti) > 0,

F
DQ

(
Qdet(ti , θ),ψ

)(0) if Q(ti)= 0.

(7)

Note that p is a probability density (denoted by f ) ifQ(ti) >
0, and an integrated, discrete probability (denoted by F )
if Q(ti)= 0. Note also that η in Eq. (7) is calculated with
Eq. (3) and depends on Q and Qdet(θ). Furthermore, Eq. (7)
reduces to Eq. (1) for (ti − ti−1)/τ →∞, i.e. if the charac-
teristic correlation time is short compared to the length of the
time step.

The likelihood is then obtained by building the product of
the conditional probabilities in Eq. (7) and by substituting the
observations, Qobs, for Q:

fL
(
Qobs(t0), Qobs(t1), . . . , Qobs(tn)|θ , ψ

)
=

pDQ(Qdet(t0, θ),ψ)

(
Qobs(t0)

)
n∏
i=1
pi
(
Qobs(ti)|Qobs(ti−1), θ , ψ

)
. (8)

Note that the first term on the right hand side of Eq. (8) can
be calculated with Eq. (1), since it is not conditional on the
previous time step.

Zeger and Brookmeyer (1986) and Hannachi (2012) for-
mulated a likelihood that allows the memory of an autore-
gressive processes to be kept during time periods with cen-
sored data. This concept can be transferred to the case of
zero streamflow. It has a conceptual advantage over Eq. (7),
especially when dealing with intermittent data with frequent
periods with observations of zero that can be shorter than the
characteristic correlation length, like for example in the case
of precipitation (Hannachi, 2012). Depending on a catch-
ment’s low-pass filtering effect, streamflow is expected to
have fewer but longer continuous periods of zero and non-
zero data compared to precipitation. Consequently, the mem-
ory of the process given by Eq. (4) is likely to vanish during

a zero streamflow period of typical length, reducing the ben-
efit of keeping the correlation during those periods. There-
fore, the cost of numerically solving integrals, the dimension
of which is proportional to the length of the zero streamflow
period (Hannachi, 2012), outweighs the conceptual benefits
with respect to this application. The approach by Zeger and
Brookmeyer (1986) might be highly relevant in other hydro-
logical applications, however.

2.2 Error models

As a basis for subsequent applications, we set DQ to the
skewed Student’s t distribution (Fig. 1), which is obtained
by transforming the conventional Student’s t distribution ac-
cording to Fernandez and Steel (1998). This approach of
skewing has been used in a previous study on error mod-
els (Schoups and Vrugt, 2010), albeit in a different setting.
Thus, we introduce two error model parameters: γ , defining
the degree of skewness, and df, the degrees of freedom as a
measure for the kurtosis. The skewed Student’s t distribution
reduces to the normal distribution for γ = 1 and df→∞.
Two assumptions are tested to centre DQ at Qdet:

E[DQ] =Qdet(t), (9a)
mode(DQ)=Qdet(t), (9b)

i.e. we either assign the expected value or the highest proba-
bility density of DQ to Qdet. A third alternative would be to
set the median of DQ equal to Qdet. By testing the two op-
tions in Eq. (9), we include the lowest and the highest value;
the third option would be a compromise between the two and
was not included in the study. If not indicated otherwise, the
assumption in Eq. (9a) was used. The results obtained with
Eq. (9b) can be found in Appendix B.

The standard deviation ofDQ is parameterised as follows:

σDQ(t)= aQ0

(
Qdet(t)

Q0

)c
+ bQ0. (10)

Note that skewing a distribution with the approach developed
by Fernandez and Steel (1998) changes its standard devia-
tion; σDQ(t) is the standard deviation of DQ after skewing.
Other parameterisations of σDQ are in principle possible; see
McInerney et al. (2017) for a theoretical correspondence with
transformation approaches. McInerney et al. (2017) have
shown that transformation approaches with a first-order cor-
respondence to c = 0.8 or c = 0.5 can lead to more reliable
and precise predictions than those corresponding to c = 1. To
limit the scope of the analysis, and to maintain comparability
to previous studies (Thyer et al., 2009; Schoups and Vrugt,
2010; Evin et al., 2013), we set c equal to 1. Note that the pa-
rameters a and b become dimensionless (and therefore more
universal) by including a reference streamflow, Q0, that cor-
responds to the mean of the observations: Q0 =Qobs. Thus,
a accounts for the variable and b for the constant contribu-
tions to the total standard deviation.
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Table 1. Overview of the error models applied in this study, their assumptions regarding correlation and the distribution of streamflow and
their corresponding parameters (SKT: skewed Student’s t distribution, ×: fitted).

Error model Distribution Correlation a b γ df τmin τmax

E1 Gaussian none × × 1 ∞ 0 0
E2 Gaussian constant × × 1 ∞ = τmax ×

E3∗ Gaussian non-stationary, partially fitted × × 1 ∞ 0 ×

E3a∗ Gaussian non-stationary, fitted × × 1 ∞ × ×

E4∗ SKT non-stationary, partially fitted × × × × 0 ×

E4a∗ SKT non-stationary, fitted × × × × × ×

If ∗ is appended to the name of the error model, a smoothed version of Perr(t) (moving average of window size 5 h) was used in
Eq. (11).

Figure 1. Example of skewed Student’s t distributions with
E[DQ] =Qdet(t)= 2.5 mm h−1 and standard deviation σDQ(t)=
0.6 mm h−1 for different values of skewness, γ , and degrees of free-
dom, df.

Table 1 lists the error models applied in this study, together
with their underlying assumptions. E1 is included as a refer-
ence case; it is based on the assumption of uncorrelated het-
eroscedastic errors with a normal distribution. These assump-
tions, with the exception of heteroscedasticity and the treat-
ment ofQobs = 0, are identical to those made when maximis-
ing the Nash–Sutcliffe efficiency for example, or, equiva-
lently, minimising the squared residuals. Error model E2 rep-
resents a conventional approach to considering autocorrela-
tion. In the case of equally spaced time steps, it is similar to
the error model applied by Evin et al. (2013) for example,
who assume that the rescaled errors follow an AR(1) process
with a standard normal marginal distribution. One difference
between the two approaches is, again, the treatment of cases
where Qobs = 0. In error model E3, we additionally account

for the fact that τ might be time-dependent. The following
formula for τ is used in those cases:

τ(t)=

{
τmin if Perr(t) > 0,

τmax otherwise ,
(11)

where Perr is the precipitation used as an input for the er-
ror model. In E3, τmin is fixed at 0, while in E3a, it is fit-
ted. Perr was either equal to the recorded precipitation, P ,
or, in the case of hourly resolution in the Maimai catchment,
smoothed with a moving average of window size 5 h. This
was done to prevent frequent jumps between τmin and τmax
during precipitation events, and to be more robust with re-
spect to potential time lags between observed precipitation
and streamflow. Note that, if such time lags were excessively
large, they would have to be considered in Eq. (11). Since
in the Murg catchment smoothing did not change the results
substantially, Perr = P applies there. Thus, error model E3a
(or E3) can be seen as a mixture of E1 and E2, in the sense
that τ alternates between periods of high and low (or no) cor-
relation. Finally, E4 relaxes the assumption of normality for
DQ; we use a skewed Student’s t distribution, inferring the
degrees of freedom and the skewness. Again, E4a denotes
the version where τmin is inferred.

2.3 Inference and prediction

Consider that for any practical case of inference or predic-
tion, we will have a finite series of time points of interest
(t0, t1, . . ., tn) and a corresponding time series of stream-
flowQ= (Q(t0), Q(t1), . . . , Q(tn)) or, in analogy,Qdet and
Qobs. When performing inference, the parameters of the hy-
drological model, θ , are estimated jointly with the parameters
of the error model, ψ , by evaluating the likelihood function
(Eq. 8) according to the following procedure:

1. Given a suggested parameter vector θ , evaluate the
deterministic hydrological model, Qdet, for all time
points.

2. Using ψ and Qdet, calculate the likelihood in Eq. (8).
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As the likelihood (Eq. 8) is available in closed form for a
given output of the hydrological model, like in many com-
mon likelihood functions in hydrology, we do Bayesian in-
ference based on standard MCMC sampling of the posterior.
The affine-invariant ensemble sampler by Foreman-Mackey
et al. (2013) is used for this purpose. It uses the so-called
“stretch move” to propose a new value for a point in param-
eter space based on other members of the ensemble. The en-
semble size consists of 100 walkers in this study and conver-
gence is assessed visually. A full posterior sample consists of
10 000 model evaluations after successful convergence.

For prediction, stochastic realisations of model output are
obtained by inverting Eq. (2):

Qtrans(η, Qdet, ψ)= F
−1
DQ(Qdet,ψ)

(
FN(0, 1)(η)

)
, (12)

and applying the following procedure to produce a single
stochastic streamflow realisation Qj :

1. Randomly draw a parameter vector (θ ,ψ)j from the
posterior sample.

2. Using θ j , evaluate the deterministic hydrological model
to obtain Qdet, j for all time points.

3. Using τ j ∈ ψj and Eq. (4), produce a stochastic real-
isation of an OU process, ηj , with a standard normal
marginal distribution.

4. Use ψj and Qdet, j , determined in steps 1 and 2, to
transform ηj into a stochastic realisation of streamflow,
Qj , with Eq. (12).

Note that a simulation with the hydrological model requires
some additional input like precipitation and potential evapo-
transpiration data (Sect. 3.1), which is assumed to be known
also for the prediction period. In a synthetic case study, we
could successfully verify the consistency of the implemented
likelihood and sampling functions (see the Supplement).

2.4 Evaluation criteria

How can the performance of empirical error models, such
as those presented in this study, be quantified? We argue
that the performance of an error model in joint inference
with a hydrological model should be judged according to
the following criteria: (a) good reproduction of observed dy-
namic fluctuations by individual model realisations, (b) good
overall predictive marginal distribution of streamflow, and
(c) small absolute deviance between model output and ob-
servations. The flashiness index (Sect. 2.4.1) is an indicator
for (a). The reliability and the relative spread of the pre-
dictive distribution (Sect. 2.4.2 and 2.4.3, respectively) are
used as an indicator for (b). The Nash–Sutcliffe efficiency
(Sect. 2.4.4) and the relative error in cumulative streamflow
(Sect. 2.4.5) cover (c). In addition to those performance met-
rics, we calculated the Kullback–Leibler divergence (Kull-

back and Leibler, 1951) of the marginal posterior parame-
ter distributions from the prior according to the method pro-
posed by Boltz et al. (2007).

2.4.1 Flashiness index

The function to calculate the flashiness index (Baker et al.,
2004) is given by the following:

I (Q)=

∑n
i=1|Q(ti)−Q(ti−1)|∑n

i=1Q(ti)
, (13)

where Q= (Q(t0), Q(t1), . . . , Q(tn)). Let x̂ denote the
quantity x that is related to the hydrological parameter val-
ues at the maximum posterior density. The flashiness index is
calculated for the observations, IF, obs = I (Qobs); the output
of the deterministic hydrological model, ÎF, det = I (Q̂det);
and the individual stochastic realisations of the predictive
streamflow sample, IF =median(I (Qj )). IF is sensitive to
the amount of autocorrelation in a streamflow time series, as
well as the height of the peaks ofQdet (sinceQj depends on
Qdet).

2.4.2 Reliability

Reliability is defined similarly to McInerney et al. (2017), as
follows:

4reli = 1−
2

n+ 1

n∑
i=0
|FQ(ti )(Qobs(ti))

−Fζ (FQ(ti )(Qobs(ti)))|, (14)

where ζ = {FQ(ti )(Qobs(ti))|i ∈ N, 0≤ i ≤ n}, Fζ is the em-
pirical cumulative distribution function of ζ and FQ(ti ) is the
empirical cumulative distribution function of the predicted
streamflow at time ti . 4reli can take values in the interval
[0, 1], where larger values of 4reli correspond to better re-
liability and unity means perfect reliability. It measures the
degree to which the observations are consistent with being a
sample of the predictive distribution. Since comparison hap-
pens in the uniform space, the influence of heavy outliers on
4reli is limited. Note that we use the complement of the reli-
ability measure proposed by McInerney et al. (2017), in or-
der to allow for a more intuitive interpretation (larger values
mean larger reliability).

2.4.3 Relative spread

The relative spread is an indicator for the width of the pre-
dictive distributions over all time points, and was proposed
by McInerney et al. (2017) as follows:

�spread =

∑n
i=0σQ(ti)∑n
i=0Qobs(ti)

, (15)

where σQ(ti) is the standard deviation of the predictive dis-
tribution at time point ti calculated from the ensemble of all
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stochastic predictions at that point in time.�spread ∈ R+, and
small values of �spread indicate precise predictions or small
predictive uncertainty. The smaller the predictive uncertainty,
the better the quality of the underlying model, given that
the predictions are not overconfident. While McInerney et al.
(2017) use the name “precision” for �spread, we believe that
“relative spread” is a more appropriate term considering its
actual meaning.

2.4.4 Nash–Sutcliffe efficiency

The Nash–Sutcliffe efficiency (Nash and Sutcliffe, 1970),
EN, f (f for function), is defined as follows:

EN, f(Q,Qobs)= 1−
∑n
i=0(Q(ti)−Qobs(ti))

2∑n
i=0(Qobs(ti)−Qobs)

2
, (16)

where Q= (Q(t0), Q(t1), . . . ,Q(tn)). It is used in this
study to assess the output of the hydrological model
at the maximum posterior parameter density, ÊN, det =

EN, f(Q̂det,Qobs), as well as the stochastic simulations,
EN =median(EN, f(Qj ,Qobs)). It is used as a rough mea-
sure of how well two hydrographs correspond to each other,
primarily with the goal of identifying very poorly fitting hy-
drographs. It is known to be sensitive to errors in high flows
(Legates and McCabe, 1999), which can be of particular
practical interest. Therefore it complements the other mea-
sures, which are less informative with respect to errors in
high flows.

2.4.5 Relative error in total cumulative streamflow

As a measure of systematic over- or under-prediction of
streamflow, we calculate the relative error in total cumula-
tive streamflow:

1(Q,Qobs)=

∑n
i=0Qobs(ti)−Q(ti)∑n

i=0Qobs(ti)
. (17)

It is calculated with respect to the model output based on
the parameter values at the maximum posterior density;
1̂Q, det =1(Q̂det,Qobs), as well as for the ensemble of indi-
vidual stochastic simulations:1Q =median(1(Qj ,Qobs)).
Note that, contrary to McInerney et al. (2017),1Q is the me-
dian error of all the individual hydrograph realisations, not
the error of the average hydrograph.

3 Case study set-up

3.1 Catchments and data

The probabilistic framework developed in Sect. 2.1 was
tested in two case study sites, the Murg and the Maimai
catchments, which are described in this section. The Murg
river flows through a hilly headwater catchment in a temper-
ate climate with a size of 80 km2 in northeastern Switzer-
land. Some key hydrological summary statistics are listed

in Table 2. Land use is predominantly agricultural (50 %),
with forested headwaters (30 %) and a considerable propor-
tion of urban areas (10 %). The mean elevation is 652 m a.s.l.,
spanning from 466 to 1035 m a.s.l. Streamflow peaks can
be quite sharp, especially for small events, in which base-
flow conditions are reached again within just a few hours.
This is potentially due to impervious areas being drained
directly into the river. The data consist of hourly averages
of streamflow, precipitation and potential evapotranspiration
from January 1995 to December 2002. Calibration was per-
formed in the first 5 years (January 1995–December 1999)
and validation in the consecutive 3 years (January 2000–
December 2002). Streamflow data are courtesy of the Swiss
Federal Office for the Environment (FOEN). Precipitation
and potential evapotranspiration are based on meteorological
data (MeteoSwiss, 2018) and were processed by the Swiss
Federal Institute for Forest, Snow and Landscape Research
(WSL), with the preprocessing tools of PREVAH (Viviroli
et al., 2009).

The Maimai experimental catchments are a set of small
headwater catchments with a long history of hydrological re-
search. They are located on a deeply incised hillslope on the
South Island of New Zealand. The area is forested and the cli-
mate is considerably more humid than in the Murg catchment
(Table 2). The site was chosen for this study due to its homo-
geneous characteristics and relatively simple hydrological re-
sponse, which make it very suited for model evaluation and
testing (e.g. Seibert and McDonnell, 2002). We use hourly
data recorded in 1985–1987 in the M8 experimental catch-
ment, the most intensely studied of the Maimai catchments.
It has an area of ca. 7 ha with steep (34◦) slopes. The reader
is referred to Brammer and McDonnell (1996) for a more
detailed description of the characteristics of the M8 and the
other experimental catchments. This study does not attempt
to make a significant contribution to the understanding of the
hillslope processes in the Maimai catchment (see McGlynn
et al., 2002, for an extensive overview). Calibration was per-
formed based on data from January 1985–December 1986,
and validation during January–December 1987. The data
were kindly provided by Jeffrey McDonnell.

While the resolution of the original data was hourly, we
produced data sets with 6-hourly and daily resolution by ag-
gregation for both catchments. This set-up allows us to sys-
tematically investigate the effect of the temporal resolution
of the data on the joint inference of hydrological and error
model parameters. This could contribute to the identification
of the cause of previously encountered problems in joint in-
ference (Goal 2b specified in Sect. 1). Furthermore, the two
selected catchments are different in size, signatures (Table 2)
and complexity of their hydrological response, so that the in-
fluence of the catchment or data properties can be assessed to
some degree. To limit the scope of the study, we constrained
the analysis to two catchments.
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Table 2. Properties of the two case study catchments. P is the precipitation and RC the runoff coefficient (calculated from cumulative
streamflow and precipitation). Qobs,max, Qobs,min and Qobs are the minimum, the maximum and the average streamflow, respectively.
IF,obs is the flashiness index.

Catchment Area P RC Qobs,max Qobs,min Qobs IF,obs
(km2) (mm a−1) (–) (mm h−1) (mm h−1) (mm h−1) (–)

Murg 80 1369 0.57 2.7 1× 10−2 0.089 0.053
Maimai 0.07 2349 0.62 8.5 1× 10−4 0.17 0.13

Figure 2. Structure of the deterministic hydrological model used in
this study. Pu is the precipitation and Eu the evapotranspiration. Su
represents the active water content of the unsaturated zone, while Sf
is a non-linear reservoir representing the fast flow component.

3.2 Deterministic hydrological model

The hydrological model used throughout this study is a sim-
ple, lumped bucket model with two reservoirs (Fig. 2), which
are meant to represent the unsaturated soil zone and the sub-
surface flow being fed by it. A slower flow component is
included though a linear outflow from the unsaturated zone
reservoir directly. Due to its simplicity, and due to the fact
that it is not clear whether the chosen model structure is
suited for the studied catchment a priori, we expect sys-
temic difficulties in reproducing the observed streamflow dy-
namics. This is a very common situation in hydrological
modelling and it will lead to correlated and potentially het-
eroscedastic and non-normal errors. This allows us, in princi-
ple, to test the error models (Sect. 2.2) under realistic condi-
tions. The streamflow simulated by this deterministic model
is denoted as Qdet(t, θ)=Qs(t, θ)+Qf(t, θ), where Qs is
the slow response of the model, Qf is the fast response and
θ = (Ce, Smax, ku, kf) are the calibrated hydrological param-
eters. The fluxes (Eu, Pu, Qu, Qs, Qf) and states (Su, Sf) of
the model are given by the following:

dSu

dt
= Pu−Eu−Qu−Qs,

Eu = CeEp

Su
Smax

(1+m)
Su
Smax
+m

,

Qu = Pu

(
Su

Smax

)β
,

Qs = kuSu, (18)

dSf

dt
=Qu−Qf,

Qf = kfSf
α, (19)

whereEp is the potential evapotranspiration. WhileCe, Smax,
ku and kf were inferred, m, β and α were kept fixed at
0.01, 3 and 2, respectively. m can be seen as a smoothing
parameter and m= 0.01 translates to Eu ≈ CeEp as long
as Su/Smax� 0.01. β = 3 and α = 2 were found to lead to
reasonable results in both investigated catchments and were
fixed due to potential interactions with Smax and kf. The hy-
drological model was implemented in SUPERFLEX (Fenicia
et al., 2011; Kavetski and Fenicia, 2011), a flexible frame-
work for conceptual hydrological models which uses effi-
cient numerical integration schemes.

3.3 Priors

The prior distribution of the parameters was assumed to be
composed of independent normal or log-normal distributions
with relatively large standard deviations (see Table 3). A uni-
modal distribution is the more accurate representation of our
prior belief than, for example, a uniform distribution over a
predefined range, since we do assume that values in the mid-
dle of the suspected range are more probable than at its edge.
Note that this is primarily a conceptual difference, as large
standard deviations were chosen to minimise the influence of
the priors on the results.

4 Results

After providing some general results, this section contains a
more detailed summary of the results for each of the tested er-
ror models. The complete analysis included additional error
models and performance metrics, which are included in Ap-
pendix B. The supplementary material contains further infor-
mation on the resulting posterior density estimates of the pa-
rameters and Kullback–Leibler divergences of the marginal
posterior and prior parameter density estimates.

Figure 3 gives an overview of the difference in flashi-
ness index, the reliability and the relative spread in the cal-
ibration and the validation periods for both catchments, all
temporal resolutions of the data and all tested error models.
Figure 4 provides additional information about the relative
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Table 3. Prior distributions of the hydrological and error model parameters applied in all the cases where the respective parameter was used.
N = Gaussian normal; LN = log-normal. Where lower and upper boundaries are listed, the distribution is truncated at those values.

Parameter Distribution Unit µ σ Lower boundary Upper boundary

Ce N – 1 0.2 0.2 3
Smax LN mm 148 1086 2.7 1086
ku LN h−1 1.8× 10−2 0.13 2.3× 10−6 5× 10−2

kf LN h−1 0.37 2.7 2.3× 10−6 0.37

a LN – 0.2 0.2 – –
b LN – 0.1 0.1 1× 10−2 0.5
τmax LN h 148 1086 0 2000
γ LN – 1 0.2 0.1 5
df LN – 14 17 3 –

error in cumulative streamflow, 1Q, and about the Nash–
Sutcliffe efficiency, ÊN, det. The temporal resolution of the
data has a pronounced effect on all the analysed performance
metrics. The spread over all the combinations of error mod-
els and catchments is larger for higher temporal resolutions
(Figs. 3 and 4). Furthermore, the average of each metric in-
dicates decreasing performance for increasing temporal res-
olution. This loss in performance is more pronounced in the
Murg catchment and for error models E2 and E3a than in the
Maimai catchment and for other error models. The difference
between the two catchments is most clearly visible in ÊN, det
(Fig. 4): for 6-hourly and daily resolution of the data, the
worst-performing error model in the Maimai catchment has
a better ÊN, det than the best-performing error model in the
Murg catchment.

4.1 Individual error models

4.1.1 Model E1

E1 tends to strongly overestimate the true flashiness in the
case of high temporal resolutions in both catchments (Fig. 3a,
b; the difference between the observed and the median of
the predicted flashiness index is around −0.4 for both catch-
ments). In terms of reliability, E1 is never the single best of
the error models but is always among the best, and it is ro-
bust in light of varying temporal resolution (4reli is larger or
equal to 0.8 in all the cases; Fig. 3c, d). E1 is also among
the error models that provide the least uncertain predictions
(average relative spread of 0.41, Fig. 3e, f) and have the
smallest1Q (usually between 0 % and−10 %) and the high-
est ÊN, det overall (Fig. 4). Except for the flashiness index,
its performance stays stable for high-frequency data in both
catchments. However, the high flashiness index of this model
demonstrates the strong violation in the description of the
output behaviour despite its good performance regarding the
other performance metrics.

Figure 3. Performance of the error models with respect to the flashi-
ness index, reliability and relative spread for both catchments and all
temporal resolutions. Perr was smoothed (∗) exclusively for hourly
data in the Maimai catchment.

4.1.2 Model E2

With the constant correlation assumption made in E2, IF, obs
is generally well reproduced by IF, with deviances ranging
from −0.03 to 0.07 (Fig. 3a, b). For E2, ÎF, det is often sim-
ilar to IF for all temporal resolutions (Tables B1 and B2),
indicating that the large part of the flashiness of the model
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Figure 4. Performance of the error models in terms of the relative
cumulative error in streamflow, 1Q, and the Nash–Sutcliffe effi-
ciency, ÊN,det, for both catchments and all temporal resolutions.
Perr was smoothed (∗) exclusively for hourly data in the Maimai
catchment.

output is due to the hydrological model response and only a
small part is due to the stochastic variability added through
the error model. Regarding all the other performance met-
rics, however, E2 is often among the worst-performing error
models. For example, in more than half of all the investi-
gated combinations of catchments and temporal resolutions,
E2 is the error model with the worst reliability (Fig. 3c, d).
E2 has an average relative spread of 0.61 over all the cases,
while that of E1 is 0.41. It tends to produce large errors in
cumulative streamflow, especially in the case of hourly res-
olution (1Q <−75 %, Fig. 4a, b). The degradation of the
streamflow error and ÊN, det with increasing measurement
frequency is very pronounced for E2 compared to the other
error models (Fig. 4a–d).

4.1.3 Model E3

E3 generally overestimates the true flashiness; i.e. IF is often
larger than IF, obs. The difference is around 0.2 for hourly and
6-hourly resolution and a bit less for daily resolution (Fig. 3a,
b). The overestimation of the flashiness by E3 is less severe
than with E1. E3 results in stable reliability metrics for all
temporal resolutions in both catchments: 4reli is larger than
0.8 in every case and larger than 0.9 in more than half of
the cases (Fig. 3c, d). In the validation period in the Murg

catchment, it is the most reliable error model of all (Fig. 3d).
The relative spread of E3 is in the range of [0.34, 0.5] in
all instances with an average value of 0.43, and it is unaf-
fected by the temporal resolution (Fig. 3e, f). The absolute
value of 1Q is never larger than 25 % and usually smaller
than 10 % (Fig. 4a, b). In terms of ÊN, det, E3 reaches values
larger than 0.75 in all cases except for hourly resolution in
the Murg catchment, where it is 0.69. All the metrics show
stable performance of E3 under increasing measurement fre-
quency (Figs. 3 and 4).

4.1.4 Model E3a

When inferring τmin with error model E3a, we get close cor-
respondence of IF and IF, obs in all cases (Fig. 3a, b; the de-
viation is never larger than 0.05). In the Maimai catchment,
the reliability measure shows stable performance, with val-
ues between 0.81 and 0.96 in the validation period (Fig. 3c,
d), showing no clear signs of worse performance for high-
frequency data. The inferred values of τmin were of the order
of 1 d and therefore clearly smaller than τmax (Fig. 7). Fur-
thermore, τmin was consistent among the different temporal
resolutions.

In the Murg catchment, on the other hand, we see a de-
generating performance of E3a with increasing measurement
frequency, with values of 4reli < 0.5 for 6-hourly and hourly
data (Fig. 3c, d), indicating poor performance. All the other
metrics show a similar pattern. The inferred τmin were be-
tween 50 and 100 h, where values on the upper end of that
range coincided with bad reliability (Fig. 7).

4.1.5 Model E4

The stochastic model realisations with E4 tend to overesti-
mate the true flashiness index; the difference between IF, obs
and IF is usually between −0.2 and −0.1 (Fig. 3a, b). IF
is often much larger than ÎF, det in the Murg catchment (Ta-
ble B1), indicating that a relatively large part of the flashiness
is accounted for by the error model and less by the hydrolog-
ical model in that case. This manifests in smaller values of
ÊN, det with E4 compared to E1 (e.g. 0.65 for E4 with hourly
resolution compared to 0.79 with E1, Fig. 4c). In the Maimai
catchment, the hydrological model captures a larger part of
the variability than in the Murg catchment, and the difference
between IF and ÎF, det is smaller (Table B2). Concerning the
reliability, 4reli is generally larger than 0.8, indicating well-
conditioned predictive distributions, except in the validation
period for hourly resolution (Fig. 3c, d). In the Maimai catch-
ment, reliability is better in the calibration period than in the
validation period, which is a sign of over-fitting. Especially
for daily resolution, E4 provides very good reliability in the
calibration period in both catchments (4reli > 0.97, Fig. 3c).
The average relative spread of E4 is 0.60. 1Q is not more
extreme than −27 % in any case and usually less severe than
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20 % (Fig. 4a, b). A slight degradation of1Q with increasing
frequency of the data can be observed.

4.1.6 Model E4a

E4a results in IF that are very close to the observed flashiness
in all cases: the difference is never more extreme than 0.05
(Fig. 3a, b). ÎF, det is often smaller than IF, obs in the Murg
catchment, which, similar to in E4, is an indication that most
of the variability is explained by the error model and not the
hydrological model.4reli is always larger than 0.8 (Fig. 3c, d)
except for the validation period with hourly resolution in both
catchments (Fig. 3d). Similar to E4, we can see a tendency
for over-fitting with E4a in the Maimai catchment: in the cal-
ibration period, reliability values of 0.98, 0.95 and 0.92 are
reached, while the validation results in values of 0.84, 0.84
and 0.77 for daily, 6-hourly and hourly resolutions, respec-
tively (Table B2). A look at the relative spread (Fig. 3e, f)
shows that E4a leads to unrealistically large prediction un-
certainty in the Maimai catchment for 6-hourly and hourly
resolution but that it is among the most precise error models
in the Murg catchment. Similarly, E4a produces relatively
large errors in cumulative streamflow in the Maimai catch-
ment, but very small ones in the Murg catchment (Fig. 4a,
b). Opposed to that, ÊN, det is better than 0.75 in all cases in
the Maimai catchment, while it reaches values as low as 0.5
for hourly resolution in the Murg catchment (Fig. 4c, d).

4.2 Relaxing the constant-correlation assumption

Error model E3, which accounts for reduced correlation of
errors during the precipitation events, leads to an overall
improvement in the investigated performance metrics (ex-
cept IF) compared to E2, which assumes constant correla-
tion (Figs. 3 and 4). For example, the reliability for hourly
resolution in the Murg catchment is 0.94 and 0.39 for E3
and E2, respectively (Fig. 3c, d). In contrast to E2, the per-
formance of E3 does not show systematically worse perfor-
mance for high-frequency data. In fact, E3 and E1 show a
similar stability in performance, but E3 provides more real-
istic estimates of the correlation during recessions and base-
flow, leading to a better estimate of IF (Fig. 3a, b). Figure 6
shows typical results of E2 and E3 with respect to streamflow
bias, visible as a bias in η (Fig. 6a, b), and posterior corre-
lation between heteroscedasticity and correlation parameters
a and τmax (Fig. 6c, d). Note also the smaller standard devi-
ation (parameter a) resulting from E3 (Fig. 6d). Additional
results about the standardised innovations of η are available
in the Supplement.

Figure 5 compares the predicted hydrographs of E1, E2
and E3a in the Maimai catchment using hourly data. In this
case, allowing for different characteristic correlation times
during precipitation events and dry periods (E3a, Fig. 5c)
leads to better-behaved error bands compared to the con-
stant correlation assumption (Fig. 5b) and to more realistic

stochastic output of the model than with the zero-correlation
assumption (Fig. 5c). Note that E3a results in better estimates
of IF than E3, since it considers correlation during precipita-
tion events (τmin > 0).

In the Murg Catchment, inferring τmin resulted in a de-
generative performance for high-frequency data, which were
also linked to higher values of τmin (Fig. 7). The posterior es-
timates of τmax depend on the resolution in both catchments.
While large τmin coincides with the worst reliability, large
τmax was also obtained together with good reliability (Fig. 7).
The effect of τmin on the relative cumulative streamflow error
is shown in Fig. 8 for 6-hourly data in the Murg catchment.
The streamflow error starts to increase for τmin > 10h and
at the same time ÊN, det decreases (not shown), approaching
that of E2.

4.3 Relaxing the assumption of normality

Relaxing the assumption of normality by inferring γ and
df (E4 and E4a) had a mixed effect on the numeric perfor-
mance indices analysed in this study. When τmin = 0, includ-
ing skewness and kurtosis (E4) often led to a better reliability
in the calibration period (Fig. 3c), but a worse reliability in
the validation period (Fig. 3d) compared to the assumption
of a normal distribution with E3. Predictions with E4 gen-
erally had a smaller spread than those with E3; e.g. �spread
was around 0.5 with E3 and 1.0 with E4 for hourly resolu-
tion in the Maimai catchment (Fig. 3e, f). When τmin was
inferred additionally, the non-normal case (E4a) showed bet-
ter performance metrics than the normal case (E3a) in the
Murg catchment, but worse ones in the Maimai catchment.
E4 and E4a in the Maimai catchment were the only cases
that showed a pronounced difference between calibration and
validation, which is a sign of overfitting. A visual inspection
of the QQ plots of η revealed that E4 and E4a successfully
reduced some very heavy outliers that strongly violated the
assumption of normality. In both catchments, the inferred γ
were in the range of [1.5, 2.8] for E4 and E4a. The values
at the upper end of this spectrum were reached for hourly
resolutions, and they were associated with underestimation
of the peak flows by the deterministic hydrological model,
reflected in reduced ÊN, det. For example, E4a resulted in
γ ≈ 2.5, ÊN, det = 0.5 and an underestimation of peak flows
by the hydrological model for hourly data in the Murg catch-
ment. Inferred df were always at or close to the lower limit
of 3, which is indicative of heavy outliers.

Regarding the location of DQ with respect to Qdet, the
assumption in Eq. (9a) led to better results than Eq. (9b) in
the Murg catchment. For example, 4reli with E4a is 0.22 or
0.87 when applying Eq. (9a) or (9b), respectively (Table B1).
In the Maimai catchment, the opposite is true: 4reli is 0.32
or 0.23 with Eq. (9a) or (9b), respectively (Table B2). The
difference between results obtained with Eqs. (9a) and (9b)
is generally larger for higher frequency of the data.
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Figure 5. Streamflow predictions with hourly resolution in the Maimai catchment in a part of the validation period (1993) obtained with
error models E1 (a), E2 (b) and E3a (c). Deterministic predictions with the parameter values at the maximum posterior density are shown
together with the 90 %-confidence bands and one single stochastic streamflow realisation for each of the error models.

5 Discussion

5.1 Presence and absence of autocorrelation

Assumptions about the presence (E2) and absence (E1) of
autocorrelation in η were shown to have profound effects on
the quality of the prediction in the cases investigated in this
study. Neglecting autocorrelation leads to close correspon-
dence between Q̂det and Qobs in terms of the Nash–Sutcliffe
efficiency and to relatively well-fulfilled assumptions about
the distribution of η in the uniform space (i.e. small values of
4reli). However, major assumptions of the underlying statis-
tical model are clearly violated. Most striking is the violation
of the zero correlation assumption (Fig. 9b), which translates
into unrealistic fluctuations of the stochastic streamflow pre-
dictions (Fig. 5a). Note that E1 also comes with disadvan-
tages related to operational forecasts, where one can make
more accurate predictions for streamflow in the near future
given an error in previous streamflows when accounting for
correlated errors (Del Giudice et al., 2013). This effect was
not analysed in this study.

Accounting for the fact that η is obviously autocorrelated,
and therefore describing it by a Gaussian process with con-
stant autocorrelation (E2), comes with additional difficulties.
These include a strong interaction of the hydrological water
balance parameter, CE, with autocorrelation, τmax. In addi-
tion, we observed a strong posterior correlation between the
parameter for autocorrelation, τmax, and heteroscedasticity, a
(Fig. 6c). This correlation in the posterior parameter distri-

bution coincided with systematic overprediction of stream-
flow. E2 also showed smaller EN and ÊN,det, and worse 1Q
compared to E1 (Fig. 4). Evin et al. (2013), who tested an
error model similar to E2 on daily data, obtained very simi-
lar results in terms of interactions of water balance parame-
ters with correlation and heteroscedasticity parameters. The
reasons for those problems are still poorly understood. Fail-
ing to reproduce the problems under synthetic conditions,
Evin et al. (2014) suggest that the “nonrobustness of the joint
approach” might be caused by “structural errors in the hy-
drological and/or error models”. Based on case studies with
daily data, they find that (i) the catchments where these prob-
lems are absent are all wet catchments with relatively high
runoff coefficients and low ephemerality. To this, we can add
that (ii) the performance of the corresponding error model in
our study (E2) strongly degrades for higher data frequency
within two relatively wet catchments.

5.2 Non-stationarity of autocorrelation

Figure 9 visualises one potential reason for the degrading
performance of E2 for high-frequency data: our assumptions
about the stochastic process (OU process with constant
correlation time τ ) seem to be much better fulfilled for the
daily (Fig. 9a) than for the hourly (Fig. 9b) data. In the latter
case, a visual assessment of η(t) obtained with E1 reveals
strongly reduced auto-correlation during storms compared
to inter-storm periods. Yang et al. (2007) made similar
observations. This raises the hypothesis that the neglect of
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Figure 6. Transformed residuals, η, as a function of modelled streamflow (a, b) and correlation structure of the posterior parameter sample
(c, d) resulting with error models E2 (a, c) and E3 (b, d) for data with hourly resolution in the Murg catchment.

non-stationarity of the autocorrelation is a major deficit of
conventional error models, which leads to the previously
encountered problems in the joint inference of autoregressive
and hydrological model parameters mentioned in Sect. 5.1.

What is the physical explanation for non-stationary auto-
correlation of the errors η? The autocorrelation of errors in
streamflow is primarily caused by the memory effect of er-
rors in storage (Kavetski et al., 2003). Since this memory
effect of a catchment during precipitation events can be ex-
pected to be different from that during dry weather, the cor-
relation of the errors in streamflow can be expected to be dif-
ferent as well. The degree of change of the correlation may
depend on multiple factors, like the hydrological model used,
the precipitation intensity or volume, the extent to which the
precipitation signal is filtered by the catchment, time lags be-
tween precipitation and runoff, and potentially other factors.
Most probably, the mentioned factors will lead to smaller

correlation during wet periods and larger ones during dry pe-
riods.

A very simple way of considering this reduced correla-
tion (E3) provides strongly improved results compared to the
assumption of stationary correlation (Sect. 4.2). This indi-
cates that neglect of the non-stationarity of the autoregres-
sive parameter is a substantial shortcoming of conventional
error models, which causes, at least partly, the well-known
problems related to joint inference. Note that non-stationary
correlation can also be implemented in other existing likeli-
hood functions and does in principle not require the use of
the proposed theoretical framework described in Sect. 2.1.

To challenge this hypothesis, one could argue that the im-
proved performance of E3 (compared to E2) might also be
achieved when reducing τ during completely arbitrary time
intervals instead of precipitation events. This would dismiss
the hypotheses that the precipitation has a direct influence
on τ and that considering this influence leads to a better in-
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Figure 7. Marginal posterior densities of τmin and τmax, and corre-
sponding reliability measures4reli in the validation period resulting
from error model E3a in all combinations of catchments and tem-
poral resolutions.

Figure 8. Relationship between the fixed correlation time during
precipitation events, τmin, and the total streamflow error, 1Q, for
6-hourly data resolution in the Murg catchment. Each point corre-
sponds to a full inference and prediction procedure. The error bars
span two standard deviations of 500 stochastic predictions. E3 cor-
responds to τmin = 0 and E2 to τmin = τmax ≈ 170 h.

ference behaviour. To test this, we shifted Perr (Eq. 11) sub-
stantially in time, so that it would not correspond to the ob-
served precipitation P anymore, while still keeping the major
properties (duration and intermittency) of the time intervals
during which τ is reduced. Then, inference was performed
with E3 again. The low Nash–Sutcliffe efficiency and the
high streamflow error of the stochastic predictions in that
case (E3† in Table B2) shows that it is indeed important

to reduce τ during the precipitation events and not during
arbitrary periods with the same intermittency and duration
as the precipitation events. With the shifted Perr, the result-
ing τmax (≈ 145h) was much smaller than the original τmax
(≈ 1400h), confirming the hypothesis of reduced correlation
time of errors in streamflow during precipitation events.

One could also argue that the improved performance of
E3 compared to E2 is primarily due to assuming reduced au-
tocorrelation during periods with strong outliers (i.e. storm
events) and that those outliers (visible in Fig. 6) should be
accounted for by appropriate values of γ and df, instead
of reducing their influence by neglecting correlation in the
periods they appear. Or, similarly said, if the autoregres-
sive process with constant correlation is applied to appropri-
ately standardised residuals, which are marginally normally
distributed, it should not cause any problems. To explore
this possibility, we performed some experimental analysis
for hourly resolution in the Murg catchment: we modified
E1 by fixing γ = 1.5 and df = 5 (E1+). This led to a well-
conditioned η and performance metrics that were comparable
to or better than those of E1 (Table B1). Then, we inferred τ
under the assumption of constant correlation, while skewness
and kurtosis were kept fixed at the values given above (E2+).
The resulting performance metrics and a visual assessment of
the hydrographs revealed strong deficiencies in this approach
compared to E3 and to E1+ (Table B1). This indicates that it
is not enough to ensure that the marginal distributions of er-
rors is sufficiently well captured before applying an autore-
gressive process, but that it is also important to account for
a potential non-stationarity of the correlation of the errors.
Note that the distributional parameters of DQ (e.g. γ or df)
could also be non-stationary (Wani et al., 2019).

It is still unclear what the optimal parameterisation of a
time-dependent correlation could be. Using the input to di-
rectly inform the correlation structure of the output requires
knowledge of how the catchment transforms the signal. For
example, there could be a significant time lag between pre-
cipitation and streamflow, which would have to be taken into
account in Eq. (11). For the Maimai catchment, we found
that using a smoothed version of Perr in Eq. (11) improved
the performance of error models E3 and E4 in the case of
hourly resolved data (Table B2). For the coarser resolutions
in the Maimai catchment, and for all the tested resolutions
in the Murg river, transforming Perr in a similar way did not
lead to a remarkable change in the results. The influence of
possible transformations of Perr to account for the filtering
effect of the catchment was not systematically investigated
in this study.

5.3 Inference of τmin

The fact that τmin (Eq. 11) could only be inferred with par-
tial success shows that there are still problematic interactions
among parameters controlling the correlation of the errors
and hydrological model parameters. Figure 7 indicates that
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Figure 9. Time series of η corresponding to the parameter values at the maximum posterior density obtained with E1 in the Maimai catchment
for daily and hourly resolution. Intervals where P > 0 are shaded in grey.

those problems are more related to τmin than to τmax, since
higher values of τmin tend to coincide with bad performance.
Or, in more general terms, the previously encountered prob-
lems in the joint inference of hydrological and correlation
parameters (Evin et al., 2013) seem to originate from pre-
cipitation periods, not from dry periods. The fact that the in-
ference of τmin is more successful in the Maimai catchment
(Sect. 4.1.4), which has the simpler hydrological response,
suggests that the realism of a hydrological model facilitates
the successful inference of the correlation parameters.

These findings call for additional investigations into the is-
sue of non-stationary correlation, potentially exploring other
relationships between τ and P or Qdet. Making τ dependent
on Qdet instead of P would have the advantage that poten-
tial low-pass filtering or time lag between precipitation and
streamflow are taken care of by the hydrological model and
need not be considered anymore in the error model. We per-
formed some exploratory analysis in that direction, so far
with limited success.

5.4 Shape of the distribution DQ

Relaxing the assumption of marginal normality ofQobs given
Qdet successfully reduced some very heavy outliers that
strongly violated that assumption. However, this did not al-
ways translate to improved distributional assumptions in the
uniform space, where 4reli is calculated. We suspect that the
presence of strong outliers (large η) under the normal as-
sumption led to the strong right-skew of DQ when inferring
γ and df, which was less appropriate for the rest of the dis-
tribution of observed streamflows. In that case, a different
distributional shape for DQ would be more appropriate, e.g.
a mixture distribution, which allows for some heavy tails on
the upper side without skewing the central body too much
to the right. Testing other distributional shapes for DQ was

beyond the scope of this study, however. Note that heavy
outliers (i.e. η� 0) do not necessarily correspond to high
streamflow; in both catchments the largest η were observed
during medium to low flows (Fig. 6a, b), namely during small
peaks of observed streamflow that were not captured by the
model.

The ranking in performance of the two options to either
place the mean or the mode of DQ at Qdet (Eq. 9) was dif-
ferent for the two analysed catchments. The former led to
better results in the Murg catchment, while the latter seemed
preferable in the Maimai catchment. Ideally, we would like
to satisfy both conditions, but this is obviously not possible
when DQ is skewed.

Regarding the choice of the type of the distribution DQ,
recall that Q(t)∼DQ(Qdet(t), ψ). A distribution type with
positive support would be a desirable alternative to the
skewed Student’s t distribution, since it would ensure posi-
tive streamflow without the need to assign the probability of
Q< 0 to Q= 0. If, additionally, E[Q(t)] =Qdet(t), mass
conservation would be guaranteed (since the applied hydro-
logical model conserves mass). Some limited exploration in
this direction with a lognormal distribution lead to unsatis-
factory fits (results not shown). This might be due to the un-
realistically strong right-skew needed to account for cases
where Qobs(t)�Qdet when using a distribution with posi-
tive support and mean equal toQdet. Thus, in our experience,
the non-negativity of streamflow observations (for non-tidal
rivers) makes the conservation of mass difficult at very low
modelled streamflow if there is a considerable observation
error.
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6 Conclusions

We presented and evaluated a flexible framework for proba-
bilistic model formulations (i.e. likelihood functions) to de-
scribe the total uncertainty of the output of deterministic
hydrological models. This framework allows us to consider
heteroscedastic errors with non-stationary correlation, non-
equidistant observations and zero probability for negative
streamflow. It does so by allowing for arbitrary and explicit
marginal distributions for the observed streamflow at each
point in time. For experts, it is easier to parameterise these
marginal streamflow distributions than the distribution char-
acterising the autoregressive model or some non-intuitive
transformations like the Box–Cox transformation. The con-
sistent implementation of this framework was successfully
checked with a synthetic case study.

Using a simple deterministic hydrological bucket model
and two case study catchments, the flexible framework was
used to systematically test different error models on real-
world data. Those error models represented various assump-
tions about the statistical properties of the errors in terms
of autocorrelation, skewness and kurtosis. The assumptions
were found to have a profound effect on the quality of the
predictions. The key findings are as follows:

1. We confirmed that, as shown in previous work by var-
ious authors, accounting for autocorrelation with con-
ventional approaches (represented by model E2) can
lead to worse predictions than omitting autocorrelation
(model E1). For example, model E2 had errors in cu-
mulative streamflow of 76 % in the Murg catchment and
96 % in the Maimai catchment for hourly resolution in
the calibration period. With model E1, in comparison,
those errors were 1 % and 19 %, respectively. However,
this result is unsatisfactory as there is clearly visible au-
tocorrelation in the residuals that invalidates the model
E1.

2. We showed that the predictions of conventional ap-
proaches to deal with autocorrelation worsen signif-
icantly as the temporal resolution increases. For ex-
ample, the performance of model E2 in terms of the
Nash–Sutcliffe efficiency decreases from 0.76 to 0.09
in the calibration period when moving from daily to
hourly data resolution. In comparison, the performance
of model E1 remains relatively stable (Nash–Sutcliffe
efficiency decreases from 0.83 to 0.79).

3. Since rapid changes in a catchment’s storage change
its memory, errors in streamflow are expected to show
different correlations during precipitation events and
dry weather. Based on the hypothesis that this non-
stationarity increases when going from daily to hourly
resolution, neglecting non-stationarity of correlation is
the likely cause for finding 2.

4. Accounting for non-stationarity in autocorrelation sig-
nificantly alleviated the observed problems of finding 2.
In particular, allowing for the autocorrelation to be
lower during wet than during dry periods (models E3
and E4) led to more stable behaviour across time res-
olutions. For example, volume errors for model E3 in
the Murg catchment were not larger that 3 % for all
three investigated temporal resolutions. However, infer-
ring the characteristic correlation time during precipita-
tion events (model E3a) provided good results in only
one of the two investigated catchments. Keeping that
correlation fixed (model E3) could be seen as a prag-
matic option with stable performance.

5. If the problems mentioned in finding 1 can be avoided,
accounting for autocorrelation results in more realistic
characteristics of model output than omitting autocorre-
lation, which is confirming previous work. In particular,
signatures such as the flashiness index are much bet-
ter represented when including autocorrelation. For ex-
ample, for an observed value of the flashiness index of
0.13 in the Maimai catchment in the calibration period,
model E3a provided a value of 0.13, whereas model E1
resulted in a much larger value of 0.56.

6. Inferring the skewness and kurtosis of a skewed Stu-
dent’s t distribution can lead to better-fulfilled distribu-
tional assumptions about the errors. In our case study,
this expectation was partly fulfilled for daily data, but
not for data of higher frequency. For hourly data, for
example, more freedom with respect to the shape of the
distribution actually lead to less accurate representation
of the observed distribution.

These results contribute to a better characterisation of the
residual errors of deterministic hydrological models. How-
ever, some questions remain. It still has to be shown to what
degree the findings of this study are generalisable to a larger
and more diverse set of catchments and to different hydro-
logical models. A comparison of the presented approach to
existing frameworks based on different assumptions, like the
generalized likelihood framework, would yield further in-
sights. Furthermore, it is still unclear how the non-stationary
autocorrelation should ideally be parameterised. The cho-
sen approach, where we alternate between two values of the
autoregressive parameter based on whether there is precip-
itation or not, might lead to problems in catchments with
strong lags between precipitation and streamflow. In those
cases, defining the autoregressive parameter as a function of
modelled streamflow might be more suitable. Furthermore,
future studies could investigate different approaches to de-
scribe non-stationary correlation or distributions other than
the Gaussian and the skewed Student’s t. Overall, this study
confirms previously encountered difficulties in finding a pa-
rameterisation of an additive error term that adequately de-
scribes the effects of intrinsic stochasticity.

www.hydrol-earth-syst-sci.net/23/2147/2019/ Hydrol. Earth Syst. Sci., 23, 2147–2172, 2019



2164 L. Ammann et al.: A likelihood framework for deterministic hydrological models

Data availability. The data of the Maimai catchment can be ob-
tained from Jeffrey McDonnell (Associate Director at Global In-
stitute for Water Security and Professor at the School of Environ-
ment and Sustainability at the University of Saskatchewan, https:
//www.usask.ca/watershed/index.php, last access: 26 April 2019)
upon request. The meteorological data of the Murg catchment can
be obtained through MeteoSwiss, the Swiss Federal Office of Me-
teorology and Climatology. The streamflow data of the Murg catch-
ment are available at FOEN, the Swiss Federal Office for the Envi-
ronment.
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Appendix A: Derivation of the likelihood function

To derive the conditional distribution of Q(ti)|Q(ti−1) (and
construct the likelihood function by iteratively multiplying
the conditional probability densities), we have to propa-
gate the distribution η(ti)|η(ti−1) given by Eq. (4) to the
streamflow using the (inverse) transformation ηtrans given by
Eq. (2).

In simplified notation (which makes it easier to get the key
idea without getting in notational details), we get the follow-
ing:

f
(
Q(ti)|Q(ti−1)

)
= f

(
η(ti)|η(ti−1)

) dη(ti)
dQ(ti)

=

fOU
(
η(ti)|η(ti−1)

) fDQ(Q(ti))
fN(0, 1)

(
η(ti)

) , (A1)

where, in the final equation, fOU refers to the standard
Ornstein–Uhlenbeck process defined by Eq. (4) and the ratio
of the densities fDQ and fN(0, 1) results from the derivative
and inner derivative of the transformation given by Eq. (2)
(the derivative of cumulative distribution functions are the
corresponding probability densities).

With explicit notation of functions and arguments, we get

f
(
Q(ti) |Q(ti−1), θ ,ψ

)
= f

(
ηtrans

(
Q(ti), Qdet(ti , θ),ψ

)
|ηtrans

(
Q(ti−1), Qdet(ti−1, θ), ψ

))
dηtrans

dQ

(
Q(ti), Qdet(ti, θ), ψ

)
= f

N
(
ηtrans

(
Q(ti−1),Qdet(ti−1, θ),ψ

)
exp

(
−
ti−ti−1

τ

)
,

√
1−exp

(
−2

ti−ti−1
τ

))
(
ηtrans

(
Q(ti), Qdet(ti, θ), ψ

))
·

f
DQ

(
Qdet(ti , θ),ψ

)(Q(ti))
fN(0, 1)

(
ηtrans

(
Q(ti), Qdet(ti, θ), ψ

)) . (A2)

This corresponds to the first sub-equation of Eq. (7). The or-
der of the factors was changed in Eq. (7) to emphasise the
product of the marginal distribution fDQ with a modification
factor that tends to unity if ti − ti−1 becomes much larger
than τ . The other sub-equations in Eq. (7) consider truncat-
ing the streamflow distribution at zero and assigning a point
mass corresponding to the integral of the tail below zero to a
streamflow of zero.
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Appendix B: Complete results

Table B1. Murg: summary of the predictions in the calibration and the validation period made with error models E1–E4 for different temporal
resolutions of the hydrological data. Values are medians (and standard deviations) of the quality indices of the deterministic model output for
the maximum posterior parameters, as well as those of 500 streamflow realisations produced with the full posterior parameter distributions.
Recall that smaller values of 4reli and �spread indicate better results.

∗ Smoothing Perr(t) with a moving-average window of size 5 h before applying Eq. (11).˜Denotes the option where
mode(DQ)=Qdet. + Means that γ = 1.5 and df = 5 was fixed.
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Table B2. Maimai: summary of the predictions in the calibration and the validation period made with error models E1–E4 for different
temporal resolutions of the hydrological data. Values are medians (and standard deviation) of the quality indices of the deterministic model
output for the maximum posterior parameters, as well as those of 500 streamflow realisations produced with the full posterior parameter
distributions. Recall that smaller values of 4reli and �spread indicate better results.

∗: smoothing Perr(t) with a moving-average window of size 5 h before applying Eq. (11). :̃ denotes the option where
mode(DQ)=Qdet. †: Perr 6= P .
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Appendix C: Specific error models

C1 Normal distribution

DQ = N(µ, σ )

µ(Qdet)=Qdet σ(Qdet, a, b, c)= aQ0

(
Qdet

Q0

)c
+ bQ0,

ψ = (a, b, c) (C1)

Q0 is a chosen constant to make the fraction that is taken to
the power of c non-dimensional. A modification of the con-
stant Q0 leads to a re-definition of the parameter a. There-
fore, introducing the constant Q0 does not increase the num-
ber of parameters but it simplifies the units of the parameters
a and b that become the same as those of streamflow, whereas
c is non-dimensional. Empirical evidence has shown that the
normal distribution works astonishingly well. However, there
is still as small number of outliers that violate the distribu-
tional assumptions relatively strongly. For this reason, a dis-
tribution with heavier tails seems appropriate.

C2 Student’s t distribution

DQ = Tdf, σ (µ,σ, df)

µ(Qdet)=Qdet σTdf
= aQ0

(
Qdet

Q0

)c
+ bQ0,

ψ = (a, b, c) (C2)

The Student’s t distribution with degrees of freedom df > 2
is a straightforward candidate with heavier tails that reduces
to the normal distribution for df→∞. Note that we need
to rescale the original Student’s t distribution, T (df), to the
standard deviation σ , i.e. T (σ, df):

fTdf, σ
(x)=

1
σ

√
df

df− 2
fTdf

(
1
σ

√
df

df− 2
x

)
(C3)

and

FTdf, σ
(x)= FTdf

(
1
σ

√
df

df− 2
x

)
. (C4)

Note that the degrees of freedom, df, have to be larger than 2
to make the standard deviation finite and allow for rescaling
to a given standard deviation, σ .

C3 Skewed Student’s t distribution

DQ = skγ [Tdf, σ ](Qdet, σ,df, γ )

σskγ [Tdf, σ ]
= aQ0

(
Qdet

Q0

)c
+ bQ0, ψ = (a, b, c)

(C5)

To account for the often encountered case of skewed er-
rors of deterministic hydrological models, we transform the

Student’s t distribution with a generally applicable method
for skewing distributions (Fernandez and Steel, 1998). For
γ = 1, the skewed Student’s t distribution reduces to the con-
ventional Student’s t distribution. Note that the skewing hap-
pens after we rescaled the original Student’s t distribution
to the standard deviation σ . The skewing changes the distri-
butions’ standard deviation again, thus σ 6= σskγ [Tdf, σ ]

. The
density and cumulative distribution functions of the skewed
rescaled distribution, are as follows:

fskγ [Tdf, σ ]
(x)=



2

γ + 1
γ

fTdf, σ
(γ x)=

2

γ + 1
γ

1
σ

√
df

df− 2

fTdf

(
1
σ

√
df

df− 2
γ x

)
if x ≤ 0,

2

γ + 1
γ

fTdf, σ

(
x

γ

)
=

2

γ + 1
γ

1
σ

√
df

df− 2

fTdf

(
1
σ

√
df

df− 2
x

γ

)
if x ≥ 0.

(C6)

and

Fskγ [Tdf, σ ]
(x)=



2
1+ γ 2FTdf, σ

(γ x)

=
2

1+ γ 2 FTdf

(
1
σ

√
df

df− 2
γ x

)
if x ≤ 0,

1
1+ γ 2 +

2

1+ 1
γ 2

(
FTdf, σ

(
x

γ

)
−

1
2

)
=

1
1+ γ 2 +

2

1+ 1
γ 2

(
FTdf

(
1
σ

√
df

df− 2
x

γ

)
−

1
2

)
if x ≥ 0.

(C7)

And the mean and the variance of the skewed rescaled dis-
tribution are as follows:

µskγ [Tdf, σ ]
= 2σ

γ 2
−

1
γ 2

γ +
1
γ

√
df(df− 2)
df− 1

0
(
df+1

2

)
√
π df 0

(
df
2

) (C8)

and:

σ 2
skγ [Tdf, σ ]

=

γ 3
+

1
γ 3

γ + 1
γ

σ 2
−µ2

skγ [Tdf,σ ]

=

γ 3
+

1
γ 3

γ + 1
γ

− 4

γ 2
−

1
γ 2

γ + 1
γ

2
df(df− 2)
(df− 1)2

02
(
df+1

2

)
π df 02

(
df
2

)
σ 2. (C9)

To shift the distribution we can evaluate

fskγ [Tdf, σ ]
(x−Qdet), (C10a)
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fskγ [Tdf, σ ]
(x+medskγ [Tdf, σ ]

−Qdet), (C10b)

fskγ [Tdf, σ ]
(x+µskγ [Tdf,σ ]

−Qdet). (C10c)

In these cases, the mode, the median and the mean are located
at x0, respectively.
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Appendix D: Notation

P Precipitation used as an input to the hydrological model.
Perr Precipitation used as an input to the error model where needed (not to the hydrological model).
Qdet(t, θ) Deterministic hydrological model providing streamflow as a function of time, t , and hydrological

model parameters θ .
Q̂det Deterministic hydrological model output corresponding to the parameter vector θ̂ with the maximum

posterior density.
Qobs(t) Observed streamflow at time t .
Qtrans(η) Function transforming η into streamflow (used to sample from the probabilistic model consisting of

the hydrological model and the error model).
DQ Distribution of observed streamflow at a certain point in time, given the output of the deterministic

hydrological model at the same point in time.
θ Parameters of the deterministic hydrological model, Qdet.
ψ Parameters of the error model, including heteroscedasticity and correlation parameters.
η Autocorrelated, stochastic process with standard normal asymptotic distribution that serves to de-

scribe the autocorrelation of the errors of the deterministic hydrological model.
τ Characteristic correlation time of the process η.
τmin Minimum value of τ in the cases where τ is a function of Perr and therefore of time.
τmax Maximum value of τ in the cases where τ is a function of Perr and therefore of time.
FX Cumulative distribution function of the distribution X.
fX Probability density function of the distribution X.
E [X] Expected value of the random variable X.
N(µ, σ ) Normal distribution with mean µ and standard deviation σ .
T(df, σ ) Rescaled Student’s t distribution with df degrees of freedom and standard deviation σ .
SKT(µ, σ, df) Shifted and rescaled skewed Student’s t distribution with mean µ, standard deviation σ and df de-

grees of freedom.
IF The median of the flashiness indices of all the individual model realisations constituting a sample of

model outputs.
ÎF, det The flashiness index of Q̂det.
IF, obs The flashiness index of Qobs.
EN The median of the Nash–Sutcliffe efficiencies (Nash and Sutcliffe, 1970) of all the individual model

realisations constituting a sample of model outputs.
ÊN, det The Nash–Sutcliffe efficiency (Nash and Sutcliffe, 1970) of Q̂det.
1Q The median of the relative errors in cumulative streamflow of all the individual model realisations

constituting a sample of model outputs.
1̂Q, det The relative error in cumulative streamflow of Q̂det.
4reli Reliability metric; the complement of the reliability metric defined in McInerney et al. (2017).
�spread Relative spread metric; equal to the precision metric defined in McInerney et al. (2017).
OU process Ornstein–Uhlenbeck process (Uhlenbeck and Ornstein, 1930).
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