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24 Supplementary Information 

25  

26 S1. Climatological context: El Niño and other drivers of climate over EASE/SA, the 2015-16 

27 El Niño event and climate anomalies over SA 

28  

29 The climatological mean austral summer wet season of October-April rainfall (Fig. S1(a)) 

30 shows a maximum extending Northwest-Southeast from Democratic Republic of Congo 

31 (DRC)/Angola in the west, across Zambia, Malawi to northern Mozambique in the East. The 

32 leading mode of interannual variability in rainfall and SPEI-7, is a north/south dipole pattern 
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of opposing anomalies across EASE and SA, with a divide at ~11oS, the approximate mean 33 

latitude of rainfall maximum and is strongly related to ENSO. This structure clearly evidenced 34 

by the leading Empirical Orthogonal Function (EOF) of SPEI-7 (Fig. S1(b)) which explains 35 

21.5% of total variance. The time coefficients correlate strongly with tropical SSTs (Fig. S1(d)) 36 

highly characteristic of the ENSO SST anomalies in both the Pacific and Indian Oceans, 37 

notably the SW/NE positive/negative correlation dipole across the southwest/equatorial Indian 38 

Ocean (e.g. Lindesay, 1988; Reason et al., 2000, Lazenby et al., 2016). As such, for Africa 39 

South of the equator the leading mode of climate variability is strongly related to ENSO, with 40 

wet (dry) anomalies during El Niño (la Niña) events across EASE (SA). The EOF pattern is 41 

largely insensitive to the length of choice of months in the wet season. This north-south dipole 42 

response across EASE/SA to ENSO has been well documented previously (Ropelewski and 43 

Halpert, 1987; Janowiak, 1988; Goddard and Graham, 1999; Manatsa et al., 2011), although 44 

the physical mechanisms of teleconnection remain elusive (see Blamey et al. 2018 for a 45 

summary).  46 

 47 

The climate anomaly pattern during 2015-16 was highly characteristic of this mode (compare 48 

Figs. 1(a) and S1b). Very strong SST anomalies over the Pacific and elsewhere in the tropics 49 

during 2015-16 (Fig. S1(d)) were associated with a strong north/south dipole in rainfall with 50 

drought in SA (Fig. 1(a)). The socio-economic impacts were pronounced, with much of SA 51 

affected by drought, leading to a regional drought disaster declaration by the Southern Africa 52 

Development Community (SADC). By September 2016, six SADC countries had declared 53 

‘national drought emergencies’ (Botswana, Namibia Lesotho, Malawi, Swaziland and 54 

Zimbabwe) with drought emergency declared for seven of the South Africa’s nine provinces, 55 

and a temporary red alert also declared for central and Southern provinces of Mozambique 56 

(SADC 2016a). The drought resulted in an extensive loss of crops and livestock, an increase in 57 

food prices, driving an estimated 39 million people into deeper food insecurity (SADC 2016a; 58 

2016b; Archer et al., 2017). Surface water shortages further affected electricity generation and 59 

domestic supply, affecting economic activity and human health (SADC, 2016a; Siderius et al. 60 

2018). 61 

 62 

The 2015-16 El Niño was without doubt one of the strongest on record, and by some 63 

indicators was actually the strongest. There are many measures of ENSO strength (see 64 
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e.g. https://www.esrl.noaa.gov/psd/enso/dashboard.html), which provide a mixed picture on 65 

the relative strength of the major events. 2015-16 appears strongest based on the Niño 3.4, 66 

Niño 4 and Bivariate El Niño – Southern Oscillation index, whilst 1997-98 is the strongest 67 

based on the (East pacific Niño 3 and 1+2 SST indices, east Pacific heat content and the 68 

Multivariate El Niño index. However, 2015-16 was certainly more persistent that 1997-98 69 

with many indices turning positive at some time in 2014 related to the El Nino event that was 70 

predicted in 2014 but did not develop fully until 2015-16 (Levine and McPhaden, 2016). 71 

 72 

However, there is substantial diversity in the character of El Niño events, in terms of both (i) 73 

the structure and magnitude of anomalies in the Pacific sector. For example, 2015-16 and 1997-74 

98 differed in that the former was stronger in the Central Pacific sector (Niño3.4 and Niño SST 75 

region) and the latter in the East Pacific (Niño 1+2 and Niño 3 SST regions) (ii) the state and 76 

evolution of other regional drivers of climate variability which interact with ENSO 77 

teleconnection processes, such that the remote impacts over Africa can be quite variable (e.g. 78 

Ratnam et al., 2014; Preethi et al., 2015, Hoell et al., 2017; Blamey et al., 2018). Across 79 

Southern Africa (SA) multiple regional structures of ocean and atmospheric variability 80 

modulate the impacts of ENSO including the South Indian Ocean dipole (Reason, 2001) as 81 

well as the Angola low and Botswana High atmospheric features (Blamey et al., 2018). 82 

Furthermore, intraseasonal variability associated with the Madden Julian Oscillation, with 30-83 

60 day timescales can also modulate interannual drivers of variability, particularly over East 84 

Africa (Berhane and Zaitchik, 2014).  85 

 86 

Over East Africa rainfall is more strongly related to the state of the Indian Ocean than to ENSO. 87 

The Indian Ocean Zonal mode (IOZM), an east-west pattern of atmosphere-ocean variability 88 

across the Equatorial Indian ocean, strongly modulates the regional Walker circulation and 89 

hence rainfall over East Africa. During positive IOZM events warmer ocean temperatures in 90 

the equatorial west Indian Ocean and cooler temperatures in the east lead to enhanced rainfall 91 

over EASE, with negative IOZM leading to a reduction in rainfall (see Nicholson 2017 for a 92 

review and references therein). The impact of ENSO on EASE is therefore intimately 93 

connected to the state of the IOZM (Black et al., 2003, Manatsa et al., 2011). During 2015-16 94 

the IOZM was only weakly positive (see SST anomalies in Fig. S1(d)) and the seasonal de-95 

trended IOZM index (Saji et al., 1999) in 2015-16 was ranked 16th out of 150 years. As a result, 96 
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the mean equatorial zonal Indian Ocean Walker cell with ascent (descent) in the east at ~100oE 97 

(west at ~50oE) of the basin is only weakly perturbed. The zonal cross section over the East 98 

Africa-Indian Ocean sector indicates that enhanced large-scale uplift is limited to a quite 99 

restricted region of EASE from ~33o-40oE. In this way, the weak reorganisation of the Indian 100 

ocean Walker circulation led to rather moderate rainfall anomalies over EASE (Section 3.1). 101 

 102 

S2. SPEI-7 Intensity-Area-Frequency (IAF) curves and associated return period estimates, and 103 

attribution of anthropogenic influence on the SA drought 2015-16 104 

 105 

Droughts are spatially extensive but variable features. We represent the spatial extent using 106 

IAF curves which show the intensity of SPEI-7 water balance anomalies across all spatial scales 107 

within a study domain. IAF curves are independent of the precise spatial patterns of SPEI-7 108 

anomalies, and as such allow us to compare droughts between individual years, and to calculate 109 

the return periods for drought events across scales. This direct comparability of SPEI-7 IAF 110 

curves is valuable since no two drought events have exactly the same spatial pattern. The IAF 111 

curves are derived using the method of Mishra and Cherkauer (2010) separately over the two 112 

study domains of EASE and SA, by calculating the mean SPEI-7 value of grid cells lying within 113 

various areal extent intervals: The areas covered by the lowest (for SA) or highest (for EASE) 114 

5th, 10th, 20th…100th areal percentiles of SPEI grid cell values within the domain area i.e. 115 

when all grid cells are ranked. This allows, for each season, the mean SPEI-7 IAF curve to be 116 

plotted (see Fig. 3).  117 

 118 

We then estimate the return period of the 2015-16 El Niño event by comparing the observed 119 

SPEI-7 IAF curve of 2015-16 with IAF curves representing various ‘benchmark’ return 120 

periods (Fig. 3) and finding the closest match, by least squared error. Estimating these 121 

benchmark return periods of drought events is challenging given the relatively short 122 

observational record for what are relatively long duration events, and indeed because of non-123 

stationarity in climate records under a changing climate. We address both these challenges in 124 

our approach. To counter the problem of insufficient sampling of the extreme tail of the 125 

distribution, we increase our sample of climate events beyond the observed record using large 126 

ensembles of climate model simulations from the HAPPI experiment (Mitchell et al., 2017). 127 

HAPPI is designed specifically to quantify climate extremes, through the use of relatively 128 
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high model resolution and large initial-condition ensembles. We use precipitation data from 129 

four atmospheric models, namely HadGEM3, CAM5, MIROC5 and NorESM, (degraded to 130 

common resolution of 1o) each with 10 ensemble members, run over the period ~1950s-131 

2010s, forced with observed SSTs and ‘historical’ greenhouse gases and aerosol radiative 132 

forcings. These simulations provide about 2400 years of simulated data, with greater 133 

statistical definition of the extreme tail of the distribution required for the extreme events, 134 

notably the 2015-16 drought over SA which is the strongest on record. As with the 135 

observations we derive the mean SPEI-7 for each areal extent interval (5th, 10th, etc. spatial 136 

percentiles over the domain), for each of the ~2400 model years. Estimation of return periods 137 

is based on the Extreme Value Theory (EVT), widely used for the description of rare climate 138 

events in the extreme tail of the parameter distribution.  The Generalized Extreme Value 139 

distribution (GEV) is fitted to the distribution of only the extreme SPEI-7 values, for each 140 

areal extent separately (using maximum likelihood estimation and a chi-squared goodness-of-141 

fit test, Coles et al., 2001). This distribution of extremes (‘block maxima’) is composed of the 142 

most intense SPEI-7 values (for drought over the SA domain SPEI-7 is multiplied by -1) 143 

within non-overlapping ‘blocks’ of 30 years, a standard climatological period. Then, return 144 

periods are estimated by inverting the resulting GEV cumulative probability distribution for a 145 

range of periods from 30-300 years, for each areal extent separately, providing IAF curves for 146 

benchmark return periods (see Fig. 3). Whilst our approach is similar to previous drought 147 

analyses (e.g. Robeson, 2015) we recognise a number of caveats. First, the estimated return 148 

periods are sensitive to the arbitrary choice of block size and we estimate the uncertainty 149 

associated with this using periods of 25-60 years. Second, whilst the large ensembles 150 

provided by the HAPPI experiment are designed specifically for analysis of extremes they 151 

necessarily provide only a partial representation of the climate variability ‘space’.   152 

 153 

For estimation of return periods shorten than the duration of one ‘block’ (30 years), we 154 

follow Mishra and Cherkauer (2010) and Philip et al. (2018) in fitting a distribution to the 155 

historical record of SPEI-7 data. For each areal extent interval (5th, 10th, etc. spatial 156 

percentiles) we fit a GEV distribution to the 116 historical SPEI-7 data points. We then invert 157 

the cumulative distribution to derive return periods for every spatial percentile, giving a set of 158 

IAF benchmark return period curves.  Finally, we conduct all the above IAF curve return 159 

period analysis using SPEI-7 derived with each of the three PET equations and provide the 160 
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average return period estimates and the associated range to represent this component of 161 

uncertainty. 162 

 163 

It is likely that anthropogenic climate change is, and will continue to, affect large-scale 164 

hydrology. As such, climate risks are changing and non-stationarity in climate records 165 

complicates the interpretation of return periods. However, the IPCC recent assessment report 166 

concludes that there is only low confidence in detection and attribution of observed changes in 167 

drought extremes globally (Bindoff et al., 2013), largely due to uncertainties in distinguishing 168 

relatively small trends in precipitation from decadal variability, especially given limitations in 169 

precipitation data. Nevertheless, attribution of recent temperature rises is robust even down to 170 

the regional/continental scale (Bindoff et al., 2013). In recent probabilistic event attribution 171 

analyses of tropical drought events the contribution of anthropogenic temperature effects is 172 

discernible, in contrast to that of precipitation (Marthews et al., 2015). As such, the full causal 173 

chain from climate anomaly through water balance to agricultural drought is complex and 174 

typically not well represented in models such that attribution of drought remains extremely 175 

challenging. Therefore, here we estimate the effects purely of anthropogenic temperature trends 176 

on drought risk over SA through a simplified attribution experiment. The SPEI-7 IAF return 177 

period analysis above is repeated, but in deriving the benchmark return period curves the 178 

temperature data, used in calculating PET, has the signal of anthropogenic climate change 179 

removed. Specifically, PET is estimated using the HAPPI multi-ensemble mean temperature 180 

from a counterfactual world without human influence on radiative forcing: the ‘natural’ runs, 181 

in which only the natural forcings (solar variability and volcanic aerosols) are provided to the 182 

models. To ensure space-time consistency in all the climate variables whilst changing the 183 

temperature data, we used the 30-year smoothed temperature from the ‘natural’ model runs to 184 

which is added the anomalies of temperature from the ‘historical’ run with respect to a 30-year 185 

running mean. Not that we derive the SPEI-7 over both datasets merged together so that the 186 

effect of the temperature perturbation between the ‘natural’ and ‘historical’ runs is reflected in 187 

the resulting SPEI-7 values, given that the index is standardised across the timeseries. The 188 

benchmark return period IAF curves are then derived from the SPEI-7 values for each dataset 189 

separately. Thus, comparing the estimated SPEI-7 IAF return periods from the climate with 190 

‘historical’ temperature with those from a counterfactual climate with the ‘natural’ only 191 

temperature, provides an indication of the influence of the anthropogenic temperature trend 192 
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effects on drought risk over SA. We note that the SPEI is quite temperature dependent through 193 

PET calculation such that other drought indices may yield different sensitivity to warming. 194 

 195 

We must emphasise that this analysis deliberately considers only the effects of the slowly 196 

evolving anthropogenic influence on temperature. We do not consider anthropogenic 197 

influences on rainfall and the other determinants of PET i.e. wind speed, humidity, radiation 198 

budget, no any changes to variability in temperature or any other variables. Further, the 199 

difference in model estimated temperatures between the ‘natural’ and ‘historical’ run will 200 

include the effects not just of anthropogenic radiative forcing but also the surface energy budget 201 

which itself is affected by precipitation and other near surface variables whose response to 202 

radiative forcing we do not consider. However, in utilising a large model ensemble to define 203 

the statistics of extreme events, we retain some features of the probabilistic event attribution 204 

method (e.g. Allen et al., 2003, Stott et al., 2014) but focus solely on that aspect of climate 205 

change (near surface temperatures) for which we have greatest confidence in the ability of 206 

models to represent with credibility. 207 

 208 

S3. Groundwater storage estimates from GRACE and LSMs 209 

 210 

To address uncertainty associated with different GRACE processing strategies to resolve 211 

ΔTWS (Eq. 1) we apply an ensemble mean of three GRACE TWS. Namely, the CSR land 212 

(version RL05.DSTvSCS1409, Swenson and Wahr, 2006; Landerer and Swenson ,2012) and 213 

JPL Global Mascon (version RL05M_1.MSCNv01, Watkins et al., 2015; Wiese et al., 2015) 214 

solutions, from NASA’s GRCTellus data dissemination site (http://grace.jpl.nasa.gov/data), 215 

and a third GRGS GRACE solution (CNES/GRGS release RL03-v1) (Biancale et al., 2006) 216 

from the French Government space agency, Centre National D'études Spatiales (CNES).  217 

 218 

GRCTellus CSR land solution (version RL05.DSTvSCS1409) is post-processed from spherical 219 

harmonics released by the Centre for Space Research (CSR) at the University of Texas at 220 

Austin. GRCTellus gridded datasets are available at a monthly time step and a spatial resolution 221 

of 1° × 1° (~111 km at equator) though the actual spatial resolution of GRACE footprint is 222 

~450 km or ~200,000 km2 (Scanlon et al., 2012). To amplify TWS signals we apply the 223 

dimensionless scaling factors provided as 1° × 1° bins that are derived from minimising 224 
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differences between TWS estimated from GRACE and the hydrological fields from the 225 

Community Land Model (CLM4.0) (Landerer and Swenson, 2012).  JPL-Mascons (version 226 

RL05M_1.MSCNv01) data processing involves the same glacial isostatic adjustment 227 

correction but applies no spatial filtering as JPL-RL05M directly relates inter-satellite range-228 

rate data to mass concentration blocks (mascons) to estimate monthly gravity fields in terms of 229 

equal area 3° × 3° mass concentration functions in order to minimise measurement errors. 230 

Gridded mascon fields are provided at a spatial sampling of 0.5° in both latitude and longitude 231 

(~56 km at the equator). Similar to GRCTellus CSR product, dimensionless scaling factors are 232 

provided as 0.5° × 0.5° bins (Shamsudduha et al., 2017) that also derive from the Community 233 

Land Model (CLM4.0) (Wiese et al., 2016). The scaling factors are multiplicative coefficients 234 

that minimize the difference between the smoothed and unfiltered monthly ΔTWS variations 235 

from the CLM4.0 hydrology model (Wiese et al., 2016).  GRGS monthly GRACE products 236 

(version RL03-v1) are processed and made publicly available (http://grgs.obs-mip.fr/grace) by 237 

CNES (Shamsudduha et al., 2017). Further details on the Earth’s mean gravity-field models 238 

can be found on the CNES official website of GRGS/LAGEOS (http://grgs.obs-mip.fr/grace/). 239 

GRACE ΔTWS time-series data have some missing records as the satellites are switched off 240 

for conserving battery life (Shamsudduha et al., 2017); these missing records are linearly 241 

interpolated (Shamsudduha et al., 2012).  242 

 243 

To derive ΔGWS from GRACE ΔTWS (eq. 1) we use simulated soil moisture to represent 244 

ΔSMS and surface runoff, as a proxy for ΔSWS (Mishra et al., 2016), from LSMs within 245 

NASA’s Global Land Data Assimilation System (GLDAS). We apply monthly ΔSMS and 246 

surface runoff data at a spatial resolution of 1° × 1° from 4 GLDAS LSMs: The Community 247 

Land Model (CLM, version 2) (Dai et al., 2003), NOAH (version 2.7.1) (Ek et al., 2003), the 248 

Variable Infiltration Capacity (VIC) model (version 1.0) (Liang et al., 2003), and MOSAIC 249 

Mosaic (version 1.0) (Koster and Suarez, 1992). The respective total depths of modelled soil 250 

profiles are 3.4 m, 2.0 m, and 1.9 m and 3.5 m in CLM (10 vertical layers), NOAH (4 vertical 251 

layers), and VIC (3 vertical layers), and Mosaic (3 vertical layers) (Rodell et al., 2004). In the 252 

absence of in situ ΔSMS and ΔSWS data in the study areas, we apply an ensemble mean of the 253 

4 LSMs-derived ΔSMS and ΔSWS data in order to disaggregate GRACE ΔTWS signals across 254 

our study regions, for the period August 2002 to July 2016, similar to the approach applied for 255 

other locations by Shamsudduha et al. (2012, 2017). To help interpretation of these mean 256 

http://grgs.obs-mip.fr/grace/
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ΔGWS signals we also present the total uncertainty in estimates of ΔGWS which result from 257 

the uncertainty in estimates of ΔTWS, ΔSMS and ΔSWS (blue shading in Fig. 5(c)). The 258 

uncertainty in these individual water balance components is shown in Fig. S2 i.e. the range in 259 

estimated GRACE ΔTWS across the three retrieval estimates, and the ranges in estimates 260 

ΔSMS and ΔSWS across the four LSMs. Overall, the total uncertainty in ΔGWS can be 261 

substantial and receives roughly equal contribution from uncertainty in ΔTWS and ΔSMS with 262 

uncertainty in ΔSWS important only occasionally. There is some indication that during the 263 

periods of greatest ΔGWS uncertainty, the ΔTWS uncertainty is most important e.g. 2009-10 264 

and 2015-16 at Limpopo. To understand this uncertainty in GRACE ΔTWS further we show 265 

the time series of the three individual ΔTWS retrievals of CSR, JPL-Mascons and GRGS (Fig. 266 

S3), which we examine in more detail in Section 3.2.2.  For further understanding of the 267 

uncertainty in the estimates water storage from LSMs with respect to GRACE readers are 268 

referred to Scanlon et al. (2018).  269 
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 270 

Fig. S1. (a) Climatological precipitation for the October-April season for the period of 1901-271 

2016 (mm month-1). Boxes in Fig. S1(a) show the EASE (small box) and SA (big box) domains 272 

used in the IAF analysis (see Section 2.1). The blue and red filled circles denote the piezometer 273 

observation locations at Makutapora, Tanzania and Limpopo, South Africa, respectively. (b) 274 

Leading mode of interannual October-April variability calculated using the empirical 275 

orthogonal function (EOF) analysis of de-trended rainfall of GPCC. (c) Correlation between 276 
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coefficients of EOF1 (Fig. S1(b)) and global SST (October-April mean) 1901-2016. (d) SST 277 

anomalies (K) October-April 2015-16, with respect to 1980-2010 reference period 278 
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 333 

Fig. S2: Time series of monthly estimates of anomalies in the individual components of water 334 

balance (lines) and the associated uncertainty range (shaded). From top to bottom TWS from 335 

GRACE; SMS and SWS both from LSMs; the residual GWS; observed GPCC rainfall, (all in 336 

cm) at (a) Limpopo, and (b) Makutapora.  337 
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 363 
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 368 

 369 

 370 

Fig. S3: (a) Time series of estimates of monthly ∆TWS anomaly (cm) at Limpopo from August 371 

2002 to July 2016 (averaged over an area approximately ~120 000 km2) derived from the three 372 

individual GRACE retrievals of  CSR (red), JPL-Mascons (green) and GRGS (blue). Monthly 373 

rainfall (from GPCP product, cm) shown as bars. (b) As (a) but for Makutapora.  374 

(a) 

(b) 
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