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Abstract. Simulations of regional or global climate mod-
els are often used for climate change impact assessment. To
eliminate systematic errors, which are inherent to all climate
model simulations, a number of post-processing (statistical
downscaling) methods have been proposed recently. In ad-
dition to basic statistical properties of simulated variables,
some of these methods also consider a dependence structure
between or within variables. In the present paper we assess
the changes in cross- and auto-correlation structures of daily
precipitation in six regional climate model simulations. In
addition the effect of outliers is explored making a distinction
between ordinary outliers (i.e. values exceptionally small or
large) and dependence outliers (values deviating from de-
pendence structures). It is demonstrated that correlation es-
timates can be strongly influenced by a few outliers even in
large datasets. In turn, any statistical downscaling method re-
lying on sample correlation can therefore provide misleading
results. An exploratory procedure is proposed to detect the
dependence outliers in multivariate data and to quantify their
impact on correlation structures.

1 Introduction

The investigation of climate change impact on the hydrolog-
ical cycle is one of the crucial topics in the field of water
resources management and planning (Mehrotra and Sharma,
2015). Simulations of regional and global climate models
(RCMs and GCMs) represent a fundamental data source for

climate change impact studies. It is well known that raw cli-
mate model outputs cannot be used directly in impact studies
due to inherent biases which are found even for basic statis-
tical properties (Chen et al., 2015). The bias is caused pri-
marily by a simplified representation of important physical
processes (Solomon et al., 2007), which often results from
low spatial resolution of the RCMs.

Therefore, many methods have been developed to post-
process the climate model outputs in order to move their
statistical indicators closer to observations. An overview of
these methods is presented, e.g. by Maraun et al. (2010). Pre-
cipitation is a key input into hydrological climate change im-
pact studies and at the same time it belongs to meteorological
variables that are most affected by bias. The comparison of
correction methods commonly used for precipitation data is
provided by Teutschbein and Seibert (2012). Nevertheless,
these standard methods correct only the bias in statistical in-
dicators (mean, variance, distribution function) of individual
variables. The bias in persistence parameters of time series
as well as the bias in cross-dependence structures between
variables is often neglected. However, the dependence struc-
tures of the meteorological variables affect the hydrological
response of a catchment (Bárdossy and Pegram, 2012), and
thus their inadequate representation in the data can impair
hydrological impact studies (Teng et al., 2015; Hanel et al.,
2017).

In recent years several studies attempted to overcome
this limitation. Hoffmann and Rath (2012) and Piani and
Haerter (2012) focused on the relationship between precip-
itation and temperature data from a single location. Bár-
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dossy and Pegram (2012) developed two procedures cor-
recting a spatial correlation structure of RCM precipitation.
Mao et al. (2015) proposed a stochastic multivariate pro-
cedure based on copulas. Johnson and Sharma (2012) de-
veloped a procedure correcting common statistics (mean,
variance) together with lag-1 autocorrelation in multiple
timescales. The procedure was later extended with a recur-
sive approach by Mehrotra and Sharma (2015) and subse-
quently with a non-parametric quantile mapping by Mehro-
tra and Sharma (2016) to correct the bias in auto- and cross-
dependence structures across multiple timescales. An ap-
proach based on the principal components was presented by
Hnilica et al. (2017), correcting bias in cross-covariance and
cross-correlation structures.

This study is focused on a temporal stability of depen-
dence structures. We evaluate the temporal changes in cross-
and auto-correlation structures in multivariate precipitation
data simulated by an ensemble of climate models. We fur-
ther investigate whether the magnitude of the changes con-
siderably exceeds the natural variability. Attention is finally
paid to the effect of outlying values, which can significantly
affect the correlations and can thus lead to artefacts in bias-
corrected time series.

The paper is organised as follows. In Sect. 2 the data used
in this study are presented and Sect. 3 describes the method-
ology. In Sect. 4 the results are reported and in Sect. 5 their
consequences for climate changes impact studies are dis-
cussed.

2 Data and study area

The daily precipitation data from six EURO-CORDEX
(Giorgi et al., 2009) regional climate models were con-
sidered. The ensemble of models was composed of two
RCMs (CCLM,RCA) driven by three GCMs (EC_EARTH,
HadGEM2-ES and MPI-ESM-LR); see Table 1 for the
overview. The simulations with 0.11 ◦ spatial resolution
forced by the representative concentration pathway 8.5
(RCP8.5) were used. The data from 12 model grid boxes lo-
cated in the western part of the Czech Republic were anal-
ysed; see Fig. 1 for the details of the area. The control period
spans the years from 1971 to 2000, the future period the years
from 2051 to 2080.

3 Methods

The wet and dry periods were treated separately in this study.
The cross-correlations were calculated in two stages. Firstly
the binary cross-correlations were calculated to assess the
correspondence of wet and dry periods, using the time series
with the values replaced by 0 (dry day) or by 1 (wet day).
In the second stage the cross-correlations of overlapping wet
periods were calculated. The auto correlations were analysed
through the lag-1 auto-correlation coefficient, where only the

Table 1. Global and regional climate models used in the present
study.

GCM RCM ID

EC-EARTH CCLM-4-8-17 1A
RCA4 1B

HadGEM2-ES CCLM-4-8-17 2A
RCA4 2B

MPI-ESM-LR CCLM-4-8-17 3A
RCA4 3B

Figure 1. Location of the considered grid boxes in the Czech Re-
public.

non-zero pairs of neighbouring values xi and xi+1 were con-
sidered.

The individual grid boxes were labelled by numbers 1–12,
as shown by labels in Fig. 1. The cross-correlation between
the grid boxes i and j is denoted as ri, j . The symbol R de-
notes the correlation matrix (i.e. the square matrix with el-
ements ri, j ). The lag-1 auto-correlation from grid box i is
denoted as r1

i . If appropriate, the subscripts denoting the grid
boxes are omitted for clarity.

The changes in correlation coefficients were calculated as

1r = rF− rC, (1)

where 1r denotes the change in r (cross- or auto-
correlation), and subscripts F and C denote the future and
control periods, respectively. Note that the first-order mo-
ments needed for calculation of rF and rC are calculated inde-
pendently for the future and control periods. Another option,
leading potentially to larger changes, is to consider a fixed
reference, e.g. the mean for the control period. However, the
changes in the mean are relatively small; the average change
is 0.14 mm across all considered simulations, which repre-
sents approximately 5 % of the value from the control pe-
riod. Therefore the differences in the calculated1r and their
significance are not expected to be large.
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Figure 2. The numbering of individual pairs of grid boxes. The fig-
ure depicts the correlation matrix, the orders of rows and columns
correspond to the grid box labels from Fig. 1. The sub-diagonal part
of the (symmetrical) matrix was used for the numbering of individ-
ual pairs of grid boxes – the numbers inside of the matrix represent
the identifiers used in Fig. 4.

The sampling variability of individual cross- and auto-
correlation was investigated to assess the statistical signifi-
cance of their changes. The confidence intervals were derived
using the block bootstrap approach (Davison and Hinkley,
1997). Specifically, the confidence interval around the corre-
lation ri, j was obtained as follows:

1. One-year blocks from the time series for basins i and j
were randomly selected with replacement (30 times to
obtain the same sample size as the original data). Sub-
sequently the correlation of the 30 year sample was cal-
culated.

2. Step 1 was repeated 1000 times.

3. The 95 % confidence interval was derived as a range be-
tween the 0.025 and 0.975 quantiles of the resampled
correlations.

The block approach was chosen to preserve seasonal vari-
ability in the bootstrap samples. For the presentation of con-
fidence intervals, the unique identifier (ID) was assigned to
each pair of grid boxes, and the numbering was done accord-
ing to rows of correlation matrix; the scheme is depicted in
Fig. 2. The confidence intervals for auto-correlation were de-
rived in the same way using 1-year blocks of time series. Due
to random selection of the blocks, the beginning part of the
blocks is independent on the end of the previous block. To
minimise bias introduced by block resampling, data that are
potentially influenced (joints of the adjacent blocks) were not
considered for the calculation of the serial correlation.

The confidence intervals around the correlations from con-
trol and future period were used to visually assess their over-
lap. In addition, the real bootstrap-based tests of significance
of individual changes were performed. In each of the thou-
sand steps the correlation of resampled control data was sub-
tracted from the correlation of resampled future data. The
change was found to be insignificant if the confidence inter-
val of these differences contained zero.

4 Results

4.1 Changes in correlation structures

In the case of 12-dimensional data, the change in the cross-
correlation structure consists of changes in ri, j coefficients
for 66 pairs of grid boxes (corresponding to the sub-diagonal
part of the correlation matrix). For clarity, these 66 changes
are presented in the form of box plots for individual models.

Figure 3a and b present the changes in the binary cross-
correlations and in the cross-correlations of wet periods, re-
spectively. As seen from the figures, the binary correlations
are relatively stable; their changes range approximately from
−0.02 to 0.03. Therefore, the correspondence of wet and dry
periods between individual grid boxes remains similar in the
control and future periods. The correlations of wet periods
change more substantially; the changes range from −0.16
to 0.05. Nevertheless, there are strong differences between
individual models; the models 1A and 2A reach noticeably
higher changes than other models. In addition, the changes in
fractions of dry days were calculated. In general, the fraction
of zeroes fluctuates around 0.25 in time series across all mod-
els and it was found that it slightly increases in most cases.
The difference can be found between the regional models A
and B. While in the simulations of the model A the fractions
of zeroes increase on average by 0.05; for the model B the
average increment is only 0.009.

Figure 3c presents the changes in lag-1 auto-correlations;
the box plots for individual models are compiled from
12 changes in time series from individual grid boxes. The
changes range from −0.1 to 0.025; the widest range of
changes is reached by the model 2A. The maximal relative
changes in cross-correlation reach up to 18 % of the value
from the control period, and in the case of auto-correlation
it is almost 45 %. This is because the auto-correlations are
in general markedly lower than cross-correlations (the mean
cross-correlation of individual models exceeds 0.8; the mean
lag-1 auto-correlation is around 0.23). In addition, it is worth
noting that the reported changes do not completely charac-
terise the changes in the auto-dependence structure. Substan-
tial changes in dependence at longer temporal scales have
been reported in several studies (Mehrotra and Sharma, 2015,
2016; Hanel et al., 2017).

The significance of the changes in wet-period correlations
was assessed using a block bootstrap. Figure 4 presents the
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Figure 3. Overview of the changes in correlation structures for all models: (a) the changes in binary cross-correlations, (b) the changes in
cross-correlations of overlapping wet periods, (c) the changes in lag-1 auto-correlations.

95 % confidence intervals of individual cross-correlations for
all models. The blue dividers identify the successive rows be-
low the diagonal in the correlation matrix. In general, the ma-
jority of changes show little significance; the intervals from
control and future periods overlap considerably (except mod-
els 1A and 2A, which in many cases show exceptionally wide
intervals for the future period). Figure 5 shows the same for
lag-1 auto-correlations of individual grid boxes. Also in this
case the majority of changes do not exceed the sampling vari-
ability; the most significant changes are reached by the model
3B, but the overall trend is a drop in the future.

To verify these results, the significance of individual
changes was tested using the bootstrap approach. The results
of tests correspond well with the visual assessment presented
in Figs. 4 and 5. In the case of cross-correlations, only four
changes were found significant for the model 1A, no changes
for the model 1B, two for the model 2A, eight for the model
2B, two for the model 3A and no changes for the model
3B. In case of auto-correlations, the significant changes were
found only for the model 3B. Note, however, that the frac-
tion of significant changes might be larger in the case of a
fixed reference being used for calculating correlations and
auto-correlations (see Sect. 3).

4.2 Effect of outliers

The previous section demonstrated that in some cases the
changes in cross-correlation show little significance despite
their high absolute values, which is particularly related to the
models 1A and 2A. At the same time, it can be seen in Fig. 4
that some confidence intervals for these models are excep-
tionally wide. Further analyses showed that this instability of
correlation estimates is introduced by outlying values, which
cause seeming changes in the correlation structures.

In the simulation of the model 2A, the sample correlation
r5, 11 decreased from 0.90 in the control period to 0.73 in the

future period. Figure 6a depicts the data from the future pe-
riod (values from the grid box 5 plotted against values from
the grid box 11; the data with any zero values are excluded).
The decrease is in large part caused by one outlying point,
which is circled in the plot. Its removal from the data in-
creases the correlation in the future period to 0.86, which
markedly reduces the change. On the other hand, high values
do not necessarily affect the correlation, as seen in Fig. 6b,
where the data from grid boxes 11 and 12 are plotted (again
the model 2A, future period). The circled outlier does not
affect the correlation in this case, since the location of the
point is in accordance with the configuration of the data –
the point lies approximately in a direction of a potential re-
gression line.

Outlying values affect also the auto-correlation. The
largest change in the auto-correlation was achieved by the
model 2A, where r1

12 decreased from 0.23 in the control pe-
riod to 0.12 in the future period. This decrease is caused by
the outlier 349.4 mm in the future data; this extraordinary
value was simulated by the model 2A for 8 May 2080. Fig-
ure 6c depicts the data for the calculation of r1

12, i.e. the val-
ues xi plotted against the values xi+1, where i denotes the or-
der of the value x in the time series. The outlier is employed
twice within the calculation (as xi and as xi+1, circled values
in Fig. 6c), which markedly affects the result. If the outlier
is removed from the time series, r1

12 increases from 0.12 to
0.22, which reduces the change almost to zero. The calcu-
lation of other members of the auto-correlation function is
affected by the outlier in the same way. We note that the ef-
fect of an outlier on the auto-correlation strongly depends
on the values which the outlier is surrounded by in the time
series. The presence of a noticeable outlier thus makes the
calculation of the auto-correlation very unstable.
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Figure 4. The 95 % confidence intervals of the individual cross-correlation coefficients for overlapping wet periods for all models. The
identifiers of grid-box pairs (ID) are explained in Fig. 2. The blue lines separate identifiers located in successive rows in the correlation
matrix (see Fig. 2). The arrow marks the confidence intervals around the r5,11 (ID 50) of the model 2A, discussed in more detail in Sect. 4.2.

4.3 Detection of outliers

The examples showed that outliers can distort cross- and
auto-correlation structures of a large dataset comprising
many thousands of values. Nevertheless, it should be realised
that not each extreme value necessarily affects the correla-
tion (as seen in Fig. 6b). Therefore, a more specific con-
cept of outliers is presented in this study. Values deviating
from the correlation structure are denoted as dependence out-
liers. As well as ordinary outliers, the dependence outliers
are values which are a long distance from the origin; nev-
ertheless, the difference between them and ordinary outliers

depends on the coordinate system in which the distance is
measured. Figure 7 illustrates this by an example of syn-
thetic two-dimensional data. The dashed lines and coordi-
nates in square brackets define the standard (canonical) co-
ordinate system. The ordinary outliers are points a long dis-
tance from the origin [0, 0], measured in standard coordi-
nates; the point A represents an example. The solid lines and
coordinates in round brackets define an alternative coordinate
system, which reflects the intensity of linear dependence be-
tween the variables X and Y . The dependence outliers are
points a long distance from the origin (0, 0), measured in al-
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Figure 5. The 95 % confidence intervals of the individual lag-1 auto-correlation coefficients for all models.

Figure 6. The effect of outliers on correlation structures of model
2A in the future period (the outliers are circled): (a) the outlier
strongly affecting the cross-correlation, (b) the outlier with no ef-
fect on the correlation, (c) the outlier affecting the calculation of the
serial correlation r1

12.

ternative coordinates; the point B represents an example. Let
us remark that the point B is an extreme value neither in X
nor Y data, which is in contrast to the point A. Nevertheless,
the point B deviates from the dependence structure, which
becomes apparent when its distance from (0, 0) in alternative
coordinates is calculated. The alternative coordinate system
is constructed through the covariance matrix of the data. The
directions of the axes are given by the eigenvectors of the ma-
trix, the lengths of unit vectors are given by the square root
of the corresponding eigenvalues and the origin is located in
the mean of the data. The construction of the system is re-
lated to the principal component analysis; see for example
Wilks (2011) for details.

The problem is that the presence of outliers is not easily
detected from the changes in dependence structures. It can be
indicated indirectly from the analysis of sampling variabil-
ity; nevertheless, the wide confidence intervals do not neces-
sarily imply the presence of outliers. Or alternatively, it can
be found when the individual pairs of datasets are visually
checked. We propose a procedure allowing for identification
of significant dependence outliers and assessment of their ef-
fect on correlation structure. The procedure consists of three
steps:

1. The most outlying (multivariate) value is found in the
data (in alternative coordinates).

2. The value is removed from the data and a new correla-
tion matrix is calculated.

Hydrol. Earth Syst. Sci., 23, 1741–1749, 2019 www.hydrol-earth-syst-sci.net/23/1741/2019/
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Figure 7. The difference between the ordinary and dependence out-
liers. The dashed lines define the standard coordinate system; the
solid lines define an alternative coordinate system. The outlying
points in the standard coordinate system are ordinary outliers (point
A); the outlying points in the alternative coordinate system are de-
noted as dependence outliers (point deviating from the dependence
structure, point B). The construction of alternative coordinates is
explained in the text.

Figure 8. The demonstration of the exploratory procedure: (a) the
detection of dependence outliers for two-dimensional data from
Fig. 6a (the plot of δRm indicates a noticeable outlier in the data).
(b) the same for the data from Fig. 6b – a gradual evolution of δRm
indicates that data do not contain dependence outliers.

3. A difference between the new and the previous correla-
tion matrix is calculated and recorded.

These three steps are repeated. The difference in step 3 is
quantified through

δRm = ‖Rm−Rm−1‖ , (2)

where Rm denotes the correlation matrix of the data from
which m largest outliers were removed; the notation ‖·‖ de-
notes the Frobenius matrix norm. The most outlying value
in the step 1 is simply defined as the value with the highest
distance from origin (measured in alternative coordinates). A
result of the proposed exploratory procedure is a sequence of
δRm, which clearly indicates the presence of noticeable out-
liers. We note that the alternative coordinate system in which
the dependence outliers are searched is data-dependent (in
contrast to the standard coordinates). This means that af-
ter each outlier removal the alternative coordinates change
slightly and must be recalculated to correspond to the re-
maining data.

The procedure is demonstrated on two simple two-
dimensional examples. Figure 8a depicts the sequence of
δRm for the data from Fig. 6a. A massive impact of the first
outlier is clearly visible; the removal of the next outliers does
not affect the correlation matrix substantially (the first mem-
ber δR1 corresponds to the circled outlier in Fig. 6a). Fig-
ure 8b depicts the same for the data from Fig. 6b; a gradual
evolution of δRm indicates that the data do not contain no-
ticeable (dependence) outliers.

This procedure is very useful as it allows a large set of mul-
tivariate data to be explored as a whole. The n-dimensional
outliers can be searched for in the same way as the two-
dimensional outliers in the examples presented above. A
result of the procedure is always a one-dimensional plot
of δRm, regardless of the dimension of the input dataset.
Figure 9 shows the plots of δRm for the complete 12-
dimensional data from the future period for all models. The
strong outliers in data from 1A and 2A are easily detected
from the plots. Generally, a plot of δRm enables a simple
assessment of the internal structure of the data and a direct
evaluation of the importance of individual outliers.

5 Conclusions

The examples presented demonstrate that outliers can
strongly affect the cross- and auto-correlation structures of
the data comprising many thousands of values. In general,
it must be stressed that the presence of outliers cannot be
considered as a bias. The extreme precipitation values as
well as the dependence outliers naturally occur. Neverthe-
less, although the dependence structures are markedly influ-
enced by a small number of outliers, they characterise the
data as a whole. Therefore a substantial bias can arise when
data with noticeable outliers are used to assess the depen-
dence structures, or when their dependence structures are
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Figure 9. The detection of dependence outliers for complete 12-
dimensional data from all models in the future period. The strong
outliers in data from the models 1A and 2A are clearly distinguish-
able.

used, e.g. for calibration of the bias correction functions.
The cross- and auto-correlation structures are the key ingre-
dients in several multivariate bias correction methods; for ex-
amples see Mehrotra and Sharma (2015) and Mehrotra and
Sharma (2016). The results based on these methods can be
devalued by outliers; see the Supplement to this paper.

From this point of view there is no need to distinguish
between real extremes and “genuine” outliers (for example
measurement errors). The real extremes as well as genuine
outliers affect the correlation structures in the same way,
which subsequently affects the bias corrections (or stochas-
tic generators). Therefore the dependence outliers, regardless
of their origin, should be removed from the calibration data.
The appropriate tool for testing the presence of outliers is the
analysis of the difference δRm between the new and previous
correlation matrix (Eq. 2) presented above; the exploratory
procedure can be automatised and included in the modelling
chain as a pre-processing step to automatically remove at
least the most noticeable outliers.

The analysis of significance showed that in most cases the
correlations are stable in time; their changes are insignifi-
cant and are caused by outlying values. Therefore the cli-
mate projection can be interpreted as a linear transformation
of an initial state, because a nonlinear transformation would
change the correlations substantially. From this point of view
a reasonable scenario of future precipitation can be obtained

by the corresponding linear transformation of observations,
i.e. by the multiplicative delta method (Déqué, 2007). Such
an approach avoids the problems of complex bias correction
methods (e.g. their increasing complexity and unclear effect
on climate change signal), which have recently been the sub-
jects of serious criticism, for example by Ehret et al. (2012)
or Maraun et al. (2017).
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