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Abstract. Multivariate hydrologic design under stationary
conditions is traditionally performed through the use of the
design criterion of the return period, which is theoretically
equal to the average inter-arrival time of flood events divided
by the exceedance probability of the design flood event. Un-
der nonstationary conditions, the exceedance probability of
a given multivariate flood event varies over time. This sug-
gests that the traditional return-period concept cannot ap-
ply to engineering practice under nonstationary conditions,
since by such a definition, a given multivariate flood event
would correspond to a time-varying return period. In this pa-
per, average annual reliability (AAR) was employed as the
criterion for multivariate design rather than the return pe-
riod to ensure that a given multivariate flood event corre-
sponded to a unique design level under nonstationary con-
ditions. The multivariate hydrologic design conditioned on
the given AAR was estimated from the nonstationary mul-
tivariate flood distribution constructed by a dynamic C-vine
copula, allowing for time-varying marginal distributions and
a time-varying dependence structure. Both the most-likely
design event and confidence interval for the multivariate hy-
drologic design conditioned on the given AAR were iden-
tified to provide supporting information for designers. The
multivariate flood series from the Xijiang River, China, were
chosen as a case study. The results indicated that both the
marginal distributions and dependence structure of the mul-
tivariate flood series were nonstationary due to the driving
forces of urbanization and reservoir regulation. The nonsta-
tionarities of both the marginal distributions and dependence

structure were found to affect the outcome of the multivariate
hydrologic design.

1 Introduction

A complete flood event or a flood hydrograph contains mul-
tiple feature variables, such as flood peak and flood volume,
which can be associated with the safety of hydraulic struc-
tures (Salvadori et al., 2004, 2007, 2011; Xiao et al., 2009;
Xiong et al., 2015; Loveridge et al., 2017; Shafaei et al.,
2017). For example, the water level of a reservoir is con-
trolled not only by flood peak flow but also by flood volume
(Salvadori et al., 2011). Therefore, multivariate hydrologic
design, which takes into account multiple flood character-
istics as well as their dependence, provides a more rational
design strategy for hydraulic structures compared to univari-
ate hydrologic design (Zheng et al., 2013, 2014; Balistrocchi
and Bacchi, 2017).

Multivariate hydrologic design under stationary conditions
has been widely investigated, and the design criterion is usu-
ally quantified by the return period, similar to univariate
hydrologic design. Under the definition of the average re-
currence interval between flood events equaling or exceed-
ing a given threshold (Chow, 1964), the return period of a
given flood event under stationary conditions theoretically
equals the average inter-arrival time between flood events di-
vided by the exceedance probability (Salvadori et al., 2011).
On the other hand, the exceedance probability of a univari-
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ate flood event is usually uniquely defined without ambi-
guity, whereas the exceedance probability of a multivariate
flood event could have multiple definitions (Salvadori and
De Michele, 2004; Salvadori et al., 2011; Vandenberghe et
al., 2011). To date, at least five kinds of different exceedance
probabilities for a multivariate flood event have been de-
fined: (1) the OR case in which at least one of the flood
features exceeds the prescribed threshold, (2) the AND case
in which all flood features exceed the prescribed thresh-
olds, (3) the Kendall case in which the univariate represen-
tation transformed from Kendall’s distribution function ex-
ceeds the prescribed threshold, (4) the survival Kendall case
in which the univariate representation transformed from sur-
vival Kendall’s distribution function exceeds the prescribed
threshold, and (5) the structural case in which the univari-
ate representation transformed from a structure function ex-
ceeds the prescribed threshold (Favre et al., 2004; Salvadori
and De Michele, 2004, 2010; Salvadori et al., 2007, 2013,
2015, 2016; Vandenberghe et al., 2011; Requena et al., 2013;
Zheng et al., 2014).

Due to climate change as well as certain anthropogenic
driving forces (Milly et al., 2008), the nonstationarities
of both univariate and multivariate flood series have been
widely reported (Xiong and Guo, 2004; Villarini et al., 2009;
Vogel et al., 2011; López and Francés, 2013; Bender et al.,
2014; Xiong et al., 2015; Blöschl et al., 2017; Kundzewicz et
al., 2018). The multivariate flood distribution exhibits more
complex nonstationarity behaviours than the univariate dis-
tribution, including nonstationarities of individual margins
and the dependence structure between the margins (Quessy
et al., 2013; Bender et al., 2014; Xiong et al., 2015; Kwon
et al., 2016; Sarhadi et al., 2016; Qi and Liu, 2017; Vez-
zoli et al., 2017; Bracken et al., 2018; Salvadori et al., 2018).
Both nonstationarities of the margins and dependence struc-
ture could impact the multivariate hydrologic design. Under
nonstationary conditions, the exceedance probability p of a
given flood event varies from year to year; thus, the return
period, calculated as the average inter-arrival time between
two successive flood events divided by p, is no longer a con-
stant (Salas and Obeysekera, 2014; Jiang et al., 2015a; Kwon
et al., 2016; Sarhadi et al., 2016; Yan et al., 2017). As a re-
sult, a given flood event would correspond to a time-varying
and non-unique return period. Consequently, the traditional
return-period-based method for estimating hydrologic design
may no longer be applicable to engineering practice under
nonstationary conditions (Salas and Obeysekera, 2014).

Although increasing attention has been focused on the
hydrologic designs under nonstationary conditions in re-
cent years, the focus has mainly been on univariate designs
(Obeysekera and Salas, 2014, 2016; Read and Vogel, 2016).
To overcome the limitation of the traditional return period
under nonstationary conditions, the concept of the return pe-
riod has been revisited. Salas and Obeysekera (2014) ex-
tended two concepts of the return period into a nonstation-
ary framework, defined as the expected waiting time (EWT)

for an exceedance to occur (Olsen et al., 1998), and the time
period that results in the expected number of exceedances
(ENE) equal to 1 over this period (Parey et al., 2010).

Risk and reliability are both important measurements for
assessing hydrologic designs (Vogel, 1987; Read and Vogel,
2015). Besides redefinitions of the return period, some risk-
based or reliability-based metrics have been introduced as
the hydrologic design criteria under nonstationary conditions
(Rosner et al., 2014). Rootzén and Katz (2013) proposed the
concept of the design life level (DLL) to quantify hydrologic
risk in a nonstationary climate during the entire design life
period of hydraulic structures. Read and Vogel (2015) intro-
duced the concept of average annual reliability (AAR) to esti-
mate the hydrologic designs under nonstationary conditions.
Liang et al. (2016) defined the equivalent reliability (ER) to
estimate the design flood under nonstationary conditions by
linking the DLL to the return period. Salvadori et al. (2018)
associated hydrologic designs with both given life times and
failure probabilities to calculate bivariate design values un-
der nonstationarity. These design criteria assess the risk or
reliability of hydraulic structures associated with the flood
distribution during the entire design life period, rather than
for a single year. For a given design life period, these criteria
can always yield a unique risk or reliability; therefore, they
are applicable to the hydrologic designs under both station-
ary and nonstationary conditions.

Under the multivariate framework, a given design level
would correspond to an infinite number of possible hydro-
logic design events (Hawkes, 2008; Kew et al., 2013; Zheng
et al., 2015, 2017); however, these design events are gen-
erally not equivalent because their joint probability density
values (i.e. likelihood) usually differ (Salvadori et al., 2011;
Volpi and Fiori, 2012; Li et al., 2017; Yin et al., 2017). In en-
gineering practice, it should be necessary to determine a typ-
ical design event as representative of a specific design level.
For example, in Chinese engineering practice, a unique de-
sign flood hydrograph corresponding to a given design level
is usually required to determine the scale of hydraulic struc-
tures (Yin et al., 2017). The most-likely design event, which
theoretically has the largest joint probability density (like-
lihood) among all possible design events (Salvadori et al.,
2011), appears to be the best representative candidate. Be-
sides the most-likely design event, it is also necessary to
identify the confidence interval for an infinite possible num-
ber of design events to provide a finite design range for de-
signers (Volpi and Fiori, 2012; Yin et al., 2017). The most-
likely design event and confidence interval for the bivari-
ate hydrologic design under stationary conditions have been
identified (Salvadori et al., 2011; Volpi and Fiori, 2012; Li et
al., 2017; Yin et al., 2017; Salvadori et al., 2018); however,
very few studies have focused on hydrologic designs with
higher dimensions under nonstationary conditions.

Therefore, the objective of the present study was to ad-
dress the issue of multivariate hydrologic design applying to
engineering practice under nonstationary conditions, which
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is achieved through the following steps. First, the nonsta-
tionary multivariate flood distribution was constructed us-
ing a dynamic canonical vine (C-vine) copula (Aas et al.,
2009), which was able to capture the nonstationarities of both
marginal distributions and the dependence structure. The de-
sign criterion for the multivariate flood event was then quan-
tified according to AAR rather than the traditional return pe-
riod, since a given multivariate flood event would correspond
to a unique AAR under both stationary and nonstationary
conditions (Read and Vogel, 2015; Yan et al., 2017). The
multivariate hydrologic design for any given AAR was esti-
mated from the nonstationary multivariate flood distribution.

The aforementioned methods for the multivariate hydro-
logic design under nonstationary conditions were applied to
the Xijiang River, China. The four-dimensional (4-D) multi-
variate flood series, including the annual maximum daily dis-
charge, annual maximum 3-day flood volume, annual maxi-
mum 7-day flood volume and annual maximum 15-day flood
volume of the Xijiang River were chosen as the case study
data because they constitute the variables used for deriving
the design flood hydrograph for hydraulic structures. It has
been found that the natural flood processes of this river have
been significantly altered by urbanization and reservoir reg-
ulation (Xu et al., 2014), but these two factors have not yet
been taken into account in multivariate hydrologic design.

The next section of the present paper describes the study
area and data. Section 3 presents the methods developed
in this paper. The results of the case study are provided in
Sect. 4. Finally, the conclusion and remarks are provided in
Sect. 5.

2 Study area and data

The multivariate flood series of the Xijiang River, South
China (see Fig. 1), were selected as a case study to illus-
trate the multivariate hydrologic design methods under non-
stationary conditions. The drainage area of the Xijiang River
basin (XRB) is 353 120 km2, with a river length of 2214 km.
The basin falls within a humid subtropical monsoon climate
region, with the flood season extending from May to Octo-
ber; therefore, floods have always been a serious natural haz-
ard within the basin.

The calculation of design floods in China involving the
derivation of flood hydrographs for hydraulic structures re-
quires not only flood peak but also flood volumes with dif-
ferent durations, such as 3, 7, 15 and 30 days (Ministry
of Water Resources of People’s Republic of China, 1996;
Xiao et al., 2009; Xiong et al., 2015; Li et al., 2017). For
a large catchment such as the XRB, the duration of a flood
process is usually longer than 10 days. Therefore, the an-
nual maximum daily discharge (Q1), annual maximum 3-
day flood volume (V3), annual maximum 7-day flood vol-
ume (V7) and annual maximum 15-day flood volume (V15)
of the Xijiang River were defined as the multivariate flood

series (Q1, V3, V7, V15) for deriving design flood hydro-
graphs. The flood data were from 1951 to 2012 and ob-
served at the Dahuangjiangkou gauge located at the main
stream of the Xijiang River, draining a total catchment area
of 294 669 km2, approximately 83 % of the total area of the
XRB.

Rapid urbanization over recent decades has resulted in in-
creasing river regulation projects built in the XRB, such as ar-
tificial levees for protecting urban areas from river flooding.
As a result, flood flow has become increasingly constrained
to the channel rather than overflowing to the floodplain, re-
sulting in an increase in the observed river flood flow (Xu et
al., 2014). For the purpose of flood control and hydropower
generation, it is hard to find a river which is not impacted by
reservoirs, particularly in rapidly developing China. Reser-
voir regulation has become an increasingly significant fac-
tor affecting flood processes of the XRB and should be seri-
ously considered within downstream flood risk analysis and
hydrologic design, particularly after 2006, when two reser-
voirs with considerable flood control capacities were put into
operation. These are the Longtan and Baise reservoirs, with
flood control capacities of 5 × 109 m3 and 1.64×109 m3 and
catchment areas of 98 500 and 9600 km2, respectively. Cli-
mate change will likely result in flood nonstationarity by al-
tering climatic conditions of the basin. Climatic conditions
dominating flood processes in the XRB, such as extreme
precipitation, appear to have been stationary over the past
decades (Yang et al., 2010). Therefore, the current study in-
troduced only urbanization and reservoir regulation as the
potential driving forces of flood nonstationarity and ignored
the effect of climate change.

The effect of urbanization on flood processes was quanti-
fied using the urban population (Pop). Given the unavailabil-
ity of urban population data at the basin scale and the fact
that the vast majority of cities in the XRB are distributed
in Guangxi province, we used urban population data for
Guangxi province to represent those of the XRB. The annual
urban population data during the observation period were ob-
tained from the China Compendium of Statistics 1949–2008
(Department of Comprehensive Statistics of National Bureau
of Statistics, 2010) and the website of the National Bureau of
Statistics of China (http://www.stats.gov.cn/tjsj/ndsj/, last ac-
cess: 20 March 2019). The present study assumed the design
life period for hydraulic structures to be from 2013 to 2100.
The urban population over the design life period was esti-
mated based on the predicted growth rate of China’s urban
population reported by He (2014). The reservoir index (RI),
which depends on the catchment area and flood controlling
capacities of reservoirs, was used to quantify the effects of
reservoir regulation on flood processes (López and Francés,
2013). As shown in Table 1, two reservoirs with flood control
functions have been completed during the observation period
from 1951 to 2012, and a further two are planned for oper-
ation during the design life period. Figure 2 illustrates the
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Figure 1. Map of the Xijiang River basin (above the Dahuangjiangkou gauge).

Table 1. Reservoir information for the Xijiang River basin.

Reservoir Catchment Flood control Year of
area (km2) capacity operation

(109 m3)

Longtan 98 500 5.0 2006
Baise 9600 1.64 2006
Laokou 72 368 0.36 2016
Datengxia 198 612 1.5 2023 (expected)

evolution of the urban population and reservoir index during
both the observation and design life periods.

3 Methods

The present study included the following methods: (1) the
nonstationary multivariate flood distribution based on a
dynamic C-vine copula, allowing for both time-varying
marginal distributions and a time-varying dependence struc-
ture, and (2) estimation of the multivariate hydrologic de-
sign associated with AAR under nonstationary conditions.
To correspond to the case study in this paper, the multivari-
ate flood series consisting of the annual maximum daily dis-
charge (Q1), annual maximum 3-day flood volume (V3), an-

nual maximum 7-day flood volume (V7) and annual maxi-
mum 15-day flood volume (V15) were chosen to illustrate the
multivariate design methods under nonstationary conditions.
It is worth noting that the proposed methods can be extended
to other multivariate flood series, such as those consisting of
flood peak, flood volume and flood duration.

3.1 Probability distribution of the nonstationary
multivariate flood series

According to Sklar’s theorem (Sklar, 1959), the probability
distribution of the 4-D flood series (Q1 ,V3, V7, V15) at time
t measured by years (t = 1, 2, . . . , n, and n is the length of
the flood series) can be formulated through a copula C(·) as
follows:

F
(
q1, t , v3, t , v7, t , v15, t |θ t

)
= C

[
F1
(
q1, t |θ1, t

)
, F3

(
v3, t |θ3, t

)
, F7

(
v7, t |θ7, t

)
,

F15
(
v15, t |θ15, t

)
|θc, t

]
= C

(
u1, t , u3, t , u7, t , u15, t |θc, t

)
, (1)

where F1
(
q1, t |θ1, t

)
, F3

(
v3, t |θ3, t

)
, F7

(
v7, t |θ7, t

)
and

F15
(
v15, t |θ15, t

)
denote the marginal distributions for Q1,

V3, V7 and V15, respectively; u1, t , u3, t , u7, t and u15, t are
the marginal probabilities of Q1, V3, V7 and V15, respec-
tively; θ1, t , θ3, t , θ7, t and θ15, t are the corresponding dis-
tribution parameters; and θc, t stands for the copula param-
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Figure 2. Evolution of the urban population and reservoir index during both the observation and design life periods.

eter vector, which describes the strength of the dependence
structure. θ t =

(
θ1, t ,θ3, t ,θ7, t ,θ15, t ,θc, t

)
is the parameter

vector of the entire multivariate distribution, including the
marginal distribution parameters as well as the copula pa-
rameters.

According to the multivariate distribution of
(Q1, V3, V7, V15) defined by Eq. (1), the correspond-
ing density function can be written as:

f
(
q1, t , v3, t , v7, t , v15, t |θ t

)
= c

[
F1
(
q1, t |θ1, t

)
, F3

(
v3, t |θ3, t

)
, F7

(
v7, t |θ7, t

)
,

F15
(
v15, t |θ15, t

)
|θc, t

]
· f1

(
q1, t |θ1, t

)
· f3

(
v3, t |θ3, t

)
· f7

(
v7, t |θ7, t

)
· f15

(
v15, t |θ15, t

)
= c

(
u1, t , u3, t , u7, t , u15, t |θc, t

)
· f1

(
q1, t |θ1, t

)
· f3

(
v3, t |θ3, t

)
· f7

(
v7, t |θ7, t

)
· f15

(
v15, t |θ15, t

)
, (2)

where f1
(
q1, t |θ1, t

)
, f3

(
v3, t |θ3, t

)
, f7

(
v7, t |θ7, t

)
and

f15
(
v15, t |θ15, t

)
are the density functions of the marginal

distributions for Q1, V3, V7 and V15, respectively, and
c(·) denotes the density function of copula C(·). As
shown by Eq. (2), the multivariate distribution of
(Q1, V3, V7, V15) can be separated into two modules,
including the marginal distributions, i.e. f1

(
q1, t |θ1, t

)
,

f3
(
v3, t |θ3, t

)
, f7

(
v7, t |θ7, t

)
and f15

(
v15, t |θ15, t

)
, as well as

the dependence structure expressed by the copula density
function c

(
u1, t , u3, t , u7, t , u15, t |θc, t

)
. Under nonstationary

conditions, both the margins and dependence structure of
(Q1, V3, V7, V15) can vary over time t .

3.1.1 Nonstationary marginal distributions based on
the time-varying moment model

The time-varying moment model that expresses the distri-
bution parameters or moments as functions of time or some
other explanatory variable or variables have been widely em-
ployed to capture the nonstationarities of univariate flood se-
ries (Strupczewski et al., 2001; Villarini et al., 2009). In this

study, the nonstationary marginal distributions of the mul-
tivariate flood series (Q1, V3, V7, V15) were constructed by
the time-varying moment model.

Based on cause–effect analysis, the flood processes of the
XRB were found to mainly be impacted by urbanization and
reservoir operation. The reservoir index RI and urban pop-
ulation Pop were therefore used as potential covariates for
marginal distribution parameters, including the location pa-
rameter µ, scale parameter σ and shape parameter ν (if any).
In this study, both linear and exponential functions were con-
sidered to build the relationships between distribution param-
eters and covariates (Strupczewski et al., 2001; Vogel et al.,
2011; Salas and Obeysekera, 2014; Jiang et al., 2015; Sarhadi
et al., 2016; Read and Vogel, 2016; Yan et al., 2017). Taking
the location parameter for illustration, the candidate func-
tions of µ were generally formulated as follows.

Linear : µt = α0+α1Popt +α2RIt .
Exponential : µt = exp

(
α0+α1Popt +α2RIt

)
.

(3)

Here α0, α1 and α2 are model parameters estimated using the
maximum likelihood estimate (MLE) method (Strupczewski
et al., 2001). As above, the linear expression in Eq. (3) gives
an additive model which suggests that the effects of the co-
variates RI and Pop onµ are independent, while the exponen-
tial expression defines a multiplicative model which is able to
take into account the possible interaction between the covari-
ates RI and Pop. It is important to note that Eq. (3) defines
four specific nonstationary models: the first one is the most
complex nonstationary model where it is assumed that both
RI and Pop are the driving factors of marginal distributions,
the second and third models illustrate that the marginal non-
stationarity is linked only to RI and Pop, respectively, and the
final one represents the simplest and stationary model, which
does not contain any covariates.

Five probability distributions widely used in flood fre-
quency analysis, namely Pearson type III (PIII), generalized
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extreme value (GEV), gamma, Weibull and lognormal dis-
tributions, were employed as the candidate distributions for
margins (Villarini et al., 2009; Yan et al., 2017). The good-
ness of fit (GoF) of the probability distributions was exam-
ined by the Kolmogorov–Smirnov (KS) test with a signifi-
cance level of 0.05 (Frank and Massey, 1951). The p value
of the KS test was simulated by the Monte Carlo method. The
relative fitting qualities of the time-varying moment models
were assessed by the corrected Akaike information criterion
(AICc; Hurvich and Tsai, 1989), which is stricter than the
Akaike information criterion (AIC; Akaike, 1974). The best
model featured with the smallest AICc value was chosen to
describe the marginal distributions from the nonstationary
models as expressed by Eq. (3).

3.1.2 Nonstationary dependence structure based on the
dynamic C-vine copula

After estimating the marginal distributions, the nonstationary
dependence structure of (Q1, V3, V7, V15) as formulated by
the copula density function c

(
u1, t , u3, t , u7, t , u15, t |θc, t

)
was constructed. Given that most applied cop-
ula functions are for bivariate random variables,
c
(
u1, t , u3, t , u7, t , u15, t |θc, t

)
cannot be directly expressed

as a specific copula function. The pair copula method has
been proven to be powerful for the construction of the
distribution of multivariate random variables through the
decomposition of the multivariate probability density into
a series of bivariate copulas (Aas et al., 2009; Xiong et al.,
2015; Shafaei et al., 2017). Therefore this study constructed
the dependence structure of (Q1, V3, V7, V15) using the pair
copula method.

Numerous pair copula decomposition forms for a multi-
variate distribution are available, among which two kinds of
decompositions with regular vine structures prevail in prac-
tice, namely the canonical vine (C vine) and the drawable
vine (D vine; Aas et al., 2009). It is known that flood peak
(e.g.Q1) is the dominant feature quantifying a flood event as
well as being the key factor in hydrologic design (Ministry of
Water Resources of People’s Republic of China, 1996). The
C vine is more suitable when there is a key variable govern-
ing multivariate dependence (Aas et al., 2009). In this case,
the C vine was employed to construct the joint distribution
of (Q1, V3, V7, V15), with Q1 elected as the key variable.
Thus, the density function c

(
u1, t , u3, t , u7, t , u15, t |θc, t

)
can

be decomposed into six bivariate pair copulas as follows:

c
(
u1, t , u3, t , u7, t , u15, t |θc, t

)
= c13

(
u1, t , u3, t |θ13, t

)
· c17

(
u1, t , u7, t

∣∣θ17, t
)
· c115

(
u1, t , u15, t

∣∣θ115, t
)

· c37|1
[
F
(
u3, t |u1, t

)
, F

(
u7, t |u1, t

) ∣∣θ37|1, t
]

· c315|1
[
F
(
u3, t |u1, t

)
, F

(
u15, t |u1, t

) ∣∣θ315|1, t
]

· c715|13
[
F
(
u7, t |u1, t , u3, t

)
,

F
(
u15, t |u1, t , u3, t

)
|θ715|13, t

]
, (4)

where θc, t =
(
θ13, t , θ17, t , θ115, t , θ37|1, t , θ315|1, t , θ715|13, t

)
is the parameter vector in the C-vine copula, and

F
(
u3, t |u1, t

)
=
∂C13

(
u1, t , u3, t |θ13, t

)
∂u1, t

,

F
(
u7, t |u1, t

)
=
∂C17

(
u1, t , u7, t

∣∣θ17, t
)

∂u1, t
,

F
(
u15, t |u1, t

)
=
∂C115

(
u1, t , u15, t

∣∣θ115, t
)

∂u1, t
,

F
(
u7, t |u1, t , u3, t

)
=

∂c37|1
[
F
(
u3, t |u1, t

)
, F

(
u7, t |u1, t

) ∣∣θ37|1, t
]

∂F
(
u3, t |u1, t

) ,

F
(
u15, t |u1, t , u3, t

)
=

∂C315|1
[
F
(
u3, t |u1, t

)
, F

(
u15, t |u1, t

) ∣∣θ315|1, t
]

∂F
(
u3, t |u1, t

) . (5)

Figure 3 shows the schematic decomposition of the 4-D
C-vine copula as expressed by Eq. (4). It is evident that
the hierarchical structure of the 4-D C-vine copula con-
tains three trees and six edges. The first tree (T1) includes
three bivariate pair copulas, i.e. c13

(
·
∣∣θ13, t

)
, c17

(
·
∣∣θ17, t

)
and c115

(
·
∣∣θ115, t

)
, which directly act on the marginal prob-

abilities and describe the bivariate dependencies between the
key variable Q1 and the other three variables, i.e. V3, V7 and
V15. The second tree (T2) includes two bivariate pair cop-
ulas c37|1

(
·
∣∣θ37|1, t

)
and c315|1

(
·
∣∣θ315|1, t

)
, which act on the

conditional distribution functions with u1, t as the condition-
ing variable. Finally, the third tree (T3) includes only one bi-
variate pair copula c715|13

(
·
∣∣θ715|13, t

)
acting on conditional

distribution functions with both u1, t and u3, t as the condi-
tioning variables.

In flood frequency analysis, the upper tail of the flood
distribution deserves more attention because it allows the
quantification of risks of the more serious flood events. The
Gumbel–Hougaard copula, an extreme-value copula widely
used in hydrology, accounts for the upper tail dependence
and is well-suited to the dependence structure of a multi-
variate flood distribution (Salvadori et al., 2007; Zhang and
Singh, 2007; Xiong et al., 2015). Consequently, the present
study employed the bivariate Gumbel–Hougaard copula to
construct the dynamic C-vine copula formulated by Eq. (4).
The bivariate Gumbel–Hougaard copula is expressed as fol-
lows:

C (u, v)= exp
{
−
[
(− lnu)θc + (− lnv)θc

]1/θc}
,

θc ∈ [1,∞), (6)

where u and v are the bivariate marginal probabilities and θc
is the single parameter measuring the dependence strength.

Similar to the nonstationary marginal distributions,
the nonstationarity of the dependence structure of
(Q1, V3, V7, V15) was characterized by the time varia-
tions of the copula parameters in T1, T2 and T3. Both
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Figure 3. Decomposition of the four-dimensional C-vine copula.

linear and exponential functions were considered to char-
acterize the time-varying copula parameters and generally
formulated as follows.

Linear : θc, t = β0+β1Popt +β2RIt .
Exponential : θc, t = 1+ exp

(
β0+β1Popt +β2RIt

)
.

(7)

Here β0, β1 and β2 are model parameters estimated using
the MLE method (Aas et al., 2009). Here, the exponential
expression in Eq. (7) was written as the sum of 1 and an ex-
ponential function of the covariates so that the domain range
of the copula parameter θc can be satisfied under any con-
dition. To make it easy in parameter estimation, the model
parameters for each pair copula were separately estimated.
The model parameters for θ13, t , θ17, t and θ115, t in T1 were
first estimated, and those for the remaining copula parame-
ters θ37|1, t , θ315|1, t and θ715|13, t in T2 and T3 were then esti-
mated in sequence. It is worth noting that these parameters
can be also simultaneously estimated. These two methods
could result in possible difference in parameter estimation.

The available GoF tests for vine copulas are very limited,
with the probability integral transform (PIT) test appearing
to be reliable (Aas et al., 2009). Under a null hypothesis of
the multivariate flood variables (Q1, V3, V7, V15) following
a given C-vine copula, the PIT converts the dependent flood
variables into a new set of variables that are independent and
uniformly distributed on [0, 1]4. The GoF of vine copulas can
be obtained through determining whether the resulting vari-
ables are independent and uniform in [0, 1]. For more details
of the PIT test, readers are referred to Aas et al. (2009). The
best nonstationary model for each bivariate pair copula in
Eq. (4) was chosen from the nonstationary models generally
expressed by Eq. (7) in terms of the AICc value.

3.2 Multivariate hydrologic design under
nonstationary conditions

3.2.1 Average annual reliability for multivariate flood
events

The AAR introduced by Read and Vogel (2015) was cal-
culated using the arithmetic-average method, thereby tak-
ing into account the reliability of each year with the same
weighting factor. A safer design strategy should pay more
attention to worse (i.e. lower) annual reliability; however,
the arithmetic-average AAR is not capable of this function.
The present study employed the geometric-average method
to calculate AAR, which is dominated more by the minimum
than arithmetic average and is theoretically able to yield safer
design values. The geometric-average AAR is also equiva-
lent to the metrics of the DLL (Rootzén and Katz, 2013) and
ER (Liang et al., 2016; Yan et al., 2017).

Denoting (q1, v3, v7, v15) as a given multivariate flood
event, its exceedance probability pt , which is the occur-
rence probability of a more dangerous multivariate event than
(q1, v3, v7, v15) in a specific hazard scenario, would vary
from year to year under nonstationary conditions. The AAR
for (q1, v3, v7, v15)was calculated by the geometric-average
method as follows:

AAR(q1, v3, v7, v15)=

[
T2∏
t=T1

(1−pt )

] 1
T2−T1+1

, (8)

where T1 and T2 stand for the beginning year and ending year
of the operation of an assumed hydraulic structure, respec-
tively, T2− T1+ 1 is the length of the design life period of
the hydraulic structure, and 1−pt measures the annual reli-
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ability of the given multivariate flood event (q1, v3, v7, v15)

at time t .

3.2.2 Exceedance probabilities of multivariate flood
events

The present study characterized AAR by considering three
widely used definitions of the exceedance probabilities of the
multivariate flood event (q1, v3, v7, v15), i.e. the OR, AND
and Kendall cases (Salvadori and De Michele, 2004, 2010;
Favre et al., 2004; Salvadori et al., 2007, 2016; Vandenberghe
et al., 2011). The OR case for (q1, v3, v7, v15) defines the
case under which at least one of the flood features exceeds
the prescribed threshold. The exceedance probability in the
OR case at time t was denoted as por

t and was calculated by
the following:

por
t = P

(
Q1, t ≥ q1 ∨V3, t ≥ v3 ∨V7, t ≥ v7 ∨V15, t ≥ v15

)
= 1−F (q1, v3, v7, v15 |θ t ) , (9)

where “∨” stands for the OR operator and F (· |θ t ) is defined
in Eq. (1).

The AND case for (q1, v3, v7, v15) defines the case under
which all of the flood features exceed the prescribed thresh-
olds, and the corresponding exceedance probability pand

t at
time t was expressed as follows:

pand
t = P

(
Q1, t > q1 ∧V3, t > v3 ∧V7, t > v7 ∧V15, t > v15

)
=

∫ ∫ ∫ ∫
�and

f
(
Q1, t , V3, t , V7, t , V15, t |θ t

)
dQ1, t

· dV3, t · dV7, t · dV15, t

�and
: q1 <Q1, t <∞, v3 < V3, t <∞, v7 < V7, t <∞,

v15 < V15, t <∞, (10)

where “∧” is the AND operator and f (· |θ t ) is defined in
Eq. (2).

Under the Kendall case, the multivariate flood event
(q1, v3, v7, v15) was first transformed into a univariate rep-
resentation via Kendall’s distribution function KC(·) as fol-
lows:

KC (ρt )= P
[
C
(
U1, t , U3, t , U7, t , U15, t

∣∣θc, t )≤ ρt ]
= P

[
F
(
Q1, t , V3, t , V7, t , V15, t |θ t

)
≤ ρt

]
, (11)

where ρt = F (q1, v3, v7, v15 |θ t ) is the probability level
corresponding to the given flood event (q1, v3, v7, v15). The
exceedance probability pken

t in the Kendall case at time t was
expressed as follows:

pken
t = 1−KC (ρt ) . (12)

For general multivariate cases, the exceedance probabilities
por
t , pand

t and pken
t could have no analytical solutions but can

be numerically estimated through the Monte Carlo method
(Niederreiter, 1978; Salvadori et al., 2011, 2013). The AAR
in the OR, AND and Kendall cases can be calculated by re-
placing the exceedance probability pt in Eq. (8) by por

t , pand
t

and pken
t , respectively.

3.2.3 Most-likely design event and confidence interval
for multivariate hydrologic design

The methods identifying both the most-likely design event,
denoted by

(
z∗Q1

, z∗V3
, z∗V7

, z∗V15

)
, and the confidence interval

for the multivariate hydrologic design
(
zQ1 , zV3 , zV7 , zV15

)
given AAR= η are introduced below. The average annual
probability density, denoted by g(·), of

(
zQ1 , zV3 , zV7 , zV15

)
over the entire design life period from T1 to T2, was ex-
pressed as follows:

g
(
zQ1 , zV3 , zV7 , zV15

)
=

1
T2− T1+ 1

T2∑
t=T1

f
(
zQ1 , zV3 , zV7 , zV15 |θ t

)
. (13)

The probability distribution function for AAR≤ η can be
written as

8(η)=

∫ ∫ ∫ ∫
�:AAR(q1, v3, v7, v15)≤η

g (q1, v3, v7, v15)

dq1dv3dv7dv15. (14)

By denoting the density function of8(η) as φ (η), the proba-
bility density of

(
zQ1 , zV3 , zV7 , zV15

)
conditioned on AAR=

η can be expressed as follows:

g|AAR = η
(
zQ1 , zV3 , zV7 , zV15

)
=
g
(
zQ1 , zV3 , zV7 , zV15

)
φ (η)

. (15)

The most-likely design event conditioned on AAR= η was
theoretically written as(
z∗Q1

, z∗V3
, z∗V7

, z∗V15

)
=

argmaxg|AAR=η
(
zQ1 , zV3 , zV7 , zV15

)
. (16)

Unfortunately, the analytical solutions of both the most-
likely design event

(
z∗Q1

, z∗V3
, z∗V7

, z∗V15

)
and confidence in-

terval are unavailable but can be approximately estimated
through the Monte Carlo simulation method. First, the design
events with sample size N conditioned on AAR= η were
generated. These design events were then sorted in descend-
ing order of their multivariate probability densities, denoted
by(
z1
Q1
, z1
V3
, z1
V7
, z1
V15

)
,
(
z2
Q1
, z2
V3
, z2
V7
, z2
V15

)
, . . . ,(

zNcQ1
, zNcV3

, zNcV7
, zNcV15

)
, . . . ,

(
zNQ1

, zNV3
, zNV7

, zNV15

)
, (17)

where Nc =N ·pc, and pc is the critical probability level
for the confidence interval. Thus, the approximate solution
for

(
z∗Q1

, z∗V3
, z∗V7

, z∗V15

)
is
(
z1
Q1
, z1
V3
, z1
V7
, z1
V15

)
. The lower
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boundary for the confidence interval was expressed as fol-
lows:

zLQ1
=min

(
z1
Q1
, z2
Q1
, . . . , zNcQ1

)
zLV3
=min

(
z1
V3
, z2
V3
, . . . , zNcV3

)
zLV7
=min

(
z1
V7
, z2
V7
, . . . , zNcV7

)
zLV15
=min

(
z1
V15
, z2
V15
, . . . , zNcV15

) . (18)

The upper boundary for the confidence interval was esti-
mated by the following:

zUQ1
=max

(
z1
Q1
, z2
Q1
, . . . , zNcQ1

)
zUV3
=max

(
z1
V3
, z2
V3
, . . . , zNcV3

)
zUV7
=max

(
z1
V7
, z2
V7
, . . . , zNcV7

)
zUV15
=max

(
z1
V15
, z2
V15
, . . . , zNcV15

) . (19)

3.2.4 Derivation of design flood hydrographs

In China, the design flood hydrographs for hydraulic struc-
tures are usually derived from the design flood events set
against a benchmark flood hydrograph, which is chosen from
the observed flood processes (Ministry of Water Resources
of People’s Republic of China, 1996; Xiao et al., 2009, Yin
et al., 2017). For example, suppose that a flood hydrograph
consists of the features of annual maximum daily discharge,
3-day flood volume, 7-day flood volume and 15-day flood
volume. The four features of the benchmark flood hydro-
graph are denoted by QB

1 , V B3 , V B7 and V B15, respectively.
The design flood hydrograph corresponding to the multivari-
ate hydrologic design realization

(
zQ1 , zV3 , zV7 , zV15

)
can be

derived by multiplying the benchmark flood hydrograph by
different amplifiers, given as described below.

The amplifierK1 for the annual maximum daily discharge
was calculated by

K1 =
zQ1

QB
1
. (20)

The amplifierK3−1 for the 3-day flood volume except for the
annual maximum daily discharge was calculated by

K3−1 =
zV3 −V

(
zQ1

)
V B3 −V

(
QB

1
) , (21)

where V (·) is the operator transforming daily discharge into
flood volume. The amplifierK7−3 for the 7-day flood volume
except for the 3-day flood volume was calculated by

K7−3 =
zV7 − zV3

V B7 −V
B
3
. (22)

Finally, the amplifier K15−7 for the 15-day flood volume ex-
cept for the 7-day flood volume was calculated by

K15−7 =
zV15 − zV7

V B15−V
B
7
. (23)

4 Results

4.1 Nonstationary analysis for marginal distributions

The time-varying moment model was employed to perform
nonstationary analysis for each marginal distribution of the
multivariate flood series (Q1, V3, V7, V15) of the Xijiang
River. In general, the candidate distributions for all margins
passed the GoF test at the 0.05 significance level. The chosen
models featured with the smallest AICc values were shown
in Table 2. The results indicated that the GEV distribution
provided the best fit for the annual maximum daily discharge
series Q1, whereas the Gamma distribution was chosen as
the theoretical distribution for the flood volume series V3, V7
and V15. All estimated model parameters were found to be
statistically significant at the 0.05 level. The 95 % uncertainty
intervals for the estimated parameters were calculated by the
parametric bootstrap method (Kyselý, 2009). In accordance
with the modelling results, it can be seen that the location pa-
rameters µ for all flood series were nonstationary, while the
scale and shape parameters were stationary. Through an ex-
ponential function, the location parameters µ referring to the
means of the flood series were generally positively related to
the urban population Pop, whereas they were negatively re-
lated to the reservoir index RI. This finding revealed the op-
posite roles played by urbanization and reservoir regulation
on the flood processes of the XRB. In particular, more artifi-
cial levees were required to protect urban areas from flood-
ing by constraining the flood flow to river channels, which
resulted in increasing the river channel flood flow. The reser-
voirs played an active role in flood control by reducing the
flood discharge downstream.

More specific to each margin of (Q1, V3, V7, V15), the lo-
cation parameters µ of the three short-duration flood series,
i.e. Q1, V3 and V7, were positively linked to Pop, whereas
the RI was the driving factor reducing µ for all flood series,
including Q1, V3, V7 and V15. Owing to the difference in co-
variate selections, the short-duration flood series, including
Q1, V3 and V7, displayed asynchronous nonstationary be-
haviours with the long-duration flood series V15 occurring
in the observation period of 1951–2012. As shown in Fig. 4,
Q1, V3 and V7 presented significantly increasing trends dur-
ing 1951–2005, particularly since the 1980s, marking the be-
ginning of a period of rapid urbanization in China. V15 tended
to follow a stationary process during 1951–2005. After the
two flood control reservoirs were put into operation in 2006,
all flood series, including Q1, V3, V7 and V15, exhibited a
sharp decline.

The predicted marginal distributions for (Q1, V3, V7, V15)

during the design life period from 2013 to 2100 were esti-
mated using the time-varying moment model by replacing
the observed covariates for µ with those predicted. Figure 4
also shows that the mean values of Q1, V3 and V7 during
the design life period increased with the growth of the ur-
ban population, following which they decreased sharply in
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Table 2. Results of nonstationary analysis for the marginal distributions of (Q1, V3, V7, V15).

Flood Distribution µ σ ν p_KS

series α0 α1 α2

Q1 GEV 10.050c 0.0212c
−2.166b 6892.085c

−0.271b 0.713
[9.931, 10.182] [0.005, 0.036] [−4.006, −0.481] [5313.291, 8176.206] [−0.527, −0.092]

V3 Gamma 1.866c 0.0185b
−2.094b 0.261c

− 0.832
[1.751, 1.977] [0.002, 0.034] [−3.801, −0.403] [0.209, 0.300]

V7 Gamma 2.638c 0.0119b
−1.934b 0.269c

− 0.907
[2.522, 2.754] [−0.005, 0.028] [−3.713, −0.166] [0.215, 0.308]

V15 Gamma 3.258c
− −1.525b 0.265c

− 0.926
[3.213, 3.354] [−2.807, 0.155] [0.215, 0.307]

The relationships between µ and covariates were built by the exponential function in Eq. (3). α1 and α2 are the parameters related to urban population (Pop) and reservoir index
(RI), respectively. The symbols a, b and c denote that the estimated model parameters are significant at the levels of 0.1, 0.05 and 0.1, respectively. The numbers in brackets are the
95 % uncertainty interval. p_KS stands for the p value of the KS test for marginal distributions.

Figure 4. Nonstationary marginal distributions during both the observation and design life periods.

2023 after a larger reservoir named Datengxia is expected to
be put into operation. After 2023, with no more reservoirs
planned, the predicted mean values of Q1, V3 and V7 would
be expected to reach their peaks in the mid-21th century fol-
lowed by a slight declining trend because of a shrinking ur-
ban population. Since V15 was only related to RI, V15 would
show an abrupt decline in 2023 due to the regulation of the
Datengxia reservoir. In general, the predicted nonstationary

marginal distributions forQ1 and V3 during 2013–2100 were
roughly approximate to the marginal distributions under the
assumption of stationarity, whereas the predicted nonstation-
ary marginal distributions for V7 and V15 exhibited smaller
mean values than those of the stationary distributions.
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Table 3. Results of nonstationary analysis for the dependence structure of (Q1, V3, V7, V15).

Copula Model parameters

parameter β0 β1 β2

θ13 3.023c – –
[2.816, 3.249]

θ17 1.719c – –
[1.483, 1.976]

θ115 1.461c
−0.111b 9.426b

[0.958, 2.038] [−0.021, −0.226] [0.970, 20.416]

θ37|1 0.0926a – –
[−0.316, 0.473]

θ315|1 −1.444b – –
[−3.036, −0.693]

θ715|13 −0.231a [−0.728, 0.199] – –

The relationships between copula parameters and covariates were built by the exponential function in
Eq. (7). β1 and β2 are the parameters related to urban population (Pop) and reservoir index (RI),
respectively. The symbols a, b and c denote that the estimated model parameters are significant at the
levels of 0.1, 0.05 and 0.01, respectively. The numbers in brackets are the 95 % uncertainty interval.

Figure 5. Statistical correlations between flood peak and flood volumes. Three asterisks (***) indicate the statistical correlation at the 0.01
significance level.

4.2 Nonstationary dependence structure for
(Q1, V3, V7, V15)

After estimating the nonstationary marginal distributions
for (Q1, V3, V7, V15), the multivariate dependence struc-
ture was constructed by the dynamic C-vine copula with
Q1 elected as the key variable. Figure 5 illustrates signifi-
cant correlations between the flood peak Q1 and the flood
volumes (i.e. V3, V7 and V15). Table 3 shows the estima-
tion results of the dynamic C-vine copula. The PIT test for
the nonstationary dependence structure of (Q1, V3, V7, V15)

suggested a satisfactory fitting effect, and most estimated
parameters were statistically significant at the 0.05 level.
The results indicated that the copula parameter θ115 for pair
(Q1, V15) was found to be nonstationary and expressed as an
exponential function of both the urban population Pop and

reservoir index RI, whereas other copula parameters indi-
cated stationary dependences. It was seen that the margin of
Q1 displayed asynchronous nonstationarity behaviours with
V15 (see Table 2 and Fig. 4). Therefore, the dependence non-
stationarity of the pair (Q1, V15) could possibly be attributed
to the asynchronous marginal nonstationarities.

According to the regression function, θ115 was negatively
related to Pop, whereas it was positively related to RI. In
other words, growing urbanization weakened the multivari-
ate flood dependence, whereas reservoir regulation played an
opposite role, enhancing the dependence. This finding indi-
cated that human activities, including urbanization and reser-
voir regulation, not only changed the statistical characteris-
tics of the marginal distributions of (Q1, V3, V7, V15) but
also affected the dependence of (Q1, V3, V7, V15). Figure 6
shows the time variations of θ115 during the observation pe-
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Figure 6. Nonstationary copula parameter for pair (Q1, V15) dur-
ing both the observation and design life periods.

riod of 1951–2012 as well as during the design life period
of 2013–2100. Due to reservoir regulation, θ115 presented
two obvious upward change points in both 2006 and 2023.
Besides this, θ115 also exhibited an obvious decreasing trend
with urban population growth from 1951 to the mid-21th cen-
tury, followed by a slight increasing trend due to a shrink-
ing urban population. During the design life period, the pre-
dicted nonstationary θ115 suggests a weaker dependence for
(Q1, V3, V7, V15) than the dependence under the stationary
assumption, since it is usually smaller than the stationary es-
timation.

In addition, the change-point detection method based
on the Cramér–von Mises statistic (Bücher et al., 2014)
was employed to detect possible nonstationarities in both
the marginal distributions and dependence of the multivari-
ate flood series (Q1, V3, V7, V15). Readers are referred to
Bücher et al. (2014) and Kojadinovic (2017) for specific
steps to implement the change-point detection. The results
indicated that neither the marginal distributions nor depen-
dence displayed change points at the 0.05 significance level
(see Table 4), whereas the previous analysis suggested non-
stationary margins and dependence due to the joint effects
of urbanization and reservoir regulation. These aforemen-
tioned inconsistencies could be attributed to the opposite
roles of urbanization and reservoir regulation on shifting of
the multivariate flood distribution, with urbanization gener-
ally enlarging the mean values of the flood series and weak-
ening their dependence and reservoir regulation, decreasing
the mean values and strengthening the dependence. In other
words, the nonstationarities induced by these two factors may
have offset each other. As a result, the nonstationarities of
(Q1, V3, V7, V15) might have not been captured by the sta-
tistical method based on the Cramér–von Mises statistic. This
finding highlights the significance of cause–effect analysis in
judging the nonstationarities of hydrologic series (Xiong et
al., 2015).

4.3 Multivariate hydrologic design characterized by
average annual reliability

The multivariate hydrologic designs, characterized by AAR
associated with the OR, AND and Kendall exceedance prob-
abilities, were estimated from the predicted nonstationary
multivariate distribution for (Q1, V3, V7, V15) during the de-
sign life period from 2013 to 2100. The left columns in
Figs. 7–10 show the most-likely design events and the 90 %
confidence intervals conditioned on the AAR varying from
0.01 to 0.99. The multivariate hydrologic design events as-
sociated with both the OR and Kendall exceedance proba-
bilities exhibited the lower boundaries, whereas the design
events associated with the AND exceedance probability ex-
hibited the upper boundaries.

The design flood hydrographs were derived from the mul-
tivariate hydrologic designs against the benchmark flood hy-
drograph observed in 1988. Figure 11 shows the design flood
hydrographs by setting AAR equal to 0.90, 0.95 and 0.99. For
any given multivariate flood event, the corresponding OR ex-
ceedance probability was larger than that of AND, with the
Kendall exceedance probability somewhere in between (Van-
denberghe et al., 2011). These differences among the OR,
AND and Kendall exceedance probabilities indicate the dif-
ferent design strategies. It must be noted that the choice of
design strategy in engineering practice is usually a priori and
is dependent on the specific design requirements and mech-
anisms of failure for hydraulic structures (Serinaldi, 2015;
Salvadori et al., 2016).

We calculated the univariate hydrologic design events
from the predicted marginal distributions to compare the de-
sign strategies under the multivariate framework with those
under the univariate framework. Figures 7–10 show that
the univariate hydrologic design events exactly constituted
the lower boundaries of the multivariate hydrologic design
events associated with the OR exceedance probability as
well as the upper boundaries of the design events associated
with the AND exceedance probability. Under a given AAR,
the hydrologic designs under the univariate framework were
generally smaller than the most-likely design events associ-
ated with the OR exceedance probability, whereas they were
larger than those associated with the AND exceedance prob-
ability; they were most approximate to those associated with
the Kendall exceedance probability. The comparisons of the
flood hydrographs displayed in Fig. 11 reinforced these find-
ings.

4.4 Impacts of multivariate nonstationarity behaviours
on hydrologic design values

Section 4.1 and 4.2 show the marginal distribution and de-
pendence structure of the multivariate flood distribution of
(Q1, V3, V7, V15) to be nonstationary. We estimated the mul-
tivariate hydrologic design events under an assumption of
stationarity to illustrate how these nonstationarities act on the
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Table 4. Results of change-point detection for the marginal distributions and dependence of (Q1, V3, V7, V15).

Flood series Change point p value Flood series Change point p value
of margin of dependence

Q1 1993 0.072 (Q1, V3) 1955 0.083
V3 1993 0.186 (Q1, V7) 1955 0.537
V7 1994 0.752 (Q1, V15) 1972 0.599
V15 1981 0.423 (Q1, V3, V7, V15) 1972 0.995

Figure 7. Design values of the annual maximum daily discharge for different average annual reliability (AAR) varying from 0.01 to 0.99
under three nonstationary conditions.
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Figure 8. Design values of the 3-day flood volume for different average annual reliability (AAR) varying from 0.01 to 0.99 under three
nonstationary conditions.

multivariate hydrologic designs, i.e. both marginal distribu-
tions and the dependence structure were treated as stationary
(see the right columns in Figs. 7–10). Figure 4 suggests that
both the predicted nonstationary marginal distributions for
Q1 and V3 during the design life period were approximate to
the stationary marginal distributions. Therefore, the nonsta-
tionary and stationary marginal distributions yielded similar
design values for zQ1 and zV3 (see Figs. 7 and 8). The pre-
dicted nonstationary distributions for both V7 and V15 indi-
cated smaller mean values compared to those of the station-

ary distributions (see Fig. 4); therefore, the corresponding
hydrologic design values estimated from the nonstationary
marginal distributions were generally smaller than those esti-
mated from the stationary marginal distributions (see Figs. 9
and 10).

The nonstationary multivariate flood distribution during
the design life period was also predicted to exhibit a weaker
dependence structure than that of the stationary distribution
(see Fig. 6). The dependence nonstationarity was expected
to have a much subtler effect on the multivariate hydrologic
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Figure 9. Design values of the 7-day flood volume for different average annual reliability (AAR) varying from 0.01 to 0.99 under three
nonstationary conditions.

design compared to the marginal nonstationarities (Xiong et
al., 2015). To illustrate the individual effect of the depen-
dence nonstationarity on the multivariate hydrologic design,
an artificial nonstationary condition for the multivariate flood
distribution was set so that only the marginal nonstation-
arities were considered, whereas the dependence structure
was treated as stationary. The results of the multivariate hy-
drologic design events are shown in the middle columns in
Figs. 7–10. In general, the dependence nonstationarity had
less of an effect on the multivariate hydrologic designs com-

pared the marginal nonstationarities; however, some visible
differences in both the 90 % confidence intervals were still
identified. In summary, the nonstationary and weaker depen-
dence structure generally suggested wider confidence inter-
vals for the multivariate hydrologic design values.
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Figure 10. Design values of the 15-day flood volume for different average annual reliability (AAR) varying from 0.01 to 0.99 under three
nonstationary conditions.

5 Conclusion and remarks

The statistical characteristics of both the marginal distribu-
tions and the dependence structure of multivariate flood vari-
ables can vary with time under nonstationary conditions. It
is possible that the multivariate flood distribution estimated
from the historical information will not reflect the statisti-
cal characteristics of flooding in the future. As a result, the
stationary-based hydrologic design would not be able to deal
with potential hydrologic risks of hydraulic structures. It is

necessary for hydrologic designers to take into account the
physical driving forces (such as human activates and climate
change) responsible for the nonstationarities of multivariate
flood variables.

The present study introduced possible methods for ad-
dressing multivariate hydrologic design for application in
engineering practice under nonstationary conditions. A
dynamic C-vine copula allowing for both time-varying
marginal distributions and time-varying dependence struc-
ture was developed to capture the nonstationarities of a multi-
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Figure 11. Design flood hydrographs associated with OR, AND and Kendall probabilities.

variate flood distribution. The multivariate hydrologic design
under nonstationary conditions was estimated by specifying
the design criterion by average annual reliability. The most-
likely design event and confidence interval were identified
as the outcome of the multivariate hydrologic design. Multi-
variate flood series (Q1, V3, V7, V15) from the Xijiang River
were chosen as a case study, with the main findings given
below.

Urbanization and reservoir regulation were found to be the
driving forces responsible for the nonstationarities of both
the marginal distributions and dependence structure of the

multivariate flood series (Q1, V3, V7, V15). The growth of
the urban population generally resulted in an increased mean
value of the individual flood series, whereas it weakened
the dependence of (Q1, V3, V7, V15). The increasing reser-
voir index had the opposite effect on the individual flood se-
ries as well as their dependence. Under a given average an-
nual reliability, the OR exceedance probability yielded the
largest design values, followed by the Kendall and the AND
exceedance probabilities. Nonstationarities in both marginal
distributions and dependence structure affected the outcome
of the multivariate hydrologic design. It is the marginal non-
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stationarities that played a dominant role in affecting the mul-
tivariate hydrologic design.

There are two remarks that can be made that are related to
the practical implications of the hydrologic design methods
developed in the current study that are detailed below.

The first remark relates to the length of observed flood
data required for multivariate and nonstationary hydrologic
designs. In theory, sufficiently long observed flood data (or
other extreme-value data) are required to derive robust esti-
mations of the distribution parameters and the correct hydro-
logic design values (Zheng et al., 2018). However, in reality,
most data series are limited in length, thus forcing us to use
what we have at hand to do research or design works without
fulfilling the theoretical assumptions or requirements. Some
recent studies suggested that univariate flood frequency anal-
ysis under stationary conditions usually requires flood data
with a continuous period of at least 30 years (Ministry of Wa-
ter Resources of People’s Republic of China, 1996; Engeland
et al., 2018; Kobierska et al., 2018). However, determining a
definitive answer to the length of observed flood data that
is required for flood frequency analysis under multivariate
and/or nonstationary settings poses a challenge, since this is-
sue has not yet been fully addressed. However, it is certain
that multivariate and nonstationary hydrologic designs nat-
urally require datasets of longer length, since they usually
contain more parameters to be estimated.

The second remark related to the trade-off between reduc-
ing estimation bias and increasing model uncertainty. Non-
stationary models generally improve performance in fitting
observation data by reducing estimation bias (Jiang et al.,
2015b), but this is usually achieved at the expense of increas-
ing model complexity, such as adding more model param-
eters and introducing more nonstationary covariates, which
might induce additional sources of model uncertainty (Seri-
naldi and Kilsby, 2015; Read and Vogel, 2016). A careful bal-
ance between the model fitting effect and the model complex-
ity should be maintained in practice when employing multi-
variate and nonstationary hydrologic design by keeping in
mind the following two points: (1) the multivariate and non-
stationary models should remain effective but should also be
kept as simple as possible to avoid overfitting, and (2) to en-
sure a robust relationship between the distribution parameters
and the explanatory covariates, the chosen covariates should
be physically related to the flood processes and supported by
a well-defined cause–effect analysis.

Data availability. All the data used in this study can be re-
quested by contacting the corresponding author Cong Jiang at
jiangcong@cug.edu.cn.
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Appendix A: Calculating multivariate exceedance
probabilities

A1 OR exceedance probability (formulated by Eq. 9 in
the paper)

Since the cumulative distribution function
F (q1, v3, v7, v15 |θ t ) has no analytical expression, the
OR exceedance probability por

t at time t is calculated by the
Monte Carlo method as follows:

1. Calculate the marginal probabilities (u1, u3, u7, u15) of
(q1, v3, v7, v15).

2. Generate m samples
(
u1, i, u3, i, u7, i,u15, i

)
(i =

1, 2 , . . . ,m) from the C-vine copula expressed by
Eq. (4).

3. Calculate F (q1, v3, v7, v15 |θ t )=
1

m+1
∑m
i=1

1
(
u1, i ≤ u1, u3, i ≤ u3, u7, i ≤ u7, u15, i ≤ u15

)
.

4. Calculate por
t = 1−F (q1, v3, v7, v15 |θ t ).

A2 AND exceedance probability (formulated by Eq. 10
in the paper)

The AND exceedance probability pand
t at time t is calculated

by the Monte Carlo method as follows:

1. Calculate the marginal probabilities (u1, u3, u7, u15) of
(q1, v3, v7, v15).

2. Generate m samples
(
u1, i, u3, i, u7, i, u15, i

)
(i =

1, 2, . . . ,m) from the C-vine copula expressed by
Eq. (4).

3. Calculate pand
t =

1
m+1

∑m
i=1

1
(
u1, i ≥ u1, u3, i ≥ u3, u7, i ≥ u7, u15, i ≥ u15

)
.

A3 The Kendall exceedance probability (formulated by
Eqs. 11 and 12 in the paper)

The Kendall exceedance probability pken
t at time t is calcu-

lated by the Monte Carlo method as follows:

1. Calculate the marginal probabilities (u1, u3, u7, u15) of
(q1, v3, v7, v15).

2. Calculate ρt = F (q1, v3, v7, v15 |θ t ) (see calculation
steps 2–3 for OR exceedance probability).

3. Generate m samples
(
u1, i, u3, i, u7, i, u15, i

)
(i =

1, 2, . . . ,m) from the C-vine copula expressed by
Eq. (4).

4. For j = 1, 2, . . . , m, calculate vj = 1
m+1

∑m
i=1

1
(
u1, i ≤ u1, j , u3, i ≤ u3, j , u7, i ≤ u7, j , u15, i ≤ u15, j

)
.

5. Calculate KC (ρt )= 1
m

∑m
i=11(vi ≤ ρt ).

6. Calculate pken
t = 1−KC (ρt ).

Appendix B: Generating the multivariate design event
samples (formulated by Eq. 17 in the paper)

To calculate the most-likely design event and confidence in-
terval conditioned on AAR= η, we need to generate numer-
ous multivariate design event samples by the Monte Carlo
method. Here, we give the details of generating the design
event samples as follows:

1. Define the total number of design event samples N and
the initial number of the design event sample i = 0.

2. Generate a random integer (denoted by tr ) among (T1,
T1+ 1, . . . , T2).

3. Generate a random sample
(
zQ1 , zV3 , zV7 , zV15

)
following the multivariate distribution
F
(
zQ1 , zV3 , zV7 , zV15

∣∣θ tr ) with the distribution
parameter vector θ tr .

4. Calculate the annual exceedance probability for each
year throughout the period from T1 to T2.

5. Calculate AAR during the period from T1 to T2.

6. If |AAR− η|< ε (where it is a very small value, such
as 0.0001), i = i+ 1.

7. If i < N , repeat steps (2)–(6).
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