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Abstract. Medium-term hydrologic forecast uncertainty is
strongly dependent on the forecast quality of meteorological
variables. Of these variables, the influence of precipitation
has been studied most widely, while temperature, radiative
forcing and their derived product potential evapotranspira-
tion (PET) have received little attention from the perspective
of hydrological forecasting. This study aims to fill this gap
by assessing the usability of potential evaporation forecasts
for 10-day-ahead streamflow forecasting in the Rhine basin,
Europe. In addition, the forecasts of the meteorological vari-
ables are compared with observations.

Streamflow reforecasts were performed with the daily
wflow_hbv model used in previous studies of the Rhine us-
ing the ECMWF 20-year meteorological reforecast dataset.
Meteorological forecasts were compared with observed rain-
fall, temperature, global radiation and potential evaporation
for 148 subbasins. Secondly, the effect of using PET clima-
tology versus using observation-based estimates of PET was
assessed for hydrological state and for streamflow forecast
skill.

We find that (1) there is considerable skill in the ECMWF
reforecasts to predict PET for all seasons, and (2) using dy-
namical PET forcing based on observed temperature and
satellite global radiation estimates results in lower evapo-
ration and wetter initial states, but (3) the effect on fore-
casted 10-day streamflow is limited. Implications of this find-
ing are that it is reasonable to use meteorological forecasts
to forecast potential evaporation and use this is in medium-
range streamflow forecasts. However, it can be concluded
that an approach using PET climatology is also sufficient,
most probably not only for the application shown here, but

also for most models similar to the HBV concept and for
moderate climate zones.

As a by-product, this research resulted in gridded datasets
for temperature, radiation and potential evaporation based on
the Makkink equation for the Rhine basin. The datasets have
a spatial resolution of 1.2×1.2 km and an hourly time step for
the period from July 1996 through 2015. This dataset com-
plements an earlier precipitation dataset for the same area,
period and resolution.

1 Introduction

Hydrologic forecasting has the aim of predicting the future
state of important hydrologic fluxes, most notably stream-
flow. Throughout the process of forecasting, from model
setup via initial state estimation to forecast run, meteorolog-
ical forcing is a key component. Precipitation is known to
be the main driver of hydrological processes, and most of
the forecast uncertainty is attributed to inaccurate precipita-
tion forcing (Cuo et al., 2011; Pappenberger et al., 2005). As
a consequence, most attention has been given to the accu-
racy of precipitation forecasts. See for example the review of
Cloke and Pappenberger (2009).

Evaporation is a result of the interaction between mete-
orological forcing and physical and physiological processes
at the land surface. Meteorological forcing provides the po-
tential energy (potential evaporation or PET) for evaporative
processes to take place. There are many formulas to esti-
mate the potential energy available for evaporation, which
can be divided in three types of formulas based on their
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data requirements (Xystrakis and Matzarakis, 2011; Xu and
Singh, 2002): temperature-based (e.g., Hargreave’s equation,
Hammon’s equation), radiation-based, and combined meth-
ods (e.g., Hansen’s equation, Turc’s equation, Makkink’s
equation). From an operational viewpoint the different types
of formulas result in different demands on data availability.

Constraints on data availability have led to additional ap-
proximations for potential evaporation. A common approxi-
mation is the calculation of a monthly potential evaporation
climatology or PET demand curves (Bowman et al., 2016).
This climatology is then used as a driver for both historic
potential evaporation and future potential evaporation.

Hydrological models have proven to be insensitive to
the difference between variable potential evaporation forc-
ing and climatological monthly potential evaporation forc-
ing with respect to the model’s potential to estimate stream-
flow after calibration (Andréassian et al., 2004; Oudin et al.,
2005a; Oudin et al., 2005b). However, in forecasting, differ-
ent choices in the handling of forcing data can be made be-
tween the historic update step and the forecast step, while the
hydrological model, as a rule, remains the same. It therefore
remains relevant to understand how a single model reacts to
potential evaporation forcing. Insensitivity to the type of po-
tential evaporation during the process of calibration does not
mean that a model is insensitive to the form of potential evap-
oration input.

As mentioned above, there has been little attention to the
forecast skill of the secondary forcing variables temperature
and radiation in the hydrological context of potential evapo-
ration. Furthermore, there is an easy and often used practice
of avoiding potential evaporation forecasts by using a poten-
tial evaporation climatology. Therefore, the objective of this
study is to assess to what extent potential evaporation fore-
casts can contribute to streamflow forecast skill.

This question is evaluated for the Rhine basin in Eu-
rope (Fig. 1). The Rhine is one of the basins currently em-
ployed as a case study for the IMproving PRedictions of
EXtremes (IMPREX) project, which aims to improve pre-
dictions and management of hydrological extremes through
climate services (van den Hurk et al., 2016).

Several studies already directly addressed some aspects
of operational ensemble flow forecasts in the Rhine. Renner
et al. (2009) showed that at the time meaningful hydrologi-
cal ensemble forecasts could be produced up to a 9-day lead
time for the Rhine River based on ECMWF ensemble mete-
orological forecasts. Reggiani et al. (2009) used a Bayesian
ensemble uncertainty processor to improve the assessment
of uncertainty in the ensemble forecast. Terink et al. (2010)
applied downscaling techniques to ERA15 ECMWF reanal-
ysis data to develop a downscaling strategy for regional cli-
mate models (RCMs). Verkade et al. (2013) developed post-
processing techniques to improve the precipitation and tem-
perature ECMWF forecasts for the hydrological model. Pho-
tiadou et al. (2011) compared two historical precipitation
datasets and assessed the influence of precipitation datasets

on model results. Recently, van Osnabrugge et al. (2017) de-
veloped a high-resolution hourly precipitation dataset for use
with gridded hydrologic models.

To answer the research question, model experiments are
performed, but first the data and hydrological model are
presented (Sect. 2). Second, the model experiments are de-
scribed, which also partitions the main question into three
subquestions (Sect. 3) which are subsequently answered
(Sect. 4). The paper concludes with a discussion on the re-
sults in the wider context of evaporation modeling in hydro-
logic forecasting and the conclusions (Sect. 5).

2 Data and model

Observational data have been preprocessed for use with a
grid-based hydrological model. The data were processed
with hourly time resolution, on a 1.2×1.2 km grid spatial res-
olution, and for the period mid 1996 through 2015. All source
data to derive the gridded estimates come from sources that
supply their data in near real time, making the datasets suit-
able for operational forecasting. For this study all data were
aggregated to a daily time step. The hourly datasets are
downloadable through the 4TU data center (van Osnabrugge,
2017, 2018).

2.1 Precipitation

For this study the precipitation dataset from van Osnabrugge
(2017) is used. The precipitation dataset has been derived us-
ing the genRE interpolation method based on ground mea-
surements and the HYRAS (Rauthe et al., 2013) climatolog-
ical precipitation dataset (van Osnabrugge et al., 2017).

2.2 Temperature

Temperature observations (1996–2016) are interpolated on
the same 1.2×1.2 km grid as the precipitation data. Temper-
ature is derived from interpolation of ground measurements
with correction for elevation using the SRTM digital eleva-
tion model (Farr et al., 2007) and standard lapse rate as fol-
lows.

To calculate temperature Tx at a given grid cell x from a
number of n surrounding stations, determine a set of weights
based on inverse-distance squared weighting between all sta-
tions (typically the n closest stations) and the grid cell. This
step can have a threshold for maximum distance. di,x is the
distance between station i and cell x:

wi,x =

1
d2
i,x

n∑
i=1

1
d2
i,x

. (1)

Second, interpolate the measured temperature Tm,i with
the weights as with standard inverse-distance squared inter-
polation:
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Figure 1. Map of the Rhine basin, Europe. Black lines delineate 148 subbasins used in the analysis of the meteorological forecast skill.
Square markers show the locations used for forecast skill analysis.

Tm,x =

n∑
i=1

Tm,iwi,x . (2)

Third, calculate the temperature lapse correction term Tγ,x
as the weighted difference between the height of the grid
cell Hx and the height of the considered stations Hi multi-
plied by the lapse rate γ .

Tγ,x = γ

(
n∑
i=1

(Hi −Hx)wi,x

)
(3)

Note that Tγ,x is static for a fixed configuration of the mea-
surement network if γ is taken to be a constant. In this study
the configuration of the measurement network changed based
on the number of reporting stations at each time step. A con-
stant lapse rate was assumed: γ = 0.0066 (◦C m−1).
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The final temperature estimate for grid cell x is obtained
by adding Tγ,x and Tm,x :

Tx = Tγ,x + Tm,x . (4)

2.3 Downward shortwave surface radiation flux

The availability of solar radiation measurements at the sur-
face has proven to be spatially and temporally inadequate
for many applications, with remotely sensed solar radiation
products having the largest potential to remedy this (Journée
and Bertrand, 2010). Remotely sensed solar radiation esti-
mates from the Land Surface Analysis Satellite Application
Facility (LSA-SAF) were found to be in closer agreement
with ground observations than reanalysis datasets such as the
Système d’Analyze Fournissant des Renseignements Atmo-
sphériques à la Neige (SAFRAN) reanalysis (Carrer et al.,
2012) and ERA-Interim (Jedrzej et al., 2014).

For this study, downward shortwave radiation is resampled
and merged from the EUMETSAT Surface Incoming Solar
Radiation (SIS) (Mueller et al., 2009) and Downward Sur-
face Shortwave Flux (DSSF) (Trigo et al., 2011) products
from the Climate Monitoring Satellite Application Facility
(CM-SAF) and LSA-SAF, respectively. Gaps in the satellite
data are filled with the ERA5 surface solar radiation down-
wards (ssrd) parameter from the 4d-var reanalysis (Coperni-
cus Climate Change Service, 2018). ERA5 was found to have
comparable mean bias with satellite-derived products for in-
land stations (Urraca et al., 2018).

In earlier research it has been shown that LSA-SAF
(2005–current) and CM-SAF (1983–2005) can consistently
be merged into one time series (Jedrzej et al., 2014). The
products of the different SAFs are comparable in terms of
bias and standard deviation (Ineichen et al., 2009).

2.4 Makkink potential evaporation

There are different approaches in making use of remotely
sensed data to calculate evapo(transpi)ration. One branch of
research aims to calculate actual evapotranspiration directly
from satellite imagery (Su, 2002). Applications range from
estimating the global evaporation flux (Mu et al., 2011), wa-
ter resources management (Bastiaanssen et al., 2005) and
constraining model parameters for a gridded model (Im-
merzeel and Droogers, 2008).

For operational use, PET estimates can be derived from
satellite data only, or from a combination of satellite imagery
and ground measurements. Bowman et al. (2017) explored
the use of MODIS to provide a daily PET, both as dynamic
PET (Spies et al., 2015) and PET climatology (Bowman
et al., 2016) for a gridded and lumped version of the Sacra-
mento Soil Moisture Accounting (SAC-SMA) model. The
model was recalibrated for each PET input. No configuration
with MODIS-derived PET showed consistent improvements
across all basins in their case study. Still, it was concluded
that the combination of dynamic PET in combination with a

gridded model had the best overall results (Bowman et al.,
2017).

A disadvantage of using satellites such as MODIS is their
temporal coverage which is restricted to a single overpass at
a set time each day giving one instantaneous value. This can
be resolved by assuming a sinusoidal development of PET
over the day (Kim and Hogue, 2008), but the limitation is
clear. This disadvantage is resolved by using geostationary
satellites. For example, Jacobs et al. (2009) used solar radia-
tion from the NOAA GOES geostationary satellite in combi-
nation with ground observations to calculate daily PET with
the Penman–Monteith equation.

Here, potential evaporation is calculated from geostation-
ary satellite radiation estimates and ground observations of
temperature with the method proposed by Makkink (1957),
which is applicable with remotely sensed radiation estimates
(de Bruin et al., 2016). PET calculated with Makkink’s equa-
tion is a reference crop evapotranspiration, which means that
crop factors apply determined by the hydrological model. In
the setup of our hydrological model the crop factor was de-
termined by land use. A crop factor of 1.15 is applied to the
forested areas, and 1.0 to all others.

The reasons for choosing the Makkink equation are that
(1) it only needs radiation and temperature, for which grid-
ded estimations are available, and that (2) the Makkink equa-
tion is used by the Royal Netherlands Meteorological Insti-
tute (KNMI), so that the work presented here is compatible
with ongoing local research (Hiemstra and Sluiter, 2011).

The potential evaporation is calculated based on air tem-
perature T (◦C) and downward shortwave radiation Rg
(W m−2) for accumulation period t (s) (Hiemstra and Sluiter,
2011):

PET= 1000 · 0.65
1

1+ψ
·
tRg

λρw
(mm), (5)

with ψ the psychrometric constant, λ the latent heat of water,
1 the slope of the saturation vapor pressure curve and ρw the
density of water calculated by

ψ = 0.646+ 0.0006T
[
hPa ◦C−1

]
, (6)

λ= 1000(2501− 2.38T )
[
Jkg−1

]
, (7)

1=
6.107 · 7.5 · 273.3
(273.3+ T )2

e
7.5T

273.3+T

[
hPa ◦C−1

]
, (8)

ρw = 1000
[
kgm−3

]
. (9)

The Makkink potential evaporation calculated for each time
step is called “near real time” (PETNRT). The potential evap-
oration climatology (PETClim) was calculated by averaging
over the full time period (20 years) for each day (Fig. 2).

2.5 ECMWF reforecast

The European Center for Medium-Range Weather Fore-
casts (ECMWF) issues hindcasts produced with the current

Hydrol. Earth Syst. Sci., 23, 1453–1467, 2019 www.hydrol-earth-syst-sci.net/23/1453/2019/



B. van Osnabrugge et al.: Contribution of PET to 10-day forecast skill 1457

Figure 2. Difference between climatology and near-real-time potential evaporation. Shown for the year 2004 for grid cell x : 200, y : 200.

model cycle for certain days for the last 20 years. The re-
forecast obtained for this study was produced with model
cycle 43r1 (Buizza et al., 2017). The first forecast is on
10 March 1996 and the last forecast on 29 December 2015,
with reforecasts alternating every 3 or 4 days.

Forecasted Makkink potential evaporation (PETFcast) is
calculated based on the t2m (T ) and ssrd (Rg) variables using
Eqs. (5)–(9). Temperature was first downscaled to the model
resolution using the standard lapse rate as used in the inter-
polation of the temperature observations as follows:

Tx = T +
(
h−hx

)
γ, (10)

with T the temperature given by the ECMWF forecast on the
ECMWF resolution, h the average height of the DEM cor-
responding to the footprint of the ECMWF grid cell, hx the
height of cell x in the model, and γ the lapse rate.

2.6 Hydrological model

wflow is a modular hydrological modeling framework that al-
lows for easy implementation and prototyping of regular grid
hydrological model concepts in python-pcraster (Schellekens
et al., 2017). The hydrological model concept used is the
HBV (Hydrologiska Byråns Vattenbalansavdelning) model
concept (Lindström et al., 1997) applied on a grid basis. The
generated runoff is routed through the river network with a
kinematic wave approach (Schellekens et al., 2017). In the
following this model is referred to as wflow_hbv. The setup
of the hydrological model is the same as used in assess-
ing the validity of the genRE precipitation dataset (van Os-
nabrugge et al., 2017). The model was parameterized through
calibration with a generalized likelihood uncertainty estima-

tion (GLUE) like procedure (Beven and Binley, 1992), us-
ing HYRAS precipitation as forcing data (Winsemius et al.,
2013a, b). The model is taken “as is” and is not recalibrated
for each PET forcing, the effect of which has been studied ex-
tensively elsewhere (e.g., Bowman et al., 2017; Oudin et al.,
2005a).

3 Experimental setup

The analysis consists of a meteorological part and a hydro-
logical part (Fig. 3).

3.1 Analysis of meteorological forecast skill

In this analysis we aim to answer the following question.
What is the forecast skill of temperature, radiation and po-
tential evaporation compared to precipitation?

For this purpose the observations and forecasts are spa-
tially averaged over 148 subbasins (Fig. 1). Time series of ob-
servations and forecasts are then used to calculate the mean
continuous ranked probability skill score (CRPSS) for each
basin and each season (MAM, JJA, SON, DJF).

The mean continuous ranked probability score (CRPS) is
an overall measure of forecast quality and is calculated by

CRPS=
1
n

n∑
i=1

∞∫
−∞

(
Fy(y)−H(y ≥ x)

)
dy, (11)

in which Fy(y) is the cumulative distribution function of the
forecast variable and H(y ≥ x) the Heaviside step function
that assumes probability 1 for values greater than or equal
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Figure 3. Flow chart of the model experiment. Blue boxes represent data products. Green boxes depict modeling activities. Arrows represent
the flow of data for historical runs (blue lines) and forecast runs (black). The red boxes indicate the areas for analysis of the results, each box
targeting a research subquestion.

to the observation and 0 otherwise (Brown et al., 2010). In-
terpretation of the mean CRPS is similar to interpretation of
a root mean square error. Both scores have no fixed upper
bound, their magnitude is determined by the variable, and
lower scores are better, with 0 the perfect score.

The limits of the mean CRPS vary depending on the basin
and season, and it is therefore difficult to compare between
basins and season. For this reason the CRPS is translated into
the continuous ranked probability skill score, which mea-
sures the performance of a forecasting system relative to a
reference forecast. The reference forecast here is seasonal
climatology. As such the CRPSS equals 1 for a perfect fore-
cast and 0 when the forecast ensemble does not score a better
CRPS than the CRPS calculated for the climatological distri-
bution.

CRPSS=
CRPSREF−CRPS

CRPSREF
(12)

Additionally, the relative mean error (RME) is calculated for
the mean of the forecasts Yi to detect relative biases in the
mean:

RME=

n∑
i=1

(
Yi − xi

)
n∑
i=1
xi

, (13)

in which Yi is the mean of the ensemble for forecast i and
xi the corresponding observation.

The above scores are calculated with the Ensemble Veri-
fication System (EVS), a software package to calculate en-
semble verification metrics (Brown et al., 2010).

3.2 Analysis of the effect of PET forecasts on
streamflow predictions

In this second part of the analysis we aim to answer the fol-
lowing questions.

1. To what extent are initial states affected by the use of
climatological versus near-real-time potential evapora-
tion?

2. To what extent can potential evaporation forecasts con-
tribute to streamflow forecast skill?

To answer the first question, the wflow_hbv model is con-
secutively forced with PETClim and PETNRT. Four states and
two fluxes are exported for analysis: (1) upper soil reser-
voir, (2) lower soil reservoir, (3) interception storage, (4) soil
moisture store and fluxes, (5) discharge and (6) actual evap-
oration. For the different states and fluxes the mean differ-
ence (MD) is calculated for each grid cell. This is done for
each season to investigate seasonality of differences. The
MD is calculated as

MD=

n∑
i=1

(
STATENRT,i −STATECLIM,i

)
n

. (14)

To answer the second question, two hindcast runs are per-
formed with PETFcast and PETClim as PET forcing, respec-
tively. To avoid effects caused by the initial state, all forecasts
start from the initial states derived from the PETNRT simula-
tion. Forecast skill scores are calculated as for the meteoro-
logical variables for 20 discharge gauges and for each season.
Different from the meteorological verification exercise, the
metrics are calculated for the forecasts with reference to the
model output, and are not compared with observations. The
reason for this was that differences between observation and
forecast stem from many different sources, including errors
in the initial state. Subsequently, a forecast that is “too wet”
might compensate in the 10-day forecast for initial states that
were “too dry”. For this reason the effect of the meteorolog-
ical forecast was isolated by calculating the verification met-
rics against modeled streamflow. This also avoids issues of
perceptive bias due to the model being calibrated on another
PET forcing; one of the PET types might simply perform
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better because it is more like the original PET used in cali-
bration.

Streamflow gauges for analysis were selected such that

1. only gauges were chosen for which the model was
deemed behavioral as expressed by a KGE score thresh-
old of 0.5;

2. only one gauge was selected for each stream in the
basin, except for the Rhine River itself, for which
two additional gauges were chosen. If multiple gauges
in the same stream were present, the gauge most down-
stream was chosen. The gauge “most downstream” was
selected by sorting on mean yearly discharge and pick-
ing the highest; and

3. from the then remaining list, the largest 20 streams were
selected for analysis.

The streamflow locations are shown in Fig. 1 as black squares
including the name of the river.

4 Results

4.1 Analysis of meteorological forecast skill

The forecast skill is assessed for all catchments and for
each season. Seasons are Northern Hemisphere seasons
spring (MAM), summer (JJA), autumn (SON), and win-
ter (DJF). Figure 4 shows the mean CRPSS calculated for
subsamples of all forecast–observation pairs for different lev-
els of exceedance, P(X ≥ x), for each variable. Simply put,
the CRPSS value at P(X ≥ x)= 0.1 is calculated for the top
10 % of observations and the CRPSS value at P(X ≥ x)=
0.7 is calculated for the highest 70 % of the observations.
P(X ≥ x) is calculated over all observations from all sea-
sons. This means that for some seasons, for example tem-
perature in winter, there is a lower limit in P(X ≥ x), be-
cause the highest temperatures do not occur during winter.
On the other hand, the response of the CRPSS curve is flat for
high P(X ≥ x) for temperature during summer, as all sum-
mer temperatures fall in the highest 60 % of temperatures of
the whole year. The same is shown for the CRPS, Fig. 5, and
the RME, Fig. 6.

There is no skill in the ECMWF forecast beyond 10 days
for daily precipitation. This is consistent with the 9-day lead
time in streamflow forecasts found by Renner et al. (2009).
The skill is best in winter and worst in summer, which is
expected based on the dominating meteorological processes
(frontal systems in winter and convective events in summer).
The total amount of precipitation is underestimated after a
1-day lead time (Fig. 6).

There is more skill in the forecast for the variables tem-
perature and incoming shortwave radiation. Likewise, there
is considerable skill remaining in the potential evaporation

forecast. For temperature the 1-day forecast is close to per-
fect for autumn and spring. The skill in temperature forecast
is similar for spring, summer and autumn but worse during
winter. The spread, the difference in skill between basins, is
also largest during winter and spring. The RME shows that
there is a small negative bias in the temperature forecasts.
The RME for winter is largest; however, it should be noted
that the RME is the mean difference weighed by the mean of
the observations (Eq. 13). As the mean temperature in winter
is closer to zero, this results in larger RME. Still, also when
expressed in absolute values, the error for temperature during
winter is larger than for other seasons (Fig. 5).

For radiation there is already quite a considerable loss in
skill after 1 day, but then the CRPSS remains quite stable for
longer forecasts, notably during spring and autumn. There is
a larger decline in skill for summer and for extreme low radi-
ation values in winter. In absolute terms, the CRPS is related
to the magnitude of the average radiation for each season,
with the smallest absolute errors for winter and the largest
during summer (Fig. 5). In terms of bias, we see that the
relative mean error increases with lower P(X ≥ x) (Fig. 6,
row 3). This indicates that low values are slightly overesti-
mated while high values are slightly underestimated, making
the radiation forecasts slightly less extreme than the obser-
vations. This is further demonstrated in Fig. S1 in the Sup-
plement, which plots the RME for different levels of non-
exceedance (P(X ≤ x)), as opposed to exceedance in Fig. 6.

The skill of the potential evaporation forecast is closely
tied to the skill in radiation forecast, both because Makkink
potential evaporation is directly proportional to radiation and
because of the larger uncertainty in the radiation forecast.
The forecast skill has the same properties as those found for
the radiation forecast. A small difference is that part of the
forecast skill in temperature is found back in a slightly im-
proved forecast skill after 10 days for PET compared to radi-
ation in summer.

Overall, there is relatively little spread in skill between
basins, with the 10th and 90th percentiles close to the mean
and following the same trajectory. The difference in skill be-
tween the different seasons is larger than the spread between
basins, especially for the variables temperature, radiation and
potential evaporation. This difference in skill between sea-
sons is partly misleading. For example, the forecast skill for
radiation in winter (Fig. 4, purple line) appears to be an out-
lier. However, the whole range of occurrences of extreme
high and low radiative forcing is compressed in a limited part
of P(X ≥ x). Although the forecast over the whole range of
winter radiative forcing is lower than that for the other sea-
sons, the top 10 % of winter radiative forcings are actually
among the best predicted.

Likewise, high temperatures receive higher skill scores
than low season temperatures. This is even more distinct in
the radiation forecasts. This does, however, not mean that the
forecasts of such rare events are more accurate: both RME
(Fig. 6) and CRPS (Fig. 5) are larger for high extremes,
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Figure 4. Continuous ranked probability skill score (CRPSS) for the four forcing variables benchmarked against sample climatology for the
148 HBV subbasins. CRPSSs are aggregated into mean (solid), 10th and 90th percentiles (dashed). Note that the CRPSS at P(X ≥ x)= 0.1
or 0.7 is calculated over, respectively, the 10 % and 70 % highest observation–forecast pairs, conditioned on the observations.

meaning larger errors for those forecasts. Still, taking into ac-
count the rarity of the event by calculating the CRPSS, which
is the skill of the forecast relative to the skill of a random
draw from the climatology, temperature, radiation and poten-
tial evaporation forecasts are found to add most information
for extreme high values, even though the error of those fore-
casts is larger than for more “average” values (values with a
higher probability of occurrence).

4.2 Influence of dynamic PET on initial states

Dynamic potential evaporation leads to lower actual evapora-
tion (AET). The difference is largest for summer and spring
(Fig. 7). Part of this lower evaporation is from a reduction
in interception as the interception storage is more filled on
average under dynamical forcing. This can be explained by
the correlation between precipitation events and low poten-
tial evaporation. On rainy days the dynamic potential evapo-
ration is generally lower, which decreases the amount of in-
terception evaporation. Under climatological forcing the en-
ergy available is not reduced, and thus more water evaporates

from the interception store. The latter is sometimes taken into
account in hydrological models by adding a potential evapo-
ration reduction function dependent on the intensity of pre-
cipitation to correct the PET climatology. For example, the
HBV model has this option (Schellekens et al., 2017).

The lower evaporation with dynamic PET forcing cas-
cades through the different model storages, accumulating in
a mostly wetter lower zone (LZ) storage under dynamic forc-
ing. Finally, the lower evaporation results in higher discharge
throughout the Rhine basin (see Figs. S2–S7). Exceptions are
the high Rhine during spring and to a lesser extent during au-
tumn, and several areas during winter when there is very lit-
tle effect overall. The wetter conditions also result in higher
peak discharges. As these higher discharges are a result of
the temporal dynamics of the potential evaporation input, we
expect to find a similar effect on forecasted discharges. As
will be shown later (Fig. 9), this is indeed the case, albeit
very limited.
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Figure 5. Continuous ranked probability score (CRPS) for the four forcing variables for the 148 HBV subbasins for the whole year. CRPS is
aggregated into mean (solid), 10th and 90th percentiles (dashed). Note that the CRPS at P(X ≥ x)= 0.1 or 0.7 is calculated over, respectively,
the 10 % and 70 % highest observation–forecast pairs, conditioned on the observations.

4.3 Influence of PET forecast on streamflow forecast

The CRPSS for streamflow forecast is hardly influenced by
potential evaporation forcing type. At first sight, the skill
scores obtained with dynamic or climatological PET are
identical. Small differences only become visible when tak-
ing a close-up of the differences by subtracting one from the
other (Fig. 8). However, the small difference in skill grows
with lead time. The influence of PET forcing type becomes
more intuitive when looking at the RME. An increasing drift
with lead time between PET forcing types is visible (Fig. 9).
Interestingly, this drift in RME is almost uniform over all
subsets of predicted discharge. The drift is positive, which
means that forecasted PET leads to slightly higher forecasted
discharges, as expected based on the results of the influence
of variable PET on the initial states.

Analyzed for each season separately, there is a little more
to discover about the role of potential evaporation forecasts
and the sensitivity of forecast skill to the meteorological fore-
cast in general. The contribution of the meteorological fore-
cast to streamflow forecast uncertainty is largest for sum-

mer, as shown by the largest decrease in CRPSS for the 10-
day forecast in summer compared to the other seasons. The
CRPSS especially “dips” for the most extreme discharges,
which is not as strong for spring and autumn, and especially
compared to the flat response of the CRPSS for the highest
30 % of discharges in winter.

In terms of the effect of potential evaporation climatol-
ogy versus forecasted potential evaporation, the influence is
largest (but still quite small) for summer and spring. This is
tied to the potential evaporation being of larger magnitude;
there is hardly a response for winter, where there is the low-
est potential evaporation.

The influence of PET forecasts on low flow prediction is
further examined by calculating the scores for different levels
of non-exceedance P(X ≤ x), instead of exceedance, so that
the score value at P(X ≤ x)= 0.1 is calculated for the 10 %
smallest observations and the score value at P(X ≤ x)= 0.7
is calculated for the lowest 70 % of the observations. Not
only has the choice of PET forcing for the forecast hardly
any effect on the forecasted streamflow (Fig. 10, bottom
row), but the forecast skill of low discharge is also affected
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Figure 6. Relative mean error (RME) for the four forcing variables for the 148 HBV subbasins for the whole year. RME is aggregated into
mean (solid), 10th and 90th percentiles (dashed). Note that the CRPSS at P(X ≥ x)= 0.1 or 0.7 is calculated over, respectively, the 10 %
and 70 % highest observation–forecast pairs, conditioned on the observations.

only slightly by the skill of the meteorological forecast in
general. The meteorological forecast skill declines with lead
time (e.g., Fig. 4), but the forecast skill of low percentile dis-
charge remains almost perfect (very close to 1) compared to
the model under perfect forcing.

5 Conclusions

This paper presented a simple and straightforward inves-
tigation with an operational forecasting practice perspec-
tive. First, observation data were preprocessed for use in the
gridded wflow_hbv model. Second, the wflow_hbv model
was subjected to dynamical and climatological PET forcing.
Three aspects were analyzed: (1) the skill in meteorological
forecast, (2) the effect of PET forcing on initial states and
(3) the effect of PET forcing on forecast skill.

Nine to 10 days is the upper limit on forecast lead time
for daily precipitation for the ECMWF forecast in the Rhine
basin, with only very little skill remaining compared to cli-
matology. There is considerable skill in daily temperature,
radiation and potential evaporation forecasts, also after 10

days. Variable PET forcing resulted in lower evaporation and
in wetter initial states and higher modeled discharges.

The main result of this study is that potential evapora-
tion forecasts improved streamflow forecasts only slightly.
This confirms earlier results that the influence of random er-
rors on estimated streamflow was generally not measurable
when comparing model runs directly, needing a 20% system-
atic bias in PET to influence model outcomes significantly
(Parmele, 1972). Likewise, Fowler (2002) concluded that cli-
matological PET estimates produced a soil water regime very
similar to that derived with actual daily PET values, includ-
ing extreme periods, for a site in Auckland, New Zealand.

There is a wider discussion on evaporation modeling in
hydrological models (Andréassian et al., 2004; Oudin et al.,
2005a; Oudin et al., 2005b) to which the results here might
add a new perspective: that of evaporation as a process rele-
vant for medium-term forecasts. This is directly also a limi-
tation of this research; only the influence on forecasts up to
10 days was investigated. The influence on seasonal forecast-
ing might be more substantial, considering that the modeling
of evaporation strongly influences the partitioning between
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Figure 7. Seasonal mean difference in calculated actual evaporation (AET) for each season. Actual evaporation includes evaporation from
interception.

runoff and evaporation in the longer-term water balance (Bai
et al., 2016).

Further limitations are that only one model was
tested (wflow_hbv) and for one climate zone (moderate tem-
perate). The model was calibrated originally on a different
PET climatology than studied here and was not recalibrated.
The latter is not seen as a limitation. Deliberately not re-
calibrating the model enabled us to focus on the changes in
modeled processes instead of comparably vague assessments
based on model performance expressed in efficiencies, with
the effects brought forward by the PET forcing hidden some-
where in the parameter space.

In the analysis, forecasting metrics were calculated over
subsets of observation–forecast pairs conditioned on the ob-
servations. Alternatively, the subsets could have been condi-
tioned on the mean of the forecasts. This would present more
intuitive information for a forecaster at the time of a forecast
when the observation is by definition not yet known (Lerch
et al., 2015).

The idea to look at potential evaporation forecast was insti-
gated as part of a program to improve forecasts of low flows.

Indeed, it is a recurring hypothesis that potential evaporation
forecasts should aid especially in making low flow predic-
tions. The uniform response of several skill scores for differ-
ent subsets of observed discharge does not support this idea;
there is no special gain for low flows.

Instead, from our model results it follows that the cor-
rect prediction of a drought is firstly dependent on a correct
forecast of no rain. Low flow recession is subsequently de-
termined, in the absence of further feedback mechanisms,
solely by the storage–discharge relationship of, in this case,
the lower zone representing the saturated zone as well as the
routing of surface water.

The follow-up question then is the following. Is this true in
reality, or is this a model deficiency? Should we rethink hy-
drological modeling to incorporate more feedbacks on evap-
oration? Certainly there are models with more complex rep-
resentation of evaporative processes. These are valid and im-
portant questions, especially in the light of hydrologic re-
sponse to change in climate drivers. However, from the re-
sults presented here, it should not be expected that a better
understanding of evaporative processes and feedbacks will
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Figure 8. CRPSS for forecast runs (forecasted PET, climatological PET) and their difference benchmarked against model output for the
20 largest sub-catchments in the Rhine basin. CRPSSs are aggregated into mean (solid), 10th and 90th percentiles (dashed). Note that the
CRPSS at P(X ≥ x)= 0.1 or 0.7 is calculated over, respectively, the 10 % and 70 % highest observation–forecast pairs, conditioned on the
observations.

Figure 9. RME for forecast runs (forecasted PET, climatological PET) and their difference for the 20 largest streams in the Rhine basin. RME
scores are aggregated into mean (solid), 10th and 90th percentiles (dashed). Note that the CRPSS at P(X ≥ x)= 0.1 or 0.7 is calculated
over, respectively, the 10 % and 70 % highest observation–forecast pairs, conditioned on the observations.
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Figure 10. CRPSS for forecast runs (forecasted PET, climatological PET) and their difference benchmarked against model output for the
20 largest streams in the Rhine basin. CRPSSs are aggregated into mean (solid), 10th and 90th percentiles (dashed). Note that the CRPSS at
P(X ≤ x)= 0.1 or 0.7 is calculated over, respectively, the 10 % and 70 % lowest observation–forecast pairs, conditioned on the observations.

result directly in a significant increase in 10-day predictive
skill for streamflow.
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