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Abstract. In August 2017 Bangladesh faced one of its worst
river flooding events in recent history. This paper presents,
for the first time, an attribution of this precipitation-induced
flooding to anthropogenic climate change from a combined
meteorological and hydrological perspective. Experiments
were conducted with three observational datasets and two
climate models to estimate changes in the extreme 10-day
precipitation event frequency over the Brahmaputra basin up
to the present and, additionally, an outlook to 2 ◦C warming
since pre-industrial times. The precipitation fields were then
used as meteorological input for four different hydrological
models to estimate the corresponding changes in river dis-
charge, allowing for comparison between approaches and for
the robustness of the attribution results to be assessed.

In all three observational precipitation datasets the climate
change trends for extreme precipitation similar to that ob-
served in August 2017 are not significant, however in two out
of three series, the sign of this insignificant trend is positive.
One climate model ensemble shows a significant positive in-
fluence of anthropogenic climate change, whereas the other
large ensemble model simulates a cancellation between the
increase due to greenhouse gases (GHGs) and a decrease due
to sulfate aerosols. Considering discharge rather than precip-
itation, the hydrological models show that attribution of the

change in discharge towards higher values is somewhat less
uncertain than in precipitation, but the 95 % confidence inter-
vals still encompass no change in risk. Extending the analy-
sis to the future, all models project an increase in probability
of extreme events at 2 ◦C global heating since pre-industrial
times, becoming more than 1.7 times more likely for high 10-
day precipitation and being more likely by a factor of about
1.5 for discharge. Our best estimate on the trend in flooding
events similar to the Brahmaputra event of August 2017 is
derived by synthesizing the observational and model results:
we find the change in risk to be greater than 1 and of a similar
order of magnitude (between 1 and 2) for both the meteoro-
logical and hydrological approach. This study shows that, for
precipitation-induced flooding events, investigating changes
in precipitation is useful, either as an alternative when hydro-
logical models are not available or as an additional measure
to confirm qualitative conclusions. Besides this, it highlights
the importance of using multiple models in attribution stud-
ies, particularly where the climate change signal is not strong
relative to natural variability or is confounded by other fac-
tors such as aerosols.
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1 Introduction

In August 2017 Bangladesh faced one of the worst river
flooding events in recent history, with record high water lev-
els, and the Ministry of Disaster Management and Relief re-
ported that the floods were the worst in at least 40 years.
Due to heavy local rainfall, as well as water flow from
the upstream hills in India, the various rivers in northern
Bangladesh burst their banks. This led to the inundation of
river basin areas in the northern parts of Bangladesh, starting
on 12 August and affecting over 30 districts. The National
Disaster Response Coordination Centre (NDRCC) reported
that around 6.9 million people were affected, with 114 peo-
ple reported dead and at least 297 250 people displaced. Ap-
proximately 593 250 houses were destroyed, leaving families
displaced in temporary shelters.

Bangladesh is a highly flood-prone country, with flat to-
pography and many rivers that regularly flood and are used to
irrigate crops and for fishing. The August 2017 floods were
particularly impactful as they followed two earlier flooding
episodes in late March and July that year, increasing the vul-
nerability of people. Nearly 85 % of the rural population in
Bangladesh works directly or indirectly with agriculture, and
rice is the main staple food, contributing to 95 % of total
food production. As is typical after such flooding, farmers
started to plant aman, the monsoon rice that is almost en-
tirely rain dependent. However, the August flood was worse
than that of July, and areas such as Dinajpur and Rangpur that
normally do not flood were also flooded (see Fig. 1). These
are areas that contain significant rice production. As a result,
650 000 ha of croplands were severely damaged during the
August monsoon flooding in the year. Aman rice is histori-
cally the most variable, and yields tend to drop dramatically
during major flood years (Yu et al., 2010). The flood-induced
crop losses in 2017 resulted in the record price of rice, nega-
tively affecting livelihood and food security. Beyond impacts
to agriculture, the floods destroyed transport infrastructure
such as railways lines, bridges and roads, leaving some areas
inaccessible to disaster relief efforts. The rise in water and
strong current breached roads and embankments and swept
away livestock, houses and assets that may have otherwise
been protected. At least 2292 schools were damaged, affect-
ing education for weeks, and 13 035 cases of waterborne ill-
nesses were reported in the aftermath of the floods.

The 2017 flood was markedly different from previous ma-
jor flood events in 1988 and 1998, when both the Ganges and
Brahmaputra flooded simultaneously (Webster et al., 2010).
Based on forecasts it was feared that a similar event would
occur in 2017, but in this case, the swelling of the Brahmapu-
tra; its tributary, the Atrai; and the Meghna caused flooding.
The worst impacts were along the main reach of the Brahma-
putra River (Fig. 1b).

The first estimates of the return period provided by the
Bangladesh Water Development Board (BWDB) for the
2017 flood event range from an event occurring once in

30 years to an event occurring once in 100 years, depend-
ing on the data source: water level and discharge data at
Bahadurabad (the main station for discharge representing
the Brahmaputra in Bangladesh) and the flooding forecast
system GloFAS. These estimates, however, were implicitly
based on the assumption of a stationary climate and did not
account for the possibility that the frequency of such flooding
events may be changing.

Extreme rainfall events that subsequently lead to
widespread flooding, such as the 2017 event in Bangladesh,
are one of the main types of extreme weather events that we
are expecting to see more of in a warming climate. But with
rainfall not only being driven by thermodynamic processes
but also being affected by changing atmospheric processes,
it is not clear a priori if such events at a particular location
will increase in likelihood or if the dynamic changes will
mean that the overall chance of extreme rainfall decreases
there (Otto et al., 2016). Furthermore, in the current climate,
drivers other than greenhouse gases (GHGs) often play a
role that is currently difficult to quantify but likely to mask
or exacerbate the effect of greenhouse-gas emissions so far
on the occurrence likelihood of extreme rainfall events (e.g.
aerosols, van Oldenborgh et al., 2016). Hence regional attri-
bution studies are necessary for identifying whether and to
what extent extreme rainfall events are changing and for pro-
viding insight into which drivers have been contributing to
those changes and whether the trend is likely to continue into
the future. Attribution studies require both observational data
and models to fully estimate the impact of changes in the cli-
mate system. The reported advances in model development
for the Brahmaputra region and their success in forecasting
gives good confidence in the models’ ability to accurately
represent the region.

Hydrological models are increasingly used for studies on
flooding in Bangladesh. As upstream flow data are absent for
Bangladesh, a lot of effort has been made to develop flood
forecasting systems based on satellite data and weather pre-
dictions. Webster et al. (2010), for instance, developed a sys-
tem that forecasts the Ganges and Brahmaputra discharge
into Bangladesh in real time on 1-day to 10-day time hori-
zons. In a recent study Priya et al. (2017) show that, by using
a new long lead flood forecasting scheme for the Ganges–
Brahmaputra–Meghna basin, skillful forecasts are provided
that inherently not only express a prediction of future water
levels but also supply information on the levels of confidence
with each forecast. Hirpa et al. (2016) used reforecasts to im-
prove the flood detection skill of forecasts.

Previous scientific studies generally show an increasing
trend in climate projections of extreme rainfall and high dis-
charge in the region. For example, Gain et al. (2011) use the
PCR-GLOBWB model with input from 12 global circula-
tion models (GCMs; 1961–2100) from the CMIP3 ensemble
(Meehl et al., 2007) in a weighted ensemble analysis. They
show that in this ensemble, there is a positive trend in the
peak flow at Bahadurabad; in this model configuration and
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Figure 1. Inundation forecast map of Bangladesh for 16 August 2017 (left panel). Overall flood impact of the August 2017 flooding as
stated on 21 August (right panel). The green circle in the northwest of the map denotes the location of Bahadurabad. The Brahmaputra
basin is outlined in Fig. 3; see the original documents (source: Flood Forecast and Warning Center – FFWC – of BWDB at https://reliefweb.
int/sites/reliefweb.int/files/resources/SitRep_2_BangladeshFlood_16August2017.pdf, last access: 8 May 2018 and https://reliefweb.int/sites/
reliefweb.int/files/resources/72hrs-Bangladesh_Flood_Version1_Final08212017.pdf, last access: 8 May 2018) for more details on the maps
and legends.

under the SRES B2 scenario, a peak flow that currently oc-
curs every 10 years will occur at least once every 2 years
during the time period 2080–2099. Dastagir (2015) gives an
overview of the change in flooding according to the IPCC
5th Assessment Report, using 16 GCMs from the CMIP5
ensemble (Taylor et al., 2012). They state that the warmer
and wetter climate predicted for the Ganges–Brahmaputra–
Meghna basin by most climate-related research in this re-
gion indicates that vulnerability to severe monsoon floods
will increase with climate change in the flood-prone areas of
Bangladesh. The same conclusion is reached by CEGIS and
SEN authors (2013), who use GCM projections and a hydro-
logical model to show that in the wet season, an increase in
precipitation and annual flow is projected. In line with this,
Mohammed et al. (2017) find that in a 2.0 ◦C warmer world,
floods will be both more frequent and of a greater magni-
tude than in a 1.5 ◦C warmer world in Bangladesh, using
the hydrological model the Soil and Water Assessment Tool
(SWAT) with input from the CORDEX regional model en-

semble. Zaman et al. (2017) use two sets of climate models
with climate change runs under the RCP8.5 scenario as in-
put in a basin model that simulates flows in major rivers of
Bangladesh, including the Brahmaputra. Using the two cli-
mate model runs as input, they find agreement in the basin
model runs for Brahmaputra flow in a 2.0 ◦C warmer world;
one run shows a slightly higher impact of climate change
compared to the other run, with an overall increase in mon-
soon flow of approximately 15 % and 10 % in the dry season.

Attribution studies on flooding, using both observational
data and models, have often been done with precipitation
only. In such studies, (e.g. Schaller et al., 2014; van der Wiel
et al., 2017; Philip et al., 2018; van Oldenborgh et al., 2017;
Risser and Wehner, 2017) it is assumed that precipitation is
the main cause of the flooding. For shorter timescales and
the relatively small basins involved, this is a reasonable as-
sumption. The major basins in Bangladesh, however, are sub-
stantially larger and have longer water travel times than the
basins considered in the above studies. Therefore using pre-
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cipitation alone as a proxy for flooding might not be appro-
priate. In this paper we explicitly test this assumption by per-
forming an attribution of both precipitation and discharge as
a flooding-related measure of climate change. Thus we ex-
plore the flood in two different ways – first from a meteoro-
logical perspective (using precipitation data) and then from
a hydrological perspective (using discharge data). Schaller
et al. (2016) already studied a flooding case in an attribution
study using one hydrological model. Yuan et al. (2018) use
observations, GCMs, and one land surface model with and
without land cover change to split the changes in observed
streamflow and its extremes into anthropogenic and natural
climate change, land cover change and human-water with-
drawal components. In this paper we do an attribution study
for the first time using observational precipitation and dis-
charge data and a combination of GCMs and several hydro-
logical models. To compare the differences between the at-
tribution results for the two variables we calculate the return
periods and risk ratios for the August 2017 flooding event in
Bangladesh for both precipitation and discharge in observa-
tions and models, for past (pre-industrial), present and future
(2◦ warmer than pre-industrial) conditions.

Bangladesh is influenced by three large river basins: the
Ganges basin in the northwest, the Brahmaputra basin in the
northeast and the Meghna basin in the east. During the mon-
soon season the rainfall moves northwest across the coun-
try, starting in May–June–July in the Meghna basin. Usu-
ally 2–3 weeks after peak rainfall in July, the rivers in the
Brahmaputra basin reach their peak discharge. Finally, in Au-
gust and September the Ganges basin river discharge peaks.
The largest impact of flooding in August 2017 was felt in
the northern parts of Bangladesh (Fig. 1). As this was mainly
caused by precipitation in the Brahmaputra basin, the focus
in this paper will be on this basin. In the Brahmaputra basin
little water originates from precipitation on the northern side
of the Himalaya (China–Tibet), with most of the water com-
ing from precipitation in the upstream Assam region in India.
Precipitation in Bhutan also contributes to the river water in
Bangladesh.

In this paper we use two event definitions: one based on
precipitation and one based on discharge. Both observational
data and model data can be used for these two event defini-
tions. For precipitation we average over the whole Brahma-
putra basin and take a 10-day average, as the largest precipi-
tation volume in the Brahmaputra basin travels to Bangladesh
within 10 days; see Fig. 5 in Webster et al. (2010). Only pre-
cipitation in July–August–September (JAS) is analysed as it
is only in these months that precipitation is considered the
major cause of flooding. For discharge we simply use the
daily maximum discharge at Bahadurabad, a station situated
to the north of the confluence point of the Ganges with the
Brahmaputra, in JAS.

The data and methods used are described in Sect. 2. Sec-
tions 3 and 4 describe the analysis for observations and mod-
els respectively. The results are synthesized in Sect. 5. A dis-

cussion follows in Sect. 6, and the paper ends with some con-
clusions.

2 Data and methods

Observational data are described in Sect. 2.1, and the mod-
els and experiments are described in Sect. 2.2. The explana-
tion of how these data are used in the analysis is detailed in
Sect. 2.3.

2.1 Observational data

The first observational dataset we use is the 0.5◦ gauge-based
CPC analysis from 1979 to now (https://www.cpc.ncep.
noaa.gov/products/Global_Monsoons/gl_obs.shtml, last ac-
cess: 20 March 2018). This is the longest gauge-based daily
gridded dataset available that is still being updated. The
seasonal cycle of precipitation in the Brahmaputra basin is
shown in Fig. 2a. Monsoon rains start rising slowly, with a
maximum in July and August, and become less from Septem-
ber onwards. As precipitation will not, in general, cause
flooding before July, we will use the months JAS for the pre-
cipitation analysis.

The second gauge-based dataset we use for comparison is
the combined Full Data and First Guess Daily 1.0◦ GPCC
dataset (1988–now) (Schamm et al., 2013, 2015). As this is
a much shorter dataset we expect the signal-to-noise ratio in
the trend to be smaller. We only use this dataset to addition-
ally check the observations. The seasonal cycle can be found
in the Supplement Fig. S1.

The third dataset is the reanalysis dataset ERA-interim
(ERA-int; 1979–now; Dee et al., 2011). Precipitation of this
dataset is analysed directly. As well as precipitation, tem-
perature and potential evapotranspiration (calculated with the
Penman–Monteith method) are used to drive one of the hy-
drological models (see Sect. 2.2.2). The seasonal cycle of
ERA-int can be found in Fig. S1.

We use discharge and water level data from Bahadurabad.
Discharge data are available for the years 1984–2017, and
water level data are available for the years 1985–2017
(source: BWDB). For both datasets the seasonal cycle is
shown in Fig. 2b, c. Additionally, we have a discharge dataset
for the years 1956–2006 (source: BWDB). As the rating be-
tween water level, velocity and discharge is not exactly the
same in the two discharge datasets, we consider simply merg-
ing the datasets not to be appropriate. The 1984–2017 dataset
is used in the analyses, but results are compared to calcula-
tions with the 1956–2006 dataset and merged datasets.

2.2 Model descriptions

First the global circulation model and regional model that
are used for the analysis of precipitation are listed, including
a short description of the model runs. Next a list of hydrolog-
ical models used in this study is given. Further details of the
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Figure 2. Seasonal cycle of (a) precipitation in the Brahmaputra basin for CPC, (b) discharge at Bahadurabad and (c) water level at Ba-
hadurabad. The red line shows the mean value, and green lines show the 2.5, 17, 83 and 97.5 percentiles.

models, including validation and calibration of the hydrolog-
ical models, are described in the Supplement.

2.2.1 Precipitation

EC-Earth 2.3

We use three different ensembles of the coupled atmosphere–
ocean general circulation model EC-Earth 2.3 (Hazeleger
et al., 2012) at T159 (∼ 150 km). The first one is a transient
model experiment, consisting of 16 ensemble members cov-
ering 1861–2100 (here we use up to 2017), which are based
on the historical CMIP5 protocol until 2005 and are based
on the RCP8.5 scenario (Taylor et al., 2012) from 2006 on-
wards. The other two EC-Earth 2.3 experiments are two time-
slice experiments based on the 16-member transient model
experiment above. Two experimental periods are selected in
which the model global mean surface temperature (GMST)
is as observed in 2011–2015 (“present-day” experiment) and
the pre-industrial (1851–1899) +2 ◦C warming experiment
(“2 ◦C warming” experiment).

weather@home

In addition to the EC-Earth 2.3 experiments, large ensembles
of climate model simulations are created using the distributed
computing weather@home modelling framework (Guillod
et al., 2017; Massey et al., 2014) based on Hadley Cen-
tre models. Table 1 describes the experiments used in this
study, which are grouped into three sets: (i) ensembles for
the historical period 1986–2015, (ii) ensembles for 2017 and
(iii) ensembles for assessing possible changes in the future.

See the Supplement for a more detailed description of
these runs.

2.2.2 Discharge

PCR-GLOBWB 2

The global hydrological model PCR-GLOBWB 2 (Sutanud-
jaja et al., 2018) was selected because of its ability to
simulate the hydrological cycle, including reservoir opera-
tions and human–water interactions at continental and global
scales. It resolves the water balance at the surface by us-
ing precipitation, temperature and potential evaporation in-
puts from meteorological observations or climate models.
We used PCR-GLOBWB to conduct several river discharge
simulations, First we used observational data as input to
check the performance of the model. Next we used the EC-
Earth transient and two time-slice experiments as input to
generate a large ensemble.

SWAT

Second, we use the SWAT, which is a commonly used hy-
drological model for investigating climate change impacts
on water resources at regional scales (Gassman et al., 2014).
This model has already been used to simulate impacts of cli-
mate change on the flows of the Brahmaputra River (Mo-
hammed et al., 2017, 2018). The water balance equation used
in SWAT consists of daily precipitation, runoff, evapotran-
spiration, percolation and return flow. The SWAT model was
used in this study to simulate flows by taking inputs from
both the transient and time-slice EC-Earth experiments and
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Table 1. Experiments with the weather@home ensemble.

Category Experiment Description

Climatology Historical 1986–2015 SSTs and sea ice as observed, other forcings from CMIP5 historical+RCP4.5
Natural 1986–2015, SSTs reconstructed for pre-industrial conditions, all other forcings pre-industrial
GHG only 1986–2015, SSTs reconstructed for GHG emissions only, CMIP5 historical+RCP4.5 GHG

emissions, all other forcings pre-industrial

2017 specific Actual 2017 2017 SSTs and sea ice as observed, other forcings as RCP4.5
Natural 2017 2017, SSTs reconstructed for pre-industrial conditions, all other forcing pre-industrial
GHG only 2017 2017, SSTs reconstructed for GHG emissions only, RCP4.5 GHG emissions, all other forcings

pre-industrial

Future Current 2004–2016, SSTs and sea ice as observed, all other forcings from CMIP5 RCP4.5 as per HAPPI
experiment design (Mitchell et al., 2017)

1.5◦ Representative decade with 1.5 ◦C of additional warming as per HAPPI experiment design
2.0◦ Representative decade with 2 ◦C of additional warming as per HAPPI experiment design

weather@home experiments, using daily maximum and min-
imum temperatures and precipitation.

LISFLOOD

The third hydrological model we use is LISFLOOD. This is
a fully distributed and semi-physically based model initially
developed by the Joint Research Centre (JRC) of the Euro-
pean Commission in 1997. It was subsequently updated to
forecast floods and analyse impacts of climate and land-use
change (Burek et al., 2013). It has been used for operational
flood forecasts as part of the European Flood Awareness Sys-
tem (EFAS) since 2012 (https://www.efas.eu/en/about, last
access: 2 May 2018). The LISFLOOD model was used in
this study to simulate the river flow of the Brahmaputra River
at the Bahadurabad gauging station with input data from the
weather@home model.

River flow model

The fourth and final hydrological model used in the analy-
sis is a fully distributed river flow model (RFM) that esti-
mates the streamflow by discrete approximation of the one-
dimensional kinematic wave equation (Dadson et al., 2011).
The RFM was used in this study to simulate the river flow of
the Brahmaputra River at the Bahadurabad gauging station
with input data from the weather@home model.

2.3 Statistical methods

We use a class-based event definition, i.e. we consider all
events that are as extreme or more extreme than the observed
event on a one-dimensional scale, in this case 10-day aver-
aged precipitation averaged over the Brahmaputra basin or
daily runoff at Bahadurabad.

The first step in an attribution analysis is trend detection:
fitting the observations to a non-stationary statistical model
to look for a trend outside the range of deviations expected by

natural variability. In this case we study the trends of extreme
high-precipitation and river discharge values. In extreme
value analysis, the generalized extreme value (GEV) distri-
bution (Coles, 2001) is often used to fit and model the tail
of the empirical distribution for this type of event, the max-
imum daily or 10-daily value over the monsoon season. The
shape parameter ξ determines the tail behaviour, and neg-
ative indicates light tail behaviour while positive indicates
heavy tail behaviour. When ξ = 0, the distribution simplifies
to the Gumbel distribution. Global warming is factored in
by allowing the GEV fit to be a function of the (low-pass
filtered) GMST. In the case of precipitation and discharge
extremes, it is assumed that the scale in parameter σ (the
standard deviation) scales with the position parameter µ (the
mean) of the GEV fit. This assumption is also known as the
index flood assumption (Hanel et al., 2009) and is commonly
applied in hydrology to restrain the number of fit parameters.
It can be checked in the model experiments where there are
enough data to fit both µ and σ independently. These param-
eters are scaled up or down with the GMST using an expo-
nential dependency similar to Clausius–Clapeyron (CC) scal-
ing: µ= µ0 exp(αT /µ0),σ = σ0 exp(αT /µ0), with T as the
smoothed global mean temperature and α as the trend that
is fitted together with µ0 and σ0. The shape parameter ξ is
assumed to be constant. 95 % confidence intervals are esti-
mated using a 1000-member non-parametric bootstrap. This
approach has been used in several previous attribution studies
(e.g. van Oldenborgh et al., 2016; van der Wiel et al., 2017;
Otto et al., 2018). This fit also gives the return periods of the
observed event.

The scaling is taken to be an exponential function of the
smoothed global mean temperature. This exponential depen-
dence can clearly be seen in the scaling of daily precipitation
extremes with local daily temperature in regions with enough
moisture availability (Allen and Ingram, 2002; Lenderink
and van Meijgaard, 2008). It is also expected on theoretical
grounds through the first-order dependence of the maximum
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moisture content on temperature in the Clausius–Clapeyron
relations of about 7 % K−1, which gives rise to an exponen-
tial form. Note that we fit the strength of the connection,
which is often different from CC scaling. As it is not clear
what the relevant local temperature is, but local temperature
usually scales linearly with the global mean temperature, we
chose the GMST.

The second step in an attribution analysis is the attribution
of the detected trend to global warming, natural variability
or other factors, such as changes in aerosol concentration or
the El Niño–Southern Oscillation; this requires comparing
model simulations with and without anthropogenic forcing.
There are two approaches. The first is to run two ensem-
bles: one with current conditions and one with conditions as
they would have been without anthropogenic emissions. The
number of events above the threshold is compared between
the two ensembles. In the second approach, we approximate
the counterfactual climate by the climate of the late 19th cen-
tury and fit the same non-stationary GEV that was described
above to the model data. The distribution is evaluated for
a GMST in the past and the current GMST. These two ap-
proaches have been used before for studies of extreme pre-
cipitation (e.g. Schaller et al., 2014; van Oldenborgh et al.,
2016; van der Wiel et al., 2017; van Oldenborgh et al., 2017).
We checked that year-on-year autocorrelations of RX10day
(maximum 10-day precipitation amount) are negligible, so
serial autocorrelations are not a problem in this analysis.

As a third step, we calculate the risk ratio (RR) or change
in probability for different time intervals. These include for
instance the difference between the present day and 1979, or
between present-day and pre-industrial times. For observa-
tions we calculate risk ratios with respect to the beginning of
the dataset. If possible, we additionally transform these into
risk ratios with respect to pre-industrial conditions, in this
case set to be the year 1900, such that we can compare this
with model runs for pre-industrial settings. For this transfor-
mation we assume that the RR depends exponentially on the
covariate, in this case the global mean temperature change.
For instance if we find that the probability doubles for 0.5 ◦C
warming, we assume that first ordering it would cause it to
double again for 1 ◦C warming. With future model runs we
can also calculate risk ratios between the +2 ◦C climate and
the climate now.

A last step in the analysis is the synthesis of the results into
a single attribution statement. Though the method for evalu-
ating risk ratios using a transient model or observations is dif-
ferent from that using ensemble time-slice experiments that
are explicitly designed to simulate a +2.0 ◦C world, we are
able to give an average value for all observations and models
combined, and we assume that this gives a good first-order
estimate of the overall risk ratio.

The differences among the RRs of these ensembles and
the observations are due to natural variability, different fram-
ings and model spread. The relative contribution of random
natural variability can be estimated from a comparison of the

uncertainty derived from each fit with the spread of the dif-
ferent estimates of the RR from observations and models. We
do this by computing a χ2/dof, with the number of degrees
of freedom (dof) being one less than the number of fits. If
this is roughly equal to 1, the variability is compatible with
only the natural variability that determines the uncertainty on
each separate model estimate of the RR. If it is much larger
than 1, the systematic differences between the framings and
models contribute significantly.

We choose to use a weighted average, with the weights
being the inverse uncertainty squared for each RR (mod-
els and observations). The uncertainties are approximated
by symmetric errors on log(RR) and added in quadrature

(ε2
=

√
ε2

1 + ε
2
2 + . . . + ε

2
N/N ). If there is a significant con-

tribution of χ2 due to model spread, this has to be propagated
to the final result, and the final uncertainty is larger than the
spread due to natural variability. In this case we choose to
give all models equal weight. The method described here was
also used in Eden et al. (2016) and Philip et al. (2018).

3 Observational analysis

3.1 Precipitation

Figure 3a shows the time series of CPC precipitation av-
eraged over the Brahmaputra basin for 90 days ending on
2 September 2017. The 10-day average at the beginning of
July is slightly higher than the 10-day average beginning of
August, 14.38 versus 14.20 mm. As we are interested in the
August flooding event, we take the precipitation value from
the August event, which has a maximum on 5–14 August (see
Fig. 3c). The 10-day average annual maximum precipitation
is fitted to a GEV distribution. The return period plots show
that the distribution can be described by a GEV by overlay-
ing the data points and fit for the present and a past climate
(Fig. 3d). The return period calculated from this fit is 11 years
(95 % CI – confidence interval, 4 to 200 years) for the cur-
rent climate. There is a positive trend with a risk ratio with
respect to 1979 of a factor of 6 (> 0.3), although the trend is
not significant at p < 0.05 when two-sided (the uncertainty
range includes 1).

A similar approach to the one used for CPC data is applied
to ERA-int data. In this dataset the July 2017 10-day average
was also just slightly higher than the August 2017 10-day av-
erage. The return period for the August event with a value of
17.9 mm day−1 was 2 years (95 % CI, 1 to 6 years) in the cur-
rent climate. This dataset also shows a non-significant posi-
tive trend with a risk ratio of 1.9 (0.6 to 7), i.e. doubling the
probability of an event like this or higher.

Finally, the shorter GPCC dataset gives similar results as
well. Risk ratios are given with respect to 1979 in order to
compare this with the other datasets. The August 2017 10-
day average is slightly higher than the July 10-day average.
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Figure 3. CPC data (a, c) and analysis of the highest observed 10-day mean rainfall in the Brahmaputra basin in July–September (b, d).
(a) Time series of precipitation averaged over the Brahmaputra basin; blue is more than average, and red is less than average. (b) The
location parameter µ (thick line), µ+ σ and µ+ 2σ (thin lines) of the GEV fit of the 10-day averaged data. The vertical bars indicate the
95 % confidence interval on the location parameter µ at the two reference years, 2017 and 1950. The purple square denotes the value of 2017
(not included in the fit). (c) The 10-day averaged precipitation over the Brahmaputra basin. Dark red means heavy precipitation. In red are the
contours of the Brahmaputra basin. (d) The GEV fit of the 10-day averaged data in 2017 (red lines) and 1950 (blue lines). The observations
are drawn twice, scaled up with the trend (smoothed global mean temperature) to 2017 and scaled down to 1950. The purple line shows the
observed value in 2017.

The return period is about 20 years (95 % CI, 4 to 800 years).
The risk ratio is not significantly different from 1.

The results of return periods and risk ratios based on ob-
servations can be found in Table 2. For analyses with models
we use the return period from the CPC dataset of 11 years
for this event, as based on local experience we think that this
is the best estimate. Due to the shape parameter being close
to zero the risk ratio will not have a strong dependence on
this choice; for a Gumbel distribution it is independent of the
return time.

3.2 Discharge

The highest discharge in 2017 was reached on 16 August,
with a value of about 78 000 m3 s−1. This was clearly higher
than any value in July in the same year, as opposed to the
precipitation values discussed above. There have been sev-
eral years in which the discharge was higher than in 2017,
including the years 1998 and 1988, which are the two maxi-
mum values in the discharge record. The return period is cal-
culated from the discharge dataset since this is our best ob-
servational estimate. However it is worth noting that there is

a large uncertainty in the accuracy of the discharge measure-
ments from 2012 onwards. We check if the results are robust
by comparing the outcomes from the different datasets.

We fitted the discharge time series of Bahadurabad to
a GEV distribution. In this distribution we see no trend
(95 % CI with respect to – wrt – 1900 is 0.1 to 40; see Fig. 4).
Therefore we calculate the return period assuming no trend.
This results in a return period of the August 2017 event of
4 years (95 % CI, 3 to 6 years). A cross-check with the 1956–
2006 dataset or merging the two discharge datasets gives sim-
ilar results.

3.3 Water level

Although we only have the water level available in observa-
tions and not for models, we still analyse the observational
water level time series from Bahadurabad. The highest value
in 2017 was on 16 August, with a value of 20.83 m. This is
1.33 m higher than the dangerous level of 19.50 m. In con-
trast to the discharge this was a record level since the begin-
ning of the dataset (1985). It should be noted that the water
level is also influenced by factors other than climate change,
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Table 2. Return periods and risk ratios for observations of precipitation, discharge and water level. The column RR1 gives results wrt 1979
(precipitation), 1984 (discharge) and 1985 (water level). The column RR (wrt 1900) scales the results to the pre-industrial period.

Variable Dataset (August 2017 value RT 95 % CI RR1 95 % CI RR 95 % CI
mm day−1) (wrt 1900)

Precipitation CPC (14.20) 11.2 4.1 to 200 6.0 >0.30 18 >0.2
ERA-int (17.89) 2.4 1.4 to 6.2 1.9 0.64 to 7.2 2.8 0.5 to 24
GPCC 1988–2017 (16.79) 21 4.2 to 800 0.65 0.009 to 30 0.5 0.004 to 800

Discharge 1984–2017 (78.262) 4 3 to 6 1.3 0.1 to 9 0.8 0.02 to 8
Water level 1985–2017 (20.83) 12 3 to 350 170 >0.6

Figure 4. Analysis of the highest observed daily discharge at Bahadurabad in July–September. (a) The location parameter µ (thick line),
µ+ σ and µ+ 2σ (thin lines) of the GEV fit of the discharge data. The vertical bars indicate the 95 % confidence interval on the location
parameter µ at the two reference years, 2017 and 1984. The purple square denotes the value of 2017 (not included in the fit). (b) The GEV
fit of the discharge data, assuming no trend. The purple line shows the observed value in 2017.

for instance a raising of the river bed by sedimentation and
obstruction of the river channel by man-made constructions.
See Sect. 6 for a more detailed discussion on the disentan-
gling of geomorphological changes and climate change.

Under the same assumption as that for precipitation and
discharge in which water level scales with GMST, the re-
turn period in the current climate is estimated to be 12 years
(95 % CI, 3 to 350 years; see Fig. 5b). However, although
the risk ratio between 2017 and 1985 is as large as 170,
this is only non-significant with a lower bound of 0.6. This
is probably due to the relatively short length of the dataset.
In addition, we calculate a return period assuming no trend
(see Fig. 5c). This gives a return period of about 80 years
(> 25 years, 95 % CI). This agrees with the estimates from
BWDB.

4 Model analysis

4.1 Precipitation

In this section we present model validation and analysis re-
sults for the precipitation experiments, first for EC-Earth and
then for weather@home.

For validation of the EC-Earth 2.3 model we use the years
in the transient runs that correspond to the observational
years 1979–2017. In the model, as expected, most precipi-
tation falls in the months JJA, with a peak in July, like in
observations, though the increase in precipitation is slightly
stronger in June than it is in observations (Fig. S1). As it is
assumed that the scale parameter σ scales with the position
parameter µ of the GEV fit, we check whether the disper-
sion parameter σ/µ and the shape parameter in this model
are similar to those calculated from observations. The pa-
rameters of the GEV distribution that is fitted from the pre-
cipitation of these model years correspond well to the same
parameters for CPC data.

The risk ratio of precipitation is calculated in the same
way as that for observations, using the data period 1880–
2017 such that we can use the same years for the EC-Earth
runs and the PCR-GLOBWB and SWAT runs with EC-Earth
input (see Fig. 6). The threshold is chosen such that the re-
turn period in the current climate is similar to the observed
return period when using the same years. The risk ratio be-
tween 2017 and pre-industrial conditions is 3.3 (95 % CI, 2.7
to 4.2) in these transient runs. This corresponds to an increase
in intensity for the same return period of 10 % (95 % CI, 9 %
to 11 %). For the future (figures not shown) we calculate re-
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Figure 5. Analysis of the highest observed daily water level at Bahadurabad in July–September. (a) The location parameter µ (thick line),
µ+ σ and µ+ 2σ (thin lines) of the GEV fit of the discharge data. The vertical bars indicate the 95 % confidence interval on the location
parameter µ at the two reference years, 2017 and 1985. The purple square denotes the value of 2017 (not included in the fit). (b) The GEV
fit of the water level data in 2017 (red lines) and 1985 (blue lines), assuming a trend. The observations are drawn twice, scaled up with the
trend (smoothed global mean temperature) to 2017 and scaled down to 1985. (c) The GEV fit of the same discharge data assuming no trend.
The purple line in (b) and (c) shows the observed value in 2017.

turn periods from the present and future distributions sepa-
rately, again following the same statistical method as that for
observations but with two separate GEV fits that do not de-
pend on the GMST. The risk ratio between a 2 ◦C climate
and the present climate follows from this, with a value of
1.8 (95 % CI, 1.7 to 2.1). We thus conclude that in the EC-
Earth 2.3 model there is a significant positive trend in the
magnitude of precipitation events such as the one in August
2017, both in the past (pre-industrial times up until now) and
in the future.

For weather@home, we compare the annual cycle of 10-
day running mean precipitation (see Fig. S2) and its spatial
pattern in the Brahmaputra basin from historical simulations
with CPC and GPCC observational records. As has also been
seen in other regions of Bangladesh (Rimi et al., 2019a),
weather@home rainfall is too intense in the pre-monsoon
season but lies within observational uncertainty during the
monsoon season itself. Also the variability of 10-day model
precipitation is under-represented by the model for the mon-
soon season. During the monsoon season the spatial pattern
and magnitude of weather@home output agrees well with
GPCC and CPC observations (not shown).

Figure 7 shows the return periods of the maximum 10-day
precipitation during JAS from the weather@home simula-

tions, see also Table 3. The threshold used in this analysis
is defined by taking the magnitude from the historical sim-
ulation corresponding to the return period derived from the
CPC observational dataset.

Figure 7a shows the results for the historical and 2017-
specific experiments, which we use to analyse how proba-
bilities may have changed in the period from pre-industrial
times up until now. There is no statistically significant differ-
ence between the historical and natural simulations, with a
risk ratio of 0.92 (0.84to1.02).

The difference in return periods between the historical and
actual 2017 experiments gives an indication of the influence
of the natural variability of the sea surface temperature (SST)
pattern in the precipitation in this region. The historical en-
semble is driven by 30 years of differing SST patterns con-
taining different patterns of natural variability such as the El
Niño–Southern Oscillation, whereas actual 2017 uses only
the observed 2017 Operational Sea Surface Temperature and
Sea Ice Analysis (OSTIA) SSTs. The SST pattern in 2017
(actual 2017) made extreme precipitation events less likely
than the climatological mean (historical) with a risk ratio of
0.25 (95 % CI, 0.2 to 0.31). Within the set of simulations
conditioned on 2017 SSTs, the negligible anthropogenic in-
fluence found in the full range SST set is confirmed; the ac-
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Figure 6. Analysis of the highest 10-day average precipitation in July–September in the EC-Earth model in the years 1880–2017. (a) The
location parameter µ (thick line), µ+ σ and µ+ 2σ (thin lines) of the GEV fit of the discharge data. The vertical bars indicate the 95 %
confidence interval on the location parameter µ at the two reference years 2017 and 1934. (b) the GEV fit of the precipitation data in
2017 (red lines) and 1934 (blue lines), assuming a trend. The data are drawn twice, scaled up with the trend (smoothed global mean model
temperature) to 2017 and scaled down to 1934. (c) GEV fits for the present day (PD, red) and +2 ◦C world (2C, yellow) simulations. The
purple lines in (b) and (c) show the threshold value for which the risk ratio is calculated.

Figure 7. Return times of the maximum 10-day precipitation from weather@home simulations. (a) shows results from the historical, natural,
GHG-only and actual 2017, natural 2017, and GHG-only 2017 simulations, and (b) shows the historical, current, 1.5 and 2◦ simulations.
Black horizontal lines represent the threshold values derived from the CPC observations. Shaded coloured vertical boxes with solid horizontal
lines represent the uncertainty in the return period for the CPC threshold.
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tual 2017 and natural 2017 ensembles also do not show a sta-
tistically significant difference and have a risk ratio of 0.97
(95 % CI, 0.76 to 1.23), indicating that, if anything, high-
precipitation events similar to the amplitude observed are
more prevalent in our model in the natural ensemble, whether
or not conditioned on 2017 SST conditions.

To understand this result more fully it is useful to look at
the “GHG-only” simulations in Fig. 7a (compare GHG-only
with historical simulations and GHG-only 2017 with actual
2017 simulations). The GHG-only simulations show that in-
creased GHG emissions have increased the likelihood of this
kind of event (relative to the natural simulations) but that
when the sulfate aerosol emissions are taken into account (in
the historical and actual 2017 simulations), we find a coun-
terbalancing effect that acts to reduce rainfall, hence reduc-
ing the risk for severe flooding. This effect has also been
noted by van Oldenborgh et al. (2016); Rimi et al. (2018b).
Within the weather@home model sulfate emissions are in-
cluded, although emissions due to other important aerosols
such as black carbon, which can counteract sulfate effects,
are not represented. The aerosol effect in HadRM3P is there-
fore potentially overestimated. The results highlight the non-
linear change in risk over time as a function of anthropogenic
aerosol emissions. EC-Earth follows the historical+RCP8.5
protocol for aerosols and includes both sulfate emissions and
black and organic carbon. It does not include any indirect
aerosol effects. The differences in aerosol representation and
model handling of aerosols, as well as the influence of the ex-
perimental configuration on aerosol concentration, between
EC-Earth and weather@home may account for the difference
in risk ratios for the past climate period (pre-industrial times
up until now) between the two models, whereas the change
in risk of future climate scenarios show good agreement.

Figure 7b shows return periods from the historical, cur-
rent, natural, 1.5 and 2.0◦ simulations, which we use to anal-
yse how probabilities may change in the future with respect
to now. The current and historical ensembles are very similar
as expected as both are forcing simulations of differing (but
overlapping) lengths. Under 1.5 and 2 ◦C of additional warm-
ing, high precipitation within the region is set to increase
with risk ratios (compared to current simulation) derived us-
ing the CPC observational threshold of 1.46 (95 % CI, 1.27
to 1.69) and 1.74 (95 % CI, 1.52 to 1.99) respectively. In both
cases the ERA-int (GPCC) threshold risk ratio is smaller
(larger) than the CPC threshold risk ratio (not shown), but
with overlapping uncertainty bounds with CPC. For 2 ◦C of
warming these risk ratios show good agreement with the EC-
Earth values.

4.2 Discharge

In this section we present model validation and results of the
discharge simulations, first for the model PCR-GLOBWB
and then for SWAT, LISFLOOD and the RFM.

The runs with the PCR-GLOBWB model are treated in the
same way as the EC-Earth runs. The experiment in which
the PCR-GLOBWB model is driven by CPC precipitation
and ERA temperature and evapotranspiration shows a strong
trend in discharge, which was not seen in the discharge ob-
servations. The GEV-fit parameters encompass the best es-
timate from observations when fitted with a trend. However
the large discharge events of 1988 and 1998 are not captured
in this run (not shown).

The experiment with ERA input, in contrast, shows no
trend but clearly shows the strong discharge events of 1988
and 1998 (not shown). The best estimate of the GEV-fit pa-
rameter is outside the error margins of the GEV-fit parame-
ters of observations; however, the error margins overlap.

These two model runs show that the PCR-GLOBWB
model is able to capture historical flood events, but the mag-
nitude of these events is dependent on the meteorological in-
put data. Furthermore, we find that the statistical properties
are a fair representation of the statistical properties of ob-
served discharge.

We perform an additional validation of the transient PCR-
GLOBWB run with EC-Earth 2.3 input over the years cor-
responding to years with observed discharge. With this input
the modelled discharge peaks in August but is also high in
July and September. We thus use the same months JAS as
in observations for further analysis. Different from the ob-
served distribution, the shape parameter ξ is positive, show-
ing higher discharge values in the tail. This is not a prob-
lem for this analysis, as the return period of about 4 years
that we are interested in is not in the tail of the distribution.
When comparing the error margins of the ratio σ/µ with ob-
served statistics we note that the model variability is too large
compared to the model mean. This is not the ideal situation,
and we note in the discussion how this model bias affects the
analysis.

Using the transient model runs, the risk ratio of discharge
is calculated in the same way as that for observations, using
all data between 1880–2017. The risk ratio between 2017 and
pre-industrial times is 2.3 (95 % CI, 1.7 to 2.4; see Fig. 8).
For the future we calculate return periods from the present
and future distributions separately, following the same sta-
tistical method as that for precipitation in the EC-Earth 2.3
present and future experiments. The risk ratio between a 2 ◦C
climate and the present follows from this, with a value of
1.3 (95 % CI, 1.2 to 1.4). We thus conclude that in the PCR-
GLOBWB model driven by EC-Earth output there is a posi-
tive trend in discharge events like the one in August 2017 in
both the historical period (pre-industrial times to 2017) and
the future period (from current conditions to a+2 ◦C world).

The SWAT model calibrated with EC-Earth meteorologi-
cal data tends to underestimate flows in almost all months of
the year (see Fig. S3 in the Supplement). The SWAT model
calibrated with weather@home meteorological data, in con-
trast, tends to underestimate flows in the monsoon months
while overestimating flows in the remaining months. There-
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Table 3. Risk ratios for precipitation and discharge for models and observations for both present to pre-industrial times or 1900 and a 2 ◦C
climate to present. 95 % confidence intervals are given as well.

Dataset RR (present / pre- 95 % CI RR (2◦C 95 % CI
industrial or 1900) / present)

Precipitation CPC 18.2 >0.20

EC-Earth 2.3 3.27 2.65 to 4.24 1.81 1.75 to 2.14
W@h (historical / natural) 0.92 0.84 to 1.02 1.74 1.52 to 1.99
W@h (GHG only / natural) 1.73 1.34 to 2.25
W@h (GHG only / historical) 1.35 1.23 to 1.49
W@h (actual 2017 / natural 2017) 0.97 0.76 to 1.23
W@h (GHG only 2017 / natural 2017) 1.65 1.38 to 1.96
W@h (GHG only / actual 2017) 1.69 1.35 to 2.13

Discharge Observations 1.43 0.05 to 42.5

PCR-GLOBWB (EC-Earth) 2.34 1.74 to 2.37 1.34 1.23 to 1.41
SWAT – EC-Earth (transient) 1.49 1.30 to 1.57 1.56 1.45 to 1.7
SWAT – W@h (actual 2017 / natural 2017) 0.88 0.72 to 1.09
LISFLOOD – W@h (actual 2017 / natural 2017) 1.35 1.20 to 1.51
LISFLOOD – W@h (GHG only 2017 / actual 2017) 1.29 1.10 to 1.45
LISFLOOD – W@h (GHG only 2017 / natural 2017) 1.74 1.52 to 2.01
RFM – W@h (actual 2017 / natural 2017) 1.13 1.11 to 1.14
RFM – W@h (GHG only 2017 / actual 2017) 1.53 1.50 to 1.56
RFM – W@h (GHG only 2017 / natural 2017) 1.73 1.71 to 1.74

Figure 8. Analysis of the highest discharge at Bahadurabad in July–September in the PCR-GLOBWB model in the years 1920–2017. (a) The
location parameter µ (thick line), µ+ σ and µ+ 2σ (thin lines) of the GEV fit of the discharge data. The vertical bars indicate the 95 %
confidence interval on the location parameter µ at the two reference years 2017 and 1934. (b) The GEV fit of the discharge data in 2017 (red
lines) and 1934 (blue lines), assuming a trend. The observations are drawn twice, scaled up with the trend (smoothed global mean model
temperature) to 2017 and scaled down to 1934. (c) GEV fits for the present day (PD, red) and +2 ◦C world (2C, yellow) simulations. The
purple horizontal lines in (b) and (c) show the threshold value for which the risk ratio is calculated.
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fore in both cases, flows in our months of interest (JAS) are
always slightly underestimated, but the magnitudes of error
appear limited enough for the models to be useful in conduct-
ing attribution studies. When comparing the error margins of
the ratio σ/µ with observed statistics we note that the model
variability is too small compared to the model mean, opposite
to what was found for the PCR-GLOBWB model. The shape
parameter ξ is of the same order as the one in the observed
discharge dataset.

The risk ratios are calculated from return period plots for
both the EC-Earth runs (see Fig. 9) and the weather@home
runs (see Fig. 10). Using the SWAT model runs with EC-
Earth transient data, we see that the discharge shows some
decadal variability. The trend in the data therefore depends
more strongly on the years used. For consistency we use
the same years as in the analyses of EC-Earth and PCR-
GLOBWB data (1880–2017), and we note that the error mar-
gins do not capture this variability and are underestimated.
The risk ratio of discharge between 2017 and pre-industrial
times is found to be 1.5 (95 % CI, 1.3 to 1.6). The risk ra-
tio between a 2 ◦C climate and the current climate is 1.56
(95 % CI, 1.45 to 1.70). Using the SWAT model runs with
weather@home actual 2017 and natural 2017 data, the risk
ratio between the actual 2017 and natural 2017 scenario is
0.88 (95 % CI, 0.72 to 1.09).

Calibration and validation graphs for LISFLOOD and the
RFM are shown in the Supplement. They show that both LIS-
FLOOD and RFM are able to simulate the seasonality of rise
in spring and summer flows correctly. Both models underesti-
mate the river discharge in summer, with an underestimation
in the simulated discharge by LISFLOOD.

The return period and risk ratio for the LISFLOOD model
and RFM estimated from the weather@home actual 2017
and natural 2017 datasets, as well as the results for the GHG-
only 2017 runs, are shown in Fig. 11.

The LISFLOOD model shows that a discharge value with
a return period of 4 years in the actual scenario would in-
crease to 5.4 years in the natural climate scenario (risk ratio
of 1.35 – 95 % CI, 1.20 to 1.51), while it would reduce to
3.1 years in the GHG-only scenario.

The trend is similar in the results simulated by the RFM,
however, the discharge value with a return period of 4 years
is slightly greater than the value simulated by LISFLOOD.
The return period would increase to 4.5 years under natural
climate conditions (risk ratio of 1.13 – 95 % CI, 1.11 to 1.14),
while it would reduce to 2.6 years in the GHG-only scenario.
Note however that from Fig. 11b we see that the risk ratio
between the different scenarios for RFM becomes larger for
larger return periods (e.g. 10 years) than those studied in this
analysis.

The shorter return period in the GHG-only 2017 scenario
shows that if sulfate aerosols are removed from the atmo-
sphere (which results in increased precipitation), flooding be-
comes more frequent. This implies that floods can become

more frequent in the region if the air pollution levels are re-
duced in the future.

The risk ratios for the observed threshold from both LIS-
FLOOD and the RFM of 1.35 (95 % CI, 1.20 to 1.51) and
1.13 (95 % CI, 1.11 to 1.14) respectively are in good agree-
ment even though the simulated river flows by the models
are different. The mitigation effect due to the aerosols is also
comparable between these two different hydrological mod-
els.

5 Synthesis

In observations the uncertainties in return periods and risk ra-
tios are quite large. This is mainly due to the shorter lengths
of the time series, and natural variability dominates. In the
models, the signal-to-noise ratio is much larger, resulting
in smaller uncertainties in the risk ratios. Here, the model
spread dominates the signal. As both natural variability and
model spread play a role, we use a weighted average with
inflated uncertainty range. We do not synthesize the risk ra-
tios for the future, as we only have two model estimates per
variable.

In the synthesis we use all available observational datasets
that are analysed in this paper and one experiment per model.
For weather@home and all hydrological models that use in-
put from weather@home experiments we use the risk ra-
tios calculated from the actual 2017 and natural 2017 ex-
periments. This gives us a fair opportunity to compare the
synthesis of precipitation with the synthesis of discharge.

The synthesis results are shown in Fig. 12. The synthesis
of the precipitation analysis results in a risk ratio between
2017 and pre-industrial times of 1.8 (95 % CI, 0.5 to 9.3).
Although the best estimate is above 1, the trend is not signif-
icant due to the relatively large error margins. The synthesis
of the discharge analysis results in a risk ratio between 2017
and pre-industrial times of 1.1 (95 % CI, 1.0 to 1.3). So for
discharge the best estimate is only slightly higher than 1, and
due to the smaller error margins in the average, this trend is
only significant under the assumptions made in this analysis.

6 Discussion

In any event-attribution study, tasks to be carried out include
the following:

i. determining what happened using available observa-
tions and defining the event to be studied,

ii. determining how rare the event is in current and pre-
industrial conditions,

iii. using models to attribute any changes in likelihood of
similar classes of events.
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Figure 9. Analysis of the highest discharge at Bahadurabad in July–September in the SWAT flows for EC-Earth. (a) the location parameter
µ (thick line), µ+ σ and µ+ 2σ (thin lines) of the GEV fit of the discharge data. The vertical bars indicate the 95 % confidence interval on
the location parameter µ at the two reference years, 2017 and 1934. (b) the GEV fit of the discharge data in 2017 (red lines) and 1934 (blue
lines), assuming a trend. The observations are drawn twice, scaled up with the trend (smoothed global mean model temperature) to 2017 and
scaled down to 1934. (c) current and future simulations. The purple horizontal line in (b) and dotted line in (c) show the threshold value for
which the risk ratio is calculated.

Figure 10. Return period plots for SWAT flows with
weather@home data for the actual 2017 and natural 2017
ensembles.

Here we discuss some of the issues encountered in these steps
and the interpretation of our results in the light of uncertain-
ties.

First of all, determining the amount of precipitation falling
into the Brahmaputra basin from observations (and thus
the appropriate precipitation threshold to define this event)
is not trivial. As is common in regions with strong topo-
graphic gradients, estimating area-averaged rainfall based on
observed rainfall is challenging, as rainfall differences be-
tween neighbouring locations can be very large in reality,
and the orography, which is only partly resolved by a sparse
observational network (or model grid), drives these differ-
ences. A large part of the Brahmaputra basin has an elevation
of over 2000 m; hence unsurprisingly different precipitation
datasets show very different spatial and temporal character-
istics. They are all likely to underestimate the precipitation
at higher elevations, where few weather stations record data
(Immerzeel et al., 2015).

For this analysis we used the CPC dataset to provide a
single estimate of the event magnitude (i.e. determine what
happened) and to define the return period (i.e. determine the
rarity of the event) for use in the other datasets and mod-
els. Applying this return period, we used three observational
datasets to convey the uncertainty related to observations in
the resulting risk ratios. However, for the GPCC dataset, the
very limited temporal length of the record leads to an uncer-
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Figure 11. River flow return periods simulated by (a) LISFLOOD and (b) RFM using the actual 2017, natural 2017 and GHG-only 2017
scenarios.

Figure 12. Synthesis of the precipitation (a) and discharge (b) results. Dark blue is observations, red is climate model ensembles and the
weighted average is shown in purple. The ranges of the models are not compatible with each other, pointing to model uncertainty playing a
role over the natural variability. The weighted average has been inflated by factors of 3.89 and 3.45 for precipitation and discharge respectively
to account for the model spread.

tainty estimate that is too high for meaningful inference on
the change in risk to be made. The longer records do show
an increase in the chance of extreme rainfall, but again un-
certainties affect a clear signal detection. The intended future
availability of high-resolution reanalyses such as ERA5 that
will cover the years 1950 onwards at 30 km resolution will
potentially improve trend analyses in high-mountain regions
in Asia.

From the hydrological perspective, we defined the event
as the maximum daily discharge at Bahadurabad in July–
September. In contrast to precipitation data, there is only one
official discharge observation series, which does not allow
for intercomparison. The determination of flood risk, how-
ever, appears to be sensitive to the hydrological variable stud-
ied. To obtain an impression of this sensitivity, we checked
how discharge compares to the water level as a second mea-
sure for the likelihood of flooding. The return period of the
measured 2017 discharge peak is indeed lower than the return
period of the measured 2017 water level peak. Several factors

could have influenced this. First of all, the Brahmaputra is a
highly braided river, and during severe flood events water en-
ters the floodplain, making it more difficult to accurately re-
late water level measurements to discharge estimates. There-
fore though the water level records are very accurate, the dis-
charge records are unlikely to be of the same accuracy. Based
on the observation of the massive spatial extent of the 2017
floods both in Bangladesh and India, we opine that the ob-
served discharges are likely higher than those recorded.

This opinion is supported by the change in correlation be-
tween discharge and water level. The correlation between
water level and discharge is 0.88 over the whole time se-
ries. However, after 2011 this correlation changes to almost
1, with a tendency toward discharges values that are lower
for similar water levels than before this change. This change
could be due to recalibration of the relationship between dis-
charge and the water level. We therefore expect that the true
return period is between the return period calculated from
discharge given above and the return period calculated from
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the water level. As we do not know the exact influence of the
change in measurement method of discharge on the discharge
values, we cannot give more precise values.

However it should be noted that ongoing morphological
changes can introduce additional variability along the river.
For instance, higher water levels with lower discharges may
be caused by silting and narrowing of the river. McLean and
O’Connor (2013) already showed that, for the years 2006–
2011, the relation between discharge and water level changes
over time; in 2011 similar discharge values led to higher wa-
ter levels. This leads to a non-climatic trend in the water level
observations.

The disentangling of the influence of climate change and
geomorphological changes was beyond the scope of this
analysis. On top of qualitatively good observations of the
water level, it would require observational data on geomor-
phological changes, more detailed local hydrological mod-
els that can incorporate these and calculate water levels with
substantial accuracy, and an additional set of model experi-
ments. In the current analysis we mainly used discharge data
and climate model experiments, and from these results it is
not possible to conclude whether neglecting geomorphologi-
cal changes in the models leads to any disagreement with ob-
servations given the large uncertainties in the observational
analysis.

Climate models, while far from perfect in their represen-
tation of reality, are essential for interpreting the results from
observations and thereby attributing any observed changes
in event frequency to anthropogenic climate change or other
factors. Taken at face value, the two climate model simu-
lations of 10-day precipitation maxima in the Brahmaputra
basin provide somewhat contradictory results. However, for
the weather@home simulations when comparing the natural
simulations with GHG-only runs instead of historical simu-
lations, the change in extreme precipitation is significantly
positive as well and is therefore more comparable in magni-
tude to the increase in the two longer observational datasets
and EC-Earth simulations. Comparing the GHG-only runs to
the historical simulations gives an indication of the impact
of aerosol within the weather@home model, which might be
slightly overestimated given that black carbon is not included
in the models aerosol treatment. Nonetheless, HadRM3P
clearly indicates that the increased risk in extreme rainfall
due to GHG induced warming has been effectively counter-
balanced by aerosol emissions. The EC-Earth model is in-
terpreted as having fewer aerosol effects and hence showing
more of the greenhouse-gas-driven increase. Both results are
in agreement with the observations due to the large uncer-
tainties in the limited-length observational records.

The counterbalance between the greenhouse-gas and
aerosol effects may also be important for clean air policy
decisions; as the air is cleaned the already-committed in-
crease in extreme precipitation due to greenhouse gases will
be revealed. These results also suggest that the overall sig-
nal from long-term climate change, i.e. mainly greenhouse-

gas forcing, in the datasets where we cannot separate out
the impact of aerosol forcing might be underestimated. The
best estimate of the change in risk in extreme rainfall as ob-
served in the Brahmaputra basin in 2017 is therefore likely
a rather conservative estimate and hence is of limited use to
inform decision-making. In fact, simulations of the near fu-
ture in both models show a clear increase in the risk of high-
precipitation events that lead to flooding in the Brahmaputra.

In extending our multi-method attribution approach to in-
clude hydrological modelling, we consequently introduced
more degrees of freedom in possible combinations of inputs
and models to construct the hydrological response. Time and
computational restraints put a limit on the number of combi-
nations that could be explored. We conducted experiments
using (i) the same hydrological model (PCR-GLOBWB)
run at different resolutions with different input observational
and/or modelled meteorological input data, (ii) the same in-
put climate model (weather@home) with different hydrolog-
ical models, and (iii) the same hydrological model (SWAT)
with two different input climate models. Changing the res-
olution of the PCR-GLOBWB runs with CPC and ERA-
int input compared to runs with EC-Earth 2.3 input impacts
the dynamics in the hydrological model. In general coarser-
resolution simulations respond faster due to the decrease in
storage and the shorter connectivity between grid cells. High-
resolution models are better able to capture the subsurface
and riverine water storage due to their increased heterogene-
ity (Sutanudjaja et al., 2018). It is therefore more difficult
to simulate extreme hydrological events in coarser models
(Samaniego et al., 2018). It was beyond the scope of this
paper to analyse the differences in detail; however, we use
the differences to show the range of possible output within
one hydrological model. None of the models or observational
datasets are perfect. For instance, in the PCR-GLOBWB
model the variability is too high compared to the mean, while
RFM and LISFLOOD underestimate the magnitude consid-
erably. This is not the ideal situation however, there is no rea-
son to believe that the order of magnitude of the risk ratios
between the current and past climate or between the future
and current climate will depend on this very strongly. This is
corroborated by the fact that the risk ratios are comparable
despite the very different biases.

Despite these strong differences in variables, resolution,
simulated processes and input data, the simulated changes in
the likelihood of the observed event occurring because of an-
thropogenic climate change are very comparable. Even when
the hydrological models are driven by precipitation from the
weather@home simulations the simulated discharge shows a
significant increase in likelihood, apart from SWAT, where
the change is not significant.
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7 Conclusions

In August 2017, following heavy rains, Bangladesh faced one
of their worst river flooding events in recent history, with
record high water levels leading to inundation of river basin
areas in the northern parts of the country, impacting millions
of people who are highly exposed and vulnerable to unusual
flooding.

This paper presents an attribution of this precipitation-
induced flooding event and, for the first time, extends the
multi-method approach of extreme event attribution from
a purely meteorological perspective to the more impact-
relevant hydrological perspective by employing an ensemble
of hydrological models. Firstly, experiments were conducted
with three observational datasets and two climate models to
estimate changes in extreme precipitation event frequency,
in the 10-day Brahmaputra basin average, that have occurred
since pre-industrial times. In addition, climate projection ex-
periments were used to indicate if the trends found up un-
til now are likely to continue or become more extreme in
the future. The precipitation series were then used in turn
as meteorological input for four different hydrological mod-
els to estimate the corresponding changes in river discharge.
In doing so, a range of possible answers to the attribution
question were produced, allowing for comparison between
approaches and for the robustness of the attribution results to
be assessed.

Specifically, our aims were to (i) determine if precipita-
tion can be used as a measure of the extremity of flooding in
the large Brahmaputra basin, or if it is necessary to instead
use a hydrological measure such as discharge for the pur-
pose of attributing the flood of August 2017 in Bangladesh,
and to (ii) draw conclusions on the attribution of this event,
expressed as the change in likelihood of similar or more ex-
treme events, that has occurred since pre-industrial times and
which is projected to occur in the future.

From the precipitation perspective, we find that two out of
three of the observed series show an increased probability for
extreme precipitation like observed in August 2017, but in all
three observational datasets the trends are not significant due
to the short records. One climate model shows a significant
positive influence of anthropogenic climate change, whereas
the other simulates a cancellation between the increase due to
greenhouse gases and a decrease due to sulfate aerosols. The
change in risk of high precipitation that has occurred since
pre-industrial times is therefore uncertain. However, both cli-
mate models agree that the risk will increase significantly in
the future, by more than 1.7, with 2 ◦C of global heating since
pre-industrial times.

Considering discharge rather than precipitation, which
corresponds more closely with the hydrological impacts,
shows only a slightly different result in that only the increase
in risk since pre-industrial times to present-day conditions of
high discharge synthesized from both observations and mod-
els is just significant, whilst the risk of high precipitation

is not. The attribution of the change in discharge is there-
fore somewhat less uncertain than for precipitation, but the
95 % CI still encompasses no change in risk. For the future,
these models project a slightly smaller increase in probabil-
ity of high discharge than of high 10-day precipitation, being
more likely by about a factor of 1.5 in a 2 ◦C warmer world.

For large basins in orographically diverse regions with
complex hydrology, such as the Brahmaputra, we hypothe-
sized that rainfall, river flow and inundation would not be
linearly connected and that precipitation would not be an ad-
equate measure of flood intensity. The initial hydrological
conditions play an important role in combination with the
occurrence of high intensity precipitation events. We there-
fore anticipated that small changes in the risk of precipita-
tion would lead to disproportionate changes in flood risk, ev-
idenced in differences in the risk ratios of the event calculated
from the two perspectives.

Our synthesis, however, produces the best estimate for the
past climate that is greater than 1 and of a similar order of
magnitude (between 1 and 2) for both methods and a lower
bound on the uncertainty range that is less than or about equal
to 1, leading to the conclusion that we cannot confidently
confirm a significant anthropogenic influence in changes up
until now. Projected changes between current conditions and
for a world 2 ◦C warmer than the pre-industrial one were also
a similar order of magnitude (between 1 and 2) for 10-day
precipitation and discharge, with significant changes found.
Thus, in this particular case, studying precipitation alone
would have led to the same qualitative conclusion.

Inspecting the individual model outcomes shows that in
the study of this particular event, there is an impact of the
choice of circulation model used as input for the hydro-
logical model on the amplitude of discharge RRs. Where
the EC-Earth model was used, we find a larger positive
change in precipitation compared to discharge, but where the
weather@home model was used, we find a similar or smaller
positive change in precipitation compared to discharge. This
highlights the importance of using multiple models in attri-
bution studies, particularly where the climate change signal
is not strong.

The use of multiple methods in the attribution of extreme
events is the only way to estimate confidence, and hence reli-
ability, in attribution results. As hydrological models are used
to simulate impact-relevant variables (such as flood depth)
and are in fact used much more for decision-making, it is
essential to extend the attribution approach in general to in-
clude hydrological models, when possible, for analysis of
precipitation-induced flood events. Hydrological models of-
fer further insight into the partitioning of precipitation reach-
ing the ground and thus come closer to the drivers of the
impacts observed on people and livelihoods. Climate mod-
els, in contrast, allow us to disentangle the potential effects
of different atmospheric drivers.

This highlights that only a combination of doing a multi-
method attribution analysis of the meteorological drivers
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with a multi-model approach in hydrological modelling al-
lows for a robust estimate of changing flood hazards under
climate change. Therefore we recommend the use of a hydro-
logical variable, such as discharge, for estimating changing
flood risk in large basins such as the Brahmaputra, although
based on this study, investigating changes in precipitation is
also useful, either as an alternative when hydrological mod-
els are not available or as an additional measure to confirm
qualitative conclusions.

Data availability. Almost all data are available for download and
analysis under https://climexp.knmi.nl/selectfield_att.cgi (last ac-
cess: 20 July 2018) under section “Bangladesh flooding 2017”, in-
cluding the GPCC data (Schamm et al., 2013, 2015) used in this
study.

Supplement. The supplement related to this article is available
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