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Abstract. Oscillatory pumping tests (OPTs) provide an
alternative to constant-head and constant-rate pumping
tests for determining aquifer hydraulic parameters when
OPT data are analyzed based on an associated analytical
model coupled with an optimization approach. There are
a large number of analytical models presented for the
analysis of the OPT. The combined effects of delayed
gravity drainage (DGD) and the initial condition regarding
the hydraulic head are commonly neglected in the existing
models. This study aims to develop a new model for de-
scribing the hydraulic head fluctuation induced by the OPT
in an unconfined aquifer. The model contains a groundwater
flow equation with the initial condition of a static water
table, Neumann boundary condition specified at the rim
of a partially screened well, and a free surface equation
describing water table motion with the DGD effect. The
solution is derived using the Laplace, finite-integral, and
Weber transforms. Sensitivity analysis is carried out for
exploring head response to the change in each hydraulic
parameter. Results suggest that the DGD reduces to in-
stantaneous gravity drainage in predicting transient head
fluctuation when the dimensionless parameter a1 = εSyb/Kz
exceeds 500 with empirical constant ε, specific yield Sy,
aquifer thickness b, and vertical hydraulic conductivity Kz.
The water table can be regarded as a no-flow boundary
when a1 < 10−2 and P < 104 s, with P being the period of
the oscillatory pumping rate. A pseudo-steady-state model
without the initial condition causes a time-shift from the
actual transient model in predicting simple harmonic motion
of head fluctuation during a late pumping period. In addition,

the present solution agrees well with head fluctuation data
observed at the Savannah River site.

Highlights. An analytical model of the hydraulic head
due to oscillatory pumping in unconfined aquifers is pre-
sented. Head fluctuations affected by instantaneous and
delayed gravity drainages are discussed. The effect of the
initial condition on the phase of head fluctuation is analyzed.
The present solution agrees well with head fluctuation data
taken from field oscillatory pumping.

1 Introduction

Numerous attempts have been made by researchers to the
study of the oscillatory pumping test (OPT) that is an al-
ternative to constant-rate and constant-head pumping tests
for determining aquifer hydraulic parameters (e.g., Le Vine
et al., 2016; Christensen et al., 2017; Watlet et al., 2018).
The concept of the OPT was first proposed by Kuo (1972) in
petroleum literature. The process of the OPT contains extrac-
tion stages and injection stages. The pumping rate, in other
words, varies periodically as a sinusoidal function of time.
Compared with traditional constant-rate pumping, the OPT
in contaminated aquifers has the following advantages: (1) it
is low cost because it does not dispose contaminated water
from the well, (2) it has a reduced risk of treating contam-
inated fluid, (3) it has smaller contaminant movement, and
(4) it has a stable signal that is easily distinguished from
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background disturbance such as the tide effect and varying
river stage (e.g., Spane and Mackley, 2011). However, the
disadvantages of the OPT include the need of an advanced
apparatus producing periodic rate. Oscillatory hydraulic to-
mography adopts several oscillatory pumping wells with dif-
ferent frequencies (e.g., Yeh and Liu, 2000; Cardiff et al.,
2013; Zhou et al., 2016; Muthuwatta et al., 2017). Aquifer
heterogeneity can be mapped by analyzing multiple data col-
lected from observation wells. Cardiff and Barrash (2011)
reviewed articles associated with hydraulic tomography and
classified them according to nine categories in a table.

Various groups of researchers have worked with analyt-
ical and numerical models for the OPT; each group has
its own model and investigation. For example, Black and
Kipp (1981) assumed the response of confined flow to the
OPT to be simple harmonic motion (SHM) in the absence
of the initial condition. Cardiff and Barrash (2014) built an
optimization formulation strategy using the Black and Kipp
analytical solution. Dagan and Rabinovich (2014) also as-
sumed hydraulic head fluctuation to be SHM for the OPT at
a partially screened well in unconfined aquifers. Cardiff et
al. (2013) characterized aquifer heterogeneity using the fi-
nite element-based COMSOL software that adopts SHM hy-
draulic head variation for the OPT. In contrast, Rasmussen et
al. (2003) found that hydraulic head response tends toward
SHM at a late period of pumping time when considering the
initial condition prior to the OPT. Bakhos et al. (2014) used
the Rasmussen et al. (2003) analytical solution to quantify
the time after which hydraulic head fluctuation can be re-
garded as SHM since the OPT began. As mentioned above,
most of the models for the OPT assume hydraulic head fluc-
tuation to be SHM without the initial condition, and all of
them treat the pumping well as a line source with infinitesi-
mal radius.

Field applications of the OPT for determining aquifer pa-
rameters have been conducted in recent years. Rasmussen
et al. (2003) estimated aquifer hydraulic parameters based
on 1 or 2 h period of the OPT at the Savannah River site.
Maineult et al. (2008) observed spontaneous potential tempo-
ral variation in aquifer diffusivity at a study site in Bochum,
Germany. Fokker et al. (2012, 2013) presented spatial dis-
tributions of aquifer transmission and the storage coeffi-
cient derived from curve fitting based on a numerical model
and field data from experiments at the southern city limits
of Bochum, Germany. Rabinovich et al. (2015) estimated
aquifer parameters of equivalent hydraulic conductivity, spe-
cific storage, and specific yield at the Boise Hydrogeophysi-
cal Research Site by curve fitting based on observation data
and the Dagan and Rabinovich (2014) analytical solution.
They conclude that the equivalent hydraulic parameters can
represent the actual aquifer heterogeneity of the study site.

Although a large number of studies have been made in de-
veloping analytical models for the OPT, little is known about
the combined effects of delayed gravity drainage (DGD), a
finite-radius pumping well, and the initial condition prior to

Figure 1. Schematic diagram for oscillatory pumping test at a par-
tially screened well of finite radius in an unconfined aquifer.

the OPT. An analytical solution to such a question will not
only have important physical implications but will also shed
light on OPT model development. This study builds an im-
proved model describing hydraulic head fluctuation induced
by the OPT in an unconfined aquifer. The model is com-
posed of a typical flow equation with the initial condition
of a static water table, an inner boundary condition speci-
fied at the rim of the partially screened well for incorporating
the finite-radius effect, and a free surface equation describing
the motion of the water table with the DGD effect. The an-
alytical solution of the model is derived by the methods of
the Laplace transform, finite-integral transform, and Weber
transform. Based on the present solution, sensitivity analy-
sis is performed to explore the hydraulic head in response to
the change in each hydraulic parameter. The effects of DGD
and instantaneous gravity drainage (IGD) on the head fluc-
tuations are compared. The quantitative criterion for treating
the well radius as infinitesimal is discussed. The effect of the
initial condition on the phase of head fluctuation is inves-
tigated. In addition, curve fitting of the present solution to
head fluctuation data recorded at the Savannah River site is
presented.

2 Methodology

2.1 Mathematical model

Consider an OPT in an unconfined aquifer, illustrated in
Fig. 1. The aquifer is of unbound lateral extent with a fi-
nite thickness b. The radial distance from the centerline of
the well is r; an elevation from the impermeable bottom of
the aquifer is z. The well with an outer radius rw is screened
from elevation zu to zl.
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The flow equation describing spatiotemporal head distri-
bution in aquifers can be written as

Dr

(
∂2h

∂r2 +
1
r

∂h

∂r
+α

∂2h

∂z2

)
=
∂h

∂t
for rw ≤ r <∞,

0≤ z ≤ b and t ≥ 0, (1)

whereDr =Kr/Ss and α =Kz/Kr, h(r , z, t) is the hydraulic
head at location (r , z) and time t ,Kr, andKz are respectively
the radial and vertical hydraulic conductivities, and Ss is the
specific storage. Considering that the water table is a refer-
ence datum where the elevation head is set to zero, the initial
condition is expressed as

h= 0 at t = 0. (2)

The rim of the well bore is regarded as an inner boundary
under the Neumann condition, expressed as

2πrwKrl
∂h

∂r
=

{
Qsin(ωt) for zl ≤ z ≤ zu
0 outside screen interval at r = rw, (3)

where l = zu− zl is screen length, and Q and ω = 2π/P are
respectively the amplitude and frequency of the oscillatory
pumping rate (i.e., Qsin(ωt)) with a period P . Water table
motion can be defined by Eq. (4a) for IGD (Neuman, 1972)
and Eq. (4b) for DGD (Moench, 1995):

∂h

∂z
=−

1
Cy

∂h

∂t
at z= b for IGD, (4a)

∂h

∂z
=

1
κCy

t∫
0

∂h

∂τ
exp(−(t − τ)/κ)dτ at z= b for DGD, (4b)

where Cy =Kz/Sy and κ = 1/ε, with ε being an empirical
constant and Sy being the specific yield. Note that Eq. (4b)
reduces to Eq. (4a) when κ→∞ or ε = 0. The impervious
aquifer bottom is under the no-flow condition:

∂h

∂z
= 0 at z= 0. (5)

The hydraulic head far away from the pumping well remains
constant, written as

lim
r→∞

h(r,z, t)= 0. (6)

Define dimensionless variables and parameters as follows:

h=
2πlKr

Q
h,r =

r

rw
,z=

z

b
,zl =

zl

b
,zu =

zu

b
, t

=
Dr

r2
w
t, τ =

Dr

r2
w
τ,P =

Dr

r2
w
P, (7)

γ =
ωr2

w
Dr

,µ=
αr2

w

b2 ,a =
bDr

Cyr2
w
,a1 =

b

κCy
,a2 =

r2
w

κDr
,

where the over bar stands for a dimensionless symbol.
Note that the magnitude of a1 is related to the DGD effect

(Moench, 1995) and γ is a dimensionless frequency param-
eter. With Eq. (7), the dimensionless forms of Eqs. (1)–(6)
become, respectively,

∂2h

∂r2 +
1
r

∂h

∂r
+µ

∂2h

∂z2 =
∂h

∂t
for 1≤ r <∞,0≤ z < 1

and t ≥ 0, (8)

h= 0 at t = 0, (9)

∂h

∂r
=

{
sin(γ t) for zl ≤ z ≤ zu,

0 outside screen interval at r = 1, (10)

∂h

∂z
=−a

∂h

∂t
at z= 1 for IGD, (11a)

∂h

∂z
=−a1

t∫
0

∂h

∂τ
exp

(
−a2(t − τ)

)
dτ at z= 1 for DGD, (11b)

∂h

∂z
= 0 at z= 0, (12)

lim
r→∞

h(r,z, t)= 0. (13)

Equations (8)–(13) represent the transient DGD model when
excluding Eq. (11a) and represent the transient IGD model
when excluding Eq. (11b).

2.2 Transient solution for unconfined aquifer

The Laplace transform and finite-integral transform are ap-
plied to solve Eqs. (8)–(13) (Latinopoulos, 1985; Liang et al.,
2017, 2018). The transient solution can then be expressed as

h(r,z, t)= hexp(r,z, t)+hSHM(r,z, t), (14a)

with

hexp(r,z, t)=
−2γ
π

∞∑
n=1

∞∫
0

cos(βnz)exp
(
p0t

)
Im(ε1ε2)dζ ,

(14b)

hSHM(r,z, t)= At(r,z)cos
(
γ t −φt(r,z)

)
, (14c)

At(r,z)=
√
at(r,z)2+ bt(r,z)2, (14d)

at(r,z)=
2
π

∞∑
n=1

∞∫
0

p0 cos(βnz) Im(ε1ε2)dζ, (14e)

bt(r,z)=
2γ
π

∞∑
n=1

∞∫
0

cos(βnz) Im(ε1ε2)dζ, (14f)

φt(r,z)= cos−1 (bt(r,z)/At(r,z)
)
, (14g)

ε1 =K0 (λ0r)(sin(zuβn)− sin(zlβn))/(βnλ0K1 (λ0)(
p2

0 + γ
2
))
, (14h)
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ε2 =
(
β2
n + c

2
0

)
/
(
β2
n + c

2
0 + c0

)
, (14i)

p0 =−ζ −µβ
2
n, (14j)

λ0 =
√
ζ i. (14k)

where c0 = ap0 for IGD and is a1p0/(p0+a2) for DGD, i is
the imaginary unit, Im (–) is the imaginary part of a complex
number, K0 (–) and K1 (–) are the modified Bessel functions
of the second kind of zero order and one, respectively, and
βn is the positive roots of the following equation:

tanβn = c0/βn. (15)

The method for finding the roots of βn is discussed in
Sect. 2.3. The detailed derivation of Eqs. (14a)–(14k) is pre-
sented in the Supplement. The first term on the right-hand
side (RHS) of Eq. (14a) exhibits exponential decay due to
the initial condition since pumping began; the second term
defines SHM with amplitude At(r , z) and phase shift φt(r , z)
at a given point (r , z). The numerical results of the integrals
in Eqs. (14b), (14e), and (14f) are obtained by the Mathemat-
ica NIntegrate function.

2.3 Calculation of βn

The eigenvalues β1, . . . ,βn and the roots of Eq. (15) can be
determined by applying the Mathematica function FindRoot
based on Newton’s method with reasonable initial guesses.
The roots are located at the intersection of the curves plot-
ted by the RHS and left-hand side (LHS) functions of βn in
Eq. (15). The roots are very close to the vertical asymptotes
of the periodical tangent function tanβn. When c0 = ap0, the
initial guess for each βn can be considered to be β0,n+ δ,
where β0,n = (2n−1)π/2, n ∈(1, 2, . . . ∞), and δ is a small
positive value set to 10−10. When c0 = a1p0/(p0+ a2), the
initial guess is set to β0,n−δ for a2−ζ ≤ 0. There is an addi-
tional vertical asymptote at βn =

√
(a2− ζ )/µ derived from

the RHS function of Eq. (15) (i.e., p0+a2 = 0) if a2−ζ > 0.
The initial guess is therefore set to β0,n+ δ for β0,n on the
LHS of the asymptote and is set to β0,n− δ for β0,n on
the RHS.

2.4 Transient solution for confined aquifer

When Sy = 0 (i.e., a = 0 or a1 = 0), Eqs. (11a) or (11b)
reduces to ∂h/∂z= 0 for the no-flow condition at the top
of the aquifer, indicating that the unconfined aquifer be-
comes a confined one. Under this condition, Eq. (15) be-
comes tanβn = 0 with roots βn = 0, π , 2π , . . . , nπ , . . . ,∞;
Eq. (14i) reduces to ε2 = 1; and factor 2 in Eqs. (14b),
(14e), and (14e) is replaced by unity for βn = 0 and remains
for the others. The analytical solution of the transient head
for the confined aquifer can be expressed as Eqs. (14a)–
(14k), with

hexp(r,z, t)=
−γ

π

∞∫
0

Im(ε0)exp(−ζ t)dζ −
2γ
π

∞∑
n=1

∞∫
0

cos(nπz)Im(ε1)exp
(
p0t

)
dζ, (16a)

at(r,z)=−
1
π

∞∫
0

ζ Im(ε0)dζ +
2
π

∞∑
n=1

∞∫
0

p0 cos(nπz)

Im(ε1)dζ, (16b)

bt(r,z)=
γ

π

∞∫
0

Im(ε0)dζ +
2γ
π

∞∑
n=1

∞∫
0

cos(nπz)

Im(ε1)dζ, (16c)

ε0 = (zu− zl)K0 (λ0r)/
(
λ0K1 (λ0)

(
ζ 2
+ γ 2

))
. (16d)

Note that Eq. (14h) reduces to Eq. (16d) based on βn = 0 and
l’Hospital’s rule. When zu = 1 and zl = 0 for the case of the
full screen, Eq. (14h) gives ε1 = 0 for βn > 0, and the second
RHS terms of Eqs. (16a)–(16c) can therefore be eliminated.
This causes the solution for confined aquifers to be indepen-
dent of dimensionless elevation z, indicating only horizontal
flow in the aquifer.

2.5 Pseudo-steady-state solution for unconfined aquifer

A pseudo-steady-state (PSS) solution hs accounts for SHM
of head fluctuation at a late period of pumping time and sat-
isfies the following form (Dagan and Rabinovich, 2014):

hs(r,z, t)= Im
(
H(r,z)eiγ t

)
, (17)

where H(r , z) is a space function of r and z. This defines
a PSS IGD model as Eqs. (8)–(13), excludes Eqs. (9) and
(11b), and replaces sin(γ t) in Eq. (10) by eiγ t . Substituting
Eq. (17) and ∂hs/∂t = Im(iγH(r , z)eiγ t ) into the model re-
sults in

∂2H

∂r2 +
1
r

∂H

∂r
+µ

∂2H

∂z2 = iγH, (18)

∂H

∂r
=

{
1 for zl ≤ z ≤ zu
0 outside screen interval at r = 1, (19)

∂H

∂z
=−iaγH at z= 1 for IGD, (20)

∂H

∂z
= 0 at z= 0, (21)

lim
r→∞

H = 0. (22)

The resultant model is independent of t , indicating that the
analytical solution ofH(r , z) is tractable. This similarly con-
siders a PSS DGD model that is the same as the PSS IGD

Hydrol. Earth Syst. Sci., 23, 1323–1337, 2019 www.hydrol-earth-syst-sci.net/23/1323/2019/



C.-S. Huang et al.: A general analytical model for head response to oscillatory pumping in unconfined aquifers 1327

model but replaces Eqs. (11a) by (11b). Substituting Eq. (17)
into the result yields a model that depends on t , indicating
that the solution hs to the PSS DGD model is not tractable.

The Weber transform, defined in Eq. (B1) of the sup-
porting material, may be considered to be a Hankel trans-
form with a more general kernel function. It can be applied
to diffusion-type problems with a radial-symmetric region
from a finite distance to infinity. For groundwater flow prob-
lems, it can be used to develop the analytical solution for the
flow equation with a Neumann boundary condition specified
at the rim of a finite-radius well (e.g., Lin and Yeh, 2017;
Povstenko, 2015). Taking the transform and the formula of
eiγ t = cos(γ t)+ i sin(γ t) to solve Eqs. (18)–(22) yields the
solution of hs, expressed as

hs(r,z, t)= As(r,z)cos(γ t −φs(r,z)) , (23a)

As(r,z)=
√
as(r,z)2+ bs(r,z)2, (23b)

as(r,z)= Re(H(r,z)), (23c)

bs(r,z)= Im(H(r,z)), (23d)

φs(r,z)= cos−1 (bs(r,z)/As(r,z)) , (23e)

H(r,z)=



∞∫
0
H̃uξ�dξ for zu < z ≤ 1

∞∫
0
H̃mξ�dξ for zl ≤ z ≤ zu

∞∫
0
H̃lξ�dξ for 0≤ z < zl

, (23f)

�= (J0(ξr)Y1(ξ)−Y0(ξr)J1(ξ))/
(
J 2

1 (ξ)+Y
2
1 (ξ)

)
,

(23g)

with the Bessel functions of the first kind of zero order, J0 (–
) and one J1 (–), as well as the second kind of zero order,
Y0 (–) and one Y1 (–): H̃u = H̃p (c1 exp(λwz)+ c2 exp(−λwz)) for zu < z ≤ 1
H̃m = H̃p (c3 exp(λwz)+ c4 exp(−λwz)− 1) for zl ≤ z ≤ zu
H̃l = H̃pc5 (exp(λwz)+ exp(−λwz)) for 0≤ z < zl

,

(23h)

c1 =−e
−λw (λw− σ)(sinh(zlλw)− sinh(zuλw))/D, (23i)

c2 =−e
λw (λw+ σ)(sinh(zlλw)− sinh(zuλw))/D, (23j)

c3 =
e−(1+zl+zu)λw

2D

(
σ
(
e(2+zl)λw + ezuλw − e(2zl+zu)λw

)
+(σ − λw)e

(zl+2zu)λw + λw

(
e(2+zl)λw − ezuλw

+e(2zl+zu)λw
))
, (23k)

c4 =
e−(1+zl+zu)λw

2D

(
(σ − λw)e

(zl+2zu)λw + (σ + λw)(
e(2+zl)λw − e(2+zu)λw + e(2+2zl+zu)λw

))
, (23l)

c5 =
1

2D
e−(1+zl+zu)λw

(
ezlλw − ezuλw

)
(
(λw− σ)e

(zl+zu)λw + (λw+ σ)e
2λw
)
, (23m)

where λ2
w = (ξ

2
+ iγ )/µ, σ = iγ a, H̃p = 2/(πµξλ2

w) and
D = 2(σ coshλw+ λw sinhλw), and Re (–) is the real part
of a complex number. Again, one can refer to the support-
ing material for the derivation of the solution. Equation (23a)
indicates SHM for the response of the hydraulic head at any
point to oscillatory pumping. Note that Eq. (23f) reduces to

H(r , z)=
∞∫
0
H̃mξ�dξ for a fully screened well when zl = 0

and zu = 1.

2.6 Pseudo-steady-state solution for confined aquifers

Applying the finite Fourier cosine transform to the model,
Eqs. (18)–(22) with Sy = 0 (i.e., a = 0) for the confined con-
dition, leads to an ordinary differential equation with two
boundary conditions. In solving the boundary-value problem,
the solution of hs for confined aquifers can be expressed as
Eqs. (23a)–(23e) with H(r , z), defined as

H(r,z)=−2
∞∑
m=0

K0 (rλm)

λmK1 (λm)

×

{ 0.5(zu− zl) for m= 0
cos(mπz)
mπ

(sin(zumπ)− sin(zlmπ)) for m> 0 ,

(24)

where λ2
m = γ i+µ(mπ)

2. The derivation of Eq. (24) is also
listed in the supporting material. For a fully screened well
(i.e., zu = 1, zl = 0), the first term of the series (i.e., m= 0)
remains and the others equal zero because of sin(zumπ)−

sin(zlmπ)= 0. The result is independent of dimensionless
elevation z, indicating that the confined flow is only horizon-
tal.

2.7 Special cases of the present solution

Table 1 classifies the present solution (i.e., Solution 1) and
its special cases (i.e., Solutions 2 to 6) according to tran-
sient or PSS flow, unconfined or confined aquifer, and IGD
or DGD. Each of the solutions (Solutions 1 to 6) reduce to
a special case for a fully screened well. Existing analytical
solutions can be regarded as special cases of the present so-
lution, as discussed in Sect. 3.4 (e.g., Black and Kipp, 1981;
Rasmussen et al., 2003; Dagan and Rabinovich, 2014).

2.8 Sensitivity analysis

Sensitivity analysis evaluates hydraulic head variation in re-
sponse to the change in each of Kr, Kz, Ss, Sy, ω, and ε. The
normalized sensitivity coefficient can be defined as (Liou and
Yeh, 1997)
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Table 1. The present solution and its special cases.

Well Transient flow Pseudo-steady-state flow

screen Unconfined aquifer Confined aquifer Unconfined aquifer Confined aquifer

Partial Solutions 1 and 2 Solution 3 Solutions 4 and 5 Solution 6
Full Solutions 1 and 2a Solution 3a,b Solutions 4 and 5a Solution 6a,b

Solution 1 consists of Eqs. (14a)–(14k) with the roots of Eq. (15) and c0 = a1p0/(p0 + a2) for DGD. Solution 2 is the same as
Solution 1 but has c0 = ap0 for IGD. Solution 3 equals Solution 1 with Eqs. (16a)–(16d) and βn = 0, π , 2π , . . . , nπ . Solution 4
is the component hSHM of Solution 1 for DGD. Solution 5 consists of Eqs. (23a)–(23m) for IGD. Solution 6 consists of
Eqs. (23a)–(23e), with H(r , z) defined by Eq. (24). a zu = 1 and zl = 0 for fully screened well. b The solution is independent of
elevation.

Si = Pi
∂X

∂Pi
, (25)

where Si is the sensitivity coefficient of ith parameter, Pi is
the magnitude of the ith input parameter, and X represents
the present solution in dimensional form. Equation (25) can
be approximated as

Si = Pi
X(Pi +1Pi)−X(Pi)

1Pi
, (26)

where 1Pi , a small increment, is chosen as 10−3Pi .

3 Results and discussion

The following sections demonstrate the response of the hy-
draulic head to oscillatory pumping using the present so-
lution. The default values in calculation are r = 0.05 m,
z= 5 m, b = 10 m, Q= 10−3 m3 s−1, rw = 0.05 m, zu =

5.5 m, zl = 4.5 m, Kr = 10−4 m s−1, Kz = 10−5 m s−1, Ss =

10−5 m−1, Sy = 10−4, ω = 2π/30 s−1, and κ = 100 s. The
corresponding dimensionless parameters and variables are
r = 1, z= 0.5, zu = 0.55, zl = 0.45, γ = 5.24× 10−5, µ=
2.5× 10−6, a = 4× 105, and a1 = 1 and a2 = 2.5× 10−6.

3.1 Delayed gravity drainage

Previous analytical models for the OPT consider either con-
fined flow (e.g., Rasmussen et al., 2003) or unconfined flow
with IGD effect (e.g., Dagan and Rabinovich, 2014). Little
attention has been paid to the consideration of the DGD ef-
fect. This section addresses the difference among these three
models. Figure 2 shows the curve of the dimensionless am-
plitude At at (r , z)= (1, 1) of Solution 1 versus the dimen-
sionless parameter a1 related to the DGD effect. The tran-
sient head fluctuations are plotted based on Solution 1, with
a1 = 10−2, 1, 10, 500; Solution 2 is for IGD, and Solution 3
is for confined flow. Define the relative error (RE) as

RE=
∣∣∣A′t−At

∣∣∣/At, (27)

where A
′

t is the dimensionless amplitude predicted by Solu-
tion 2 for the case of a1 = 500 or by Solution 3 for the case

of a1 = 10−2. The curves of the RE versus the period of the
oscillatory pumping rate (i.e., P ) for these two cases are dis-
played. The range of P ≤ 105 s (1.16 days) contains most
practical applications of the OPT. When 10−2

≤ a1 ≤ 500,
the At gradually decreases with a1 to the trough and then in-
creases to the ultimate value of At = 1.79×10−2. The DGD,
in other words, causes an effect. When a1 < 10−2, Solu-
tions 1 and 3 agree on the predicted heads; the RE is be-
low 1 % for P < 104 s (2.78 h), indicating that the uncon-
fined aquifer with the DGD effect behaves like confined
aquifer and that the water table can be regarded as a no-flow
boundary when a1 < 10−2 and P < 104 s. When a1 > 500,
the head fluctuations predicted by both Solutions 1 and 2 are
identical; the largest RE is about 0.45 %, indicating that the
DGD effect is ignorable and that Eq. (4b) reduces to Eq. (4a)
for the IGD condition. This conclusion is applicable for any
magnitude of P in spite of P > 105 s.

3.2 Effect of finite radius of pumping well

Existing analytical models for the OPT mostly treated the
pumping well as a line source with an infinitesimal radius
(e.g., Rasmussen et al., 2003; Dagan and Rabinovich, 2014).
The finite difference scheme for the model also treats the well
as a nodal point by neglecting the radius. This will lead to
significant error when a well has a radius ranging from 0.5 to
2 m (Yeh and Chang, 2013). This section discusses the rela-
tive error in predicted amplitude, defined as

RE=
∣∣AD&R−At

∣∣/At, (28)

where At and AD&R are the dimensionless amplitudes at
r = 1 (i.e., r = rw) predicted by IGD Solution 2 and the Da-
gan and Rabinovich (2014) solution, respectively. Note that
their solution assumes an infinitesimal radius of a pumping
well and has a typo in that the term e−Dw+1

− e−Dw should
read eβ(−Dw+1)

− e−βDw (see their Eq. 25). Figure 3 demon-
strates the RE for different values of radius rw. The RE in-
creases with rw as expected. For case 1 of rw = 0.1 m, both
solutions agree well in the entire domain of 1≤ r ≤∞, indi-
cating that a pumping well with rw ≤ 0.1 m can be regarded
as a line source. For the extreme case 2 of rw = 1 m or case 3
of rw = 2 m, the Dagan and Rabinovich solution underesti-
mates the dimensionless amplitude for 1≤ r ≤ 6 and agrees
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Figure 2. Influence of delayed gravity drainage on the dimensionless amplitude At and transient head h at r = 1, z= 1, predicted by
Solution 1 for different magnitudes of a1 related to the influence.

Figure 3. Relative error (RE) of the dimensionless amplitudes At at the rim of the pumping well (i.e., r = rw), predicted by IGD Solution 2
and the Dagan and Rabinovich (2014) solution. The well radius is assumed to be infinitesimal in the Dagan and Rabinovich (2014) solution
and finite in our solution.
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Figure 4. The normalized sensitivity coefficient Si associated with (a) the exponential component hexp of Solution 1 and (b) the SHM
amplitude At for parameters Kr, Kz, Ss, Sy, ω, and ε. The observation locations for (a) and (b) are under water table (i.e., z= 0.5);
(c) displays the curves of Si of hexp and At at water table (i.e., z= 1) versus Sy and ε.

to the present solution for r > 6. The REs for these two cases
exceed 10 %. The effect of finite radius should therefore be
considered in OPT models, especially when observed hy-
draulic head data are taken close to the well bore of a large-
diameter well.

3.3 Sensitivity analysis

The temporal distributions of the normalized sensitivity coef-
ficient Si , defined as Eq. (26), withX = hexp as in Solution 1,
are displayed in Fig. 4a for the response of exponential de-
cay to the change in each of the six parameters, Kr, Kz, Ss,
Sy, ω, and ε. The exponential decay is very sensitive to vari-
ation in each of the parameters Kr, Kz, Ss, and ω because
of |Si |> 0. Precisely, a positive perturbation in Ss produces
an increase in the magnitude of hexp, while that in Kr or Kz
causes a decrease. In addition, a positive perturbation in ω

yields an increase in hexp before t = 1 s and a decrease after
that time. It is worth noting that the Si for Sy or ε is very
close to zero over the entire period of time, indicating that
hexp is insensitive to the change in Sy or ε and that the subtle
change of gravity drainage has no influence on the exponen-
tial decay. In contrast, the spatial distributions of Si associ-
ated with the amplitudeAt are shown in Fig. 4b in response to
the changes in those six parameters. The At is again sensitive
to the change in each ofKr,Kz, Ss, and ω but is insensitive to
the change in Sy or ε. The same result as |Si | ∼= 0 for Sy or ε
applies to any observation point under the water table (i.e.,
z < 1), but |Si |> 0 at the water table (i.e., z= 1), shown in
Fig. 4c. From those discussed above, we may conclude that
the changes in the four key parametersKr,Kz, Ss, and ω sig-
nificantly affect head prediction in the entire aquifer domain.
The change in Sy or ε leads to insignificant variation in the
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Figure 5. Head fluctuations at r = 6, predicted by (a) DGD Solution 1 and (b) IGD Solution 2. Solutions 1 and 2 are expressed as h=
hexp+hSHM for transient flow. IGD Solution 5, expressed as hs = As cos(γ t −φs), accounts for PSS flow.

predicted head below the water table and slight variation at
the water table.

3.4 Transient head fluctuation affected by the initial
condition

Figure 5 demonstrates head fluctuations predicted by DGD
Solution 1 and IGD Solution 2, expressed as h= hexp+hSHM
for transient flow and expressed by the IGD solution as
hs = As cos(γ t−φs) for PSS flow. The transient head fluctu-
ation starts from h= 0 at t = 0 and approaches the SHM pre-
dicted by hSHM when hexp ∼=m after t = 0.5P (i.e., 6×104).
Solutions 1 and 2 agree with the h predictions because the
head at z= 0.5 under the water table is insensitive to the
change in Sy or ε, as discussed in Sect. 3.3. It is worth noting
that the solution of Dagan and Rabinovich (2014) for PSS
flow has a time-shift from the hSHM of Solution 2. This indi-
cates the phase of their solution (i.e., 1.50 rad – 1 rad approx-
imates 57.30◦) should be replaced by the phase of Solution 2
(i.e., φt = 1.64 rad) so that their solution fits the hSHM of So-
lution 2 exactly.

Figure 6 displays head fluctuations predicted by transient
Solution 3 expressed as h= hexp+hSHM, and PSS Solution 6
as hs = As cos(γ t −φs) for the partially screened pumping
well in Fig. 6a and the full screen in Fig. 6b. The Rasmussen
et al. (2003) solution for transient flow predicts the same h as
Solution 3. The Black and Kipp (1981) results for PPS flow
also predict a hSHM close to the prediction of Solution 3.
The phase of Solution 6 (i.e., φs = 1.50 rad for Fig. 6a and
1.33 rad for Fig. 6b) can be replaced by the phase of Solu-
tion 3 (i.e., φt = 1.64 rad for Fig. 6a and 1.81 rad Fig. 6b)
so that the hSHM prediction of Solution 3 is identical to the
hs prediction of Solution 6. As concluded, excluding the ini-

tial condition with Eq. (17) for a PSS model leads to a time-
shift from the SHM of the head fluctuation predicted by the
associated transient model, while the transient and PSS mod-
els give the same SHM amplitude.

3.5 Application of the present solution to field
experiment

Rasmussen et al. (2003) conducted field OPTs in a three-
layered aquifer system containing one surficial aquifer, the
Barnwell–McBean aquifer in the middle, and the deepest
Gordon aquifer at the Savannah River site. Two clay layers
dividing these three aquifers may be regarded as impervi-
ous strata. For the OPT at the surficial aquifer, the forma-
tion has an average thickness of 6.25 m near the test site.
The fully screened pumping well has a 7.6 cm outer radius.
The pumping rate can be approximated as Qsin(ωt), with
Q= 4.16×10−4 m3 s−1 and ω = 2π h−1. The distance from
the pumping well to the observation well 101D is 6 m and
11.5 m to well 102D. The screen lengths from the aquifer
bottom for well 101D and from the water table for well 102D
are 3 m. For the OPT at the Barnwell–McBean aquifer, the
formation mainly consists of sand and fine-grained mate-
rial. The pumping well has an outer radius of 7.6 cm and
pumping rate of Qsin(ωt), with Q= 1.19× 10−3 m3 s−1

and ω = π h−1. The observation well 201C is 6 m from the
pumping well. The data of time-varying hydraulic heads at
the observation wells (i.e., 101D, 102D, and 201C) are plot-
ted in Fig. 7. One can refer to Rasmussen et al. (2003) for a
detailed description of the Savannah River site.

The aquifer hydraulic parameters are determined based
on Solutions 3 to 6 coupled with the Levenberg–Marquardt
algorithm provided in the Mathematica function FindFit
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Figure 6. Head fluctuations at r = 6 predicted by Solutions 3 and 6 for (a) partially screened pumping well and (b) fully screened pumping
well. Solution 3 is expressed as h= hexp+hSHM for transient flow. Solution 6, expressed as hs = As cos(γ t −φs), accounts for PSS flow.

Figure 7. Comparison of field observation data with head fluctuations predicted by the present solution. Solutions 3 and 6 represent transient
and PSS confined flows, respectively. PSS Solutions 4 and 5 stand for DGD and IGD conditions, respectively.
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(Wolfram, 1991). Note that a robust Gauss–Newton algo-
rithm (Qin et al., 2018a, b) or an automatic optimization
method “SCE-UA” (Duan et al., 1992; Wang et al., 2017)
provides an alternative to the parameter estimation. Solu-
tions 4 and 5 are used to predict depth-averaged head, ex-

pressed as (z′u− z
′

l)
−1

z′u∫
z′l

hsdz, with the upper elevation z′u

and lower elevation z′l of the finite screen of the observa-
tion well 101D or 102D at the surficial aquifer. Note that
Solutions 3 and 6 are independent of elevation because of
the fully screened pumping well. The standard error of es-

timate (SEE) is defined as SEE=

√
1
M

M∑
j=1

e2
j and the mean

error (ME) as ME= 1
M

M∑
j=1

ej , where ej is the difference be-

tween predicted and observed hydraulic heads and M is the
number of observation data (Yeh, 1987). The estimated pa-
rameters and associated SEE and ME are displayed in Ta-
ble 2. The estimates of T , S, and Dr given in Rasmussen
et al. (2003) are also presented. The result shows that the
estimated Sy is very small, and the estimated T and S of
Solution 3, Solution 6, or the Rasmussen et al. (2003) so-
lution for confined flow are close to those of Solution 4 or 5
for unconfined flow, indicating that the unconfined flow in-
duced by the OPT in the surficial aquifer is negligibly small.
Little gravity drainage due to the DGD effect appears with
a1 = 20 for wells 101D and 102D, as discussed in Sect. 3.1.
Rasmussen et al. (2003) also revealed the confined behavior
of the OPT-induced flow in the surficial aquifer. The esti-
mated Sy is 1 order of magnitude less than the lower limit
of the typical range of 0.01–0.3 (Freeze and Cherry, 1979),
which accords with the findings of Rasmussen et al. (2003)
and Rabinovich et al. (2015). Such a fact might be attributed
to the problem of the moisture exchange limited by capil-
lary fringe between the zones below and above the water
table. Several laboratory research outcomes have confirmed
that an estimate of Sy at a short period of the OPT is much
smaller than that determined by constant-rate pumping test
(e.g., Cartwright et al., 2003, 2005). In addition, the differ-
ence in T , S, or Dr estimated by Solution 6 and that esti-
mated by the Rasmussen et al. (2003) solution may be at-
tributed to the fact that their solution assumes isotropic hy-
draulic conductivity (i.e.,Kr =Kz). In contrast, the transient
Solution 3 gives smaller SEEs than the PSS Solution 6 or the
Rasmussen et al. (2003) solution for the Barnwell–McBean
aquifer and better fits the observed data at the early pumping
periods as shown in Fig. 7. From those discussed above, we
may conclude that the present solution is applicable to the
real-world OPT.
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4 Concluding remarks

A variety of analytical models for the OPT have been pro-
posed so far, but little attention is paid to the joint effects of
DGD, the initial condition, and the finite radius of a pump-
ing well. This study develops a new model for describing
hydraulic head fluctuation due to the OPT in unconfined
aquifers. A static hydraulic head prior to the OPT is regarded
as an initial condition. A Neumann boundary condition is
specified at the rim of a finite-radius pumping well. A free
surface equation accounting for the DGD effect is considered
to be the top boundary condition. The solution of the model
is derived from the Laplace transform, finite-integral trans-
form, and Weber transform. The sensitivity analysis of the
head response to the change in each of hydraulic parameters
is performed. The observation data obtained from the OPT
at the Savannah River site are analyzed by the present solu-
tion when coupling the Levenberg–Marquardt algorithm to
estimate aquifer hydraulic parameters. Our findings are sum-
marized as follows:

1. When 10−2
≤ a1 ≤ 500, the effect of DGD on head

fluctuations should be considered. The amplitude of
head fluctuation predicted by DGD Solution 1 decreases
with increasing a1 to a trough and then increases to
the amplitude predicted by IGD Solution 2. When a1 >

500, the DGD becomes IGD. Both Solutions 1 and 2
predict the same head fluctuation. When a1 < 10−2 and
P < 104 s, the DGD results in the water table under the
no-flow condition. Solution 1 for unconfined flow gives
an identical head prediction to Solution 3 for confined
flow.

2. Assuming a large-diameter well as a line source with
an infinitesimal radius underestimates the amplitude
of head fluctuation in the domain of 1≤ r ≤ 6 when
the radius exceeds 80 cm, leading to a relative error
RE> 10 %, as shown in Fig. 3. In contrast, the assump-
tion is valid in predicting the amplitude in the domain of
r > 6 in spite of adopting a large-diameter well. When
rw ≤ 10 cm (i.e., RE< 0.45 %), the well radius can be
regarded as infinitesimal. The result is applicable to ex-
isting analytical solutions assuming infinitesimal radius
and finite difference solutions treating the pumping well
as a nodal point.

3. The sensitivity analysis suggests that the changes in
four parameters, Kr, Kz, Ss, and ω, significantly af-
fect head prediction in the entire aquifer domain. The
change in Sy or ε causes insignificant variation in the
head under the water table but slight variation in the
head at the water table.

4. Analytical solutions for the OPT are generally ex-
pressed as the sum of the exponential and the harmonic
functions of time (i.e., h= hexp+At cos(γ t −φt)) for
transient solutions (e.g., Solution 3) and the harmonic
function (i.e., hs = As cos(γ t −φs)) for PSS solutions
(e.g., Solution 6), the latter assuming that without the
initial condition, Eq. (17) produces a time-shift from the
SHM predicted by the hSHM. The phase φs should be re-
placed by φt so that hs and hSHM are exactly the same.

Data availability. The data sets of these solutions in Figs. 2–7 are
available upon request. The OPT data in Fig. 7 were provided by
Todd C. Rasmussen.
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Appendix A: Notation and abbreviation

a bDr/
(
Cyr

2
w
)

a1, a2 b/
(
κCy

)
, r2

w/(κDr)

b Aquifer thickness
Cy Kz/Sy
Dr Kr/Ss
DGD Delayed gravity drainage
h Hydraulic head
h Dimensionless hydraulic head, i.e., h= 2πlKrh/Q

IGD Instantaneous gravity drainage
Kr, Kz Aquifer horizontal and vertical hydraulic conductivities, respectively
LHS Left-hand side
l Screen length, i.e., zu− zl
OPT Oscillatory pumping test
P Period of oscillatory pumping rate
PSS Pseudo-steady state
P Dimensionless period, i.e., P =DrP/r

2
w

p Laplace parameter
Q Amplitude of oscillatory pumping rate
RHS Right-hand side
r Radial distance from the center of pumping well
r Dimensionless radial distance, i.e., r = r/rw
rw Radius of pumping well
SHM Simple harmonic motion
Ss, Sy Specific storage and specific yield, respectively
t Time since pumping
t Dimensionless pumping time, i.e., t =Drt/r

2
w

z Elevation from aquifer bottom
zl, zu Lower and upper elevations of well screen, respectively
z Dimensionless elevation, i.e., z= z/b
zl, zu zl/b, zu/b

α Kz/Kr
βn Roots of Eq. (15)
κ 1/ε
γ Dimensionless frequency of oscillatory pumping rate, i.e., ωr2

w/Dr
ε Empirical constant associated with delayed gravity drainage
µ αr2

w/b
2

ω Frequency of oscillatory pumping rate, i.e., ω = 2π/P
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Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/hess-23-1323-2019-supplement.
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