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Supporting Material
1. Derivation of Eqs. (14a) — (14k)
The methods of Laplace transform and finite-integral transform are applied to solve Egs. (8) -
(13). The former converts h(7,Z,t) into A(7,Z,p), dh/dt in Eq. (8), (11a) into ph, the
integration in Eq. (11b) into ph/(p + a,), and sin(yt) in Eq. (10) into y/(p? + y?) with

the Laplace parameter p. The result of Eq. (8) in the Laplace domain can be written as
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The transformed boundary conditions in 7 and z directions are expressed as
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Oh_ _aph 4 7=1 for DGD (A.3b)
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oh _
=0 at 7=0 (A4)
lim A(7,Z,p) = 0 (A.5)
T—00

The finite-integral transform proposed by Latinopoulos (1985) is applied to A of Egs.

(A.1) - (A.5). It is defined as

h(By) = S{h(D)} = [} h(2) F cos(B,2)dz (A.6)
F= [ (A7)
where [, is the root of Eq. (15), and ¢ = ap for Eq. (A.3a) and a,p/(p + a,) for Eq.
(A.3b). On the basis of integration by parts, one can write

S{28 = [ (28 ) Feos(Baz) dz = —p2h (A.8)
Note that Eq. (A.8) is applicable only for the no-flow condition specified at Z =0 (i.e., Eq.
S.4) and third-type condition specified at Z =1 (i.e., Eq. A.3a or A.3b). The formula for the

inverse finite-integral transform is defined as



h(2) = 37Hh(Br)} = Zr=1 h(BR)F cos(Bn2) (A9)
Using Eqs. (A.6) and (A.8) converts A(7,Zz,p) into A(F, B, p) and 8%h/dz> in Eq.
(A.1) into —B2h with n € (1,2,3,...0). Eq. (A.1) then becomes an ordinary differential

equation (ODE) denoted as

2% B ~ ~
Oh 1082k = ph (A.10)
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with the transformed Eqgs. (A.5) and (A.2) written, respectively, as

lim A(7, B, p) = 0 (A.11)
r—oo
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Erialraves vy (sin(z,By) —sin(z;B,)) at r=1 (A.12)

Solving Eq. (A.10) with (A.11) and (A.12) results in

T (= _ _YFKO(T/D(Sin(z_uﬁn)—Sin(Z_lﬁn))
nT o P) = Badl; (D +17) (A-13)

with

A=p+u Bi (A.14)

Taking the inverse finite-integral transform to Eq. (A.13) using the formula in Eq. (A.9),

the Laplace-domain solution is obtained as

h(7,2,p) = 2 51 h(F, By ) cos(BnZ) (A.15)
with

h(7, Bn, ) = 1 (P) - h2(p) (A.16)
) = s (A.17)
ha(p) = —p10, (A.18)
@1 = Ko(F) (sin(Zufn) — sin(ZBn))/ (BnAK1 (D)) (A.19)
@2 = (Bi +c?)/(Bi +c* +0) (A.20)

Using the Mathematica function InverseLaplaceTransform, the inverse Laplace transform

for h,(p) in Eq. (A.17) is obtained as



hi(£) = sin(y?) (A.21)
The inverse Laplace transform for h,(p) in Eq. (A.18) is written as

~ _ i p+ico ~ ot
h,(6) = Py fp—ioo h,(p) eP'dp (A.22)
where p is a real number being large enough so that all singularities are on the left-hand side
of the straight line from (p, —io) to (p, i) in the complex plane. The integrand h,(p) is
a multiple-value function with a branch point at p = —uf2 and a branch cut from the point
along the negative real axis. In order to reduce h,(p) to a single-value function, we consider
a modified Bromwich contour that contains a straight line AB, CD right above the branch cut
—t . . . . . . m . .
and EF right below the branch cut, a semicircle with radius R, and a circle DE with radius

r’ in Fig. S1. According to the residual theory, Eq. (A.22) may be expressed as

7 . C +~ F D ~ - E ~ —
R, () + rl;gqozim[ JERyp) ePldp + [ Ry(p) ePldp + [2 Ry(p) ePdp +
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[ ha(p) ePldp + [ hy(p) ePidp| =0 (A.23)
where zero on the right-hand side (RHS) is due to no pole in the complex plane. The
integrations for paths BA (ie. fBC h,(p) ePtdp + fFA h,(p) ePtdp) with R - o and DE
(i.e. f[f h,(p) ePtdp) with ' - 0 equal zero. The path CD starts from p = —o0 to p =
—uPB? and EF starts from p = —uf2 to p = —oo. Eq. (A.23) therefore reduces to

h,(B) = _L(f‘”””zlﬁ (pHeP dp + [, hy(p)eP td ) (A.24)
2 7mi U= 2P p —upz 2 p p .
where p* and p~ are complex numbers right above and below the real axis, respectively.
Consider p* = ¢e'™ — uB? and p~ = {e™™ — uf?2 in the polar coordinate system with the
origin at (—uB2, 0) in the complex plane. Eq. (A.24) then becomes

R (®) = — [ B (p*)e? Cdp — By (p)e? tdg (A.25)
where p* and p~ lead to the same result of py = —( — upB2 fora given {; 2 = /p + up?

equals Ao =./7i for p=p* and —1, for p=p~ . Note that h,(p*) e?'? and



h,(p™) eP ¢ are in terms of complex numbers. The numerical result of the integrand in Eq.
(A.25) must be a pure imaginary number that is exactly twice of the imaginary part of a
complex number from h,(p*) e’ with p* =p, and 1=21,. The inverse Laplace
transform for h,(p) can be written as

R (B = = f; Im(p1e, ePof)d¢ (A.26)
where p =py; A =4y; @, and &, are respectively defined in Egs. (A.19) and (14i).
According to the convolution theory, the inverse Laplace transform for hA(7, 8, p) is

RG, B D) = [y ha(E) By (E — E)d (A27)
where hy(t —t") = sin(y(f — t')) based on Eq. (A.21); h,(') is defined in Eq. (A.26) with

t =t'. Eq. (A.27) can reduce to

- ~1 oo . o sin(vE
h(7, B, t) = ?11-0 Im (‘9182 (yePo ypczoj(];f) Po Sm(VtD) d¢ (A.28)
oty

Substituting  A(7, B, p) = h(F, B t) and A(F z,p) = h(F,z,t) into Eq. (A.15) and

rearranging the result leads to
R(F,2,8) = LT, f” cos(Baz) exp(po) Im(ese,) df +

¥ [y cos(Ba2) Im(e18(y cos(yE) + po sin(yD)) d¢ (A.29)
where &; and &, are defined in Egs. (14h) and (141), respectively; the first RHS term equals
i_lexp (¥, z,t) defined in Eq. (14b); the second term is denoted as hgyy (7, Z,t) defined in Eq.

(14c). Finally, the complete solution is expressed as Eqgs. (14a) — (14k).

2. Derivation of E¢s. (23a) — (23m)
Applying the Weber transform to H of Eqgs. (18) — (22) yields
HE =W{H}=["H 7 Qdr (B.1)

where () is defined in Eq. (23g). With the integration by parts, the transform has the property



that

where ¢ is the Weber parameter and the second RHS term represents the Neumann boundary
condition, i.e., Eq. (19). The formula for the inversion can be written as
H=w{H}=["H ¢ q d¢ (B.3)

Taking the transform to Eqs. (18) - (22) converts H into H and 82H /0% + #¥~*0H /07 into

—&2H — 2/(m&)0H /07| 7=1. The result is expressed as

— —ALH={— for z,52<2, (B.4)

ol L _
rrie —iayH at z=1 (B.5)
oH _

Eq. (B.4) can be separated as

0%H,/0z%> —22H,=0 for z,<z<1
0%H,,/02% — 22H,, = 2/(mu&) for z, <zZ<2Z, (B.7)
azﬁl/az_z—)la,ﬁl =0 for OSZ_<Z_Z

with the continuity requirements:

o Hm=Ho (B.8)
0H,,/dz = 0H, /02

" at 7=17 (B.9)

Solving Eq. (B.7) with (B.5), (B.6), (B.8), and (B.9) results in Egs. (23h) — (23m). The solution
of H defined in Eq. (23f) can be obtained by the formula Eq. (B.3) for the inverse Weber

transform.



3. Derivation of Eq. (24)
Applying the finite Fourier cosine transform to the model, Egs. (18) — (22) with S, = 0 (i.e.,
a = 0) for the confined condition converts H into H and 02H/0z? into (mm)?H with m

being an integer from 0, 1, 2, ... oo. The result is written as

2’ g d
IHE I _x2p=90 (C.1)

arz | 7 oF

oK Zy—2; for m=0
e { at =1 (C.2)

or - #(Sin(z‘umn) —sin(zymm)) for m>0
limHA =0 )

r—o00

where A2, = yi + u(mm)?, and z, — Z; results from lim (sin(z,mm) — sin(z;mm))/(mm)
m-

using L' Hospital's rule. Solving Eq. (C.1) with (C.2) and (C.3) results in

} e Zy—2z for m=0
A(F) =~ { ’ (C.4)

" AmKi () # (sin(z,mm) — sin(zymr)) for m >0

After applying the inversion to Eq. (C.4) yields Eq. (24).
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Figure S1. Modified Bromwich contour for the inverse Laplace transform to a multiple-value

function with a branch point and a branch cut



