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Abstract. Cave drip water response to surface meteorolog-
ical conditions is complex due to the heterogeneity of wa-
ter movement in the karst unsaturated zone. Previous stud-
ies have focused on the monitoring of fractured rock lime-
stones that have little or no primary porosity. In this study,
we aim to further understand infiltration water hydrology in
the Tamala Limestone of SW Australia, which is Quater-
nary aeolianite with primary porosity. We build on our pre-
vious studies of the Golgotha Cave system and utilize the
existing spatial survey of 29 automated cave drip loggers
and a lidar-based flow classification scheme, conducted in
the two main chambers of this cave. We find that a daily
sampling frequency at our cave site optimizes the capture
of drip variability with the least possible sampling artifacts.
With the optimum sampling frequency, most of the drip sites
show persistent autocorrelation for at least a month, typi-
cally much longer, indicating ample storage of water feed-
ing all stalactites investigated. Drip discharge histograms
are highly variable, showing sometimes multimodal distri-
butions. Histogram skewness is shown to relate to the wetter-
than-average 2013 hydrological year and modality is affected
by seasonality. The hydrological classification scheme with
respect to mean discharge and the flow variation can dis-
tinguish between groundwater flow types in limestones with
primary porosity, and the technique could be used to charac-
terize different karst flow paths when high-frequency auto-
mated drip logger data are available. We observe little differ-
ence in the coefficient of variation (COV) between flow clas-
sification types, probably reflecting the ample storage due to
the dominance of primary porosity at this cave site. More-

over, we do not find any relationship between drip variability
and discharge within similar flow type. Finally, a combina-
tion of multidimensional scaling (MDS) and clustering by k
means is used to classify similar drip types based on time se-
ries analysis. This clustering reveals four unique drip regimes
which agree with previous flow type classification for this
site. It highlights a spatial homogeneity in drip types in one
cave chamber, and spatial heterogeneity in the other, which is
in agreement with our understanding of cave chamber mor-
phology and lithology.

1 Introduction

Karst features in limestone are typically developed from the
solutional dissolution of fractures and bedding planes in car-
bonate rocks (Arbel et al., 2010; Kurtzman et al., 2009).
Worldwide, karst regions represent significant geographical
areas with potentially high rates of infiltration through frac-
tured and karstified carbonate rocks. The most usual recharge
method in karstic aquifers is the faster infiltration through
the deep karstic openings (Ford and Williams, 2007). Com-
plex spatial spreading of various karst features such as so-
lutionally widened fractures, caves, and conduits makes the
monitoring and precise groundwater recharge modeling very
difficult (Lange et al., 2003; Arbel et al., 2010). The upper
part of karstified rock (the epikarst zone) has higher perme-
ability than the underlying vadose zone (Klimchouk, 2004).
Therefore, infiltration into the epikarst zone is faster com-
pared to the drainage through it, and water is kept stored in
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this region. This stored water in the vadose zone seeps slowly
and finally emerges inside caves as infiltrating drip waters
(Williams, 1983).

Karstic features such as speleothems, commonly used
to reconstruct paleo-environmental records, are formed due
to calcite deposition from cave drip water. Therefore, the
knowledge of drip water hydrology is critical to study the pa-
leoclimatic records (Baldini et al., 2006). An early study us-
ing tipping bucket loggers formulated a relationship between
maximum discharge and coefficient of variation of discharge
to categorize cave discharges (Smart and Friederich, 1987),
for a fractured-rock limestone system with a vertical range
of approximately 140 m (GB Cave, Mendip Hills, UK). They
found that the drips close to the surface have extreme coef-
ficients of variation, whereas the drips at depths have fairly
constant flow rates over time, with a significant possibility
of water storage in vadose zone fractures. Thus the stalag-
mite record resulting from slower drips may be more closely
related to the karst hydrology rather than palaeoclimate (Bal-
dini et al., 2006). This may also be a consequence of the de-
veloped connection between the surface and the cave. Quan-
titative analysis of such stalagmite drip data has, in the past,
used manual observations of cave drips (e.g., Baker et al.,
1997). However, the recent development of automatic cave
drip loggers (Collister and Mattey, 2008) has enabled gen-
eration of high temporal resolution and continuous drip dis-
charge time series (e.g., Jex et al., 2012; Cuthbert et al., 2014;
Markowska et al., 2015; Mariethoz et al., 2012), providing
new opportunities for quantitative hydrological analysis.

Here we present monitoring data from Golgotha Cave lo-
cated in SW Western Australia that has been extensively
monitored since 2005, with the aim of better understanding
karst drip water hydrogeology and the relationship between
drip hydrology and surface climate. We build on the work of
Mahmud et al. (2016), which presented the largest spatial and
temporal survey of automated cave drip monitoring with ma-
trix (primary) porosity published to date. This previous study
consisted of data from two large chambers within this cave,
measured in the period from August 2012 to March 2015, us-
ing a highly spatially (29 sites in two separate chambers) and
temporally (0.001 Hz, 15 min intervals) resolved data set. In
a separate study, Mahmud et al. (2015) performed morpho-
logical analysis of karstic features, based on ground-based
lidar data, to identify different flow processes in karstified
limestone. Based on the findings of these two studies, here
we investigate the relationship between drip water hydrology
and cave depth, spatial location, and stalactite type, and de-
velop a hydrological classification scheme that is appropri-
ate to high-frequency drip logger data and limestones with
a primary porosity. This classification scheme is also com-
pared with previous studies (Smart and Friederich, 1987;
Baker et al., 1997) to examine the limitations of these previ-
ous schemes. These findings will also help better character-
ize and understand water movement in highly porous karst
formations.

Finally, we use a combination of multidimensional scal-
ing (MDS) and the popular k means algorithm for clustering
similar drip characteristics. Time series clustering has been
shown to be effective in providing useful information in var-
ious domains (Liao, 2005) and is implemented here to deter-
mine the degree of similarity between two drip time series.
There seems to be an increased interest in time series cluster-
ing as part of the research effort in temporal data mining. The
method we use here is suitable for large data sets, has been
studied extensively in the past and achieves good results with
minimum computational cost (Jex et al., 2012; Scheidt and
Caers, 2009; Borg and Groenen, 1997).

2 Site description

2.1 Studied cave

The cave site has been explained in detail by Treble et
al. (2013). Briefly, the field site Golgotha Cave is 200 m
in length and up to 25 m in width (Fig. 1), and developed
in Quaternary aeolianite, which consists of wind-blown cal-
careous sands that were deposited along the southwest coast
of Australia (Brooke et al., 2014). Vadose zone water flow,
and subsequent widening by ceiling collapse, formed the
cave chambers. Treble et al. (2013) described the cave site
as being developed in the Spearwood system of the Tamala
Limestone and is mantled by a variable thick layer of sand
formation having depths of between 0.3 and 3 m. Diffuse (or
matrix) flow is likely to be dominant in the Tamala Limestone
formation due to its high matrix porosity as 0.3–0.5 (Smith
et al., 2012). Karst in this region is also called “syngenetic”
(Treble et al., 2013), implying processes like preferential ver-
tical dissolution and varying morphology of the subsurface
caprock. These processes may establish vadose zone pref-
erential flow extending to the cave ceiling, with occasional
rapid delivery of percolating waters deep into the calcarenite
which end up seeping through to the cave ceiling. Therefore,
this young limestone formation offers various opportunities
for preferential flow into the host rock and storage within
it (Brooke et al., 2014). Golgotha Cave was chosen because
(a) it is located in an intensively studied karst area (Treble et
al., 2013, 2015, 2016), which has over 10 years of manual
and 3 years of automated drip water monitoring, (b) it con-
tains actively growing speleothems, and (c) it is accessible
year-round.

Based on previous studies at this site, we determined pre-
viously that Chamber 1 (Fig. 1b–d) is mostly dominated
by matrix flow representing water flowing down and seep-
ing through the rock matrix, characterized by both icicle-
shaped and soda-straw stalactites with slow drip rates of low
variability. In contrast, Chamber 2 (Fig. 1b and e) is typi-
cally controlled by fracture and combined flow, with high
drip rates that are shown to vary over time depending upon
the mode of water delivery to the preferential flow system.
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Figure 1. (a) Coastal belt of SWWA (southwest Western Australia). (b) Golgotha Cave plan view displaying both Chamber 1 (green marked
area), which comprises Site 1, and Chamber 2 (blue marked area) containing Site 2. Average limestone thickness from cave ceiling to ground
surface over Site 1 and 2 is 32.33 and 40.24 m, respectively. Lidar scans of drip sites on (c) Chamber 1 north floor, (d) Chamber 1 south floor,
and (e) Chamber 2 floor. The red arrows show the geographic orientation (c, d, e). ∗ indicates the sites where the stalagmite loggers are not
clearly visible in the lidar floor images as they are obscured by formations in front of them, however the approximate locations are marked
with yellow circles. Additional scans of cave ceiling and photographs of underlying stalagmites are shown in Fig. 3 of Mahmud et al. (2016).

In fracture flow, water moves along the fracture orientation,
forming curtain-shape stalactites in the direction of highest
fracturing. Finally, combined flow is defined as the combi-
nation of conduit, matrix, and fracture flow, resulting in a
circular pattern of stalactite formation.

2.2 Climate and meteorology

A comprehensive description of the climate at our study site
has been presented in Treble et al. (2013). To summarize,
the site is a Mediterranean climate, associated with wet win-
ters and dry summers. Annual rainfall recorded at Forest
Grove weather station (Fig. 1a, 5 km away from the study
site) is 1136.8± 184 mm, among which ∼ 75 % occurs be-
tween May and September, with an average daily maximum
temperature variation from 16 ◦C (in July) to 27 ◦C (in Febru-
ary; BoM, 2017). Typically, the peak rainfall begins in late
autumn (May) and the wet season continues until end of
September with a median monthly rainfall of ∼ 100 mm.
Each hydrological year is defined as April to March, as April
has the lowest water budget (precipitation less evapotranspi-
ration).

As reported in previous studies, all hydrological years
have water deficit during the dry season (October to April)
and significant infiltration during the wet period. Low evap-
orative conditions during winter should permit increased in-
filtration to the caves, enhancing the drip discharge response
to winter rainfall. The hydrological year 2012 had roughly
similar annual rainfall of 1008.6 mm to the long-term an-
nual mean, whereas 2013 was rather wet (total rainfall of
1239.8 mm) and 2014 was a relatively dry year with a to-
tal rainfall of 943.8 mm. Recorded rainfall was significantly
above average in the 2013 hydrological year for various
weather stations in Western Australia (BoM, 2017). There-
fore, our site had a wetter winter in 2013 with an estimated
annual recharge of 858.67 mm which is very much above av-
erage (10-year mean annual recharge is 564 mm).

2.3 Drip data acquisition and characteristics

Data acquisition and pre-processing has been previously de-
scribed in Mahmud et al. (2016) and is concisely sum-
marized here. Stalagmite drip loggers (http://www.driptych.
com) were set up in approximate transects throughout the
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two large chambers from higher to lower ceiling elevations
in 34 locations and have been monitored since August 2012.
Both chambers of Golgotha Cave have contrasting discharge,
dune facies, and karst features (Fig. 1). Data loggers were set
to record continuously at 15 min intervals. The notation used
for site identification follows the same style as described in
previous studies, consisting of a numerical number (repre-
senting the chamber) and a letter/roman number (represent-
ing a drip site within the given chamber, with a letter indicat-
ing the sites having both manual and automatic drip counts
and a roman number specifying the sites only having drip
logger data). Based on previous studies of the site, 29 sites
are considered in the time series analysis although short pe-
riods of poor quality data were omitted if they were associ-
ated with changes in the mean and variability at the time of
fieldwork. This impacted sites 1A, 1B, 2A, 2B, 2E as the log-
ger was temporarily placed aside every 6 weeks in order to
sample water from a collection bottle underneath the logger.
Time series gaps are filled with synthetic data based on the
drip statistics and correlation between drip rates.

As previously reported, drip rates in Chamber 1 are gener-
ally very low (the fastest drip rate was 25 drips per 15 min)
consistent with the predominance of matrix flow in this
chamber. However, it is obvious that most drip loggers ex-
hibit a clear response to the 2013 wet winter and also in-
dicate the substantial interannual variation in discharge be-
tween three hydrological years. All Chamber 1 drip sites
(except Site 1x) show a gradual drip rate decrease during
summer 2012 to winter 2013 due to below average rainfall
in 2012. Then after displaying the sudden increase in all drip
discharges that express the 2013 wet winter, the drip rates
further reduce due to the dry 2014 hydrological year. This
intra-annual variation is identified to be much greater than the
interannual discharge variation of the drip sites, as previously
observed in Baker et al. (1997). This suggests that high-
resolution intra-annual drip rate data is helpful to obtain a
complete picture of changing flow variability with recharge.
The high resolution of the data sets includes precise char-
acterization of the temporal behavior of an individual drip,
illustrating the differences inherent to the drip sites.

In contrast, Chamber 2 drip rates present more variability
between sites both in intra- and interannual discharges, ex-
cept few very slow dripping sites. Of the Chamber 2 drips,
the slow drip sites have the lowest coefficients of varia-
tion (COVs) and lowest discharges, indicative of matrix flow
types. The timing of maximum drip rates is generally de-
layed in Chamber 2 versus Chamber 1: Chamber 1 drip
rates typically peak in late spring/early summer (October–
December) while Chamber 2 drips tend to peak a few months
later (December–May), reflecting a longer water residence
time. This may be a function of the thicker ceiling above
Chamber 2 (40.24 versus 32.33 m) but also heterogeneity in
flow paths to each chamber. Overall the drip response to the
2013 wet winter is amplified in Chamber 2 versus Cham-

ber 1, consistent with the presence of greater fracture flow in
Chamber 2.

By applying morphological analysis of ceiling features ac-
quired by lidar data, Mahmud et al. (2015) distinguished
three flow patterns (i.e., matrix flow, fracture flow, and a
combination of conduit, fracture, and matrix flow) for the
observed ceiling morphological features. All the drip sites
were then characterized according to this flow classification
in Mahmud et al. (2016), which is used here as a reference
for clustering similar drip time series.

3 Methods

3.1 Hydrological classification of cave drips

Research involving automated drip monitoring systems is in-
creasing, for example at Cathedral Cave in Wellington (Cuth-
bert et al., 2014) and Harrie Wood Cave in the Snowy Moun-
tains, Yarrangobilly (Markowska et al., 2015). The variabil-
ity of the drip discharge might not only be a function of dis-
charge itself; it could also depend on the sampling frequency.
We investigate this possibility by plotting the COV versus
sampling interval (the original 15 min and calculated by re-
sampling the data at 1 h, 1 day, 1 week, and 1 month). COV
is supposed to be artificially high at the high frequency of
15 min because of sampling bias that artificially increases the
noise. The resampling at low frequencies is simply a way of
smoothing out this noise. Using the optimum sampling fre-
quency to minimize its effect on drip variability, we plot drip
rate histograms to identify the response of drips between the
flow classifications and the response to intra- and interannual
variability in infiltration. We also plot the autocorrelation
functions (ACFs) to investigate the relationship between the
strength of correlation and the lidar-based flow type. Finally,
we summarize the mean discharge of drip sites in relation
to the variability in discharge using the optimum sampling
frequency. These are the same drip discharge parameters as
used in the classification method proposed by Friederich and
Smart (1982), Fairchild et al. (2006), and Baker et al. (1997)
that were based on manual drip collection at low frequency.

3.2 Clustering of similar drip time series

We employed multidimensional scaling (MDS), which al-
lows data dimensionality reduction, i.e., mapping com-
plex multidimensional data on a low-dimensional manifold.
MDS is a technique that embeds a set of points in a low-
dimensional space, so that the distances between the points
resemble as closely as possible a given set of dissimilarities
between the objects they represent (Birchfield and Subra-
manya, 2005). MDS requires a distance matrix to be com-
puted in which a single scalar number characterizes the sim-
ilarity between any two time series. In our case, each drip
logger is an object and a specific distance between drip log-
gers is considered to characterize the similarity between any
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two loggers. It takes an input matrix giving dissimilarities be-
tween pairs of items and outputs a coordinate matrix whose
configuration minimizes a loss function. MDS is also known
as principal coordinates analysis (PCoA). MDS operates on
a distance or dissimilarity matrix (Pisani et al., 2016), which
is different than principal component analysis (PCA) that is
based on a covariance matrix. Even if PCA and MDS meth-
ods can return the same results in specific contexts, MDS can
be considered more general because it remains valid for non-
Euclidean distances, such as the distance matrix (D) chosen
in this study. MDS is used to translate these distances into
a configuration of points defined in an n-dimensional Eu-
clidean space (Cox and Cox, 1994). MDS results in a set
of points arranged so that their corresponding Euclidean dis-
tances indicate the dissimilarities of the time series. Accord-
ing to Birchfield and Subramanya (2005) the basic steps of
performing the MDS algorithm are as follows:

i. Construct the distance matrix D: one key component in
clustering is the function used to measure the temporal
similarity (or distance) between any two time series be-
ing compared. To define an appropriate measure of sim-
ilarity between time series, we determine two factors:
firstly, the offset (O) to match two time series based
on their maximum correlation, and secondly the com-
plement of the correlation coefficient (1−R) between
the time series (Jex et al., 2012). Initially, we compute
the cross-correlation function, a measure of similarity
of two time series as a function of the displacement of
one relative to the other. The cross-correlation function
is an estimate of the covariance between two time se-
ries, y1t and y2t , at lags k= 0, ±1, ±2, . . . . The off-
set (O) is defined as the lag time based on the maxi-
mum correlation between two time series. Next, we de-
fine R as the correlation coefficient with the time se-
ries being moved by the offset amount O to have max-
imum correlation coefficient. Both O and R are calcu-
lated to all n(n− 1)/2 pairs of drip data, where n is the
number of drip data. Here, we use the original recorded
drip counts in 15 min interval. The sampling bias dis-
cussed in Sect. 3.1 only affects the drip variability, not
the cluster analysis. Moreover, high-resolution (15 min
interval) data are more suited for the cluster analysis be-
cause it allows better defining the cross-correlation be-
tween drips, as sometimes the offset of maximum cor-
relationO might be less than a day. Finally, the distance
matrix D is computed for each pair of loggers using the
following equation (Jex et al., 2012):

D=O(1−R).

The distance matrix (D) is square, symmetric, and has
dimension equal to the number of drip loggers.

ii. Compute the inner product matrix B=− 1
2JDJ , where

J= I − 1
n

11T is the double-centering matrix and 1 is a
vector of ones.

iii. Decompose B as B =V3V T , where 3= diag(λ1, . . . ,
λn), the diagonal matrix of eigenvalues of B, and
V= [v1, . . . , vn], the matrix of corresponding unit
eigenvectors. Sort the eigenvalues in non-increasing or-
der: λ1≥ . . . ≥ λn≥ 0.

iv. Extract the first p eigenvalues 3p = diag(λ1, . . . , λp)
and corresponding eigenvectors Vp = [v1, . . . , vp].

v. The corresponding Euclidean distances of the set of
points, indicating the dissimilarities of the time se-
ries, are now located in the n×p matrix X= [x1, . . . ,
xp]

T
=Vp3

1/2
p .

The k means clustering algorithm is then used to divide these
points into k clusters, which corresponds to a categorization
of the drip data time series. k means clustering, or Lloyd’s
algorithm (Lloyd, 1982), is a method of vector quantization
that is popular for cluster analysis in data mining. k means
clustering aims to partition n observations into k clusters in
which each observation belongs to the cluster with the near-
est mean, serving as a prototype of the cluster. The algorithm
proceeds as follows:

i. Choose k initial cluster centers (centroid): here, we use
k= 4 clusters as this was the number of flow categories
identified in previous work at this site.

ii. Compute point-to-cluster-centroid distances of all ob-
servations to each centroid. There are two steps to fol-
low: first assign each observation to the cluster with the
closest centroid. Then individually assign observations
to a different centroid if the reassignment decreases
the sum of the within-cluster, sum-of-squares point-to-
cluster-centroid distances.

iii. Compute the average of the observations in each cluster
to obtain k new centroid locations.

iv. Repeat steps 2 and 3 until cluster assignments do
not change, or the maximum number of iterations is
reached.

4 Results and discussion

4.1 Determining the relationship between sampling
frequency and drip discharge COV

We test the variability of drip discharge COV with the sam-
pling frequency in Fig. 2, to find the optimum sampling fre-
quency that minimizes sampling artifacts while maximiz-
ing the capture of natural variability. For high discharge,
COV increases with sampling frequency, which we explain
by the smaller sampling interval better capturing the actual
drip variability. For low discharges, COV also increases with
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Figure 2. Optimum sampling frequency that minimizes sampling artifacts while maximizing the capture of natural variability.

sampling frequency, which we explain by the variability in-
troduced due to drip rates being less than the sampling fre-
quency. From the data presented in Fig. 2, we can conclude
that for both chambers and to compare all different types of
flow, a sampling frequency of 1 day gives the minimum COV,
which does not change significantly with a finer sampling
frequency. Therefore, we use a sampling frequency of 1 day
that minimizes sampling artifacts while maximizing the cap-
ture of natural variability. For Golgotha Cave, this would be
to sum the 15 min drip rates over a 1-day period. This op-
timized sampling frequency is used to plot the histograms
(Sect. 4.2) and ACFs (Sect. S1 in the Supplement), and to
examine the drip discharge behavior with drip variability for
various flow types (Sect. 4.3).

4.2 Drip rate frequency distributions

Figure 3 shows the drip rate histograms for representative
drip sites and different flow categories with optimum sam-
pling frequency of 1 day. Drip sites are organized from low-
est to highest discharge in each flow classification. Slow
dripping soda-straw flows (e.g., sites 2xi, 2iii, and 1v) show
variation of drips with seasonality and the response to wet-
ter recharge period with an approximate 6-month lag, which
suggests the drip water is supplied from storage in the lime-
stone formation. Among these, Site 1v displays the response
to recharge in much shorter duration, the 6 months follow-
ing 2013 recharge and then a shift to lower flow rates which
may represent flow poaching. The histograms for icicle and
combined flow systems represent unimodal skewed to bi-
modal distributions, indicating the shift to higher drip rates
in response to the wetter 2013 hydrological year (except Site
2xiii, which shows a shift to lower drip rates). The rest of
the fracture sites show bimodal or multimodal distributions.

With the limited temporal scale of the analysis, it seems that
the histograms with skewed distributions represent the conse-
quences of wetter 2013 hydrological year. These skewed dis-
tributions seem to have higher drip rate response to the drier
2014–2015 period rather than the earlier normal/wetter years.
This clearly denotes potential refilling of storage within the
system during the 2013 wet winter, and later supplying drip
water in 2014–2015 seasons. In contrast, the bimodal distri-
bution of Site 2viii indicates the drip response to the annual
cycle of wet and dry seasons of each hydrological year with
an approximate 6-month lag. Several bimodal (e.g., Site 1x)
and multimodal (e.g., sites 2xvi, 2vi) distributions, charac-
terized as fracture flow, also distinguishes the dry period
of 2012–2013 (having low drip rates) from the later period
of 2013 wet winter (with high drip rates).

4.3 Autocorrelation functions (ACFs)

We investigate the use of ACFs to analyze drip behavior us-
ing the optimum sampling frequency of 1 day and until lags
of 365 days. We do not find significant yearly autocorrelation
with this limited 3 years of data. In some drips, a negative
correlation occurred, but it is very insignificant and no phys-
ical process can explain a negative yearly correlation. There-
fore, we plot ACFs in Fig. 4 for different flow categories with
the optimum sampling frequency of 1 day and lag time of
200 days. All sites have an autocorrelation that persists for at
least a month, and often much longer. However, there is no
relationship between the strength or the temporal decay of
the correlation and the lidar-based flow classification. This
indicates the presence of ample storage in the system, sup-
plying all stalactite types.
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Figure 3. Histogram plots of both chambers’ drip data according to four flow types identified in Mahmud et al. (2016). Each histogram
represents the frequencies of the drip counts per day (the axes labels are shown in the first histogram). Bin size is uniform for all plots and
the external tick marks in x axes delineate the bin intervals. The legend shows all the seasons over the monitoring period (blue to cyan for
wet seasons: April to September; red to yellow for dry seasons: October to March, with the color gradually shifting for different years). The
2012 wet season experienced similar rainfall to the long-term annual mean, whereas 2013 was rather wet and 2014 was a relatively dry year.
Histogram data for all sites appear in Fig. S1 in the Supplement.

4.4 Hydrological classification of cave drips

We examine the hydrological behavior of the drips at daily
resolution with respect to mean discharge and flow variation
in Fig. 5. It is clear from Fig. 5 that there is no relation-
ship between COV and flow type. One soda-straw discharge
(Site 2xi) has seasonal dryness, a very low discharge, and a
very high coefficient of variation due to its irregular dripping.
Otherwise, nearly all soda-straw flow, icicle flow, combined
flow and fracture flow drips have COV< 60 %, with the ex-
ception of one fracture flow site showing the highest COV
(Fig. 5). But in general, there is little difference in the COV
between classification types, probably reflecting the ample
storage (Sect. S1) due to the dominance of primary porosity
at this cave. We do not clearly observe increasing variability
with decreasing discharge within similar flow type, in con-

trast to other studies from older, fractured rock limestones
(Smart and Friederich, 1987; Baldini et al., 2006; Baker et
al., 1997). This shows that Golgotha Cave drip sites do not
fit within the drip classification method proposed by Smart
and Friederich (1987) and Baker et al. (1997), which were
based on manual drip counts with limited number of inter-
mittent drip sites. Moreover, we utilize drip data from a cave
with primary porosity, capturing the full range of flow types
from matrix through to fracture, whereas the previous clas-
sifications only captured slow vs. fast drips that were likely
dominated by fracture flow paths given the host rock setting.

4.5 Clustering of similar drip time series

The clustering results are overlaid upon the chamber ceil-
ing images in Fig. 6 and also summarized in Tables 1 and 2
with the average drip discharges and flow type classification
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Figure 4. Autocorrelation functions of both chambers’ drip data according to flow classification of Mahmud et al. (2016). x and y axes of
individual plots represent the lag (in days) and ACF, respectively (the axes labels are shown in the first ACF plot). ACFs for all sites appear
in Fig. S2.

based on lidar. Average drip discharges are calculated from
the 15 min drip rates. As mentioned above, drip logger time
series are deemed similar if they are well correlated and only
have a small offset with each other, and so these time series
should cluster together. Most of the drip sites that are iden-
tified as matrix flow (soda-straw and icicle flow) cluster to-
gether in C1. However, three of the icicle flow sites with drip
rates greater than 4 per 15 min fall in C2. The combined flow
category and the fracture type usually cluster in C3 and C4,
respectively. Therefore we observe that our clustering gener-
ally agrees with the morphology-based flow classification of
Mahmud et al. (2016). Few of the flow classes show excep-
tions, for example Site 2vi is a fracture type flow and cluster
in C1. This site has really high discharge with high variabil-
ity, showing irregular drip rate.

One consistent feature that appears from the cluster anal-
ysis of Fig. 6 is the spatial homogeneity of the clusters in
Chamber 1, suggesting that they are spatially connected, or
that their flow paths are connected to the same hydrological
domain (the karst matrix), and supporting the overall domi-
nant matrix flow patterns (both soda-straw and icicle). Cham-
ber 2 presents a completely different situation, where it is
obvious that drip sites can have similar behavior (well cor-

related with a small lag), and be spatially distinct features,
separated by spans of approximately 6 m (Fig. 6). In partic-
ular, clusters 3 and 4 are spatially scattered, representing the
presence of fractures and combined flow systems throughout
the chamber ceiling. This indicates an overall strong hetero-
geneity of the flow paths between the surface and the cave
for Chamber 2. Hence, in Chamber 2 we expect flow paths
to be more complex with routing between multiple stores and
interconnected fracture networks potentially resulting in non-
linear response to infiltration. This is supported by drip water
δ18O data for this chamber (Treble et al., 2013).

5 Implications of the findings and future research

Starting with the time series analysis, this research presents
a methodology that can be applied globally for drip logger
data. The results show that some data integration is neces-
sary to avoid artifacts from slow drip sites. For sites where
there is significant matrix flow, our study has demonstrated
that the Smart and Friederich classification is not appropri-
ate. Therefore, this study has presented alternative hydrolog-
ical classification schemes that are suitable for cave sites that
include matrix flow. The times series approach adopted in
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Figure 5. Hydrological behavior of drip sites expressed in terms
of daily mean discharge versus daily discharge variability calcu-
lated from the automatic drip rate data for three hydrological years.
Measured drip rates are converted to volume units assuming a drip
volume of 0.1433 mL (Genty and Deflandre, 1998). Blue lines and
symbols reflect flow classification given in Mahmud et al. (2015).

this study also opens the way for improved analysis and clas-
sification of hydrology time series in general, i.e., tests for
histogram, autocorrelation, cluster analysis, and all of these
will certainly benefit our understanding of the hydrology of
karst systems.

In this study, we also extend the analysis of drip time series
to multiple sites, whereby we take advantage of the ensemble
of loggers to extract common properties by clustering, which
would not be possible with single site analysis. The results
show that by considering multiple simultaneous time series,
one can make better inferences about water flow and unsatu-
rated zone properties. The main impact is to recommend the
use of spatial networks of loggers over individual loggers. It
should be noted that currently, most researchers deploy only
a few loggers to understand the flow to individual sites. This
study also proposes a possible methodology for the analysis
of such data sets.

Regarding the application of our findings, we believe that
our methodology based on drip logger data sets can provide
direct evidence of deep drainage, and therefore the timing of
diffuse recharge, which could be used for basic model cal-
ibration. Spatial drip data (possibly combined with lidar) is
beneficial to infer flow types (e.g., the proportion of frac-
ture versus matrix) which could be used for model config-
uration to produce realistic karst recharge (Hartmann et al.,
2012), and hence large-scale groundwater estimation (Hart-
mann et al., 2015). Another potential application is the in-
tegration of flow types in groundwater models through in-
verse modeling. Such data could also be used to constrain
water isotope model configurations used for forward mod-

Table 1. MDS cluster groups with statistical properties of Cham-
ber 1 drip data.

Site/ MDS Average Flow
stalagmite cluster drip type

group discharge (lidar-
(L yr−1) based)

1A 1 19.8 Icicle
1B 1 12.6 Icicle
1i 1 6.6 Icicle
1ii 1 11.2 Icicle
1iii 1 8.1 Icicle
1v 1 6.7 Soda-straw
1vi 1 7.4 Icicle
1viii 2 60.9 Combined
1ix 1 14.8 Icicle
1x 3 86.2 Fracture
1xi 1 12.7 Icicle

Table 2. MDS cluster groups with statistical properties of Cham-
ber 2 drip data.

Site/ MDS Average Flow
stalagmite cluster drip type

group discharge (lidar-
(L yr−1) based)

2A 1 9.4 Icicle
2B 1 17.1 Icicle
2E 3 140.3 Combined
2i 4 243.0 Fracture
2iii 1 4.2 Soda-straw
2iv 1 14.6 Icicle
2v 3 67.8 Combined
2vi 1 985.0 Fracture
2vii 2 25.0 Icicle
2viii 3 113.8 Combined
2ix 4 360.2 Fracture
2x 1 7.0 Icicle
2xi 1 0.6 Soda-straw
2xiii 2 26.2 Icicle
2xiv 2 42.8 Icicle
2xv 1 11.6 Icicle
2xvi 3 266.9 Fracture
2xvii 1 7.0 Icicle

eling speleothem δ18O (Bradley et al., 2010; Treble et al.,
2013). Overall, the findings of this work will definitely pro-
vide a better understanding of processes that control vadose
zone flow and transport processes, which would ultimately
help develop approaches to incorporate these processes into
simulation models (Hartmann and Baker, 2017).

The analysis, presented here and combined with the find-
ings of previous work at this site, provides valuable infor-
mation for paleoclimatologists and geochemists wishing to
sample stalagmites. While these studies have characterized
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Figure 6. Cluster group plot overlaid upon the cave ceiling for both chambers. The ceiling images are captured by lidar and the circles
represent the ceiling locations of stalactites dripping on various stalagmites in both chambers (shown in Fig. 1). The color of the circles
indicates individual MDS cluster group. The blue arrows in both figures show the geographic orientation and the green arrows represent the
approximate transects throughout the chambers from higher to lower ceiling elevations.

Golgotha Cave, they could be applied to any other cave sys-
tem. In our previous work we (1) devised a classification for
flow type based on stalactite morphology; (2) quantified the
recharge response of each flow type to infiltration; (3) com-
bined the findings of points 1–2 to estimate the total volume
of cave discharge; and (4) compared cave discharge with in-
filtration to estimate the total recharge volume and identify
highly focused areas of recharge. The current study has fur-
ther developed the spatial and temporal statistical relation-
ships between the flow sites, allowing both quantification and
visualization of the hydrology between the ground surface
and the cave ceiling. More generally, these studies illustrate
the heterogeneity between flow sites and demonstrate meth-
ods that can be applied to any cave system for studying dif-
fuse recharge and paleoclimate records from speleothems.

We further propose some ideas for future research that
have evolved from this study:

a. Combining a drip logger network with a surface weather
station and soil moisture network to constrain the water
balance in hydrological models. Additionally, employ-
ing sap flow meters could allow constraining tree water
use.

b. Combining the logger network, which constrains dif-
fuse recharge, to boreholes measuring groundwater
level to understand the relative importance of diffuse
and river recharge.

c. Combining cave drip logger data with surface geo-
physics data to track water movement.

6 Conclusion

Cave drip water response to surface climatic conditions is
often complex due to numerous interacting drip routes with
varying response times (Baldini et al., 2006). This study ex-
plores the relationship between drip water and rainfall in a
SW Australian karst, where both intra- and interannual hy-
drological variations are strongly controlled by seasonal vari-
ations in recharge. The multi-year drip response data cap-
ture the interannual drip water variability that are likely to be
greater than intra-annual variability as suggested by Baker
et al. (1997). Building on previous work, we further analyze
a set of statistical properties of three hydrological years of
drip data under varying precipitation rates. We test the re-
lationship between drip discharge variability and drip data
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sampling frequency to determine the optimum sampling fre-
quency that maximizes the capture of natural variability with
minimum sampling artifacts. Using the daily optimum sam-
pling frequency, the histogram distributions of various drip
data time series illustrate the differences between the flow
classifications. Most of the drip sites show persistent auto-
correlation for at least a month. The hydrological behavior
of the drips is examined with respect to mean discharge and
the flow types similar to the classification method proposed
by previous researchers (Smart and Friederich, 1987; Baldini
et al., 2006; Baker et al., 1997). The drip sites at Golgotha
Cave described in this study do not fit within the drip clas-
sification method proposed by Smart and Friederich (1987)
and Baker et al. (1997). These previous studies were based
on manual drip counts with limited number of intermittent
drip sites. Here we overcome these limitations with auto-
mated drip monitoring system.

Finally, we apply a well-developed clustering method to
determine the degree of similarity between drip time series.
The clustering indicates one dominating group, C1 (char-
acterized by matrix flow type), with very slow continuous
drip discharge indicating matrix porosity in the thick lime-
stone formation. This finding concurs with the observed cave
chamber morphology and lithology. Moreover, the cluster
analysis agrees with the flow classification of Mahmud et
al. (2016) by grouping similar flow type in one single clus-
ter. Overall this study establishes a novel way to character-
ize cave hydrology, which can be obtained by applying the
methodologies of Mahmud et al. (2015) and Jex et al. (2012)
together. It relies on a metric that defines drip logger time
series as similar if they are well correlated and only have
a small offset with one another, and therefore these time
series should cluster together. The MDS analysis supports
this hypothesis and moreover displays the spatial patterns of
the flow paths between the surface and the cave chambers.
This technique shows potential for classifying, quantifying,
and visualizing the observed relationships between infiltra-
tion through the fractured limestone rocks and surface cli-
mate inputs.

Over the last decade, the automation of cave drip water
hydrology measurements has permitted the routine genera-
tion of continuous hydrological time series for the first time.
This study demonstrates a complete methodology for such
data sets, which will help better characterize karst drip water
hydrogeology and understand the relationship between drip
hydrology and surface climate at any cave site where such
measurements are made. We demonstrate that the analysis
of the time series produced by cave drip loggers generates
useful hydrogeological information that can be applied gen-
erally, beyond the example presented here. The time series
behavior integrates a variety of characteristics that combine
the properties of epikarst (storage), fracture configuration,
and recharge. The clustering approach can identify which
drip behaviors are related to these cave characteristics, and
their spatial relationship. Most importantly, information on

cave characteristics can now be gathered at a very low cost
in terms of measurement and time.
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