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Abstract. Numerical weather prediction (NWP) models are
fundamental to extend forecast lead times beyond the con-
centration time of a watershed. Particularly for flash flood
forecasting in tropical mountainous watersheds, forecast pre-
cipitation is required to provide timely warnings. This paper
aims to assess the potential of NWP for flood early warning
purposes, and the possible improvement that bias correction
can provide, in a tropical mountainous area. The paper fo-
cuses on the comparison of streamflows obtained from the
post-processed precipitation forecasts, particularly the com-
parison of ensemble forecasts and their potential in provid-
ing skilful flood forecasts. The Weather Research and Fore-
casting (WRF) model is used to produce precipitation fore-
casts that are post-processed and used to drive a hydrologic
model. Discharge forecasts obtained from the hydrological
model are used to assess the skill of the WRF model. The re-
sults show that post-processed WRF precipitation adds value
to the flood early warning system when compared to zero-
precipitation forecasts, although the precipitation forecast
used in this analysis showed little added value when com-
pared to climatology. However, the reduction of biases ob-
tained from the post-processed ensembles show the poten-
tial of this method and model to provide usable precipitation
forecasts in tropical mountainous watersheds. The need for
more detailed evaluation of the WRF model in the study area
is highlighted, particularly the identification of the most suit-
able parameterisation, due to the inability of the model to ad-
equately represent the convective precipitation found in the
study area.

1 Introduction

Numerical weather prediction (NWP) models are fundamen-
tal to extend flood forecast lead times beyond the concentra-
tion time of a watershed. The significant advances in NWP
and computer power during the last decades have led to
the generation of high-resolution precipitation forecasts at
the catchment scale, and quantitative precipitation forecasts
(QPFs) from high-resolution NWPs are increasingly used in
flood forecasting systems as a result (Xuan et al., 2009). Par-
ticularly for flashy watersheds with short times of concentra-
tion, such as those typically found in tropical mountainous
watersheds, forecast precipitation is required to provide suf-
ficient forecast lead times in support of timely warnings.

Despite the significant advances, NWP results contain
noise, are contaminated by model biases, are too coarse to
adequately resolve all features such as convection, and are
influenced by uncertainty inherent in the initial conditions
(Colman et al., 2013). Furthermore, weather forecasting in
tropical mountains is highly challenging. In the tropics, local
and mesoscale effects are more dominant than synoptic in-
fluences (except for tropical cyclones). In addition, there are
limitations in the availability of surface and upper air mon-
itoring networks (Laing and Evans, 2010), which influences
modelling initialisation (Cuo et al., 2011). Additionally, the
formation and movement of deep convection and mesoscale
convective systems is affected by orography (Colman et al.,
2013).

According to Habets et al. (2004) the potential of NWP
precipitation forecast to be used by hydrological models for
flood forecasting is mainly affected by (i) localisation of the
events, since an error of a few kilometres can lead to the
precipitation being forecast in the wrong watershed, (ii) tim-
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ing of the events, since the response of the basin depends on
previous events and on the timing of the present event, and
(iii) precipitation intensity. This is especially true in flash-
flood-prone watersheds, typical of tropical mountainous ar-
eas where location errors that are considered small at meteo-
rological level can lead to a flood event in a watershed being
completely missed (Vincendon et al., 2011).

In order to address the uncertain nature of NWP, ensemble
prediction systems (EPSs) have been developed (Demeritt
et al., 2007). In contrast to deterministic systems that pro-
duce one prediction, EPSs produce a suite or ensemble of
predictions to reflect uncertainty, providing the capability to
transform predictions into a probability distribution function
(Leutbecher and Palmer, 2008; Demeritt et al., 2007). As
EPS rainfall predictions often exhibit greater skill than deter-
ministic predictions, the hope is then that EPS products will
increase the skill and time horizon of flood forecasts (De-
meritt et al., 2010).

The use of NWP ensembles to drive flood forecasting sys-
tems has increased and is a relevant research topic (Cloke
and Pappenberger, 2009). Currently many flood forecasting
centres use EPSs for representing uncertainty, but most of
these are in Europe, Canada, the US and Australia (Demeritt
et al., 2007). Experience of this kind of system in developing
countries is very limited (Fan et al., 2014).

Rainfall forecasts provided by NWP require post-
processing to correct bias and to reliably quantify uncertainty
(Robertson et al., 2013). Several approaches have been used
to produce ensemble rainfall forecasts by post-processing
raw NWP. Robertson et al. (2013) present a method that
uses a simplified version of the Bayesian joint probability
modelling approach to produce forecast probability distribu-
tions for individual locations and forecast lead times; Theis
et al. (2005) propose a methodology based on the hypothe-
sis that some probabilistic information about a precipitation
forecast at a certain time and location can be derived from
its spatio-temporal neighbourhood in the model precipitation
field. A set of forecasts is extracted from the spatio-temporal
neighbourhood of a point and used to derive a probabilistic
forecast at the central point of the neighbourhood; Bremnes
(2004) proposes a method to produce probabilistic forecasts
in terms of quantiles from NWP output using probit regres-
sion and quantile regression; Clark et al. (2004) use a two-
stage approach that includes logistic regression and ordinary
least squares regression to generate precipitation and tem-
perature ensembles. Probabilistic forecasts of precipitation
are especially challenging since precipitation has a mixed
discrete–continuous probability distribution (Cortinas et al.,
2002). In this study, a simple two-stage approach is used to
produce precipitation ensembles from WRF forecasts, based
on probit regression and quantile regression.

The assessment of the value of forecasts is a crucial issue.
Verification is essential for the understanding of the abilities,
weakness and value of forecasts, which leads to improving
the forecast system. Several scales are proposed in the liter-

ature to assess the quality of forecasts as well as skill scores
aimed at quantifying the relative accuracy of a forecast with
respect to a reference forecast (Wilks, 2011), providing an es-
timation of its added value. Added value is often more impor-
tant than a measure of skill (Jolliffe and Stephenson, 2012).

The objective of this paper is to assess the potential of
NWP for flood early warning purposes in tropical mountain-
ous watersheds, and the possible improvement that bias cor-
rection can provide. The main contribution of the research
is focused on the assessment of the potential of WRF post-
processed precipitation forecasts in providing skilful flood
forecasts in watersheds characterised by rough topography
and a tropical environment, where experience with precipi-
tation forecasts, particularly ensemble approaches, has been
very limited.

The study area is the upper part of a high tropical moun-
tainous watershed located in Bogotá (Colombia). This cor-
responds to a páramo, which is a tropical high-mountain
ecosystem, characterised by soils with a high water storage
capacity and high conductivity. The hydrologic behaviour
of páramo is complex, and there are still major gaps in
knowledge (Sevink, 2011; Reyes, 2014; Buytaert et al., 2005,
2006). Additionally, hydrometeorological data are scarce.

In Colombia, NWP models forecasts are provided by the
Instituto de Hidrología, Meteorología y Estudios Ambien-
tales (IDEAM), the national hydro-meteorological institute.
The raw output of these models is deterministic. In this study,
the operational WRF model that is used by IDEAM for daily
weather forecasts is used to provide precipitation forecasts
that are post-processed and used to drive a hydrologic model
of the study area. The discharges obtained from the hydro-
logical model are used to assess the skill of the WRF model.
This research assesses the current operational setup, in the
meteorological agency of Colombia, which is based on the
consideration that the orography has a significant effect in
the mesoscale processes and that convection-allowing mod-
els such as the WRF may have the potential to provide skilful
forecasts.

The paper is structured as follows: Sect. 2 describes the
methods and data used for the assessment of the potential of
the WRF model. In Sect. 3 the results are presented, includ-
ing the bias correction of precipitation and the verification of
precipitation and discharge forecasts. Section 4 discusses the
results. Finally, the conclusions are presented in Sect. 5.

2 Methods and data

2.1 Study area

The Tunjuelo River basin is located in the south of the city
of Bogotá (see Fig. 1). Its area is approximately 380 km2

and the upper basin corresponds to a páramo area. The up-
per basin is composed of three watersheds – Chisacá, Mu-
groso and Curubital (see Fig. 1c). These discharge into two
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Figure 1. Study area. Service layer credits: Esri, DeLorme, NAVTEQ, TomTom, Intermap, increment P Corp., GEBCO, USGS, FAO,
NPS, NRCAN, GeoBase, IGN, Kadaster NL, Ordnance Survey, Esri Japan, METI, Esri China (Hong Kong), swisstopo, and the GIS User
Community.

reservoirs (Chisacá and Regadera) with volumes of 3.3 and
6.7 Mm3 respectively. The reservoirs are operated to supply
1.2 m3 s−1 of water to the south of Bogotá. Flood waves in
the urbanised lower basin are dominated by the discharge re-
lease of the two reservoirs.

The last major flood event in the basin occurred in 2002,
causing the river to change its course to flow into two min-
ing pits that since act as inline reservoirs. The peak release of
the Regadera dam for that event reached 100 m3 s−1 (Roge-
lis, 2006), which caused flooding downstream. The current
flood warning criteria include warning levels set on the water
levels in the Regadera Reservoir. Forecasting of the input dis-
charges to this reservoir, as well as to the Chisacá reservoir,
which is located immediately upstream, is crucial.

The upper basin of the Tunjuelo river has a unimodal
precipitation regime (rainy season April–November) (Bernal
et al., 2007). The largest discharges in the upper Tunjuelo
basin occur during the months May, June and July (Rogelis,
2006).

The monitoring network is shown in Fig. 1. Two tipping
bucket telemetric rain gauges currently operate in the upper
Tunjuelo River basin and three discharge gauges are avail-
able in the three watersheds that discharge into the two reser-
voirs of the upper basin with hourly records.

2.2 WRF model data and observed rainfall fields

The hydro-meteorological agency of Colombia, IDEAM,
runs the Weather Research and Forecasting (WRF) model
version WRFV3.1 for Bogotá, using the initial and bound-
ary conditions provided by the GFS model (Ruiz, 2010). The
WRF model has been used at IDEAM since 2007 to produce
forecasts at national level, as well as in the Bogotá region at
higher resolution (Arango and Ruiz, 2011).

The data set of WRF forecast used in this paper corre-
sponds to 107 selected days when significant storms were
recorded, during the period July 2009 to December 2002.
For each of these days, deterministic forecasts with the
WRF model were generated at 00:00, 06:00, 12:00 and
18:00 GMT. This choice of storms ignores days when the
WRF model would have delivered false alarms, focusing ex-
clusively on the days when high precipitation was effectively
measured. This is due to operational reasons. The WRF fore-
casts have not been archived; therefore they had to be recre-
ated, and to achieve a feasible setup of the experiment from
a computational point of view, this choice had to be made.

The WRF model comprises three nested domains, centred
in Bogotá. The coarsest domain covers most of the Colom-
bian national territory with a spatial resolution of 15 km; the
intermediate domain covers mainly the central and eastern
Andean cordilleras with a spatial resolution of 5 km; and the
finest domain covering Bogotá and the study area only has
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Figure 2. Overview of the methodology.

a spatial resolution of 1.67 km (Arango and Ruiz, 2011). The
nested model domains have been set up using two-way com-
munication (without smoothing). The parameterisation of the
model corresponds to that used by IDEAM for its routine
forecasts (Arango and Ruiz, 2011), using the Kain–Fritsch
cumulus parameterisation scheme, except for the finest do-
main where convection is not parameterised but resolved.
Microphysics is parameterised as the WRF Single-Moment
3-class scheme (WSM3). The lead time of the WRF model
used operationally is 72 h, though in this paper only the first
48 h lead time was considered.

Observed hourly precipitation data were available from 18
tipping bucket rainfall gauges located in the city of Bogotá.
These were used to produce rainfall fields through inverse
distance weighing interpolation (IDW) for the entire area of
the city that includes the study area.

Both WRF forecast rainfall fields and IDW rainfall fields
were transformed to time series of mean average precipita-
tion for the Chisacá, Mugroso and Curubital watersheds (see
Fig. 1).

2.3 Methodology

The hydrology of the upper watersheds of the Tunjuelo river
was modelled using the TOPMODEL (Beven and Kirkby,
1979). This was calibrated using as objective function the
Kling and Gupta efficiency (Gupta et al., 2009) with the
Shuffled Complex Evolution automatic search algorithm
(Duan et al., 1992). The TOPMODEL was compared with
two other hydrological models by Rogelis (2016), and found
to provide a realistic representation of hydrological processes
and good performance in the páramo watersheds for which

residence times in the range from 1 to 2 h were found. Fur-
thermore, the preference of TOPMODEL for páramo areas
has been reported previously by other authors (Buytaert and
Beven, 2011). The hydrological models were forced with
precipitation input obtained from inverse distance interpo-
lation (IDW) of hourly rainfall obtained from gauges up to
the time of start of the forecast (T0). From T0 the model
was forced using four different rainfall forecasts, (a) zero-
rainfall forecasts, (b) raw forecasts from the WRF model, (c)
bias-corrected WRF forecasts, and (d) precipitation forecast
ensembles obtained from the post-processing of the WRF
model, based on probit regression and quantile regression.
The precipitation forecasts obtained from each of the three
nested domains were used to force the hydrological model
and assess their difference in forecast skill.

Both precipitation forecasts and the corresponding stream-
flow forecasts were verified through the use of standard skill
scores and rank histograms (see Fig. 2). The precipitation
forecasts were verified through the use of (see Fig. 2): (1) the
mean absolute error (MAE), mean square error (MSE) and
mean error (ME) using the IDW precipitation as reference,
and (2) through the skill score based on the MSE using as ref-
erence climatological values and the zero rainfall forecasts.
In the case of streamflow forecasts obtained from the WRF
model, these were verified through (1) the MAE, MSE and
ME using as reference the discharge obtained from forcing
the model with IDW precipitation, (2) the skill score based
on MSE using as reference climatological values, and (3) the
continuous ranked probability skill score (CRPSS) using as
reference a streamflow time series generated using the pre-
cipitation forecast equal to zero to assess the added value of
the WRF forecasts. The procedures for the production of the
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different rainfall forecasts and the verification process are de-
scribed in the following sections.

2.3.1 Generation of precipitation forecasts

The precipitation forecast to drive the models were generated
under four strategies:

a. Zero-rainfall forecasts. After T0 values of zero precipi-
tation are used to drive the TOPMODEL.

b. Raw forecasts from the WRF. The only post-processing
of the WRF forecasts is the sampling of the grids to ob-
tain the hourly mean areal precipitation for each water-
shed.

c. Bias correction of WRF. The time series of mean
areal precipitation obtained from the WRF model are
bias corrected through distribution-based scaling (DBS)
(Yang et al., 2010). Mean areal precipitation was estab-
lished using forecasts made for the 107 selected storm
days as the biases during more extreme events is the
prime interest. As reference values the observed time
series of mean areal precipitation obtained from IDW
are used, and the correction is carried out for each lead
time of the WRF model. The DBS approach uses two
steps: (1) correction of the percentage of wet time steps;
a precipitation threshold of 0.1 mm (rainfall gauge accu-
racy) was used, below which a time step is considered
to be dry, and (2) transformation of the remaining pre-
cipitation to match the observed frequency distribution.
The gamma distribution is used to describe the prob-
ability distribution function of precipitation intensities
given its ability to represent the asymmetrical and pos-
itively skewed distribution of precipitation. The distri-
bution parameters are estimated using maximum likeli-
hood estimation. To capture the main properties of nor-
mal precipitation, as well as of the extremes, the precip-
itation distribution is divided into two partitions sepa-
rated by the 95th percentile. The resulting distribution
corresponds to a double gamma distribution. The two
sets of parameters are used to correct the WRF model
outputs.

d. Bias correction and generation of ensembles through
post-processing of the rainfall forecast from the WRF
model. The reference and forecast time series were or-
ganised according to lead time and a two-stage post-
processing model was applied to reflect the intermit-
tent nature of rainfall (Rene et al., 2012; Clark et al.,
2004). The first stage corresponds to the probit model
(Scardovi, 2015; Kleiber et al., 2012; Bremnes, 2004) to
simulate the probability of occurrence of precipitation.
The second stage considers the probability distribution
of the precipitation amount, given its occurrence, for
which quantile regression was used. The mean precipi-

tation time series (observed hourly mean areal precipita-
tion for each watershed) is first disaggregated into a time
series of occurrence (1=wet time step and 0= dry time
step) and precipitation amounts, which is established for
the wet time steps only. The time series of occurrence is
used as the response variable for the probit regression
model. The probit model allows the probability of oc-
currence of precipitation to be estimated using the WRF
hourly mean areal precipitation over each watershed as
a predictor or secondary variable. The time series of
precipitation amounts is used as the response variable
for the quantile regression model. This allows different
quantiles of the response variable to be estimated using
the WRF hourly mean precipitation for each watershed
as predictor or secondary variable.

In the probit regression model, given binary observations
of precipitation occurrence y1, . . .,yn, and xi1, . . .,xik covari-
ates associated with the ith response, the probability that
yi = 1, pi , is written as (Albert, 2009):

pi = P (yi = 1)=8(xi1β1+ ·· ·+ xikβk) , (1)

where β = (β1, . . .,βk) is a vector of unknown regression
coefficients and 8() is the cumulative density function of
a standard normal distribution. If we assume a uniform prior
for β, then the posterior density is given by

g (β | y)∝

n∏
i=1
p
yi
i (1−pi)

1−yi . (2)

The binary response corresponds to the occurrence yi =
1 or non-occurrence of rain yi = 0. A latent variable Zi is
introduced in such a way that if Zi is positive for yi = 1 and
Zi is negative for yi = 0. This latent variable is related to the
k covariates by the normal regression model:

Zi = xi1β1+ ·· ·+ xikβk + εi, (3)

where ε1, . . .,εn are a random sample from a standard normal
distribution. Then,

P(yi = 1)= P(Zi > 0)=8(xi1β1+ ·· ·+ xikβk). (4)

This can be considered as a missing data problem where
there is a normal regression model of latent data Z1, . . .,Zn
and the observed responses are missing or incomplete and
can only be observed if Zi > 0(yi = 1) or if Zi ≤ 0(yi = 0).

In order to avoid distributional assumptions, quantile
regression (QR) will be used to describe the probabil-
ity of the amounts of precipitation given its occurrence
(Bremnes, 2004). Let r1, . . ., rn∗ denote observed precipi-
tation amounts of cases with observed precipitation above
a given lower threshold and z1, . . .,zn∗ corresponding predic-
tor values where z= (z, . . .,z)T . For linear quantile functions
(Bremnes, 2004),

qθ (zi;β)= β0+

K∑
k=1

βkzik, (5)
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an estimate of the qθ (zi;β),0< β < 1 quantile, is obtained
by solving the following minimisation problem with respect
to β:

argmin
β

n∗∑
i=1

pθ (ri − qθ (zi;β)), (6)

where the function qβ(∗), is defined in terms of the absolute
deviation of residuals (u) by

pθ (u)=

{
uθ if u≥ 0

u(θ − 1) otherwise.
(7)

If several quantiles are of interest, the minimisation must
be repeated for each quantile. A potential problem with using
QR for the derivation of multiple conditional quantiles is that
quantiles may cross, yielding predictive distributions that
are not monotonically increasing, as a function of increas-
ing quantiles (López López et al., 2014). In the present re-
search study, the technique proposed by Muggeo et al. (2013)
and implemented in the package quantregGrowth developed
in the R environment (R Development Core Team, 2010) is
used. This technique estimates nonparametric growth charts
via quantile regression. Quantile curves are estimated via B-
splines with a quadratic penalty on the spline coefficient dif-
ferences, and non-crossing and monotonicity restrictions are
set to obtain plausible estimates.

Two configurations were tested: (a) quantile regression ap-
plied to the raw precipitation data, and (b) quantile regres-
sion on the data transformed into normal domain through
normal quantile transformation (NQT) (Bogner et al., 2012).
For configuration (b) the time series of observed precipitation
and forecast precipitation are transformed into the normal do-
main. After the derivation of the quantiles, the variables are
back-transformed into original space. The rationale for using
the transformation is that the joint distribution of transformed
time series appears to be more linear, and can thus be better
described by linear conditional quantiles (López López et al.,
2014).

Back-transformation is, however, problematic if the quan-
tiles of interest lie outside of the range of the empirical dis-
tribution of the untransformed variable in original space. To
address this issue linear extrapolation in the tails of the dis-
tribution was used (López López et al., 2014).

To generate the probabilistic forecast of the occurrence of
precipitation, the latent variable in the probit model is first
sampled. The random value u is sampled from a uniform dis-
tribution. If Zi < u no precipitation occurs, if Zi ≥ u precip-
itation is set to occur and the amount is computed with the
quantile regression model. Given the occurrence of precip-
itation, the quantile regression model corresponding to the
lead time under consideration is used to obtain the quantiles
of the conditional distribution. The inverse cumulative func-
tion is approximated by a cubic spline and subsequently 50
uniform random numbers in the range 0–1 are generated and

used to sample corresponding precipitation values from the
inverse cumulative function.

2.3.2 Verification of forecasts

Deterministic forecasts of precipitation and discharge were
verified using the mean absolute error (MAE), the mean
squared error (MSE), the mean error (ME) and the skill score
(SS) based on the MSE, using as reference forecasts pro-
vided by climatological values (subscript Clim in Eqs. 11 and
12) (Wilks, 2011) and zero forecasts (subscript 0 in Eqs. 13
and 14). The corresponding formulas are shown in Eqs. (8)–
(14), where (yk,ok) is the kth of n pairs of forecast and ob-
served values at a particular lead time. In the case of dis-
charge, the discharge forecast obtained from the hydrologi-
cal model driven with a precipitation input equal to zero, was
used as reference. This reference was chosen given that this
is the only choice when precipitation forecasts are not avail-
able, providing a method to assess the added value of WRF
in comparison with current operation:

MAE=
1
n

n∑
k=1

|yk − ok| , (8)

MSE=
1
n

n∑
k=1

(yk − ok)
2, (9)

ME=
1
n

n∑
k=1

(yk − ok)= ȳ− ō, (10)

MSEClim =
1
n

n∑
k=1

(ō− ok)
2, (11)

SSClim =
MSE−MSEClim

0−MSEClim
= 1−

MSE
MSEClim

, (12)

MSE0 =
1
n

n∑
k=1

(0− ok)2, (13)

SS0 =
MSE−MSE0

0−MSE0
= 1−

MSE
MSE0

. (14)

In order to assess the performance of the probit model con-
structed to model the occurrence of precipitation from the
WRF model, the ROC (relative operating characteristic) dia-
gram was used. This is a discrimination-based graphical fore-
cast verification display (Wilks, 2011). For perfect forecasts
the ROC curve consists of two line segments coincident with
the left boundary and the upper boundary of the ROC dia-
gram. At the other extreme of forecast performance, random
forecasts consistent with the sample climatological probabil-
ities, the ROC curve will consist of the 45◦ diagonal con-
necting the points (0, 0) and (1, 1). ROC curves for real fore-
casts generally fall between these two extremes, lying above
and to the left of the 45◦ diagonal. Forecasts with better dis-
crimination exhibit ROC curves approaching the upper-left
corner of the ROC diagram more closely, whereas forecasts
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Figure 3. Q–Q plots (quantile–quantile plot, plot of the quantiles of the first data set against the quantiles of the second data set) for the
Mugroso watershed comparing observed precipitation with WRF and WRF bias corrected precipitation.

with very little ability to discriminate the event exhibit ROC
curves very close to the diagonal (Wilks, 2011). To sum-
marise the ROC diagram, the area under the ROC curve was
used (Wilks, 2011).

Regarding the quantile regression models, the pseudo-R-
square measure (Koenker and Machado, 1999) was used
to compare the models with normal quantile transforma-
tion and the ones based on raw data. The pseudo-R-square
measure was proposed by Koenker and Machado (1999) as
a goodness-of-fit indicator for quantile regression by com-
paring the sum of squared distances for the model of interest
with the sum of squared distances between the observed and
the fitted values that would be obtained if only the intercept
term is included in the model (Hao and Naiman, 2007).

Ensemble forecasts of both precipitation and discharge
were verified using rank histograms. Rank histograms make
it possible to evaluate whether a collection of ensemble fore-
casts satisfy the consistency condition (Wilks, 2011). Rank
histograms are constructed by accumulating the number of
cases over space and time when the verifying analysis falls in
any ofm+1 intervals, where each of them+1 intervals is de-
fined by an ordered series ofm ensemble members, including
the two open-ended intervals (Jolliffe and Stephenson, 2012).
Reliable or statistically consistent ensemble forecasts lead to
a rank histogram that is close to flat (Jolliffe and Stephenson,
2012).

In order to assess the probabilistic forecasts of discharge
obtained from the WRF precipitation ensembles, the CRPSS
was used. The CRPSS is given by (Hersbach, 2000; Alfieri
et al., 2014)

CRPSS=
CRPSref−CRPSforecast

CRPSref
, (15)

where

CRPS=

−∞∫
∞

[
F (y)−F0 (y)

]2dy (16)

and

F0 (y)=

{
0, y < observed value

1, y ≥ observed value.
(17)

F(y) is a stepwise cumulative distribution function (cdf)
of the ensemble of each considered forecast. CRPSS ranges
between 1 and −∞. A CRPSS of 1 indicates a perfect fore-
cast. Forecast ensembles are only valuable when CRPSS> 0,
this is when the forecasts perform better than the reference.
The discharge obtained from forecast precipitation equal to
zero will be used as reference. Since this is a deterministic
forecast, the CRPSref corresponds to the mean absolute error
of all forecast and observed pairs (Hersbach, 2000).

3 Results

3.1 Bias correction of precipitation forecasts
through DBS

Figure 3 shows the quantile–quantile plots (Q–Q plots) com-
paring the WRF precipitation and the bias-corrected WRF
precipitation with the observed precipitation obtained from
IDW, for the 107 selected days of significant precipitation.
The figure shows results for three lead times for the Mugroso
watershed, as examples of the 12 that were analysed, results
for the other two watersheds were similar and not shown here
for brevity; 12 h was chosen as a first estimate of the us-
able lead time for the forecast, since NWP models describing
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Figure 4. Pseudo-R square for the Mugroso watershed for the coarsest domain and lead times up to 12 h.

local–regional convective systems and orographic processes
have been observed to significantly decrease their skill at lead
times beyond 12–48 h (Cuo et al., 2011). The raw WRF and
IDW time series were obtained from the corresponding rain-
fall fields as the mean areal precipitation calculated in the
three watersheds of analysis by sampling the raster layers
with the polygons of the watersheds.

The Q–Q plots show that both overestimation and under-
estimation of precipitations occurs. Underestimation is very
noticeable for lead times of 1 h for values in the upper per-
centiles as shown in Fig. 3. In general for lead times between
2 and 5 h, overestimation of high precipitation values occurs,
for larger lead times underestimation occurs and in the case
of the lead time of 8 h a storm is entirely missed by the WRF
model (see Fig. 3, Leadtime= 8 h).

3.2 Quantile regression model

Figure 4 shows the pseudo-R square for all quantile regres-
sion models for the Mugroso watershed and for the coars-
est domain (resolution of 15 km), the results are similar for
the other watersheds and domains. The R-square values are
pooled for lead times up to 12 h. The figure shows that the
values of the pseudo-R square up to the 50th percentile are
higher when the normal quantile transformation is used, thus
indicating a better fit of the quantile regression model. For
higher percentiles the pseudo-R square of the models with
normal quantile transformation is in approximately the same
range of the raw data or lower. This means that for percentiles
above the 50th percentile the fit of the quantile regressions is
better for the raw data than for the normal transformed data.

3.3 Verification of deterministic precipitation forecasts
and ensemble mean

Figure 5 shows the performance measures shown in Eqs. (8)–
(14). The performance of all the WRF domains are shown
for the three watersheds (Chisacá, Mugroso and Curubital).

From top to bottom the figure shows the ME, the MAE and
the MSE. The lowest two figures for each watershed show the
skill score based on MSE using climatology as a reference,
and the skill score using zero precipitation as a reference.

The ME of the raw WRF forecasts shows that in the three
watersheds for lead times between 1 and 5 h the precipitation
amounts are overpredicted (positive ME), while after 5 h the
ME shifts to negative values, indicating underprediction. The
bias-corrected WRF forecasts show values of ME very close
to zero, which could be expected given the procedure applied
(see Fig. 5). In the case of the mean of the WRF ensemble
without transformation, the ME is close to zero for lead times
up to 6 h. Beyond this lead time there is a tendency to under-
predict precipitation. The behaviour of the ME for the mean
of the ensemble with normal quantile transformation is very
similar to that when the transformation is not applied.

The highest values of MAE (see Fig. 5) are obtained from
the DBS bias-corrected forecast for lead times larger than 6 h,
while the raw WRF forecasts exhibit the highest values at the
shorter lead times. In the case of the MSE, the highest values
are obtained from the bias-corrected WRF forecasts at lead
times of 2 and 8 h. The increase in MSE when bias correc-
tion is applied is mainly attributed to the influence of a sin-
gle (observed) high-precipitation event that was not forecast
by the WRF model. These intense precipitation events be-
ing missed in the forecasts cause all WRF values higher than
the 95th percentile to be significantly increased through the
bias correction procedure, increasing their square difference
with the observed value. These extremes are mainly present
at lead times of 2 and 8 h due to extreme precipitation events
in this area typically occurring in the mid-afternoon, some 2
to 8 h after the start of the 18:00 and 12:00 GTM WRF fore-
cast runs (the time zone of the area is UTC− 5).

For both MSE and MAE, the best performance is obtained
from the ensemble mean of the WRF forecasts. This is the
case both with and without normal quantile transformation
(see Fig. 5), which provide very similar performance. Re-
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Figure 5. Accuracy measures for deterministic precipitation and ensemble mean obtained from the WRF model. Domain 1, domain 2 and
domain 3 correspond respectively to the domains with resolutions 15, 5 and 1.67 km.

garding the skill score based on the MSE using the clima-
tology as reference (see Eqs. 11 and 12) negative values are
obtained for all forecasts, with the bias-corrected WRF and
the raw WRF forecasts showing the worst skill. However, in
the case of the ensemble mean, both for the normal quantile-
transformed and raw ensembles, the values are very close to
zero, albeit still negative. When zero precipitation is used
as reference, the behaviour of the score is very similar to
SSClim. However, most values for the ensemble mean fore-
cast are positive, both with raw and with normal quantile-
transformed data, with a maximum value of 0.16. This shows
that the ensemble mean forecasts provide the best results in
comparison to the other forecasts. In the case of the climatol-
ogy being used as reference, they are approximately as good
as the reference and compared to zero precipitation as ref-
erence; they provide an improvement up to 16 % over the
reference.

Given that a single extreme storm which was entirely
missed by the WRF forecast has a significant influence in the
results shown in Fig. 5, (resulting in the poor performance
at lead times of 2 and 8 h), the accuracy metrics were re-
calculated from the data set, but now excluding this storm.
The results are shown in Fig. 6 only for the MSE, since the
other metrics are less affected by the exclusion of the extreme
storm. In Fig. 6 the reduction of the MSE is highly noticeable
in all the forecasts (see Fig. 5 in comparison with Fig. 6), and
the lowest values are exhibited by the ensemble mean of both
raw and normal quantile-transformed data, which show very
similar behaviour. This analysis clearly shows the sensitivity
of performance measures based on squared residuals, such as
MSE, to a single event with high precipitation being missed
in the WRF forecasts.
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3.4 Verification of deterministic discharge forecasts
and ensemble mean

The results for discharge using the precipitation forecasts are
shown in Fig. 7. The structure of the figure is similar to that
of Fig. 5, although the skill score is now determined using
the climatology as reference, as the zero-precipitation fore-
cast is considered as one of the forecasts. The ME shows
that the raw WRF forecasts overestimate the discharges up
to a lead time of some 8 h, while for larger lead times under-
estimation occurs. When the bias-corrected WRF forecasts
are used, the ME is close to zero, slowly increasing with lead
time. The use of the mean of the ensembles with and without
normal quantile transformation produces ME close to zero

up to lead times of 4 h, beyond which underestimation oc-
curs (negative values of ME). In terms of the MSE the mean
of the ensemble with and without normal quantile transfor-
mation produce the smallest values for all lead times, which
is reflected in the SSClim, where they produce the highest val-
ues, although there is little improvement in the skill over that
obtained from using a zero-precipitation series as forecast.

Figure 8 shows the MSE calculated using the stream flow
simulations, but now excluding the storm with the highest
precipitation that was missed by the WRF model. Only the
MSE is shown, since the other metrics are less affected by
the exclusion of the extreme storm. This shows a significant
improvement in comparison with Fig. 7, particularly for the
DBS bias-corrected data.
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From the results shown in Figs. 5–8, the difference in per-
formance for the three domains of the WRF model is not sig-
nificant, both in the precipitation and in the discharge fore-
casts.

3.5 Verification of probabilistic forecasts

Figure 9 shows the area under the ROC curve (AROC), show-
ing the skill of the forecasts to discriminate between the
occurrence and non-occurrence of precipitation. Scores are
shown for the three watersheds (Chisacá, Mugroso and Cu-
rubital in Fig. 1); for the three domains of the WRF model for
lead times up to 12 h; and for a precipitation forecast of zero.
The behaviour of the AROC is similar in the three watersheds
and three domains, with the highest values found in the first
2 h, dropping to a value close to 0.5 after a lead time of about
5 h. The AROC values for a forecast of zero precipitation is
very close to 0.5 for all lead times, and thus is almost equal
to random forecasts consistent with the sample climatologi-
cal probabilities (Wilks, 2011). This shows that the forecasts
have some skill at short lead times in comparison to both
zero-precipitation forecasts and random forecasts, although
that skill is limited.

The rank histograms of the precipitation ensembles are
shown in Fig. 10. The behaviour for all domains and all lead
times is similar, therefore the figure only shows the lead time
of 1 h. The rank histogram is approximately uniform from
rank 1 to rank 5, and from rank 6 to rank 10 there is an
increase in the frequency of the IDW precipitation values
falling in these higher ranks. Similar behaviour in all rank
histograms was observed when the storm with the highest
precipitation missed by the WRF model was excluded. This
suggests that the WRF ensemble is slightly underforecasting.

Figure 11 shows the rank histograms for the discharges
obtained from the precipitation ensemble using the TOP-
MODEL. The rank histograms show approximate uniformity
mainly for lead times up to 3 h. For longer lead times a slight
underdispersion is observed. The figure shows lead times up
to 6 h since for longer lead times the behaviour is similar to
that of the lead time of 6 h.

Figure 12 shows the CRPS for the discharge ensembles,
the MAE for the forecast produced by using zero as precipi-
tation forecast and the corresponding CRPSS. The CRPSS
exhibits values in the range 10.5–21 % (see Fig. 12) with
most values in a range of 14–16 %. The same behaviour is ob-
served in the three watersheds. The comparison between nor-
mal quantile-transformed quantile regressions and the quan-
tile regressions with raw data again shows that the difference
between the two is negligible.

4 Discussion

4.1 Evaluating precipitation forecasts from the WRF
model

The Q–Q plots of the raw WRF forecasts and the precipita-
tion obtained from IDW interpolation shows that the WRF
model tends to underpredict precipitation for the first hour
of lead time and to overpredict precipitation for larger lead
times. The overpredicting behaviour has been observed in
other tropical areas (Mourre et al., 2016). While the details of
the implementation of the WRF model are out of the scope of
this study, possible causes of the precipitation error found by
other authors include; errors in the lateral boundary condi-
tions (Ochoa et al., 2014); poor representation of the topog-
raphy (Ochoa et al., 2014); and choice of convective treat-
ment, microphysics and planetary boundary layer (Jankov
et al., 2005). However, there are individual cases where the
WRF model did not detect the occurrence of high precipi-
tation. Missing or underpredicted forecasts of intensive pre-
cipitation have also been observed by other authors (Kryza
et al., 2013; Liu et al., 2015), which may suggest the need
for an improvement in model parameterisation and data as-
similation.

No significant differences among three domains of the
WRF model were found in the behaviour of the scores for
the tests carried out in this study. The two-way communica-
tion between the nested domains implies that precipitation
volumes are aligned between the different resolutions, with
the small differences found likely being due to differing ra-
tios between the WRF model grid cell sizes and the sizes
of the watersheds. Other applications of NWP (e.g. Roberts
et al., 2009) show that finer resolutions are capable of pro-
ducing more accurate predictions, and that physics configu-
ration, resolution and initial conditions highly influence the
WRF model performance (Kryza et al., 2013). The similar-
ity of results regardless of resolution found in this study may
be also related to deficiencies in the parameterisation of the
model, or to the inability to sufficiently resolve the topog-
raphy. A more detailed review of the WRF model would
be required to reveal possible deficiencies, and to suggest
improvements. Furthermore, this analysis has only been fo-
cused on the forecast of high precipitation when this has been
observed, which provides insight into the skill of the WRF
model to detect events that can lead to floods. However, the
behaviour of the WRF model under other conditions such as
those that may lead to false alarms is planned for future re-
search, which may reveal other potentialities and deficiencies
to be taken into account in the improvement of the model.

The WRF model has been shown to be highly sensitive
to the parameterisation of cumulus and microphysical pro-
cesses (Remesan et al., 2014; Rama Rao et al., 2012). Pa-
rameter sensitivity is generally dependent on local conditions
(Di et al., 2014), and the best configuration varies with time
and rainfall threshold (Jankov et al., 2005). While it was our
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Figure 10. Rank histograms for the WRF ensemble for the Mugroso watershed for the finest domain (resolution of 1.67 km) and lead time
of 1 h.

Normal quantile-transformed data Raw data

0.00

0.05

0.10

0.15

0.20

0.00

0.05

0.10

0.15

0.20

0.00

0.05

0.10

0.15

0.20

0.00

0.05

0.10

0.15

0.20

0.00

0.05

0.10

0.15

0.20

0.00

0.05

0.10

0.15

0.20

Lead tim
 =

 1 h
Lead tim

e =
 2 hr

Lead tim
e =

 3 h
Lead tim

e=
 4 h

Lead tim
e=

 5 h
Lead tim

e =
 6 h

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
Rank of observation

F
re

qu
en

cy

Figure 11. Rank histograms for the Q ensemble using as reference time series the discharge simulated with the TOPMODEL.

objective to test the configuration of the WRF model as it is
used operationally by IDEAM and optimising the parameter-
isation of the WRF model is outside the scope of the present
paper, further work could test various model parameterisa-
tions, assessing their sensitivity and searching for an optimal
or a set of optimal configurations that help to improve pa-

rameterisation (in the case of the coarser model domains)
and in particular resolving (in the case of the finest model
domain) convective precipitation as frequently occurs in the
case study area. Observing systems such as radars, gauges
and satellites for data assimilation in NWP analysis could
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Figure 12. CRPSS for the discharge ensembles.

further improve the NWP forecasts (Rossa et al., 2011; Cuo
et al., 2011; Yucel et al., 2015; Liu et al., 2015).

The application of the DBS approach has been reported
previously to considerably reduce the differences in rainfall
frequency between observations and forecasts (Yang et al.,
2010). This reduction of differences was found in this study,
as shown in Fig. 3. However, where high precipitation val-
ues were observed but not forecast in a single extreme event,
the bias correction had the effect of reducing overall perfor-
mance, particularly when measured by the MSE, since this
is more sensitive to large residuals. This behaviour suggests
that the DBS bias correction can introduce undesirable ef-
fects, which limit its effectiveness (Ehret et al., 2012). Sim-
ilar behaviour was observed with the mean of the ensemble,
although with less impact on the performance measures in
comparison to the DBS approach. A significant difference
between the ensemble means obtained from raw and normal
quantile-transformed data were not found.

These biases are the result of the inability of the WRF
model to adequately represent convective precipitation, fail-
ing to correctly predict when large events occur, or where it
occurs. This has also been observed by other authors. For in-
stance, Verkade et al. (2013) found that post-processing does
not improve on all qualities at all lead times and at all levels
of the verifying observations. The cause is rooted in the im-
possibility of the post-processing approaches to replace ad-
equate model representation of physical processes (Haerter
et al., 2011). Haerter et al. (2011) found that the conditions
on climate model data to make the application of statistical
bias correction schemes reasonable are that a realistic rep-
resentation of the physical processes involved must be en-
sured; and that the quantitative discrepancies between the
modelled and observed probability density function of the
quantity at hand must be constant in time. Similarly, Chen
et al. (2013) emphasise the impossibility any bias correction
method being successful if there is no coherence between
simulated and observed precipitation. The WRF data used

in this study show limitations in fulfilling both these condi-
tions, which leads to the post-processed precipitation being
no more skilful than the sample climatology (as shown by
negative values of SSClim) and providing only a modest im-
provement in comparison to the zero-precipitation forecast
(as shown by most values of SS0 being positive, albeit low).
However, an important result of this analysis is that despite
the limitations, the ensemble mean outperforms the DBS bias
correction and seems to be less sensitive to the presence of
intense precipitation events that are not forecast by the WRF
model. Post-processing the deterministic forecasts to gener-
ate the ensembles is clearly more sophisticated than just cor-
recting the mean bias (Robertson et al., 2013). During the
process, different distributions are used for each raw WRF
forecast, which results in an improvement of skill that out-
performs the bias correction through DBS. The magnitude
of the bias of the ensemble mean is nearly always smaller
than the raw forecasts, as well as of the DBS bias-corrected
forecasts, particularly for lead times up to 6 h.

Regarding the verification of the precipitation ensembles,
the rank histograms show that the IDW precipitation too of-
ten falls between ranks 6 and 10. This reflects overdispersion
of the ensemble towards low values. This produces an under-
forecasting bias in the ensemble. The same behaviour of the
rank histograms is observed in the ensembles obtained from
quantile regression, both when the normal quantile transfor-
mation is used in the precipitation data and when raw data are
used. This means that the transformation of the values does
not improve the consistency of the ensemble.

The AROC of the occurrence of precipitation shows that
values higher than 0.5 are obtained in all watersheds for lead
times up to 5 h, indicating that the probit model has the ability
to discriminate between the occurrence or non-occurrence of
precipitation up to these lead times. In all domains and wa-
tersheds, the highest values of AROC are obtained for lead
times between 2 and 3 h, in the range of 0.63–0.67. This
means that there is some skill in the probit model to fore-
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cast occurrence of precipitation for lead times up to 5 h, even
if the skill of the amount of precipitation is low. For longer
times the probit model does not have any skill, consistent
with other studies where the performance significantly re-
duces after a few hours (Liu et al., 2015). This behaviour
of the probit model implies that for lead times up to 5 h the
probability of occurrence of precipitation can be modelled
from the WRF precipitation with some skill, meaning that
the higher the WRF forecast precipitation value the higher
the probability of occurrence of precipitation. However, even
though the lead times at which the model still has skill are
limited, this does imply that the current ability of NWP in
tropical mountainous areas can provide a limited extension
of lead time beyond the concentration time of small, flashy,
watersheds.

4.2 Evaluating discharge forecast

The comparison of Figs. 7 and 8 shows that the biases in
the precipitation forecasts are reflected in the biases of the
discharge. When the single event with high precipitation that
is not forecast by the WRF is excluded from the analysis,
a reduction of bias in the forecast precipitation is observed,
as well as a reduction in the bias of the forecast discharge.
This is consistent with the findings of other studies where the
errors in bias-corrected precipitation lead to amplified errors
in modelled runoff (Teng et al., 2015), since in this analysis
the increase in errors in the bias-corrected time series amplify
the errors in the simulated discharges.

The forecasts generated with the post-processed ensemble
precipitation forecasts exhibit better skill than the determin-
istic forecasts (based on raw, bias corrected and zero pre-
cipitation). Higher skill of the ensemble mean in compari-
son with deterministic forecasts has also been found in other
flood forecasting systems driven by the WRF model (Calvetti
et al., 2014) and other NWP models (Vincendon et al., 2011).

In terms of the lead time at which the coupled WRF-
TOPMODEL forecasts provide value in these watersheds,
a first limit is provided by the skill of the WRF model to
forecast the occurrence of precipitation up to 5 h (see Fig. 9).
A limit is also observed in the skill scores of the discharge
forecast in Figs. 7 and 8. Beyond the lead time of 2 h, which
is approximately the time of concentration of the watersheds,
the skill (SSClim in Figs. 7 and 8) starts to drop significantly.
For the discharge obtained from raw and DBS bias-corrected
precipitation, 3 and 4 h are the respective lead times at which
the added value is totally lost in comparison with the clima-
tology (SSClim in Figs. 7 and 8 reaches zero). In the case of
the ensemble means, the skill also decreases progressively
after 2 h, with some value compared to climatology up to
a lead time of some 6 h. Beyond this lead time, the values
remain approximately constant in a range of 0.2 to 0.5 for
the three watersheds. This behaviour indicates that the use
of the ensemble mean provides some skill up to a lead time
of 6 h. This is 3 h longer than the lead time provided by the

raw WRF forecast or the DBS bias-corrected WRF forecast.
A lead time of 6 h is consistent with other flood forecasting
systems in small mountainous catchments driven by NWP
models (Verkade and Werner, 2011).

The hydrological model produces ensemble results with
rank histograms that do not reflect the overprediction of
the precipitation ensemble, with approximately uniform rank
histograms mainly for the first lead times (see Fig. 11). Ap-
proximately the same shape of the rank histograms is ob-
served for ensembles obtained from quantile regression when
no transformation is used in the precipitation data and when
raw data are used. The minor influence of the transformation
is consistent in all the performance assessments. This may be
due to the relatively low improvement of the fit of the quan-
tile regressions when the normal quantile transformation is
used. According to Fig. 4, the most significant improvement
is found in the low percentiles (up to the 25th percentile). For
higher percentiles, the improvement is not significant and for
some percentiles degradation of goodness of fit occurs. As
floods occur for higher rainfall percentiles, the similarity in
behaviour is logical.

The results of the CRPSS (see Fig. 12) show that forcing
the hydrological model with WRF ensembles improves the
forecasts in a range of 8.5–22 % in comparison with a fore-
cast produced with the hydrological model forced with zero
precipitation for lead times between 1 and 12 h. The posi-
tive values of the CRPSS imply added value to the forecasts,
albeit modest. The CRPSS obtained from the ensembles is
comparable to the CRPSS values found in other areas with
other NWP models, albeit in the low range. For example,
Robertson et al. (2013) found a CRPSS of 37 % on aver-
age for post-processed ensembles in Australia, where rain-
fall is predominantly produced by large-scale synoptic sys-
tems that are better predicted by NWP models. Therefore,
given the high complexity of the meteorological conditions
of the study area, and despite the relatively poor skill of the
WRF model in predicting precipitation amounts, the WRF
model does show promise at producing a benefit in its use for
flood forecasting compared to not using precipitation fore-
casts. This is likely due to the skill found in the probit model
in predicting the occurrence of rainfall.

Besides improvements in parameterisation and data assim-
ilation, as described previously, bias correction of streamflow
could provide a further skill improvement (Yuan and Wood,
2012).

5 Conclusions

This paper presents the assessment of WRF forecasts pro-
duced in a tropical high-mountain watershed in Bogotá,
Colombia. The WRF forecasts were used to force a hydro-
logical model of the study area. Simulated discharges were
used to assess the value of the WRF forecasts for flood early
warning. Although the skill of the forecasts developed is lim-
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ited, results show that the streamflow forecasts obtained from
a hydrological model forced by post-processed WRF precip-
itation do add value to the flood early warning system, par-
ticularly when compared to zero-precipitation forecasts.

The WRF model for the study area provides forecasts
that are found to overpredict precipitation for the shorter
lead times (up to 6 h), and that tend to fail to forecast high-
intensity precipitation events. This behaviour may be due to
parameterisation deficiencies, errors in boundary conditions
and/or poor representation of the topography. A more de-
tailed evaluation of the WRF model in this study area is rec-
ommended, including the assessing of other convective and
microphysics schemes to identify the most suitable parame-
terisation. The use of satellite and soon to be available radar
data may further help improve performance.

Bias correction of the WRF forecast precipitation, through
distribution-based scaling (DBS) was shown to significantly
reduce the differences in rainfall amounts between observa-
tions and forecasts. However, the DBS-corrected forecasts
were found to be sensitive to failure of the WRF model to
predict a small number of extreme events, resulting in a re-
duction of overall performance. This sensitivity was also ob-
served with the ensemble mean forecasts, although for this
post-processing technique the impact of these few missed
events on the performance was lower when compared with
DBS. This undesirable behaviour is the result of the inability
of the WRF model to adequately represent convective pre-
cipitation, which cannot be corrected through simple post-
processing.

Despite the limitations in the WRF forecasts, the ensem-
ble mean was found to outperform the DBS bias correction,
as well as being less sensitive to the presence of highly in-
tense precipitation that are not correctly forecast by the WRF
model. Although none of the precipitation forecasts that were
assessed in this analysis showed added value when compared
to climatology, the reduction of biases obtained from the
ensembles show the potential of this method and model to
provide usable precipitation forecasts. Although the skill of
the quantitative precipitation models was found to be low,
the probit model, which was applied to forecast the prob-
ability of occurrence of precipitation, based on the WRF
forecast, showed that the WRF model does have some skill
at short lead times (up to 5 h) in comparison to both zero-
precipitation forecasts and random forecasts, although that
skill is limited.

Increases in precipitation biases are reflected in the dis-
charge forecasts. However, discharge forecasts generated
with the post-processed ensembles did exhibit higher skill
than deterministic forecasts (based either on raw, bias cor-
rected or zero precipitation). Furthermore, the quality of
these forecasts is better than that which could be obtained
using zero precipitation as input to the hydrological model.
The potentially usable lead times for discharge forecasts ob-
tained from the WRF model found in this analysis (5–6 h) are
in the range of lead times found in other studies with other

NWP models. Despite the fact that the added value of the
WRF model forecasts is modest, the results found do show
there is some potential for increasing forecast skill in areas
of high meteorological and topographic complexity, as well
as how these can be improved.

Data availability. The hydrological and meteorological data used
in this study are the copyright of the providing institutes IDEAM
(Instituto de Hidrología, Meteorología y Estudios Ambientales),
IDIGER (formerly FOPAE; Instituto Distrital de Gestión de Ries-
gos y Cambio Climático) and Empresa de Acueducto de Bogotá,
and have been used in this study on the understanding of non-
disclosure. Access to the data can be requested through their respec-
tive websites (http://www.ideam.gov.co; http://www.idiger.gov.co;
http://www.acueducto.com.co).

Competing interests. The authors declare that they have no conflict
of interest.

Acknowledgements. This work was funded by the UNESCO-IHE
Partnership Research Fund – UPARF in the framework of the
FORESEE project. We wish to express our gratitude to the IDEAM
– Instituto de Hidrología, Meteorología y Estudios Ambientales for
providing the WRF model for this analysis.

Edited by: Florian Pappenberger
Reviewed by: two anonymous referees

References

Albert, J.: Bayesian Computation with R, 2nd Edn., Springer-
Verlag, New York, 2009.

Alfieri, L., Pappenberger, F., Wetterhall, F., Haiden, T., Richard-
son, D., and Salamon, P.: Evaluation of ensemble streamflow pre-
dictions in Europe, J. Hydrol., 517, 913–922, 2014.

Arango, C. and Ruiz, J. F.: Implementación del modelo WRF
para la sabana de Bogotá, Tech. rep., Instituto de Hidrología,
Meteorología y Estudios Ambientales, Bogotá, available at:
http://www.ideam.gov.co/documents/21021/21132/Modelo_
WRF_Bogota.pdf/f1d34638-e9f8-4689-b5f4-31957c231c46
(last access: 20 November 2015), 2011.

Bernal, G., Rosero, M., Cadena, M., Montealegre, J., and
Sanabria, F.: Estudio de la Caracterización Climática de Bogotá y
cuenca alta del Río Tunjuelo, Tech. rep., Instituto de Hidrología,
Meteorología y Estudios Ambientales IDEAM – Fondo de Pre-
vención y Atención de Emergencias FOPAE, Bogotá, 2007.

Beven, K. J. and Kirkby, M. J.: A physically based, vari-
able contributing area model of basin hydrology/Un
modèle à base physique de zone d’appel variable de
l’hydrologie du bassin versant, Hydrol. Sci. B., 24, 43–69,
https://doi.org/10.1080/02626667909491834, 1979.

Bogner, K., Pappenberger, F., and Cloke, H. L.: Technical Note:
The normal quantile transformation and its application in a flood

Hydrol. Earth Syst. Sci., 22, 853–870, 2018 www.hydrol-earth-syst-sci.net/22/853/2018/

http://www.ideam.gov.co
http://www.idiger.gov.co
http://www.acueducto.com.co
http://www.ideam.gov.co/documents/21021/21132/Modelo_WRF_Bogota.pdf/f1d34638-e9f8-4689-b5f4-31957c231c46
http://www.ideam.gov.co/documents/21021/21132/Modelo_WRF_Bogota.pdf/f1d34638-e9f8-4689-b5f4-31957c231c46
https://doi.org/10.1080/02626667909491834


M. C. Rogelis and M. Werner: Streamflow forecasts from WRF precipitation for flood early warning 869

forecasting system, Hydrol. Earth Syst. Sci., 16, 1085–1094,
https://doi.org/10.5194/hess-16-1085-2012, 2012.

Bremnes, J. B.: Probabilistic forecasts of precipitation in terms of
quantiles using NWP model output, Mon. Weather Rev., 132,
338–347, 2004.

Buytaert, W. and Beven, K.: Models as multiple working hypothe-
ses: hydrological simulation of tropical alpine wetlands, Hy-
drol. Process., 25, 1784–1799, https://doi.org/10.1002/hyp.7936,
2011.

Buytaert, W., Wyseure, G., De Bièvre, B., and Deckers, J.: The ef-
fect of land-use changes on the hydrological behaviour of His-
tic Andosols in south Ecuador, Hydrol. Process., 19, 3985–3997,
https://doi.org/10.1002/hyp.5867, 2005.

Buytaert, W., Célleri, R., De Bièvre, B., Cisneros, F., Wyseure, G.,
Deckers, J., and Hofstede, R.: Human impact on the hy-
drology of the Andean páramos, Earth-Sci. Rev., 79, 53–72,
https://doi.org/10.1016/j.earscirev.2006.06.002, 2006.

Calvetti, L., José, A., and Filho, P.: Ensemble hydrometeo-
rological forecasts using WRF hourly QPF and TopModel
for a middle watershed, Adv. Meteorol., 2014, 484120,
https://doi.org/10.1155/2014/484120, 2014.

Chen, J., Brissette, F. P., Chaumont, D., and Braun, M.: Finding
appropriate bias correction methods in downscaling precipitation
for hydrologic impact studies over North America, Water Resour.
Res., 49, 4187–4205, https://doi.org/10.1002/wrcr.20331, 2013.

Clark, M., Gangopadhyay, S., Hay, L., Rajagopalan, B., and
Wilby, R.: The Schaake Shuffle: a method for reconstructing
space–time variability in forecasted precipitation and tempera-
ture fields, J. Hydrometeorol., 5, 243–262, 2004.

Cloke, H. L. and Pappenberger, F.: Ensemble flood
forecasting: a review, J. Hydrol., 375, 613–626,
https://doi.org/10.1016/j.jhydrol.2009.06.005, 2009.

Colman, B., Cook, K., and Snyder, B.: Numerical weather predic-
tion and weather forecasting in complex terrain, in: Mountain
Weather Research and Forecasting Recent Progress and Current
Challenges, chap. 11, edited by: Chow, F. K., De Wekker, S. F.,
and Snyder, B. J., Springer, Dordrecht, 2013.

Cortinas, J. V. J., Brill, K. F., and Baldwin, M. E.: Probabilistic fore-
casts of precipitation type, in: 16th Conference on Probability
and Statistics in the Atmospheric Sciences, 12–17 January 2002,
Orlando, Florida, 2002.

Cuo, L., Pagano, T. C., and Wang, Q. J.: A review of quantita-
tive precipitation forecasts and their use in short- to medium-
range streamflow forecasting, J. Hydrometeorol., 12, 713–728,
https://doi.org/10.1175/2011JHM1347.1, 2011.

Demeritt, D., Cloke, H., Pappenberger, F., Thielen, J.,
Bartholmes, J., and Ramos, M. H.: Ensemble predictions
and perceptions of risk, uncertainty, and error in flood forecast-
ing, Environ. Hazards, 7, 115–127, 2007.
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