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Abstract. A big challenge in constructing global hydrologi-
cal models is the inclusion of anthropogenic impacts on the
water cycle, such as caused by dams. Dam operators make
decisions based on experience and often uncertain informa-
tion. In this study information generally available to dam op-
erators, like inflow into the reservoir and storage levels, was
used to derive fuzzy rules describing the way a reservoir is
operated. Using an artificial neural network capable of mim-
icking fuzzy logic, called the ANFIS adaptive-network-based
fuzzy inference system, fuzzy rules linking inflow and stor-
age with reservoir release were determined for 11 reservoirs
in central Asia, the US and Vietnam. By varying the input
variables of the neural network, different configurations of
fuzzy rules were created and tested. It was found that the re-
lease from relatively large reservoirs was significantly depen-
dent on information concerning recent storage levels, while
release from smaller reservoirs was more dependent on reser-
voir inflows. Subsequently, the derived rules were used to
simulate reservoir release with an average Nash–Sutcliffe co-
efficient of 0.81.

1 Introduction

Over the last decades, major advances have been made re-
garding global data availability. Low-resolution hydrologic
states from remote sensing and high-resolution parameter
fields have become available. Combined with the improve-
ments in computational capabilities and data storage, these
advances have provided hydrologists the opportunity to pur-
sue the development of high-resolution global hydrologi-

cal models (GHMs) like, among others, PCRGLOB-WB
(Van Beek and Bierkens, 2009), waterGAP3 (Döll et al.,
2009), WBMplus (Wisser et al., 2010), SWBM (Orth and
Seneviratne, 2013), WR3A (van Dijk et al., 2014) and HBV-
SIMREG (Beck et al., 2016).

As indicated by Wood et al. (2011), a major challenge in
constructing a GHM is the incorporation of human impacts
on the terrestrial water cycle, such as operation of reservoirs.
Today, almost 40 000 large reservoirs, containing approxi-
mately 6000 km3 of water and inundating an area of almost
400 000 km2, can be found (Takeuchi et al., 2002). Since
these reservoirs contain more than three times as much water
as stored in river channels and almost one-sixth of the global
annual river discharge, they have a significant impact on the
timing, volume and peaks of river discharges (Baumgartner
and Reichel, 1975). These impacts can have severe environ-
mental consequences. For example, both the drying up of the
Aral Sea and the depletion of Lake Urmia in northern Iran
are believed to be results of anthropogenic changes in river
flow (Precoda, 1991; Aghakouchak et al., 2015). This im-
plies that in order for GHMs to function properly, the effects
of reservoirs have to be incorporated.

Nazemi and Wheater (2015) review the algorithms cur-
rently used in GHMs to deal with reservoirs and conclude
that large uncertainties remain and there is room for improve-
ment, possibly by representing reservoir operations through
rule-based models.

Actual reservoir operation is an imprecise and vague un-
dertaking, since operators always face uncertainties about
inflows, evaporation, seepage losses and various water de-
mands which need to be met. They often base their decisions
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Figure 1. An example showing the four steps of fuzzy reasoning.
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Figure 2. The five layers of ANFIS for a network with two input variables and two membership functions per variable. Note that square
nodes contain trainable parameters while circular nodes are fixed.

on experience and available information, like reservoir stor-
age and the previous periods inflow (Russell and Campbell,
1996; Hejazi et al., 2008). This study proposes a method to
link this information to their decisions.

Fuzzy logic, as introduced by Zadeh (1965), is a popular
method to model decision-making processes that found its
way into reservoir management optimization models nearly
two decades ago (Macian-Sorribes and Pulido-Velazquez,
2016; Russell and Campbell, 1996; Panigrahi and Mujum-

dar, 2000; Shrestha et al., 1996; Chang and Chang, 2006,
2001; Mousavi et al., 2007). Fuzzy logic has not been used
within the field of reservoir release and storage modelling.

In this study, historical inflows, storage levels and re-
leases are used to derive fuzzy rules that describe the re-
lease decisions of dam operators using artificial neural net-
works (ANNs). These rules can be used as the basis for a
macro-scale reservoir algorithm. Validity of the derived rules
is tested by using them to simulate the reservoirs release and
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comparing these releases with the actual releases. In order
to evaluate if the rules are capable of improving upon the
way reservoirs are currently modelled in GHMs, a quantita-
tive comparison is made with a simulation-based reservoir
algorithm. Additionally, the accuracies of simulated releases
resulting from different configurations of the fuzzy rules are
compared mutually in order to link the results to the im-
poundment ratios of the dams.

2 Brief review of macro-scale reservoir algorithms

Many macro-scale algorithms, which cannot rely on detailed
information on reservoir operation policies used in small-
scale models, have been proposed in order to take reser-
voir release and storage in GHMs into account (Nazemi and
Wheater, 2015). These algorithms can be divided into two
groups. First, there are simulation-based algorithms, which
use functional rules that rely on initial storage, inflows and
demand pressure to simulate the release. Secondly, there are
optimization-based algorithms, which try to find the opti-
mal releases to comply with competing water demands using
ideal storages at the end of an operational year, initial stor-
ages and expected or forecasted inflows and demands.

Hanasaki et al. (2006) proposed a simulation-based
scheme that uses the storage capacity, purpose, simulated
inflow and downstream water demand of a reservoir. Duan
et al. (1992); Biemans et al. (2011) and Voisin et al. (2013)
proposed variations on this scheme. The parameters used by
these algorithms are easily obtainable. The storage capacity
and the main reservoir purpose can be found in databases
like GRAND (Lehner et al., 2011) and ICOLD (ICOLD,
1998), while inflow and downstream water demand are typi-
cally derived from the hydrological model. Although these
algorithms perform better than traditional lake routing al-
gorithms, they remain biased, especially in highly regu-
lated catchments and in cold regions (Biemans et al., 2011;
Hanasaki et al., 2008; Pokhrel et al., 2011).

Recently, more data-driven simulation-based schemes
have been proposed by Wisser et al. (2010) and Wu and Chen
(2011). Both studies propose parametric relationships requir-
ing observed downstream discharges for calibration. Wisser
et al. (2010) use observed data to empirically determine a pair
of constants. Wu and Chen (2011) use a shuffled complex
evolution (SCE-UA) method (Duan et al., 1992) to optimize
several parameters for each individual reservoir, resulting in
a better performance than a simple target release scheme, as
used in the Soil and Water Assessment Tool (SWAT; Arnold
et al., 1998), or a multi-linear regression algorithm. Unfortu-
nately, the scheme was only tested on a single reservoir and
it remains unclear how it performs under different circum-
stances.

Haddeland et al. (2006b) suggest a retrospective
optimization-based algorithm, whereby knowledge of
future inflows is required, that uses the shuffled complex

evolution metropolis (SCEM-UA) method (Vrugt et al.,
2003) to calculate the optimal release within a predetermined
daily feasible release range, based on the reservoir purpose.
Adam et al. (2007) use this algorithm to study the influence
of reservoirs on stream flow in the major Eurasian rivers dis-
charging into the Arctic Ocean after several slight alterations
with regards to the determination of the daily allowed release
range. Van Beek et al. (2011) further alter the algorithm
in order to use it as a prospective model, substituting the
future inflows with a function using the inflow in the same
month of the previous years. Similar to the simulation-based
algorithms, the optimization-based algorithms result in more
accurate discharges than traditional lake routing algorithms,
but substantial deviations between simulated and observed
flows still remain (Adam et al., 2007; Haddeland et al.,
2006a).

As a result of limitations of macro-scale algorithms, which
are not yet capable of fully mimicking the dynamics of regu-
lated flows, simulations with GHMs are still highly uncertain
(Haddeland et al., 2011, 2014). An important opportunity to
improve GHMs is by enhancing the simulation-based reser-
voir operation algorithms (Nazemi and Wheater, 2015).

Hejazi et al. (2008) investigated the role of (uncertainty
in) hydrological information in reservoir operation release
decisions, realizing that the link between them is human be-
haviour. They find that release decisions strongly rely on the
current months inflow, the previous months storage levels
and inflow and, to a lesser extend, the predicted inflow for
the next month. The simulation and optimization algorithms
tend to neglect human behaviour towards uncertainty in hy-
drological information by assuming that dams are operated
in a completely rational way. The proposed method incorpo-
rates this aspect in the modelling approach.

Furthermore, the discussed simulation-based algorithms
use reservoir characteristics from databases like the afore-
mentioned GRAND (Lehner et al., 2011) that contains 6862
reservoirs. Since more than 40 000 large reservoirs exist to-
day (Takeuchi et al., 2002), the proposed method avoids us-
ing databases like GRAND and uses variables that can po-
tentially be observed on a global scale with Earth observation
satellites, although in this study in situ observations are used.

Just like the aforementioned data-driven simulation-based
schemes, the proposed method requires time series of ob-
served data to calibrate, or train, the algorithm. Although
this training can be computationally expensive, afterwards
the simulated releases can be acquired easily. Moreover, the
temporal resolution of the proposed method is flexible and
dependent on the resolution of the provided time series.
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Table 1. Overview of all considered reservoirs; data from Lehner et al. (2011) unless otherwise mentioned.

Dam name Country Period Purpose Inflow Impoundment Ratioa Height Lat. Long.
(m3 yr−1) ×108 (–) (m) (DD) (DD)

Andijan (AJ) Uzbekistan 2001–2010 Hydropower 42.0 3.97 115 40.77 73.06
Bull Lake (BL) USA 2001–2013 Multipurposeb 2.07 2.06 25b 43.21 −109.04
Canyon Ferry (CF) USA 2001–2013 Multipurposeb 38.1 1.95 69b 46.65 −111.73
Chardara (CD) Kazakstan 2001–2010 Irrigation 185 5.94 29 41.25 67.96
Charvak (CV) Uzbekistan 2001–2010 Hydropower 70.6 5.66 168 41.62 69.97
Kayrakkum (KR) Tajikistan 2001–2010 Hydropower 207 7.76 32 40.28 69.82
Nurek (NR) Tajikistan 2001–2010 Irrigation 209 2.53 300 38.37 69.35
Seminoe (SN) USA 1951–2013 Irrigation 12.0 1.68 90 42.16 −106.91
Toktogul (TT) Kyrgyzstan 2001–2010 Hydropower 140 1.04 215 41.68 72.65
Tuyen Quang (TQ) Vietnam 2007–2011 Hydropower 97.2 7.46 92 22.36 105.40
Tyuyamuyun (TM) Turkmenistan 2001–2010 Irrigationc 30.7 7.42 – 41.21 61.40

a The ratio of mean annual inflow to mean annual storage. b US Bureau of Reclamation c Schlüter et al. (2005)

cc-a c+a

Slope =
 -b/2a

Figure 3. A membership function with an indication of the physical
meaning of its parameters.

3 Methodology

3.1 Fuzzy logic

To model a process, fuzzy logic uses rules of the form “IF
x is A AND y is B, THEN z is C”, where {x, y, z} are lin-
guistic variables such as storage level, inflow or release, and
{A, B, C} are linguistic values such as “very high”, “low”
or “very low”. These rules consist of a premise and a conse-
quence part and are believed to be able to capture the reason-
ing of a human working in an environment with uncertainty
and imprecision (Shrestha et al., 1996).

Fuzzy reasoning is the process in which fuzzy rules are
used to transform input into output and consists of four steps.
(1) Firstly, the input variables are fuzzified, (2) next the fir-
ing strength of each rule is determined. (3) Thirdly, the con-
sequence of each rule is resolved and (4) finally the conse-
quences are aggregated. In Fig. 1, these steps are visualized
and in Appendix A an example is given.

A big drawback of fuzzy logic is the need to assess fuzzy
rules. Transforming human knowledge or behaviour into a
representative set of rules manually is a complicated task.
As the amount of input variables and membership functions
increases, the total number of required rules quickly becomes
very large.

Jang (1993) dealt with this problem by developing a
method called the ANFIS adaptive-network-based fuzzy in-
ference system to construct a set of fuzzy if–then rules with
appropriate membership functions using an ANN. ANNs are
computational models inspired by biological neural networks
that are capable of learning and generalizing from examples
(Flood and Kartam, 1994). Jang (1993) successfully tested
his method on several highly non-linear functions and used it
to predict future values of chaotic time series.

3.2 Adaptive-network-based fuzzy inference systems

ANFIS is a specific ANN that can deal with linguistic expres-
sions used in fuzzy logic. The network structure is capable of
adjusting the shape of the membership functions and of the
consequence parameters that form the fuzzy rules by mini-
mizing the difference between output and provided targets.
ANFIS is a feed-forward neural network with five layers as
seen in Fig. 2.

Jang (1993) proposes four training methods in his study,
of which one is called the hybrid learning rule (HLR).
This method combines gradient descent learning and a least
squares estimator (LSE) to update the network parameters.
It has an advantage over the other methods because it con-
verges fast and is less likely to become trapped in local min-
ima, which is a common problem when using the gradient
descent method. The training consists of two passes which
are discussed in more detail below. The network has two pa-
rameter sets, the premise and the consequence parameters,
situated in the “Membership” and “Implication” layers, re-
spectively. The consequence parameters are updated in the

Hydrol. Earth Syst. Sci., 22, 831–851, 2018 www.hydrol-earth-syst-sci.net/22/831/2018/



H. M. Coerver et al.: Deduction of reservoir operating rules 835

forward pass with the LSE, while the premise parameters are
updated in the backward pass by gradient descent learning.

3.2.1 Forward pass

In the forward pass, the output of each layer for a given input
is calculated and the consequence parameters are adjusted
with the LSE, before the final output is generated. Each layer
is discussed individually below.

1. The first layer is called the membership layer, the input
is put through a membership function to determine its
membership value:

O1
i = µAj (x) , (1)

where Aj is the j th linguistic label associated with the
input type A of x. Equation (1) is the membership func-
tion of Aj , x is the input to the ith node and µ defines
the shape of the membership function (also see Fig. 2).
Here it is

µ(x)=
1

1+
[(

x−ci
ai

)2
]bi , (2)

where α = {ai, bi, ci} are the premise parameters. They
determine the shape of the membership function as in
Fig. 3.

2. The circular nodes in this layer are marked with 5

in Fig. 2. This layer determines the firing strength for
all possible combinations of inputs and their associated
membership functions:

O2
i = wi = µAj (x) ·µBk (y), (3)

where Bk is the kth linguistic label associated with the
input type B of y.

3. In the third layer, the firing strengths of all nodes are
normalized with respect to each other:

O3
i = wi =

wi∑n
i=1wi

, (4)

where n is the total number of fuzzy rules.

4. The fourth layer is called the implication layer. The con-
sequence of each rule is calculated as a linear combina-
tion of the input variables, as described by Takagi and
Sugeno (1985), and then multiplied by its associated
normalized firing strength:

O4
i = wi · fi = wi · (pix+ qiy+ ri) , (5)

in which {pi, qi, ri} are the consequence parameters to
be updated by the LSE. Note that the number of conse-
quence parameters increases with the number of input
variables.

5. In the fifth layer all the incoming signals are summed to
compute the final output:

O5
=

n∑
i=1

(wi · fi) . (6)

3.2.2 Least squares estimator (LSE)

Before the final output is calculated, the consequence param-
eters need to be updated. The final output can also be written
as the following:

O5
= (w1x)p1+ (w1y)q1+ (w1)r1+ . . .

+(wnx)pn+ (wny)qn+ (wn)rn.
(7)

If P combinations of input and target values, or P sam-
ples, are provided for training the network, the output for all
inputs is given by O5

1
...

O5
P

= A ·X. (8)

In which the dimensions of A and X are respectively (P ·M)
and (M · 1), with M indicating the total number of conse-
quence parameters.

Equation (8) needs to be equal to the target values, B, pro-
vided by each sample:

A ·X = B. (9)

This is an overdetermined problem which generally does
not have an exact solution. Therefore, a least square estimate
is sought with sequential formulas (Aström and Wittenmark,
2011):

Xi+1 =Xi + Si+1 · ai+1 ·
(
bTi+1− a

T
i+1 ·Xi

)
,

Si+1 = Si −
Si · ai+1 · a

T
i+1 · Si

1+ aTi+1 · Si · ai+1
,

(10)

with
i = 0, 1, · · ·, P − 1; X0 = 0; S0 = γ · I ;
γ = positive large number; I = identity matrix with dimen-
sion (M ·M); aTi = ith row vector of matrix A; and bTi = ith
element of B.

So during every forward pass, the consequence parame-
ters, X, are updated. Note that for one update, only one row
of matrix A and only one target value is needed. One sample
results in one update of the consequence parameters. After
the parameters of layer 4 have been updated with Eq. (10),
Eq. (6) is used to calculate the output. Finally, the error rate
can be calculated with

Ep = (Tp −O
5
p)

2, (11)
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in which Tp is the target value and Op the output value for
the pth sample. After the error rate has been determined, the
forward pass is finished and the error rate is propagated back
through the network in order to update the premise parame-
ters with the gradient descent method.

3.2.3 Backward pass

During the backward pass, the error associated with the sam-
ple under consideration is propagated backward through the
network in order to acquire the gradient of the error with re-
spect to each individual premise parameter. So, α is updated
according to

1α =−η ·
∂Ep

∂α
. (12)

In which η is the learning rate, which is defined as

η =
k√∑
α
∂Ep
∂α

2
, (13)

where k is the step size that determines the speed of conver-
gence. The value of k is chosen and changed heuristically.
When the error measure decreases for four consecutive steps,
the step size increases by 5 %. After the occurrence of two
consecutive oscillations of the error measure, the step size
decreases by 5 %.

The derivative in Eqs. (12) and (13) is defined as

∂Ep

∂α
=
∂Ep

∂O5
∂O5

∂O4
∂O4

∂O3
∂O3

∂O2
∂O2

∂O1
∂O1

∂α
. (14)

The first term on the right side of Eq. (14) can be derived
from Eq. (11):

∂Ep

∂O5 =−2(Tp −O5
p). (15)

The final term of Eq. (16) is derived from Eq. (4) as

∂O1

∂α



∂O1

∂a
=

(
2b(−c+ x)2

(
(−c+x)2

a2

)(−1+b)
)

(
a3
(

1+
(
(−c+x)2

a2

)b)2
) ,

∂O1

∂b
=−


((

(−c+x)2

a2

)b
log

[
(−c+x)2

a2

])
(

1+
(
(−c+x)2

a2

)b)2

 ,
∂O1

∂c
=

(
2b (−c+ x)

(
(−c+x)2

a2

)(−1+b)
)

(
a2
(

1+
(
(−c+x)2

a2

)b)2
) .

(16)

The other terms in Eq. (14) can easily be derived from
Eqs. (3–6).

After the update of the premise parameters, a next sample
is provided to the network and the forward pass starts again.
When all samples have been passed trough the network once,
one epoch has passed and another epoch is started until the
solution converges.

In summary, first the input part of a sample is used to acti-
vate the network and, together with the target of the same
sample, the consequence parameters are updated using a
LSE. Next, the output error is calculated with Eq. (11) and
propagated backwards through the network with Eq. (14), af-
ter which Eq. (12) is used to adjust the premise parameters.
Once the backward pass has been completed, the next sample
is used to start again, until the error rate converges.

3.3 Data

In order to determine whether ANFIS is capable of deriving
a set of useful fuzzy rules that captures the characteristics
of how a dam is operated, 11 reservoirs for which in situ
measurements were readily available have been investigated.
Table 1 lists the considered dams, which are located in the
United States, Vietnam and several central Asian countries,
together with their respective purpose, mean annual inflow,
ratio of mean annual inflow to mean annual storage (im-
poundment ratio), dam height, location and the period over
which data on inflow, storage and release are available. The
size of the dams varies with dam heights ranging between 25
and 300 m. The purpose of the reservoirs is also diverse, sev-
eral hydropower, irrigation and two multi-purpose reservoirs
are considered. The periods of available data are around 10
years for most dams. For Tuyen Quang there is a significantly
shorter period of available data (5 years) and for Seminoe
dam in the United States there is 62 years of available data.
The data of the central Asian reservoirs has been converted
from a 10 day to a monthly timescale, while the data series of
reservoirs in the United States and Vietnam have been con-
verted from daily to monthly data. This has been done in or-
der to allow comparison between all reservoirs.

3.4 Settings

To train a network, the first 60 % of the dataset of each dam
is used to train the parameters and the next 20 % is used to
validate the solution. Finally, the remaining 20 % is used to
test the solution. During an epoch, all samples in a training
set are passed forward and backward through the network
once. The training is stopped when for at least five consecu-
tive epochs, the mean square error (MSE) of the simulation
with respect to the validation set has increased, after which
the configuration of the network with the lowest validation
MSE is chosen.

At this point, the training set has been used to update the
network parameters and the validation set has been used to
select the state of the network for which the results matched
best with data not present in the training set. Since the val-
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Figure 4. Diagrams showing different sample set-ups, The black dots represent input parameters, while the blue dots show the target.

idation set has been used to select the best configuration of
the network, a third and independent set is used to test the
performance of the network. This third set is the test set.

Initially, two variables will be used as input to train the
network, storage (S) and inflow (Q), while the release (R)
will be used as a target or output of the network. A simple
configuration of the network could be formulated as the fol-
lowing:

Input= {S(t)[2],Q(t)[2]} ,
Target= {R(t)} . (17)

This sample type has a prediction horizon of zero time steps,
the output of the network will be the release of a reservoir
for the same month as the input provided. The time range of
this sample is one, because the input parameters are consid-
ered at time t only. The numbers between square brackets in
Eqs. (17) to (20) indicate how many membership functions
are used for the particular variable. Figure 4 shows this sam-
ple type in a schematic way.

A somewhat more complicated sample is the following:

Input= {S(t)[2],S(t − 1)[2],Q(t)[2],Q(t − 1)[2]} ,
Target= {R(t)} , (18)

which has a time range of two and also zero prediction hori-
zon (see Fig. 4b). With this set-up, the release at time t is de-
termined using the storage and inflow at time t and t−1. Note
that since there are now four input variables, the complex-
ity of the network increases. Two membership functions are
used per input parameter, so eight membership functions are
needed in total. With three variables per membership func-
tion, see Eq. (1), the membership layer contains 24 parame-
ters. Furthermore, 24

= 16 different rules can be created with
this input. Since the consequence of every rule contains as
many parameters as the length of the input array plus one, see
Eq. (5), the implication layer will contain 5×16= 80 param-
eters. By varying the time range, prediction horizon and the
number of membership functions used per input parameter, it
is possible to generate many different sample configurations.
Increasing the prediction horizon of Eq. (18) results in the
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Figure 5. Example showing the initial membership functions for a
variable consisting of two membership functions.

following sample set-up:

Input= {S(t − 1)[2],S(t − 2)[2],Q(t − 1)[2],Q(t − 2)[2]} ,
Target= {R(t)} . (19)

With this set-up the release is predicted one time step ahead
of the input variables (also see Fig. 4c).

Additionally, since seasonality plays an important role in
the operation of reservoirs, a third input parameter (time of
the year, ToY) will also be considered. For example,

Input= {S(t − 1)[2],Q(t − 1)[2],ToY(t)[2]} ,
Target= {R(t)} . (20)

Figure 4d shows an example of a sample using the ToY. Since
the ToY is used with two membership functions it can be
thought of as a parameter indicating whether the season is
either “dry” or “wet”.

Finally, in order to use back propagation, initial values for
the parameters of the membership layer need to be set. These
are set such that for any input, the sum of the membership
functions equals 1; an example for an input parameter with
two membership functions can be seen in Fig. 5.
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3.5 Comparison with a macro-scale reservoir
algorithm

In order to compare simulated releases with those made by
an existing macro-scale algorithm, the data used to train the
networks has also been applied to the algorithm proposed by
Hanasaki et al. (2006) (from here on referred to as HNS).
This algorithm makes a distinction between irrigation and
non-irrigation reservoirs. For irrigation reservoirs, the algo-
rithm requires data on water demands. Since the method pro-
posed in this study does not require water demands, the ir-
rigation reservoirs (Chardara, Nurek, Seminoe and Tyuya-
muyun) have been omitted from this comparison.

The monthly release for the remaining reservoirs is calcu-
lated as

rm, y = (21) krls, y · r
′
m, y (c>0.5)( c

0.5

)2
· krls, y · r

′
m, y+

(
1−

( c

0.5

)2)
· im, y (06c < 0.5),

where c is the storage capacity divided by the mean total an-
nual inflow; r ′m, y is the provisional monthly release, which
equals the mean annual inflow for non-irrigation reservoirs;
im, y is the current months inflow and krls, y is the release co-
efficient, defined as

krls, y =
Sfirst, y

α ·C
, (22)

in which Sfirst, y is the storage at the beginning of an opera-
tional year, α is a dimensionless constant set to 0.85 and C is
the total storage capacity of the reservoir.

To prevent reservoirs from overflowing, excess storage left
after water for the current month has been released is released
additionally.

4 Results

4.1 Simple set-up

Simulating reservoir releases with a simple set-up as in
Eq. (17) results in MSEs ranging from 5.80× 10−3 to 41.1×
10−3 and Nash–Sutcliffe (NS) coefficients from 0.33 to 0.95,
ignoring the outlier Chardara with an MSE of 71.2 and NS
coefficient of −0.49 (see Table 2). Compared to HNS, five
out of the seven non-irrigation reservoirs score better on one
or both of the indicators.

Because the membership functions of Andijan and Char-
vak show different effects that the training can have on the
membership functions and their convergence curves show
two extremes (very fast and very slow convergence respec-
tively), they are presented more in-depth below. The inputs,
Q and S, for both reservoirs vary significantly over the years.

For Andijan, the validation set contains two very dry years
with low inflows and low storage levels, while the peak

flows in the rest of the dataset are of similar magnitude (see
Fig. 6a). Consequently, the observed releases, Robs, in the
two dry years are also relatively low (see Fig. 6b).

The storage level of Charvak reservoir reaches its maxi-
mum nearly every year, while the inflow during several years
is not more than 50 % of the inflow during wetter years. Nev-
ertheless, even during some of these drier years, it appears
the reservoir is able to fill completely (see Fig. 7).
Rsim follows the test data for both reservoirs with MSEs of

23.9×10−3 and 5.68×10−3 and NS coefficients of 0.69 and
0.92 for Andijan and Charvak respectively, as can be seen in
the first two rows of Table 2. Most of the peaks in the test set
match closely, only the first peak in the Andijan test set is too
low.

The shape of the four membership functions of Andi-
jan differ from their initial shapes (see Fig. 8a and b). The
membership function for low inflow changed the least, while
the high inflow function has shifted to the left (see the ini-
tial shapes in Fig. 5) intersecting each other around an in-
flow of 0.4. Both membership functions for storage have
shifted to the right, intersecting each other around an input
of 0.6. When the storage is larger than 0.6, a different con-
sequence rule will be used to calculate the release. This net-
work configuration, resulting in the lowest validation error,
was reached after two epochs (see Fig. 8c).

The membership functions of Charvak for reservoir inflow
have moved slightly to the left and the steepness of the bell
shapes has increased for the low inflow membership func-
tion and decreased for the other. There is a clear distinction
between consequences for inflows below and above 0.4 (see
Fig. 9a). The membership functions for storage have moved
away from each other. Storages between 0.4 and 0.6 now re-
sult in the activation of two rules with approximately similar
firing strengths. The release for situations with storages be-
tween these values will be aggregated from two fuzzy rules
(see Fig. 9b). The training of the network for Charvak takes
a lot longer than for Andijan, with more than 200 epochs,
although the difference in error is minimal as seen in Fig. 9c.

The membership functions for other reservoirs have a sim-
ilar shape as for Andijan and Charvak. Occasionally, multiple
membership functions dominate over the same part of the in-
put domain, resulting in the simultaneous activation of fuzzy
rules. Sometimes both membership functions become near
zero for a part of the domain, like the storage membership
functions of Charvak, resulting in simultaneous activation of
two rules. The rule for low inflow and storage is most fre-
quently activated for the majority of reservoirs, followed by
the rule for a low inflow and a high storage. The rules with re-
gards to high inflows are used less frequently (see Fig. 10a).
The simulation of Kayrakkum is done using only the rule
for low inflow and high storage, implying that the high in-
flow and the low storage membership functions are zero over
their entire domains. Rsim for Kayrakkum is solely based on
one consequence rule, as in Eq. (5).
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Table 2. The test MSEs (10−3) and the Nash–Sutcliffe coefficients (NS) for all dams for different time ranges and with different prediction
horizons together with the indicators using the Hanasaki et al. (2006) (HNS) method. Because HNS requires additional data for irrigation
reservoirs, CD, NR, SN and TM have been omitted. Bold numbers indicate indicators with better performance than HNS.

Dam

Range Lag AJ BL CF CD CV KR NR SN TT TQ TM

1 0 MSE 23.9 41.1 5.80 71.2 5.68 23.6 15.2 16.0 21.1 12.3 19.8
NS 0.69 0.46 0.80 −0.49 0.92 0.45 0.78 0.40 0.33 0.50 0.95

2 0 MSE 5.10 15.8 1.85 4.13 32.3 6.27 3.31 11.6 9.60 6.18 0.981
NS 0.93 0.79 0.94 0.91 0.54 0.85 0.95 0.57 0.70 0.75 0.98

2 1 MSE 41.0 31.9 5.78 23.6 13.0 32.6 23.0 12.0 28.0 24.1 21.5
NS 0.46 0.58 0.80 0.51 0.81 0.23 0.66 0.55 0.12 0.01 0.5

2 2 MSE 46.6 41.5 21.5 48.3 30.7 115 40.2 21.9 39.1 50.8 34.6
NS 0.42 0.45 0.24 −0.02 0.55 −1.67 0.39 0.18 −0.19 −0.91 0.21

HNS MSE 21.9 48.9 6.34 – 13.2 15.2 – – 28.6 7.57 –
NS 0.51 0.11 0.22 – 0.70 0.52 – – 0.02 0.83 –

The consequence parameters of rules associated with a low
inflow and storage, and a low inflow and high storage, are
quite similar across the different reservoirs (see Fig. 11). For
example, the rule for a “low” inflow and a “low” storage for
most reservoirs consists of the weighted sum of the two input
parameters,Q·p1+S·q1, added to the third independent vari-
able r1, where p1, q1 and r1 have values around respectively
0.45, 0.10 and 0.05. The range of consequence parameters of
the remaining two rules is larger, the consequences of these
rules differ more per reservoir. Most of the outliers belong to
three reservoirs (Chardara, Toktogul and Bull Lake).

The test set for Rsim and R for the other nine reservoirs are
shown in Fig. 12. Of the 11 tested reservoirs, Chardara is the
worst performing (see Table 2 and Fig. 12c). Although the
shape of Rsim somewhat resembles the observed values, the
high and low flows occur at the correct time but the values
are far off. The trained network of Chardara utilizes all its
rules (see Fig. 10a) but this is either not sufficient to capture
the operational modes of the reservoir or the validation and
test sets differ significantly from the training set.

The MSEs and NS coefficients for Bull Lake and
Kayrakkum are better than those of Chardara (see Table 2).
Although the peak releases in Rsim for Bull Lake are sim-
ilar to the observed ones, the low flows are not very accu-
rate. The model is not able to deal with the near zero flows
during the dry season (see Fig. 12a). The simulated releases
for Kayrakkum are of the right magnitude as can be seen in
Fig. 12d, only during the first year of the test set, the annual
release has been lower than usual and the model appears un-
able to cope with this phenomenon. This low annual flow was
not present in the training dataset, explaining why the model
does not use more of its available parameters.
Rsim for Toktogul, Tuyen Quang, Nurek and Canyon Ferry

clearly follows Robs, the magnitude and timing of low and

peak flows match (see Fig. 12g, h, e and b). For Tuyen
Quang, it is important to note once more that the dataset is
very short and the test set is only 10 months long.

Seminoe has the largest dataset and shows a similar prob-
lem as Bull Lake. The network seems incapable of dealing
with the very low flows and the high peak flows, while the
medium peaks are simulated quite accurately (see Fig. 12f).

Finally, Tyuyamuyun performs very well, with a very ac-
curate timing and magnitude of peak and low flows (see
Fig. 12i). This result can be explained by comparing Robs
with the inflow, which shows a very strong linear correlation.

4.2 Additional variables

The MSEs for the networks of the 11 reservoirs trained with
a sample set-up as in Eq. (18) range between 0.981× 10−3

and 32.3× 10−3 and the NS coefficients between 0.54 and
0.98, see the third and fourth row in Table 2. Comparison of
the errors with the errors of the simpler set-up, like Eq. (17),
shows clearly that the performance of the ANN improves.
This also becomes clear from the dashed lines in Fig. 12,
which shows Rsim for nine reservoirs together with Robs and
Rsim with a simple set-up. For all nine reservoirs, the peak
and low flows match closely. Consequently, the advantage
in performance compared to HNS further increases for most
reservoirs.

By using a time range of two and no prediction horizon,
as in Eq. (18), 16 rules are available in a network. Surpris-
ingly, many trained networks do not use more than two rules
(see Fig. 10b). Only Canyon Ferry, Charvak and Seminoe use
more than two rules, namely 4, 8 and 13 rules respectively.
Apparently, the increase in the number of consequence pa-
rameters for each rule is solely sufficient to improve results.
Only Seminoe, which uses the longest time series, appears to
really need more rules to describe different situations.
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Figure 6. Graphs showing the (a) inflow and storages and the (b) simulated and observed releases for Andijan reservoir for the training,
validation and test set.
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Figure 7. Graphs showing the (a) inflow and storages and the (b) simulated and observed releases for Charvak reservoir for the training,
validation and test set.

Adding more membership functions or input variables to
the configuration of the network increases the number of
fuzzy rules. It is clear that increasing the time range over
which Q and S are considered improves results. A compari-
son of the average test MSEs of the 11 reservoirs for different
sample set-ups shows clearly that simply adding more input
variables does not always lead to better results. The results
are worst when only reservoir storage is used as input (see the
bottom row in Fig. 13a), with average MSEs around 0.045.
When only inflow is used as input, the results are better,
with average MSEs around 0.025 (see the leftmost column
in Fig. 13a). By using combinations of storage and inflow
the average MSE can further decrease; the simple sample
set-up as in Eq. (17), however, does not result in a lower av-
erage MSE compared to a sample set using solely {Q(t)[2]}
as input. Adding an input variable considering the storage
at time t−1 (input= {Q(t)[2]&S(t)[2]&S(t−1)[2]}) does

decrease the average MSE to 0.005 (see the second row from
the bottom in Fig. 13a). This is roughly the same result as
achieved by using the sample set-up as in Eq. (18). The mag-
nitude of the average MSE for sample set-ups including the
ToY is similar to set-ups not using it (see Fig. 13b).

Figure 14a presents the significance of adding more input
parameters or membership functions to the network. Starting
in the bottom left corner, the results for all reservoirs with
a simple set-up are compared to a slightly more complex
set-up, as indicated by the arrows, using a one-sided Stu-
dent’s t test. For example, the set-up using {Q(t)[2]&Q(t−
1)[2]&S(−)[−]} for input, the current and previous inflow
with two membership functions each and no storage, is com-
pared to the set-up using {Q(t)[3]&S(−)[−]}. The signifi-
cance of increasing the time range of the inflow has a one-
tailed p value smaller than 0.10 but larger than 0.05. From
Fig. 14a, it becomes clear that increasing the complexity with
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Figure 8. Results of Andijan Dam. (a) and (b) show the membership functions of the inflow and storage, respectively, after the network has
been trained. (c) Shows the change in the MSE with respect to the training and validation sets.
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Figure 9. Results of Charvak Dam. (a) and (b) show the membership functions of the inflow and storage, respectively, after the network has
been trained. (c) Shows the change in the MSE with respect to the training and validation sets.

the use of storage data leads to better results than adding
more complexity with inflow data.

Like Fig. 14a, Fig. 14b shows p values indicating the sig-
nificance of adding more complexity to the network. How-
ever, now the addition of the ToY parameter is tested. Each
value in Fig. 14b shows a comparison between a set-up us-
ing the ToY and the same set-up without the ToY parame-
ter, making arrows unnecessary. For example, the set-up us-
ing {ToY(t)[2]&Q(t)[2]&S(t)[2]} as input is compared to
a set-up using {Q(t)[2]&S(t)[2]} as input. The significance
of this addition to the network has a p value between 0.05
and 0.10. No clear pattern is visible here; it seems like the
addition of ToY increases the network accuracy simply by
the increased complexity of the network.

In Fig. 15, a similar approach is used. Here the reservoirs
have been split into two groups using their impoundment ra-
tios (see Table 1). One group contains reservoirs with im-
poundment ratios larger than the median (Fig. 15a), while the

other group contains reservoirs for which the ratio is smaller
than the median (Fig. 15b). Adding information about stor-
age to the network is clearly more significant for reservoirs
with a small impoundment ratio.

4.3 Adding a prediction horizon

When adding a prediction horizon of 1 month to the net-
work, the MSEs range between 12.0× 10−3 (Seminoe) and
41.0×10−3 (Andijan). For 2 months, the MSEs vary between
21.5× 10−3 (Canyon Ferry) and 115× 10−3 (Kayrakkum).
The NS coefficients range between 0.01 (Tuyen Quang) and
0.81 (Charvak) for a prediction horizon of 1 month and be-
tween−1.67 (Kayrakkum) and 0.55 (Charvak) for a 2-month
prediction horizon (see the last four rows of Table 2). As ex-
pected, the overall results worsen as the prediction horizon is
increased; although several reservoirs still exhibit better per-
formance than HNS.
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(a)

(b)

Figure 10. Bar graphs indicating how many of the rules available
to a network are used for (a) a network with a simple, 4-rule, set-up
and (b) a network with a more complex, 16-rule, set-up.

5 Discussion

5.1 Using a simple set-up

A simple configuration of ANFIS, with a time range of one
and no prediction horizon, is capable of determining fuzzy
rules that are able to describe the release regime for most
reservoirs with MSEs as low as 5.08× 10−3 (see Table 2).
For Bull Lake and Seminoe, however, this degree of com-
plexity seems to be insufficient. During the periods of very
low flows, the release from these reservoirs is consequently
overestimated (see Fig. 12a and f). In both cases, all four
rules are utilized (see Fig. 10a), suggesting that a more com-
plex network is needed. For Seminoe, it is important to note
that the length of the dataset is 62 years, a period over which
it is not unlikely that the operation regulations might have
changed. This would mean the fuzzy rules are trying to de-
scribe two different modes of operation.

The classifications made by the membership functions dif-
fer per reservoir. These differences can be explained by reser-

voir characteristics, such as maximum storage capacity, dead
storage capacity, impoundment ratio or reservoir purpose.
For example, a filling level of 60 % at the end of a dry season
in a reservoir used for irrigation will be interpreted differ-
ently from a similar filling level in a reservoir mainly used
for hydropower.

Besides the variety of physical properties of reservoirs
causing differences in how input parameters are classified,
two phenomena that are intrinsic to ANFIS seem to be es-
pecially relevant. As membership functions move either left
or right, it is possible that a membership function becomes
zero in the entire domain, rendering its associated rules ob-
solete. That is, of the four rules incorporated in the network,
only two were left to be used. When this occurs for all in-
put variables, only one rule is left to be used, as is the case
for Kayrakkum (see Fig. 10). Considering this phenomenon
from a physical point of view, one could argue that when
this happens, there is no need to make a distinction between
two different classifications of an input parameter. Appar-
ently the system under consideration can be described using
fewer rules than available.

Secondly, the opposite can happen too. Instead of a mem-
bership function moving away from the domain and giving
hegemony to the other membership function, two member-
ship functions can also move towards each other. When ei-
ther the centres of the membership functions, defined by c,
approach each other or the widths of the peaks, defined by
b, of the membership functions increase, a large part or the
whole domain can become dominated by two membership
functions simultaneously. This results in the activation of two
fuzzy rules for a single input, which is undesirable because
it is illogical and it undermines the interpretability of out-
comes.

With simple set-ups resulting in a network with four fuzzy
rules, these two phenomena occur very infrequently, in most
cases all four available rules are used (see Fig. 10a).

The range of the consequence parameters (see Eq. 5) in the
implication layer for all reservoirs ranges from −3 to 3 (see
Fig. 11), although the majority of the parameters lie between
−1 and 1. This wide range implies that the consequence parts
of the fuzzy rules differ a lot for the 11 reservoirs. The con-
sequences associated with “low” inflows are more similar.
Apparently the operating policies of the different reservoirs
differ more from each other when the inflow into the reser-
voir is high. The difference in consequences is not surprising,
however, since the purposes, sizes, impoundment ratios and
associated climates differ greatly among the reservoirs. If a
group of very similar reservoirs were considered, the range
of these parameters is expected to decrease and perhaps a
more general pattern in consequences for a specific type of
reservoir could be observed.
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Figure 11. The consequence parameters of all reservoirs, separated per rule in a box plot. The parameter “p” is multiplied with the inflow,
“q” with storage after which they are summed with “r” to determine the release. The outliers are labelled as AJ for Andijan, TT for Toktogul,
CD for Chardara and BL for Bull Lake.

5.2 Increasing complexity

When the complexity of the network is increased, it appears
that the aforementioned phenomena of membership func-
tions turning either zero or one over the entire input domain
occur more often. A network trained with a sample set-up as
in Eq. (18) can utilize up to 16 rules. The output of these net-
works is generated with a very limited number of rules, see
Fig. 10b, generally less than four. Nevertheless, the simu-
lated releases from these networks perform significantly bet-
ter than their less complex counterparts (see Table 2).

The explanation for this increase in performance regard-
less of the decrease in rules used is twofold. The most ob-
vious cause lies in the formulation of the consequence of a
fuzzy rule (see Eq. 5). As the number of input parameters
grows, the number of trainable parameters in the implication
layer also increases.

Additionally, there is simply more information available.
Although a four-rule network in this study can determine the
release from a reservoir based on the current storage and in-
flow, more complex networks can also consider the storages
and inflows further back in time. Fig. 14a shows the signifi-
cance of increasing the complexity of a network and the ad-
dition of more information. An important conclusion that can
be drawn from the patterns in Fig. 14a is that the addition of
information about reservoir storage in the previous month is
more significant, p < 0.01, than the addition of information
about the inflow in the previous month, 0.05< p < 0.1. Fur-
thermore, the addition of information on storage even further
back in time still improves the results, p < 0.1, whereas the
inflow this far back in time does not have a significant influ-
ence on performance anymore, p > 0.1.

This greater value of storage information can be explained
by considering the reservoirs mean annual inflow divided by
the storage capacity, the impoundment ratio. With a value of
1.04, Toktogul reservoir has the lowest impoundment ratio
of the 11 reservoirs (see Table 1). On one hand, when this
ratio is smaller than 1, the storage capacity is larger than the
mean yearly inflow. In that case, the release of the reservoir is
unlikely to be very dependent on the current inflow, since the
reservoir has a strong buffering capacity. On the other hand,
when the impoundment ratio is very large, the mean annual
inflow is greater than the storage capacity and the release will
approach the inflow.

The 11 reservoirs all have ratios greater than 1, with an av-
erage of 4.3. By splitting the considered reservoirs into two
groups of equal size, using the median of the 11 impound-
ment ratios (i.e. 3.97), and testing the significance of increas-
ing the complexity and addition of more information to the
network again for both groups, this can indeed be observed
(see Fig. 15). The performance improvement of networks
for reservoirs with a relatively large impoundment ratio is
less significant, when adding extra information on storage,
than the performance improvement of networks for reser-
voirs with a smaller impoundment ratio, which is in agree-
ment with Hejazi et al. (2008).

The distribution of the impoundment ratios of the reser-
voirs in the GRAND database (Lehner et al., 2011) has a me-
dian impoundment ratio of 1.09 (see Fig. 16). Most of these
reservoirs have a storage capacity larger than their yearly in-
flow. By extrapolating the effects observed in our limited set
of reservoirs, it is likely that their potential fuzzy rules will
be more dependent on reliable storage information than on
the current or previous month’s inflow.
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Figure 12. Simulated and observed reservoir releases for nine reservoirs when simulated with a time range of one or two.

For the case of adding a ToY parameter, see Fig. 14b, it
is easy to understand why this could help improve perfor-
mance in theory. Management of reservoirs often anticipates
the occurrence of dry and wet seasons by applying differ-
ent modes of operation. The addition of this variable allows
the fuzzy rules to make a clear distinction between seasons
and the seasonality of flows. By evaluating the significance
of improvements resulting from adding the ToY parameter as
an input to a network, it becomes clear that there is not much

value to this addition. In some cases, the addition of the ToY
parameter results in significant improvements. These cases
appear quite randomly, implying that the increase in rules
and consequence parameters is responsible for the improve-
ment rather than the information added.

5.3 Applicability to GHMs

Implementation of ANFIS-derived fuzzy rules into GHMs
presents a challenge different from the ones posed by the
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Figure 13. Matrix showing the average test MSEs of the 11 con-
sidered reservoirs as the number of input variables and membership
functions increase. (a) Shows combinations of storage and inflow
input variables and (b) also includes the time of year (ToY) vari-
able.

more traditional simulation- and optimization-based algo-
rithms, mainly because of the need to acquire relatively ex-
tensive data on inflows, storage levels and release flows for
each reservoir.

Nevertheless, the advent and expected development of re-
mote sensing (RS) techniques to monitor water resources
on a global scale is cause for optimism and the proposed
methodology provides opportunities to take full advantage
of these developments. As shown by the Joint Research Cen-
tres Global Surface Water dataset (Pekel et al., 2016) and
Deltares Aqua Monitor (Donchyts et al., 2016a, b), water sur-
faces can be observed using freely available RS datasets. As
both the spatial and temporal resolutions of newer RS prod-
ucts improves, the accuracy of these measurements can be
expected to improve accordingly. By combining the spatial
extent of water bodies, water level measurements from al-
timeters and relations derived from a DEM (van Bemmelen
et al., 2016) between the previous two indicators and a reser-

Figure 14. Matrix showing the significance (one-sided Student’s
t test) of increasing the complexity of the ANN by adding either
more input variables or membership functions. (a) Compares sam-
ple set-ups with less complex set-ups indicated by an arrow and (b)
compares cases with and without time of year (ToY) as an input
variable.

voirs volume, time series of a reservoir’s storage can be de-
termined.

Subsequently, the inflows into a reservoir are needed to
train a network. Simons et al. (2016) showed for the Red
River basin in northern Vietnam how global RS datasets
of precipitation and evapotranspiration can be combined to
examine hydrological processes like storage changes and
stream flows in small sub-catchments upstream of stream-
flow measuring stations. They conclude that if storage
changes are given, predictions of monthly stream flows can
be made. In analogy to their method, flows could be deter-
mined for sub-catchments of dams using the aforementioned
estimations of reservoir storages. Since these estimates might
not be as accurate as in situ measurements or results from a
hydrological model, it is important to realize that the net-
work uses fuzzy classifications, like “low” or “very high”,
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Figure 15. Matrix showing the significance (one-sided Student’s
t test) of increasing the complexity of the ANN by adding either
more input variables or membership functions for (a) reservoirs
with a large impoundment ratio and (b) reservoirs with a small im-
poundment ratio.

to describe the inflows. Alternatively, inflows could be deter-
mined by the model hosting the reservoir algorithm.

After determining a time series of inflows and storages, the
release can be determined by applying a mass balance to the
reservoir. These three steps of determining storage changes,
inflows and releases could then be applied to reservoirs that
are located furthest upstream in a basin first, working down-
stream from there. This way, using the trained networks of
the upstream reservoirs, the inflow into the next reservoir
could already include the anthropogenic effect on stream
flow of the upstream reservoir, mitigating the accumulation
of errors between cascading reservoirs along a major river.

Alternatively, the system-scale effects of cascading reser-
voirs can be dealt with by implementing a cluster of reser-
voirs as a single reservoir, represented by a single set of fuzzy
rules. Fuzzy rules as described can represent these systems
by defining the storage term as the sum of the individual

Figure 16. The impoundment ratios, defined as the yearly inflow di-
vided by the total storage capacity, of the reservoirs in the GRAND
(Lehner et al., 2011) reservoir database.

reservoirs storages, the inflow as the inflow into the most
upstream reservoir, and the release as the release from the
further downstream reservoir.

Once the data required for the training of a network has
been acquired, the actual training is a straightforward and
easily automated process, resulting in a calibrated network
that can in a computationally cheap way quantify release de-
cisions based on the inputs.

Although all the variables associated with the fuzzy rules
have a physical basis, it is possible that a trained network
releases more water than is actually stored in its reservoir
because the network does not keep track of a mass balance.
Since simulated peak releases do not deviate much from the
actual releases, see Fig. 12, it is unlikely that a reservoir’s
storage becomes smaller than physically possible. Neverthe-
less, it would be necessary to keep track of a simple balance
and bound the release to the water that is available in the
reservoir, ensuring that no more water is released than has
been stored in the reservoir.

Just like the more traditional generic operating rules, the
proposed method will suffer from errors in the reservoirs in-
flows generated by the host model, errors due to the inter-
dependence of cascading reservoirs and errors attributed to
the non-stationarity of rule curves. As mentioned before, the
errors in inflow are expected to be mitigated by the fuzzifica-
tion, while the errors due to cascading could be restrained by
incorporating the upstream anthropogenic effects of dams on
inflows in the training set.

Regarding the non-stationarity of rule curves, Jang (1993)
already described a method to account for time-varying
characteristics of incoming data to the ANFIS network. By
adding a “forgetting factor” λ to Eq. (10), the influence of
older training samples on the configuration of the network
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can decay:

Si+1 =
1
λ
·

(
Si −

Si · ai+1 · a
T
i+1 · Si

1+ aTi+1 · Si · ai+1

)
, (23)

where λ is chosen between 0 and 1. When λ is 1, no decay
occurs, while smaller values increase the decay of older sam-
ples.

However, the inter-annual variability of flows also needs
to be reflected in the time series. Choosing a too short time
frame in order to avoid issues with the non-stationarity of
rule curves or applying a too strong forgetting factor can
obstruct this. Possibly, the return period of hydrological
droughts can be a good point of reference.

6 Conclusions and recommendations

It has been shown that by using fuzzy logic and ANFIS, op-
erational rules of existing reservoirs can be derived without
much prior knowledge of the reservoir. Their validity was
tested by comparing actual and simulated releases with each
other and by comparing the performance of the proposed
method with a simulation-based algorithm. The rules can be
incorporated into GHMs or more regional models struggling
with reservoir outflow forecasting. After a network for a spe-
cific reservoir has been trained, the inflow calculated by the
hydrological model can be combined with the release and
an initial storage in order to calculate the storage for the next
time step using a mass balance. Subsequently, the release can
be predicted time steps ahead using the inflow and storage.

Although adding the ToY to the mix of input parameters
does not seem to result in significant improvements in re-
lease prediction, adding other input parameters might. Many
macro-scale reservoir modelling algorithms use downstream
water demands as input, which is an important factor in reser-
voir operating decisions. Adding this parameter would allow
the fuzzy rules to describe operating decisions more accu-
rately, especially for irrigation reservoirs.

More research on the optimal set-up of fuzzy rules per
reservoir type is needed in order to get a better understanding
of how the physical properties of a reservoir affect the results.
It has been shown that set-ups with information on storage in
previous months significantly improve results for reservoirs
with small impoundment ratios. Similar tests should be done
for different types of reservoirs, by splitting the reservoirs
into groups based on their primary purpose, uncertainty of
the available hydrological information or the local climate;
this, however, requires a larger set of reservoirs. As shown
by Hejazi et al. (2008), dam operators base their release de-
cisions on different kinds of information for different types
of reservoirs and a better understanding of these decisions
could help improve the interpretation of the results.

Besides the extension of the neural network with new or
extra parameters, the membership functions themselves also
show room for improvement. In some cases, the shapes of

the trained membership functions lead to the activation of
multiple fuzzy rules for a single sample. This is undesirable
because it greatly undermines the basic principle of fuzzy
logic. Input is translated into linguistic labels and processed
by fuzzy rules which represent human behaviour and knowl-
edge. When samples are processed by multiple rules, the
logical interpretation of a network becomes much harder.
Wismer and Chattergy (1978) propose a method called the
constrained gradient descent in which some limitations with
regards to the bell shaped function (see Eq. 2) are formu-
lated. Considering {ai,bi,ci} and {ai+1,bi+1,ci+1} and set-
ting ci + ai = ci+1− ai+1 ensures that the sum of two con-
secutive membership functions never exceeds one. Simulta-
neously, it is possible to set conditions such that membership
functions cannot become zero over the entire input domain.

A drawback of applying the proposed method, compared
to other macro-scale reservoir modelling algorithms, is the
need to acquire in situ time series, which is often problematic
as a result of multilateral mistrust (Alsdorf et al., 2007). In
the last decade, the possibilities of observing reservoirs from
space using altimeters and radar and optical imagery have
grown fast and this trend is expected to continue as more
satellites are scheduled for launch (van Bemmelen et al.,
2016). Combining the method proposed here with remotely
sensed time series could further open possibilities for GHMs
by allowing the derivation of operational rules for most reser-
voirs around the world.

Data availability. Data used can be found at
https://doi.org/10.5281/zenodo.1154582 (Coerver, 2018).
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Appendix A: Introduction to fuzzy logic

In Fig. 1, the four steps of fuzzy logic are visualized. A stor-
age of 520 Mm3 and an inflow of 123 Mm3 month−1 is given
as input. In this example, the storage can be either fuzzified
through the membership functions as “low” or “high” and the
inflow as “low”, “medium” or “high”. Note that the shape of
the membership functions is triangular here, but many shapes
are possible. For the given membership functions, the stor-
age is only classified as “high”; the inflow, however, is both
“medium” and “high” (implying that, in practice, some op-
erators would classify this inflow as “medium” and some as
“high”). This means two fuzzy rules are relevant for the given
input:

– IF storage is high AND inflow is
medium, THEN outflow is Z1

– IF storage is high AND inflow is
high, THEN outflow is Z2

The storage has been fuzzified, it is assigned the mem-
bership function “high” and its associated membership value
is 0.8. Similarly, the membership values for a “medium” and
“high” inflow can be determined. They are 0.6 and 0.4 re-
spectively.

Now the firing strengths, giving an indication of the rel-
ative importance of each rule, need to be determined. This
can be done in many ways. In this example, the member-
ship values are multiplied with each other. For the first rule,
the “high” storage has a membership value of 0.8, while the
“medium” inflow has a membership value of 0.6. The firing
strength of this rule is W1 = 0.48. In the same manner, it fol-
lows that the firing strength of the second rule is W2= 0.32.
This implies that, in general, more operators associate the
current situation, the storage and inflow, with the first rule
than with the second.

It is possible to describe the consequences of rules in many
ways; in this example and study, they are linear combinations
of the input variables as described by Takagi and Sugeno
(1985):

Z = p · storage+ q · inflow+ r, (A1)

in which {p,q,r} are parameters to be determined when de-
termining the fuzzy rules.

Finally, the consequences can be aggregated by using a
weighted average to acquire the release:

release=
W1 ·Z1+W2 ·Z2

W1+W2
. (A2)
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