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Abstract. Vegetative filter strips are often used for protecting
surface waters from pollution transferred by surface runoff in
agricultural watersheds. In Europe, they are often prescribed
along the stream banks, where a seasonal shallow water ta-
ble (WT) could decrease the buffer zone efficiency. In spite
of this potentially important effect, there are no systematic
experimental or theoretical studies on the effect of this soil
boundary condition on the VFS efficiency. In the companion
paper (Muñoz-Carpena et al., 2018), we developed a physi-
cally based numerical algorithm (SWINGO) that allows the
representation of soil infiltration with a shallow water table.
Here we present the dynamic coupling of SWINGO with VF-
SMOD, an overland flow and transport mathematical model
to study the WT influence on VFS efficiency in terms of
reductions of overland flow, sediment, and pesticide trans-
port. This new version of VFSMOD was applied to two con-
trasted benchmark field studies in France (sandy-loam soil
in a Mediterranean semicontinental climate, and silty clay
in a temperate oceanic climate), where limited testing of the
model with field data on one of the sites showed promising
results. The application showed that for the conditions of the
studies, VFS efficiency decreases markedly when the water
table is 0 to 1.5 m from the surface. In order to evaluate the
relative importance of WT among other input factors control-
ling VFS efficiency, global sensitivity and uncertainty analy-
sis (GSA) was applied on the benchmark studies. The most
important factors found for VFS overland flow reduction
were saturated hydraulic conductivity and WT depth, added
to sediment characteristics and VFS dimensions for sediment
and pesticide reductions. The relative importance of WT var-

ied as a function of soil type (most important at the silty-
clay soil) and hydraulic loading (rainfall+ incoming runoff)
at each site. The presence of WT introduced more complex
responses dominated by strong interactions in the modeled
system response, reducing the typical predominance of satu-
rated hydraulic conductivity on infiltration under deep water
table conditions. This study demonstrates that when present,
the WT should be considered as a key hydrologic factor in
buffer design and evaluation as a water quality mitigation
practice.

1 Introduction

Today, surface waters are threatened by pesticide pollution
on local, regional, and global scales (Malaj et al., 2014;
Stehle and Schulz, 2015). Agricultural surface runoff (RO)
is an important contributor to this contamination (Louchart
et al., 2001). Grass buffer zones or vegetative filter strips
(VFSs), are a typical environmental control practice to pro-
tect aquatic ecosystems from sediment, and agrichemicals
from agricultural fields (Roberts et al., 2012). While VFSs
are recommended in the USA and other regions, in Europe
they are often mandatory along rivers due to their poten-
tial to limit surface pesticide runoff and aerial spray drift
from entering adjacent surface water bodies (Asmussen et
al., 1977; Rohde et al 1980; USDA-NRCS, 2000; Dosskey,
2001; Syversen and Bechmann, 2004; Poletika et al., 2009).
However, the effectiveness of edge-of-field buffer strips to
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reduce runoff transport of pesticides can be very different as
a function of many local characteristics (land use, soil, cli-
mate, vegetation, and pollutants). For example, based on 16
field studies (Reichenberger et al., 2007), the 25th percentile
of VFS pesticide reduction efficiency ranges from 45 to 75 %
of the amount coming into the filter from the field edge.

Moreover, VFSs are typically located down the hillslope
along the hydrographic network. As a result, the filter is often
bounded by a seasonal shallow or perched water table (WT),
which may significantly inhibit their function and must be
taken into account when designing VFSs and evaluating their
efficiency (Lacas et al., 2005). Dosskey et al. (2001, 2006)
identified the presence of shallow water table (< 1.8 m) as an
important factor that should be considered for VFS design
and evaluation. Simpkins et al. (2002) also report that the hy-
drogeologic setting, specifically the direction of groundwater
flow and the position of the water table in thin sand aquifers
underlying the buffers, is probably the most important fac-
tor in determining buffer efficiency. Arora et al. (2010), in a
review on VFS pesticide retention from agricultural runoff,
found that soil saturation from a shallow water table may be
a reason for negative runoff volume retention. Other studies
also identify the potential effects of location of the buffers
where a shallow water table is present (Ohliger and Schulz,
2010; Borin et al., 2004) but do not quantify or study its ef-
fects (Lacas et al., 2005).

The processes occurring in the VFSs interact in a com-
plex manner in space and time, and thus they must be sim-
ulated by dynamic models accounting for hydrologic (Ga-
tel et al., 2016) and sedimentological variability (Fox et al.,
2005). The Vegetative Filter Strip Modeling System (VFS-
MOD) (Muñoz-Carpena et al., 1993, 1999; Muñoz-Carpena
and Parsons, 2004) is a storm-based numerical model cou-
pling overland flow, water infiltration, and sediment trapping
in a filter considering incoming surface flow and sediment
from an upslope field (Fig. 1). VFSMOD also includes a
generalized empirical pesticide trapping equation as a func-
tion of soil and sediment sorption, dissolved phase infiltra-
tion, and sorbed phase sedimentation (Sabbagh et al., 2009).
Pesticide degradation on the filter is included between runoff
events for long-term pesticide assessments (Muñoz-Carpena
et al., 2015), but neglected during events due to their short
duration (minutes to hours). VFSMOD has been success-
fully tested against measured data for predictions of flow, in-
filtration, and sediment trapping efficiency (Muñoz-Carpena
et al., 1999; Abu-Zreig, 2001; Dosskey et al., 2002; Fox et
al., 2005; Han et al., 2005; Pan et al., 2017); tracers and
multireactive solutes (Perez-Ovilla, 2010); phosphorus (Kuo
and Muñoz-Carpena, 2009); pesticides (Poletika et al., 2009;
Sabbagh et al., 2009; Winchell et el., 2011); and colloids (Yu
et al., 2013). Previous work studied the global sensitivity of
simulated outflow, sediment, and pesticide trapping to VFS-
MOD input factors (Muñoz-Carpena et al., 2007, 2010, 2015;
Fox et al., 2010). On the watershed scale, VFSMOD has been
included in methods or frameworks to optimize filter place-

ment and design (Dosskey et al., 2006; Tomer et al., 2009;
White and Arnold, 2009; Balderacchi et al., 2016; Carluer et
al., 2017). Sabbagh et al. (2010) integrated VFSMOD within
higher-tier, US EPA long-term pesticide exposure framework
(PRZM/VFSMOD/EXAMS) to estimate changes in aquatic
concentrations when VFSs are adopted as a runoff pollu-
tion control practice. Recently, the German environmental
protection agency (UBA) developed the GERDA software
package as a pesticide regulatory tool for surface water that
includes VFSMOD simulations with a shallow water table
where present (Bach et al., 2017).

The extended Green–Ampt soil infiltration component
(Skaggs and Khaheel, 1982) used in VFSMOD does not ac-
count for the presence of a shallow water table. In a compan-
ion paper (Muñoz-Carpena et al., 2018), a physically based
algorithm was developed to describe soil infiltration under
shallow water table conditions (SWINGO: Shallow Water ta-
ble INfiltration alGOrithm). Dynamic coupling of this new
infiltration algorithm in VFSMOD will allow for mechanistic
description of interactions between surface and subsurface
hydrology under shallow water table boundary conditions
and ensuing effects on VFS sediment and pesticide transport.

Thus, the objective of this work is to study the effects that
the change in infiltration introduced by the presence of shal-
low water table has on VFS runoff reduction, sediment and
pesticide trapping. This was done by (a) dynamic coupling of
SWINGO in VFSMOD, (b) applying the coupled model on
two contrasted and realistic benchmark study sites (sandy-
loam soil vs. silty-clay soil) and events (Mediterranean semi-
continental vs. temperate oceanic climates), and (c) global
sensitivity and uncertainty analysis to ascertain the actual
global importance of shallow water table depth on the effi-
ciency of the VFS when compared to other input factors.

2 Material and methods

2.1 Dynamic coupling of shallow water table
infiltration algorithm (SWINGO) with VFSMOD
overland flow, sediment, and pesticide components

The overland flow submodel in VFSMOD (Muñoz-Carpena
et al., 1993a) (Fig. 1) is based on the kinematic wave equation
numerical, upwinding Petrov–Galerkin finite element (FE)
solution (Lighthill and Whitham, 1955),

∂hs

∂t
+
∂q

∂x
= i− f = ie

Sf ≈ So→ q =

√
So

n
h

5
3
s

, (1)

with initial and boundary conditions{
hs = 0;0≤ x ≤ VL,t = 0
hs = hso;x = 0, t ≥ 0 , (2)

where hs = hs (x, t) (L) is the overland flow depth, t is time
(T ), q = q (x, t) (L2 T−1) is discharge per unit width, x (L)
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Figure 1. Conceptual model of VFSMOD showing the coupling between overland flow, soil infiltration and redistribution, sediment, and
pesticide components. Solid lines indicate required processes and their interactions, and dashed lines are optional, user-selected components.
The selection of infiltration under either (a) a deep water table (extended Green–Ampt, GAMPT), or (b) a shallow water table (SWINGO) is
highlighted.

is the surface flow direction axis, i = i(t) (LT−1) is rainfall
intensity, f = f (t) (LT−1) is soil infiltration rate, ie = ie(t)
(LT−1) is rainfall excess, So and Sf (LL−1) are the bed and
water surface friction slopes at each node of the system, n is
Manning’s surface roughness coefficient, VL (L) is the filter
length, and hso = hso(0,t) (L) represents the field run-on hy-
drograph entering the filter as a boundary condition (Fig. 2).

Originally, the overland flow component was coupled for
each time step with a modified Green–Ampt infiltration al-
gorithm for unsteady rainfall (GAMPT, see Fig. 1) for soils
without a (or with a deep) water table (Chu, 1978; Mein
and Larson, 1971, 1973; Skaggs and Khaheel, 1982; Muñoz-
Carpena et al., 1993b). The infiltration component provides
the rainfall excess, ie in Eq. (1), based on a given unsteady
rainfall distribution (hyetograph) for each FE node and time
step. The field conditions can be well represented since the
program handles field inflow hydrographs and hyetographs,
as well as spatial variability of the filter over the nodes of the
grid (Fig. 2).

In the sediment component (Fig. 1), based on sediment
mechanics (transport and deposition) in shallow flow, the
model divides the incoming sediment into bed load (coarse
particles, with diameter > 37 µm) and suspended load (fine
particles, diameter < 37 µm). Bed load deposition is dy-
namically calculated based on Einstein’s bed load trans-
port equation successfully tested for variable shallow flow

through nonsubmerged dense vegetation (Barfield et al.,
1978). Transport and deposition of suspended particles is cal-
culated for nonsubmerged dense vegetation conditions (Toll-
ner et al., 1976; Wilson et al., 1981). Flow characteristics
needed for sediment calculations are provided for each time
step by the overland flow component. The particle deposi-
tion pattern on the filter is predicted based on a conceptual
sediment wedge, mass-balance approach (Fig. 2a).

Pesticide reduction and transport in the filter during the
runoff event is calculated within the water quality–pollutant
module (Fig. 1) based on a generalized regression-based
approach developed from a large database of field studies
by Sabbagh et al. (2009) and further tested by others (Po-
letika et al., 2009; Winchell et al., 2011). The equation con-
siders reduction of dissolved pesticides through infiltration,
deposition of sediment-bound pesticides, and pesticide ad-
sorption characteristics. The integration of the mechanis-
tic (flow and sedimentation from VFSMOD) and empiri-
cal pesticide approaches allows for identification of impor-
tant site-specific factors determining the efficiency of pesti-
cide removal (or lack thereof) under realistic field conditions
(Muñoz-Carpena et al., 2010; Fox et al., 2010).

In this work, to simulate VFS water, sediment, and pes-
ticide dynamics under realistic unsteady rainfall-runoff con-
ditions for shallow water table conditions, we dynamically
couple the new algorithm SWINGO (developed in the com-
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Figure 2. Details of the dynamic coupling of (a) the overland flow and sediment and pesticide transport through the VFS (contained in
VFSMOD), with (b) the new infiltration and soil water redistribution with shallow water component (SWINGO). Colors indicate water
(blue), sediment (brown), and pesticide (red) components. V , M , and m indicate water, sediment, and pesticide mass moving through the
filter, where subscripts indicate incoming (i), outgoing (o), in sediment (sed), on the filter (f ), infiltrated (F ), in mixing layer (ml), and in
runoff (ro). Other symbols are defined in the text.

panion paper; Muñoz-Carpena et al., 2018) as an alterna-
tive, user-selected infiltration submodel (Fig. 1). Full details
of SWINGO are provided in the companion paper (Muñoz-
Carpena et al., 2018). Briefly, SWINGO is a time-explicit in-
filtration solution based on a combination of approaches by
Salvucci and Entekhabi (1995) and Chu (1997) with the as-
sumption of a horizontal wetting front. Proposed integral for-
mulae allow estimation of the singular times: time of pond-
ing (tp), shift time (t0), and time (tw) when the wetting front
depth is equal to zw (capillary fringe above the water table,
Fig. 2b). As with GAMPT, the algorithm provides the in-
filtration rate f (Eq. 1) for each FE node and time step in
VFSMOD as follows:
f = i 0< t < tp

f = fp =Ks+
1
zF

∫ L−ZF

0
K (h)dh tp < t < tw

f =min(fw, i) t ≥ tw

, (3)

where (Fig. 2b), z (L) is the vertical axis, zF (L) is wetting
front depth from the surface, L (L) the depth to the wa-
ter table, K =K(h) (MT−1) the soil water hydraulic con-
ductivity function of soil matric suction h (L) (nonuniform

with depth), Ks (MT−1) is the saturated hydraulic conduc-
tivity, and fw (MT−1) is the end soil boundary condition
when the wetting front reaches the water table (or its cap-
illary fringe) typically assumed as vertical saturated flow or
lateral drainage (see companion paper for details; Muñoz-
Carpena et al., 2018). For real VFS field situations, unsteady
rainfall without initial ponding must be considered and tp and
t0 calculated. For each time step increment,1t = tj -tj−1, the
surface water balance at each VFS FE node (neglecting evap-
oration during the event) (Chu, 1997) is

1P =1F +1s+1RO, (4)

where 1P , 1F , 1s, and 1RO (L) are changes for each 1t
of cumulative precipitation (P), cumulative infiltration (F ),
surface storage, and cumulative runoff (RO). Notice that ie =
1RO /1t for each time step. Unsteady rainfall is described
by a hyetograph of constant ij for each rainfall period. If
surface storage becomes s = 0 then tp and t0 are re-calculated
at the next rainfall period as follows:

tp =
1
i
(θszp−

∫ zp

0
θ(L− z)dz), (5)
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where θs , θ(h) (L3 L−3) are the soil water saturated con-
tent and the soil water characteristic curve, and zp (L) is the
equivalent wetting front depth at tp, and for periods after the
first, zF(t) (Fig. 2b) is calculated explicitly from the Newton–
Raphson iterative solution (k iteration level):

G(zF)= t − tp+ t0−
∫ zF

0
θs− θ(L− z)

Ks−
1
zF

∫ zF
L
K(L− z)dz

dz

G′(zF)=−
θs− θ(L− z)

Ks−
1
zF

∫ zF
L
K(L− z)dz

∣∣∣∣∣∣∣∣∣⇒
zk+1

F = zkF−
G(zkF)

G′(zkF)
with

∣∣∣zk+1
F − zkF

∣∣∣< ε. (6)

with ε the convergence tolerance. Finally, the algorithm com-
putes tw, the time to reach column saturation as follows:

tw = tp− t0+

∫ zw

0

1
fp

[θs− θ(L− z)]dz. (7)

Similarly, this singular time tw has to be obtained again each
time tp and t0 are computed. When initial ponding is present
we get tp = t0 = 0. Additional details are provided in the
companion paper (Muñoz-Carpena et al., 2018), and Sup-
plement S1 provides instructions for downloading the free
VFSMOD open-source code, documentation, and sample ap-
plications.

2.2 Benchmark field studies

VFSMOD extended for a shallow water table was applied to
two experimental VFS sites in France (Fig. 3, Table 1), se-
lected because they represent contrasting agronomic, pedo-
logical, and climatic conditions (Fontaine, 2010). The first
site in a Beaujolais vineyard (Rhône-Alpes) consists of a
vegetative filter strip on a steep hillslope (20–30 %) located
along the river Morcille (affluent of the Saône river). The site
was instrumented from 2001 to 2008 for long-term experi-
ments of infiltration–percolation of crop protection products
(Boivin et al., 2007; Lacas, 2005; Lacas et al., 2012). The
region has a semicontinental climate, with Mediterranean in-
fluence, where intense seasonal runoff events can induce ero-
sion. The soil is a very permeable granitic sandy clay. The
water table is deep in summer and shallow in winter after in-
tense storm events, from 0.60 m deep at the downstream part
of the strip near the river to 4.0 m deep at the field upstream
side of the strip (Lacas, 2005).

The site of Jaillière (Loire-Atlantique, close to Brittany)
is an experimental farm maintained by ARVALIS–Institut du
Végétal where soils are shallow and hydromorphic, and cli-
mate is temperate oceanic with mild and rainy winters and
cool and wet summers (Madrigal-Monarrez, 2004). Buffer
zone experiments were conducted at the site under natural
rainfall (Patty et al., 1997) and simulated runoff (Souiller et
al., 2002). Crops are mainly wheat and maize, typically un-
der tile drainage conditions, with slopes of around 3 %. Silty

  

Jaillière 

Morcille 

FRANCE 

SPAIN 

Figure 3. Location of experimental VFS sites: Jaillière, north-
western France, maize crops on a flat silty-clay soil in a temper-
ate oceanic climate; Morcille, southeastern France, vineyards on a
sandy-loam soil in a Mediterranean semicontinental climate. Jail-
lière is located at 47◦27′6.25′′ N, 0◦57′58.37′′W and Morcille is
located at 46◦10′31.3′′ N, 4◦38′11.2′′ E, in GPS coordinates.

clay soils overlay a virtually impermeable layer of alterite
shales, typically leading in winter to the formation of a sea-
sonal shallow water table from 0.5 to 2 m and the appearance
of runoff by subsaturation (Adamiade, 2004). This site is also
the basis for the EU pesticide regulatory scenario for surface
water FOCUSsw D5 (EU-FOCUS, 2001).

Among the pesticides used at the experimental sites, a sol-
uble and low sorption (mobile) herbicide (isoproturon) used
on both sites was selected for simulations, contrasted by a
less mobile product chosen at each site, i.e., the fungicide
tebuconazole at Morcille and the herbicide diflufenican at
Jaillière (Madrigal et al., 2002) (Table 1).

While both Morcille and Jaillière provide sufficient details
for application of the coupled model (field parameters, ini-
tial and boundary conditions), VFS outflow was only avail-
able for Morcille. In particular, Lacas (2005) and Lacas et
al. (2012) monitored the effectiveness of the VFS at Morcille,
but because of the high permeability of the soil and deeper
shallow water conditions, only 5 out of the 24 natural rainfall
events recorded generated outflow from the VFS. From these
5, the one closer to the average for the high water table season
was selected for application of the model (Fig. 4a). Earlier
studies at Jaillière by Patty et al. (1997) monitored VFS effi-
ciency in the same site but in the absence of a shallow water
table. Although they provide some of the model inputs they
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Table 1. Characteristics of the field studies utilized for sensitivity–uncertainty analyses of shallow water table effects on VFS performance.

Study Authors Lacas (2005), Madrigal-Monarrez (2004),
Lacas et al. (2012) Adamiade (2004)

Location, climate Morcille, Mediterranean Jaillère, temperate
semicontinental oceanic

Event description Rainfall (mm) 15 10.7
Rainfall duration (h) 2.1 3
Inflow volume (mm) 0.847 6.347
Inflow duration (h) 2.1 7.9
Hydraulic loading 2.48 25.9
(rainfall+ incoming runoff)
(m3)
Shallow water table depth (m) 2.5 (0.4–2.5) 0.8 (0.4–2)
Source field area (m2) 2500 4000

Soil description USDA soil taxonomy Cambisol luvic Stagnic luvisol
USDA texture Sandy loam Silty clay

VFS description Length (direction of flow)×width 6× 4 m 5× 10 m
Slope 28 % 4 %
Field-to-filter area ratio 1 : 110 1 : 100
Vegetation Ray grass (20 years) Ray grass (7 years)

Pesticides (Koc, mL g−1) Isoproturon (144) Isoproturon (144)
Tebuconazole (769) Diflufenican (3000)

are not directly applicable for this WT model application.
Later, working on the same watershed, Branger et al. (2009)
and Fontaine (2010) studied the shallow water table effects
on runoff at the edge of the field and a receiving drainage
ditch, but did not monitor the efficiency of the VFSs. We se-
lected one average event (dynamics and volume) in the mid-
dle of the high-water season based on Fontaine (2010) for
our model application (Fig. 4b).

To our knowledge there are no VFS experimental stud-
ies with a shallow water table present that can be used for
systematic model testing. While this paper focuses on cou-
pling of the new infiltration algorithm with VFSMOD and the
analysis of the important factors controlling VFS efficiency
in the presence of WT, we used the single event with suffi-
cient hydrological data at Morcille to get a preliminary as-
sessment of whether the model responds in the same range
as the measured field data. Uncalibrated or “cold” testing
of the model (without initial calibration using field values)
was performed and the 95 % confidence interval (gray area
in Fig. 4a) was obtained by varying only Ks within mea-
sured field values (Table 2). The model performance was
assessed against the measured data based on FitEval soft-
ware (Ritter and Muñoz-Carpena, 2013). FitEval uses block-
bootstrapping of the observed and predicted paired values
to approximate the underlying distributions of goodness-of-
fit statistics (Nash–Sutcliffe efficiency, NSE, and root mean
square error, RMSE). From these distributions, median val-
ues and 95 % confidence intervals (95CI) are provided for

both NSE and RMSE. NSE provides a dimensionless metric
of goodness of fit, and RMSE an indicator of absolute error,
with the same dimensions as model outputs. The uncertainty
in the observed data is accounted for in FitEval using the
modification of the NSE based on the probable error range
(PER) method (Harmel et al., 2007).

2.3 Global sensitivity analysis

Global sensitivity analysis (GSA) and uncertainty analysis
(UA) of the coupled model allows for the systematic study
of the influence of the input factors and their interactions on
VFS performance for surface runoff, sediment, and pesticide
removal. The “global” term denotes that GSA studies output
variability when all input factors vary globally, within their
validity domain defined by probability distribution functions
(PDFs), as opposed to locally, (one at a time), i.e., around
an arbitrary range from a base value. GSA allows for simul-
taneous estimation of the factors individual importance and
interactions (Saltelli et al., 2004). In this study, two com-
plementary sensitivity methods were used: the qualitative
Morris (1991) elementary effects screening method, and the
quantitative variance-decomposition extended Fourier ampli-
tude sensitivity test (eFAST) (Cukier et al., 1978; Saltelli et
al., 1999). In both methods, input factors are sampled, the
model is evaluated on the sample sets, and global sensitiv-
ity indices are computed. Morris is generally used as a first,
qualitative step to identify a group of important input factors,
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Figure 4. Hydrological response of the VFS at the study sites. (a) Event at Morcille 17 August 2004 with L= 2.5 m, showing comparison
of measured outflow (symbols) and VFSMOD simulations (lines). The dashed Qout line for L= 2.5 m corresponds to average conditions
for that event (Ks = 4.58× 10−5 m s−1), and the gray envelope represents outflow variability due to uncertainty of measured hydraulic
conductivity. (b) Event at Jaillière on 16 February 1997 with L= 0.8 m, without outflow measurements. Qin and Qout represent surface
inflow and outflow at the VFS. The potential effect on overland outflow of alternative water table depths in those events is represented by the
dotted lines for L= 0.4 (a) and 4.0 m (b).

where in a second step a variance-based method is applied
on the selected input factors (Saltelli et al., 2007, 2008).

The Morris method uses in its original form a regular dis-
cretization of the k input-factor space defined by their PDFs,
requiring a total number of simulations (N ) on the order of
N = r(k+ 1), where r > 8 is the number of sampling tra-
jectories, typically taken as 10, used here (Campolongo et
al., 2007). Each factor influence, called elementary effects
(EEs), is evaluated by comparison of simulations where this
factor is changed alternatively among the others. Morris is a
robust, low-cost sensitivity analysis that allows quick iden-
tification of the most influential input factors without prior
model assumptions (i.e., linearity, additivity) (Campolongo

et al., 2007; Faivre et al., 2013; Khare et al., 2015). Sensitiv-
ity indices for each factor Xi (i = 1, k) are computed based
on the EEs: (i) µ∗i (mean of absolute values of EEs) that mea-
sures direct effects of each factor on the output of interest and
(ii) σi (standard deviation of EEs) that provides a measure of
interactions and nonlinearities. The method compares the in-
put factors’ indices relatively to the others, making possible
to visually classify the inputs on a (µ∗, σ ) Cartesian plane in
four groups as a function of their relative effect on the model:
(1) negligible effect (low µ∗ and low σ), (2) important direct
effects and small interactions (high µ∗ and low σ ), (3) im-
portant nonlinear and/or interactions (high µ∗ and high σ),
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and (4) interacting factors with low sensitivity (low µ∗ and
high σ).

The eFAST method is a quantitative global sensitivity
method based on high-dimensional variance decomposition.
A pseudo-random multivariate sampling scheme is con-
ducted across the k-dimensional space, informed by the
input-factor PDFs, requiring N =M×k simulations withM
between 512 and 1024 (8 or 9 binary factor combinations)
(Saltelli et al., 2004). The model total output Y variance is
decomposed in parts attributed to each factor’s direct effects
or to factor interactions. First-order sensitivity indices (Si)
for each factor Xi are defined by the fraction of the output
variance associated with the direct effect of that factor and
represents the average output variance reduction that can be
achieved when the input factor Xi is fixed (Tarantola et al.,
2002; Yang, 2011). Total sensitivity indices (STi) are calcu-
lated as the fraction of variance associated with that factor
and its interactions. The largest values of the sensitivity in-
dices correspond to the highest influence of these inputs on
the corresponding output variable (Saltelli et al., 2008; Faivre
et al., 2013). The eFAST method was chosen on this study
because it is robust and overcomes the initial limitation of the
Fourier amplitude sensitivity test (Cukier et al., 1978), appli-
cable only for mostly additive models (i.e.,6Si > 0.6) (Faivre
et al., 2013). The dense variance-based multivariate sampling
and ensuing model simulations allow for quantification of the
model uncertainty analysis through output probability den-
sity functions and statistics (median, quantiles, confidence
intervals) (Saltelli et al., 2004; Muñoz-Carpena et al., 2007).

Morris indices (µ∗, σ) have been found to provide a good
approximation of the eFAST indices (STi , STi–Si) at a much
lower computational cost (Saltelli et al., 2004; Campolongo
et al., 2007), making it ideal for large and computationally
expensive models. However, for models with strong nonlin-
ear outputs or discontinuities in the output space, the low
density of Morris sampling can result in inaccurate sensitiv-
ity analysis results. In this study, both methods were run with
the full set of inputs as a check for the consistency and robust-
ness of the GSA results. For conciseness, Morris results are
presented in detail and eFAST results are summarized briefly,
with additional details in the Supplement.

2.4 Selection of inputs and outputs for GSA
simulations

The first step of GSA is to define output variables and in-
put factors. In this study, changes in VFS efficiency were
selected as output variables: reduction of water (dQ), sedi-
ments (dE), and pesticides (dP ). Both model versions, with
a water table (SWINGO algorithm) and without a water table
(GAMPT algorithm), were compared on each site. The in-
put factors (Table 2) were selected considering previous GSA
performed on VFSMOD (Fox et al., 2010; Muñoz-Carpena
et al., 2007, 2010), with new inputs for the water table case
(OR, VGALPHA and VGN, L, see Tabel 2). Input-factor

distributions are assigned based either on experimental mea-
surements on the case study plots, scientific publications, or
expert knowledge (Table 2).

Although the VFS dimensions FWIDTH and VL were
measured in the field (Table 1), the effective dimensions are
known to be different in practice as the runoff does not fol-
low perfectly uniform sheet flow (Abu-Zreig, 2001). Thus,
the measured values were chosen to vary uniformly within
−10 and+10 % for FWIDTH and VL, respectively (Muñoz-
Carpena et al., 2010). The slope (SOA) uniform distribution
represents field-measured spatial variation across the VFS.
PDFs for filter roughness and vegetation factors were as-
signed based on vegetation type (Table 1) (Haan et al., 1994;
Muñoz-Carpena et al., 2007).

For the infiltration components, log-normal PDFs were as-
signed to the soil saturated hydraulic conductivity (VKS)
from measured values at each site (Madrigal-Monarrez,
2004; Souiller et al., 2002; Lacas, 2005) based on effective
field values calculated from the harmonic mean of the topsoil
horizons (Bouwer, 1969). The Green–Ampt infiltration OI
and OS inputs were fitted distributions based on values mea-
sured at the sites, and the average suction at the wetting front
(SAV) was considered to vary uniformly based on ranges for
soil texture at each site (Rawls et al., 1983). Soil water char-
acteristics parameters (VGALPHA, VGN, OR in Table 2)
needed for calculation of infiltration under shallow water ta-
ble (Eqs. 3–7) were assigned normal PDFs based on the soil
texture (Meyer et al., 1997). Hourly water table depths (L)
that were automatically monitored on the Morcille river dur-
ing the case study event (Lacas, 2005) followed a uniform
distribution. On Jaillière, the average water depth and vari-
ation was measured manually at the site (Adamiade, 2004)
and a uniform distribution around these values assigned.

Sediment particle characteristics from the upper field
(COARSE and DP) were assigned uniform distributions
based on USDA textural class (Woolhiser et al., 1990),
and truncated to respect the relationship between DP and
COARSE (Muñoz-Carpena et al., 1999).

For pesticide inputs, field measurements of the percent-
age of clay (PTC) and organic carbon (PCTOC) of the upper
field followed a uniform PDF (Lacas, 2005; Benoit et al.,
1998; Madrigal-Monarrez, 2004). The triangular distribution
for KOC for the pesticides evaluated at each site is based on
measurements in Jaillière for the base value and boundaries
(Benoit et al., 1998; Souiller et al., 2002) and on Morcille for
the base value (Lacas, 2005) but using boundaries from the
PPDB database (IUPAC, 2007).

In all, for the two sites, two infiltration options (GAMPT,
without shallow water table and with k = 18, and SWINGO,
with shallow water table and with k = 20, Table 2) and
two pesticides at each site, the total number of GSA simu-
lations performed were 75 544 for eFAST (M = 497≈ 512)
and 1600 for Morris. The procedure was repeated 3 times
with different random seeds to ensure the robustness of the
results.
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3 Results

3.1 Model application on benchmark studies

The effect of a water table on simulated VFS efficiency us-
ing SWINGO was first tested on the two contrasted bench-
mark study sites Morcille (Fig. 4a) and Jaillière (Fig. 4b).
Since a stream at the bottom of the VFS was present on both
sites, the lateral Dupuit–Forscheimer option was selected for
the end vertical bottom boundary condition fw (Eq. 3) (see
Sect. 2.1 in companion paper; Muñoz-Carpena et al., 2018),
hereon referred to as the vertical boundary condition. The
detailed outflow hydrograph from the VFS measured during
the event at Morcille is compared with a direct simulation
with base values (no calibration) (Fig. 4a). The dashed line
for L= 2.5 m corresponds to the simulation with average
measured VKS for the top soil horizons (4.58× 10−5 m s−1),
and the gray envelope represents outflow variability due
to uncertainty of measured hydraulic conductivity (between
3.89× 10−5 m s−1 from direct measurement on the soil sur-
face horizon 10–30 cm and 5.29× 10−5 m s−1 computed by
harmonic mean of measurements on 0–10 and 10–30 cm
horizons). In addition to the measured water table depth at
the sites, each event was tested with different water table
conditions to study the expected response to these conditions
(Fig. 4a, b). The large differences in VFS surface outflow
found between shallow and deeper water tables clearly illus-
trates the hydrological importance of a shallow water table
presence on VFS at these sites.

Direct simulation of the VFS surface outflow at Mor-
cille fits observations well for the end of the second rain
period (4000 to 6000 s) but misses the rest (Fig. 4a). The
differences between simulated and observed values could
come from measurement or parametrization errors at the
site, since runoff was expected early on for an event with
such hydraulic loading (rainfall+ incoming runoff). The in-
trinsic spatial variability of Ks also represents a signifi-
cant source of uncertainty in the simulations (gray area in
Fig. 4a). The NSE AND RMSE ranges for the model uncer-
tainty bounds in Fig. 4a were median NSE= 0.610 and 95CI
[0.448–0.943], and RMSE= 4.284× 10−5 [1.179× 10−5–
7.472× 10−5] m3 s−1. Within those uncertainty bounds, the
model is classified as “unacceptable” to “very good” based
on the FitEval methodology (Ritter and Muñoz-Carpena,
2013). FitEval evaluation files are included in the Supple-
ment. In all, considering that the model was run with base
values and without calibration, these preliminary results are
deemed promising.

The effect of water table change (from 0–2 m) on VFS
changes in runoff (dQ), sediment (dE), and pesticide (dP )
reductions for the two case studies is presented in Fig. 5. In
general, dQ and dP are sensitive to the shallow water table
depth until a threshold (∼ 1.5 m for the case study sites) be-
yond which there are no effects and the filter achieves max-
imum efficiency for the event. The two-step curves for Mor-

cille are due to the two storm periods, where relative contri-
butions to surface flow between the first and second events
will vary with the depth of the shallow water table. Sedi-
ment retention (dE) does not exhibit similar changes because
the relatively low flow conditions experienced likely result in
low available transport capacity and high sediment deposi-
tion on the VFS. The difference in effects introduced by the
chemical characteristics of the pesticide is observed in the
curves for diflufenican (high sorption) and isoproturon (low
sorption) at Jaillière. This local study does not take into ac-
count all effects and interactions between input factors, but
only the water table depth variation effect. The global sensi-
tivity analysis presented in Sect. 3.2 will address this.

The simulation results for Morcille and Jaillière confirm
that a shallow water table can affect the VFS surface hy-
drological response by generating saturation surface runoff,
depending on the soil characteristics and the hydraulic load-
ing. Conversely, for deep water table, surface hydrology pro-
cesses are effectively decoupled after a threshold controlled
by the soil characteristics and hydraulic loading. Interest-
ingly, simulations with the option without a shallow water
table (GAMPT, Fig. 1) for the case study conditions closely
matched those for SWINGO for the deeper water tables
in Fig. 4, providing additional physical consistency to both
components.

3.2 Global sensitivity analysis of water, sediment, and
pesticide reductions

A combination of simulations with a shallow water table
(“WT”, run with SWINGO) and with no shallow water table
(“no WT”, run with GAMPT) (Fig. 1) for Jaillière and Mor-
cille conditions, with two pesticides at each site (Table 1),
were selected for GSA Morris and eFAST methods. For sim-
plicity, GSA results are presented only for one pesticide, iso-
proturon, which is a common herbicide with average sorption
properties. A comparison of the different pesticides’ effects
is presented in the Sect. 3.3.

Morris sensitivity analysis indices (Table S1 in the Supple-
ment) are presented in Fig. 6, where important input factors
for each output are separated from the origin of the (µ∗, σ )
Cartesian planes. Distinct patterns on the important factors
controlling the shallow water table effects on the efficiency
of the VFS (dQ, dE, dP ) are identified by comparing the
different soil (fine at Jaillière and coarse at Morcille) and hy-
draulic loading across the study sites. The differences can
be interpreted in terms of the interplay between excess rain-
fall (controlled mainly by the saturated hydraulic conductiv-
ity VKS and hydraulic loading) and subsaturation (i.e., sub-
surface saturation controlled by the water table depth L).

Finer soils typically exhibit lower permeability but a
higher capillarity fringe above a water table (Terzaghi, 1943;
Lane and Washburn, 1946; Parlange et al., 1990). For no
WT, excess rainfall (controlled by VKS) leads to relatively
more water on the surface compared to coarse soils. Morris
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Figure 5. Change in dQ (reduction of surface water), dE (reduction of sediment), and dP (reduction of pesticide isoproturon) with water
table depth for experimental events in Fig. 4a–b. Gray area indicates water table depths where influence over surface outputs on the VFS is
no longer observed.

results (Fig. 6a) show the strong sensitivity of dQ to VKS
for this case. With WT the soil readily saturates from the
bottom and it is less sensitive to VKS. This is shown by the
strong direct effect of L on dQ (Fig. 6d). For dE in finer
soils, more runoff present at the surface typically results in
higher available transport capacity, and sediment and surface
characteristics become a limiting factor for transport and de-
position (Muñoz-Carpena et al., 2010). This is shown by the
importance of DP and interaction with VKS (Fig. 6b). With
WT, the infiltration is limited even further in these fine soils,
where excess rainfall no longer controls surface flow and
VKS falls in importance while sediment and surface char-
acteristics dominate the response (Fig. 6e). In general, pes-
ticide reduction (dP ) is controlled by factors controlling the
liquid (dQ) and solid (dE) phase transport (Sabbagh, et al.,
2009). For no WT and for this moderately adsorbed chemi-
cal, the effect of excess rainfall on dQ (controlled by VKS)
also becomes the most important process for dP (Fig. 6c).
With WT, the dominance of L in dQ is also present in dP ,
with some sediment and pesticide characteristics also show-
ing importance (Fig. 6f).

In contrast, the coarser soil in Morcille exhibits higher
permeability and small capillary fringe and, under no-WT
runoff, is typically controlled by excess rainfall (importance
of VKS in Fig. 6g). With WT, the soil might subsaturate de-
pending on position L, and this input gains importance in-
teracting with VKSs (Fig. 6j). For dE and no WT (Fig. 6h),
with more permeability the surface water flow (controlled by
VKS) is the main limiting factor controlling sedimentation
(Muñoz-Carpena et al., 2010). With WT, again the VKS and
L that control surface flow also interact strongly to control
sedimentation, and sediment soil water characteristics are of
secondary importance (Fig. 6k). Control of infiltration also

propagates into dP , and for this moderately sorbed pesticide,
dQ factors also control dP (Fig. 6i, l).

Interestingly, introduction of WT increases the number of
factors and interactions (i.e., more input factors show higher
σ values and are separated near or above the dashed 1 : 1
line). This indicates an increase in complexity of the VFS
response when the shallow water table is present. This sug-
gests that simple relationships to simulate water, sediment,
and pesticide behavior are not able to represent all complex
processes that interact in a VFS.

Comparison of Morris and eFAST indices (Fig. 6, and Ta-
ble S2 and Fig. S1) for interactions and first-order effects,
STi −Si ∼ σ and STi ∼µ

∗, respectively, shows good consis-
tency among the methods (Saltelli et al., 2004; Campolongo
et al., 2007) and further corroborates the results. The impor-
tance of VKS for both soils under no WT identified by Mor-
ris is quantified by eFAST with more than 90 % of the dQ
and dP output variance being controlled by first-order (di-
rect) effects of this factor (Fig. S1a, g and c, i). Similarly, the
importance of DP for dE for the fine soil is apparent where
more than 60 % of the variance is explained by first-order
and interaction effects of this factor (Fig. S1b, e). For the
case of WT, the effect of L on dQ and dP is predominant,
with 60–90 % of the output controlled by this factor and its
interactions (Fig. S1d, j, l).

3.3 Uncertainty analysis

The model runs from eFAST dense multivariate input sam-
pling allows the realization of a quantitative uncertainty anal-
ysis of the model outputs’ water (dQ), sediment (dE), and
pesticide (dP ) reductions for the two contrasted pesticides at
each site (Fig. 7 and Table S3). As expected, the reduction
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Figure 6. Morris elementary effects results for dQ (reduction of surface water), dE (reduction of sediment), and dP (reduction of pesticide
isoproturon) on Jaillière (a–f) and Morcille (g–l) sites, without water table (no WT) and with water table (WT) present. Factors with negligible
effects (close to the origin) are not labeled.

in infiltration and increase in surface flow introduced by the
shallow water table translates into a distinct decrease in dQ
values, with median dQ changing from 81 to 7 % and 65 to
45 % in Jaillière (Fig. 7a, b) and Morcille (Fig. 7c, d), respec-
tively (Table S3). For dE, for the coarser soil at Morcille the
smaller change in dQ with WT does not visibly change the
high sediment retention, whereas for the finer soil of Jaillière
the changes in flow introduce marked changes in median dE
from 99 to 64 %. Again, changes in dQ and dE with WT
affect the VFS pesticide retention at both sites, with median
reductions from dP = 99 to 38 % and 97 to 84 % in Jaillière
and Morcille, respectively. Since the VFS pesticide reten-
tion is also directly related to pesticide sorption character-
istics (Sabbagh et al., 2009), some differences are expected
for different chemicals. Reduction of diflufenican at Jaillière
(dP -Dif) (Fig. 7b) and tebuconazole at Morcille (dP -Teb)

(Fig. 7d) is higher than reductions of the other two pesticides
because of their affinity for sediment (higher KOC values in
Table 1) and high sediment retention in the VFS.

These results further support the GSA findings that
changes in surface and subsurface hydrological responses,
introduced by the shallow water table, can translate into im-
portant reductions on the expected pesticide retention and un-
certainty controlled by field conditions (soils, hydraulic load-
ing, pesticide characteristics).

4 Summary and conclusions

In this study, we coupled a new infiltration algorithm un-
der shallow water table conditions (SWINGO, developed in
companion paper; Muñoz-Carpena et al., 2018) with a com-
monly used event-based vegetative filter strips model (VF-
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Figure 7. Probability density functions from the uncertainty analysis of eFAST simulations on output variables dQ (reduction of surface
water), dE (reduction of sediment), and dP (reduction of pesticides) for the Jaillière (a–b) and Morcille (c–d) sites, without water table (no
WT) and with water table (WT). Pesticides are isoproturon (Iso), diflufenican (Dif), and tebuconazole (Teb).

SMOD). The coupled model takes into account the dynamic
interactions among water table, surface runoff, sediment, and
pesticide filtration in a vegetative filter strip. The model was
applied to two different experimental sites with contrasted
soils and rainfall conditions. The direct testing of the uncali-
brated model under limited experimental conditions showed
promising results. Simulations varying the water table depth
for two experimental sites provided interesting insights on
the effect on VFS efficiencies to reduce overland flow, sedi-
ment, and pesticides. While the VFS surface flow, sediment,
and pesticide reduction responses are very sensitive when the
water table is close to the surface, the effect is lost after a
threshold depth around 1.5 m for the experimental sites con-
dition, consistent with previous field studies (Dosskey et al.,
2006; Lacas et al., 2012). For depths larger than the thresh-
old, the model showed physical consistency when compared
to a common Green–Ampt solution (with no water table as-
sumptions). More comprehensive global sensitivity and un-
certainty analyses for the two sites revealed that the effec-
tiveness of the VFSs was markedly reduced in the presence
of the shallow water table, and in this case the VFS response
is more complex, dominated by interactions between surface,

subsurface, and transport processes. The most important fac-
tors controlling the expected variability of water and pesti-
cide reductions are water table depth and saturated hydraulic
conductivity of the soil, but their importance also depends on
sediment characteristics controlled by the soil type and hy-
draulic loading of the event. Uncertainty in the pesticide re-
duction, driven by water or sediment reduction, also depends
on the pesticide sorption properties (KOC).

This work suffers from several limitations. Firstly, limited
field experimental data is available for detailed studies of the
response of a VFS under alternative conditions of deep and
shallow water tables. Further laboratory and field research
should address this limitation, where exhaustive experimen-
tal datasets must be compiled to reduce the uncertainty in the
identification of sensitive input factors controlling the mea-
sured and simulated responses studied here. To address this
limitation, a comprehensive laboratory testing of the updated
model under mesoscale controlled shallow water conditions
was just presented by Fox et al. (2017), with successful re-
sults. Still, field studies under controlled and uncontrolled
conditions are recommended to identify strategies for model
parametrization and optimal design of VFS under realistic
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WT field conditions. Secondly, although two contrasting case
studies were selected, the results presented here are limited
to these studies, and further analysis will be needed for other
local, regional, and larger scales.

The application of the improved VFSMOD under contrast-
ing sets of conditions and physical consistency with other
models indicate the robustness of the model for use in VFS
sizing and evaluation of potential losses of efficiency under
shallow water table conditions. Since VFSs are commonly
placed near streams and these areas can suffer seasonal shal-
low water conditions, this tool fills an important gap in en-
vironmental management and analysis. For example, in Eu-
rope VFSs are often prescribed along river drainage net-
works without objective assessment of their efficiency dur-
ing winter wet periods (Carluer et al., 2017; Bach et al.,
2017). In the US, the historical topography-based approach,
which links priority for buffers to locations where runoff wa-
ter converges from uplands and saturates the soil, often re-
sults in placement on bottomlands next to streams (Dosskey
and Qiu, 2011). Alternative targeted placement of buffers
based on soil characteristics and conductivity can improve
the efficiency of the buffers (Dosskey et al., 2006). However,
both placement methods disregard seasonal shallow water ta-
ble effects that can now be mechanistically assessed with the
improved physical model developed herein. For the case of
the regulatory assessment of pesticides, currently long-term
exposure frameworks in Europe and the USA disregard the
potential effects that shallow water effects might have in re-
ducing the effectiveness of in-label mitigation practices like
VFSs. Results from this study support the critical need to in-
corporate the effects of a shallow water table, when present,
in these environmental exposure assessments.
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