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Abstract. Water quality problems in the Chesapeake Bay
Watershed (CBW) are expected to be exacerbated by climate
variability and change. However, climate impacts on agri-
cultural lands and resultant nutrient loads into surface wa-
ter resources are largely unknown. This study evaluated the
impacts of climate variability and change on two adjacent
watersheds in the Coastal Plain of the CBW, using the Soil
and Water Assessment Tool (SWAT) model. We prepared six
climate sensitivity scenarios to assess the individual impacts
of variations in CO2 concentration (590 and 850 ppm), pre-
cipitation increase (11 and 21 %), and temperature increase
(2.9 and 5.0 ◦C), based on regional general circulation model
(GCM) projections. Further, we considered the ensemble of
five GCM projections (2085–2098) under the Representative
Concentration Pathway (RCP) 8.5 scenario to evaluate simul-
taneous changes in CO2, precipitation, and temperature. Us-
ing SWAT model simulations from 2001 to 2014 as a base-
line scenario, predicted hydrologic outputs (water and nitrate
budgets) and crop growth were analyzed. Compared to the
baseline scenario, a precipitation increase of 21 % and ele-
vated CO2 concentration of 850 ppm significantly increased
streamflow and nitrate loads by 50 and 52 %, respectively,
while a temperature increase of 5.0 ◦C reduced streamflow
and nitrate loads by 12 and 13 %, respectively. Crop biomass
increased with elevated CO2 concentrations due to enhanced

radiation- and water-use efficiency, while it decreased with
precipitation and temperature increases. Over the GCM en-
semble mean, annual streamflow and nitrate loads showed an
increase of∼ 70 % relative to the baseline scenario, due to el-
evated CO2 concentrations and precipitation increase. Differ-
ent hydrological responses to climate change were observed
from the two watersheds, due to contrasting land use and soil
characteristics. The watershed with a larger percent of crop-
lands demonstrated a greater increased rate of 5.2 kg N ha−1

in nitrate yield relative to the watershed with a lower per-
cent of croplands as a result of increased export of nitrate
derived from fertilizer. The watershed dominated by poorly
drained soils showed increased nitrate removal due do en-
hanced denitrification compared to the watershed dominated
by well-drained soils. Our findings suggest that increased im-
plementation of conservation practices would be necessary
for this region to mitigate increased nitrate loads associated
with predicted changes in future climate.

1 Introduction

Located in the Mid-Atlantic region, Chesapeake Bay (CB) is
the largest and most productive estuary in the United States
(US). The Chesapeake Bay Watershed (CBW) covers an area
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of 166 000 km2 and is home to more than 18 million peo-
ple and 3600 species of plants and animals (Chesapeake Bay
Program, 2016). Despite significant restoration efforts, the
health of the Bay has continued to deteriorate, primarily due
to excessive nutrient and sediment loads from agricultural
lands (Rogers and McCarty, 2000). Najjar et al. (2010) sug-
gested that the current water quality problems in the bay
are expected to worsen under climate variability and change.
General circulation models (GCMs) have projected increases
in temperature and precipitation of up to 5.0 ◦C and 21 %, re-
spectively, by the end of this century in the CB region (Najjar
et al., 2009), which could lead to substantial changes in hy-
drology and nitrogen (N) cycling. For instance, Howarth et
al. (2006) reported that greater precipitation is anticipated to
increase N loads to CB by ∼ 65 %. With precipitation and
temperature changes, elevated CO2 concentrations affecting
stomatal conductance have also been viewed as one of the
decisive factors modifying watershed hydrological processes
(Chaplot, 2007; Wu et al., 2012a, b).

Numerous studies have been conducted to demonstrate the
impacts of changes in CO2 concentrations, precipitation, and
temperature on streamflow and N loads. Elevated CO2 con-
centrations are predicted to increase streamflow by reduc-
tion of evapotranspiration (ET) that results from a decrease
in plant stomatal conductance (Field et al., 1995; Jha et al.,
2006; Wu et al., 2012a, b). Jha et al. (2006), for example,
showed that a doubling of CO2 concentration increased wa-
ter loads by∼ 36 % in the upper Mississippi River basin. Pre-
cipitation increase/decrease has been found to directly affect
the rise/fall of streamflow levels (Jha et al., 2006; Ficklin
et al. 2009; Wu et al., 2012a; Praskievicz, 2014; Uniyal et
al., 2015). Ficklin et al. (2009) found that a change in pre-
cipitation of +20 and −20 % led to changes in water loads
by nearly +17 and −14 %, respectively, in the San Joaquin
River watershed, California. Temperature increase was re-
ported to reduce streamflow during summer seasons due to
the intensified ET values, and to increase streamflow dur-
ing winter seasons due to increased snowmelt (Jha et al.,
2006; Ficklin et al., 2009, 2013; Wu et al., 2012a; Prask-
ievicz, 2014). Interestingly, in most studies, the response of
N loads to climate variability was found to be similar to the
response of streamflow (Ficklin et al., 2009; Wu et al., 2012a;
Praskievicz, 2014; Gombault et al., 2015). According to the
projected climatic conditions (e.g., elevated CO2 concentra-
tions, precipitation and temperature increases) illustrated in
Najjar et al. (2009), substantial variations in streamflow and
N loads are anticipated in the CBW. Therefore, it is important
to investigate potential climate change impacts on watershed
hydrological processes to efficiently mitigate potential water
quality degradation.

Climate change impacts on hydrological processes have
not been fully investigated in the CBW region. Howarth et
al. (2006) attempted to quantify N loads under modified cli-
mate conditions, but their projections relied on the statisti-
cal relationships between river discharge/precipitation and

N loads. Lee et al. (2015) predicted changes in streamflow
and nitrate loads at the outlet of the watershed in response
to climate variability (e.g., elevated CO2 concentrations, pre-
cipitation and temperature increase). To cope with climate
change-driven modifications, it is imperative to have an un-
derstanding of a wide range of changes in hydrological pro-
cesses (Najjar et al., 2010). A simple projection of aggre-
gated watershed responses (i.e., water quality variables at the
outlet of the watershed) would be limited to suggesting con-
servation practices to reduce climate change impacts. An un-
derstanding of internal watershed processes (i.e., water and
nutrient transport mechanisms) within a watershed can guide
site-specific management plans to aid conservation decision
making. In addition, climate impacts on agriculture are ex-
tremely important for the CB region because agriculture is
the single largest nutrient source to CB and crop growth mod-
ified by climate change can substantially impact internal wa-
tershed processes (Najjar et al., 2010). However, previous
studies have not fully demonstrated climate change impacts
on internal watershed processes while considering detailed
agricultural management practices.

Moreover, responses of watershed hydrological processes
to climate variability and change can vary by watershed
characteristics (e.g., land use and soil drainage conditions).
For example, several studies showed that watersheds with a
greater area of croplands released a higher amount of nitrate
than watersheds with less cropland, mainly due to increased
input of agricultural N (Jordan et al., 1997; Hively et al.,
2011; McCarty et al., 2014). Thus, climate change can lead
to greater nitrate export from watersheds with a larger per-
centage of cropland area, due to increased export of N from
fertilizer application. Additionally, different soil characteris-
tics can also lead to different responses in watershed-scale
water and N cycles under climate change. A study by Chi-
ang (1971) showed that well-drained soils with a high infil-
tration rate promote water percolation, increasing groundwa-
ter contribution to streamflow. Nitrate leaching is also found
to frequently occur in well-drained soils (Lee et al., 2016a).
In contrast, poorly drained soils with a low infiltration rate
provide anaerobic conditions favorable to denitrification, re-
sulting in nitrate removal in soils and groundwater (Denver
et al., 2010; Lee et al., 2016a; Sharifi et al., 2016). For ex-
ample, prior converted croplands, which are also known as
“currently farmed historical wetlands”, and are commonly
associated with poorly drained soils, were also shown to have
prominent impacts on reducing agrochemical loadings in the
CBW region during the winter season, when ET is low and
the groundwater table is high (Tiner and Burke, 1995; Den-
ver et al., 2014; McCarty et al., 2014; Sharifi et al., 2016).
Artificial drainage systems in agricultural lands are widely
developed on poorly drained soils in this region, resulting in
an increase in water and nutrient transport to nearby streams
through surface runoff (McCarty et al., 2008; Fisher et al.,
2010). Therefore, water and nitrate fluxes in watersheds with

Hydrol. Earth Syst. Sci., 22, 689–708, 2018 www.hydrol-earth-syst-sci.net/22/689/2018/



S. Lee et al.: Comparative analyses of hydrological responses 691

different soil characteristics are expected to show distinctive
responses to climate variability and change.

This study aimed at evaluating the impacts of potential cli-
mate variability and change on water and nitrate budgets in
two adjacent watersheds on the Coastal Plain of the CBW,
using the Soil and Water Assessment Tool (SWAT) model.
This process-based water quality model has been widely used
to predict climate change impacts on numerous watersheds
(Gassman et al., 2007; Uniyal et al., 2015). We prepared six
climate sensitivity scenarios to assess the individual impacts
of changes in CO2 concentration (590 and 850 ppm), pre-
cipitation (11 and 21 %), and temperature (2.9 and 5.0 ◦C)
increase. This sensitivity analysis was prepared to develop
in-depth knowledge and understanding of how each climate
factor affects internal watershed processes and crop growth.
Then, SWAT simulations were conducted using five GCM
projections (referred to as the GCM scenario) to evaluate
watershed internal processes and crop growth under foresee-
able climate conditions that consider simultaneous changes
in CO2, precipitation, and temperature. We used the GCM
projections to describe foreseeable changes, as the combina-
tion of climate factors and their interactions could not pro-
vide complete climate change/variability information includ-
ing seasonal and inter-decadal variability (Mearns, 2001).
We first assessed climate change impacts on water and ni-
trate loads by analyzing internal watershed processes and
crop growth, and then analyses comparing the two water-
sheds were conducted to identify critical landscape charac-
teristics that affected nitrate loads. Finally, suggestions were
provided regarding conservation practice implementation to
improve the resilience of coastal watersheds to future climate
change in the CBW region.

2 Materials and methods

2.1 Study area

This study was undertaken on two adjacent watersheds,
Tuckahoe Creek Watershed (TCW, ∼ 220.7 km2) and
Greensboro Watershed (GW, ∼ 290.1 km2). They are sub-
watersheds of the Choptank River Watershed located in the
Coastal Plain of the CBW (Fig. 1). The Choptank River
Watershed is one of the Conservation Effects Assessment
Project (CEAP) Benchmark watersheds of the US Depart-
ment of Agriculture (USDA)-Natural Resources Conserva-
tion Service (NRCS). The US Environmental Protection
Agency (USEPA) has listed this watershed as “impaired” un-
der Section 303(d) of the 1972 Clean Water Act, primarily
due to the excessive nutrient and sediment loads (McCarty et
al., 2008). The two adjacent sub-watersheds have distinctive
characteristics considering the distribution of land use and
soil drainage conditions (Fig. 2 and Table 1). The TCW is
dominated by agricultural lands (54 %) and forest (32.8 %)
with well-drained soils, classified as hydrologic soil groups

Figure 1. The location of the Tuckahoe Creek Watershed (left) and
Greensboro Watershed (right) (adapted from Lee et al., 2016a).

(HSGs) A or B. These soils account for 56 % of the to-
tal watershed and 69.5 % of the agricultural lands (Fig. 2).
Thus, water and nitrate fluxes tend to be easily percolated and
leached into soils and groundwater, and groundwater flow is
considered to be a major water pathway for nutrient fluxes to
streams in the TCW (Lee et al., 2016a). In comparison, for-
est (48.3 %) is the major land use type in the GW, followed
by agriculture (36.1 %). Soils that are poorly drained (HSGs
C or D) occupy 75 % of the total area and 67.2 % of agri-
cultural lands, which results in low infiltration rates and high
denitrification potential.

2.2 SWAT

The SWAT is a process-based watershed model, developed to
assess the impact of human activities and land use on water
and nutrient cycles within agricultural watersheds (Neitsch
et al., 2011). The SWAT divides a watershed into sub-
watersheds using a digital elevation model (DEM), and each
sub-watershed is further divided into hydrologic response
units (HRUs) based on a unique combination of land use,
soil type, and slope. Model simulation is performed at the
HRU level, and the simulated outputs aggregated at the sub-
watershed and then further at the watershed level through
routing processes. The amounts of surface runoff and infil-
tration are calculated based on the Soil Conservation Service
(SCS) curve number (CN) method, and the CN values are
updated daily based on soil permeability, land use type, and
antecedent soil water conditions. Water infiltrated into soils is
either delivered to streams through lateral flow or further per-
colated into groundwater, when soil water content exceeds
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Figure 2. The physical characteristics of the Tuckahoe Creek
Watershed (left) and Greensboro Watershed (right); (a) land use,
(b) hydrologic soil groups, and (c) elevation (adapted from Lee et
al., 2016a). Note: Dbl WW/Soyb stands for double crops of win-
ter wheat and soybean in a year. Hydrologic soil groups (HSGs)
are characterized as follows: Type A – well-drained soils with a
7.6–11.4 mm h−1 water infiltration rate; Type B – moderately well-
drained soils with 3.8–7.6 mm h−1; Type C – moderately poorly
drained soils with 1.3–3.8 mm h−1; Type D – poorly drained soils
with 0–1.3 mm h−1 (Netisch et al., 2011).

field capacity. The groundwater portion is then transported to
streams through groundwater flow, percolated into the deep
groundwater aquifer, or discharged to the soil profile. The
amount of nitrate in soils is increased by nitrification, miner-
alization of soil organic and crop residue, biological N fixa-
tion, and fertilization, and decreased through denitrification
and plant uptake (Neitsch et al., 2011). Nitrate fluxes move
via surface runoff, lateral flow, percolated water from soil to
groundwater, and groundwater flow. Nitrate concentration in
the mobile water (i.e., surface runoff, lateral flow, and perco-
lated water) is first determined and then nitrate fluxes in the
mobile water are calculated based on the nitrate concentra-

Table 1. Soil properties and land use distribution of the Tuck-
ahoe Creek Watershed (TCW) and Greensboro Watershed (GW)
(adapted from Lee et al., 2016a).

Land use TCW GW

Agriculture 54.0 % 36.1 %
(69.5/30.5 %) (32.8/67.2 %)

Forest 32.8 % 48.3 %
Pasture 8.4 % 9.3 %
Urban 4.2 % 5.6 %
Water body 0.6 % 0.7 %
Hydrologic soil TCW GW
groups (HSGs)
A 0.3 % 3.1 %
B 55.8 % 22.4 %
C 2.2 % 4.2 %
D 41.7 % 70.3 %

Note: values in parentheses – “( )” – denote the proportion of
well-drained soils (HSG-A&B) and poorly drained soils
(HSG-C&D) used for agricultural lands, respectively.

tion and the amount of mobile water. Nitrate in groundwa-
ter is re-distributed in four ways: remains in the groundwa-
ter, recharges to deep groundwater, moves to streams, or dis-
charges to the soils. Nitrate removal by biological and chem-
ical processes in groundwater is simulated by the first-order
kinetics. Refer to Netisch et al. (2011) for further details.

The SWAT model has the capability of simulating the im-
pacts of CO2 concentration on ET and biomass accumula-
tions. The Penman–Monteith method used for this study con-
siders CO2 effects on ET based on the relationship between
plant stomatal conductance and CO2 concentration:

gl,CO2 = gl×[1.4− 0.4× (CO2/330)], (1)

where gl,CO2 is the leaf conductance modified to reflect CO2
effects, and gl is the leaf conductance without the effect of
CO2. The equation shows the linear reduction of the leaf con-
ductance with increasing CO2 and results in a 40 % reduction
in leaf conductance for all plants when CO2 concentration is
doubled. According to Eq. (1) elevated CO2 concentrations
decrease plant stomatal conductance and canopy resistance,
subsequently reducing ET. Refer to Neitsch et al. (2011) for
details on the Penman–Monteith method.

The simulation of crop growth in the SWAT is based on
potential heat unit theory. The model considers the impacts
of CO2 concentration on crop biomass growth by modifying
the radiation-use efficiency (RUE) of the plant as follows:

RUE=
100 ·CO2

CO2+ exp(r1− r2 ·CO2)
, (2)

where RUE is the radiation-use efficiency of a plant, and
r1and r2 are coefficients.

1bio= RUE ·Hphosyn, (3)
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where 1bio is a potential increase in plant biomass on a given
day and Hphosyn is the amount of intercepted photosyntheti-
cally active radiation on a given day.

2.3 Baseline SWAT input data

Climate and geospatial data needed for the SWAT simulation
are summarized in Table 2. Daily precipitation and temper-
ature were obtained from three meteorological stations op-
erated by the National Oceanic and Atmospheric Admin-
istration (NOAA) National Climate Data Center (NCDC)
at Chestertown, Royal Oak, and Greensboro, Maryland
(USC00181750, USC00187806, and US1MDCL0009, re-
spectively). Due to data unavailability, humidity, wind speed,
and solar radiation were generated using the SWAT built-in
weather generator (Neitsch et al., 2011). Monthly streamflow
data were downloaded from US Geological Survey (USGS)
gauge stations on Tuckahoe Creek near Ruthsburg (USGS
no. 01491500) and the Choptank River near Greensboro
(USGS no. 01491000) (Fig. 1). The USGS LOAD ESTi-
mator (LOADEST, Runkel et al., 2004) was used to gener-
ate continuous monthly nitrate loads from nitrate grab sam-
ple data (133 samples over the simulation period) that were
obtained from the Chesapeake Bay Program (CBP, TUK
no. 0181) for the TCW and from USGS gauge station data
(USGS no. 01491000) for the GW. The LOADEST is com-
monly used to generate continuous data from discrete data,
and it has been shown to accurately generate water quality
variables (Jha and Jha, 2013; Lee et al., 2016b). The land
use, soil maps, and DEM were prepared as shown in Table 2.

We identified representative agricultural practices for this
region using multiple geospatial data (Lee et al., 2016a). Ma-
jor crop rotations and their year-to-year placement were de-
rived through analysis of the USDA-National Agricultural
Statistics Service (NASS) Cropland Data Layer (CDL) for
the period of 2008–2012. We assumed that crop rotation
and land use did not change over the simulation period so
that agricultural N input did not vary for the baseline and
GCM scenarios. Detailed agricultural management informa-
tion (e.g., the amount, type, and application timing of fertil-
izer, and planting and harvesting timings of individual crops)
was developed through literature review and communica-
tions with local experts (Table A1). Detailed information
about the development of crop rotation and land management
is available in Lee et al. (2016a).

2.4 Baseline SWAT calibration and validation

The SWAT model simulations were performed at a monthly
time step for 16 years; this included 2-year warm-up (1999–
2000), 8-year calibration (2001–2008), and 6-year valida-
tion (2009–2014) periods. The SWAT model was run at a
daily time step based on daily climate input data, and daily
outputs were aggregated to monthly outputs. It should be
noted that due to unavailability of water quality observations

prior to 2001, model calibration and validation were initi-
ated from 2001. Compared to past 30-year precipitation data
(1981–2010), the climate condition over the calibration pe-
riod (2001–2008) was shown to include representative wet,
dry, and average climate conditions, while the validation pe-
riod (2009–2014) was dominated by wet conditions. Critical
parameters used for model calibration were selected based on
previous studies conducted in this region (Sexton et al., 2010;
Yeo et al., 2014; Lee et al., 2016a) and allowable ranges of
these parameters were derived from the literature as indi-
cated in Table 3. Streamflow parameters were manually cal-
ibrated and then nitrate parameters were adjusted following
SWAT calibration guidelines (Arnold et al., 2012). A set of
parameters that produced the best model performances and
fulfilled model performance criteria suggested by Moriasi et
al. (2007) were chosen for model validation. Model perfor-
mance was evaluated using the following statistics: Nash–
Sutcliffe efficiency coefficient (NSE), root mean square error
(RMSE) standard deviation (SD) ratio (RSR), and percent
bias (P -bias).

NSE= 1−


n∑

i=1
(Oi − Si)

2

n∑
i=1

(Oi −O)2

 , (4)

RSR=
RMSE
SDobs

=

[√
n∑

i=1
(Oi − Si)2

]
[√

n∑
i=1

(Oi −O)2

] , (5)

P -bias=


n∑

i=1
(Oi − Si)× 100

n∑
i=1

Oi

 , (6)

where Oi is the observed data at time step i, Si is the sim-
ulated output at time step i, O is the mean of observed data
over all time steps, and n is the total number of observed data.
We also calculated NSE for the natural logarithm of stream-
flow to evaluate model performance for low flows (Kiptala
et al., 2014). In addition, the 95 % prediction uncertainty
(95 PPU) band was represented to evaluate model uncertainty
(Singh et al., 2014). The 95 PPU was computed based on all
simulated outputs generated during the calibration process.
The 95 PPU was represented as the range of values between
the 2.5 and 97.5 percentiles of the cumulative distribution of
simulated outputs.

2.5 Climate sensitivity and GCM scenarios

To evaluate the impacts of climate variability and change
on watershed hydrological processes, climate sensitivity and
GCM scenarios were prepared as illustrated below (see
Sect. 2.5.1 and 2.5.2). The calibrated SWAT model was sim-
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Table 2. List of the SWAT model input data.

Data Source Description Year

DEM MD-DNR LiDAR-based 2 m resolution 2006
Land use USDA-NASS Cropland Data Layer (CDL) 2008–2012

MRLC National Land Cover Database (NLCD) 2006
USDA-FSA-APFO National Agricultural Imagery Program digital Orthophoto quadimagery 1998
US Census Bureau TIGER road map 2010

Soils USDA-NRCS Soil Survey Geographical Database (SSURGO) 2012
Climate NCDC Daily precipitation and temperature 1999–2014
Streamflow USGS Monthly streamflow 2001–2014
Water quality USGS and CBP Daily grab nitrate samples 2001–2014

Note: MD-DNR: Maryland Department of Natural Resources, USDA-NASS: USDA-National Agricultural Statistics Service, MRLC: Multi-Resolution Land
Characteristics Consortium, USDA-FSA-APFO: USDA-Farm Service Agency-Aerial Photography Field Office, TIGER: Topologically Integrated Geographic
Encoding and Referencing, and USDA-NRCS: USDA-Natural Resources Conservation Service.

Table 3. List of calibrated parameters.

Parameter Variable Description (unit) Range Calibrated value

TCW GW

CN21 Streamflow Curve number −50–50 % −30 % 0 %
ESCO1 Soil evaporation compensation factor 0–1 1 0.95
SURLAG1 Surface runoff lag coefficient 0.5–24 0.5 0.5
SOL_AWC1 Available water capacity of the soil layer (m H2O mm soil−1) −50–50 % −10 % −1 %
SOL_K1 Saturated hydraulic conductivity (mm h−1) −50–50 % 50 % 49 %
SOL_Z1 Depth from soil surface to bottom of layer (mm) −50–50 % −20 % −31 %
ALPHA_BF1 Baseflow recession constant (1 days−1) 0–1 0.07 0.051
GW_DELAY1 Groundwater delay time (days) 0–500 120 45
GW_REVAP1 Groundwater “revap” coefficient 0.02–0.2 0.10 0.02
RCHRG_DP1 Deep aquifer percolation fraction 0–1 0.01 0.05
GWQMN1 Threshold depth of water in the shallow aquifer required 0–5000 1.9 1.0

for return flow to occur (mm)
CH_K21 Effective hydraulic conductivity (mm h−1) 0–150 0 20
CH_N21 Manning coefficient 0.01–0.3 0.29 0.021

NPERCO2 Nitrate Nitrogen percolation coefficient 0.01–1 0.5 0.2
N_UPDIS2 Nitrogen uptake distribution parameter 5–50 50 50
ANION_EXCL2 Fraction of porosity from which anions are excluded 0.1–0.7 0.59 0.6
ERORGN2 Organic N enrichment ratio for loading with sediment 0–5 4.92 4.1
BIOMIX2 Biological mixing efficiency 0.01–1 0.01 0.01
SOL_NO33 Initial NO3 concentration in soil layer (mg N kg−1) 0–100 11.23 0
CDN4 Denitrification exponential rate coefficient 0–3.0 0.3 1.8
SDNCO4 Denitrification threshold water content 0.1–1.1 1.0 1.0

∗ refers to a default value. The ranges of parameters with superscripts (1–4) were adapted from Gitau and Chaubey (2010), Yeo et al. (2014), Seo et al. (2014), and Neitsch et
al. (2011), respectively.

ulated using the climate sensitivity and GCM scenarios for
comparison with baseline water and nitrate budgets.

2.5.1 Climate sensitivity scenarios

A climate sensitivity analysis aids in identifying the degree
or threshold of responses of hydrologic variables to climate-
induced modifications, and a sensitivity scenario generally
assumes constant changes throughout the year (Mearns,

2001). Following the approach in Mearns (2001), six cli-
mate sensitivity scenarios were prepared by modifying the
baseline data (1999–2014) to assess individual effects of ele-
vated CO2 concentrations, precipitation, and temperature on
watershed hydrological processes (Table 4). Sensitivity sce-
narios were designed to change one variable while holding
other variables constant throughout the simulations. Base-
line precipitation and temperature were modified by percent
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Table 4. Climate sensitivity scenarios developed by modifying
baseline values.

Scenario Percent increase Absolute increase Replacement
in precipitation in temperature of CO2

(%) (◦C) (ppm)

Baseline 0 0 330
1 0 0 590
2 0 0 850
3 11 0 330
4 21 0 330
5 0 2.9 330
6 0 5.0 330

and absolute changes using anomaly and absolute data, re-
spectively, as illustrated in Najjar et al. (2009). They re-
ported mean temperature and precipitation changes over CB
for three future periods (2010–2039, 2040–2069, and 2070–
2099) relative to the baseline period (1971–2000) based on
GCM outputs (Najjar et al., 2009). We used the maximum
increase rate (and value) for 2040–2069 (precipitation: 11 %
and temperature: 2.9 ◦C) and 2070–2099 (precipitation: 21 %
and temperature: 5.0 ◦C) to set the precipitation and tempera-
ture sensitivity scenarios. For example, baseline precipitation
increased by 11 and 21 % for Scenarios 3 and 4, respectively,
and 2.9 and 5.0 ◦C were added to the baseline temperature
for Scenarios 5 and 6, respectively (Table 4). The baseline
CO2 concentration was set as the default value (330 ppm)
for simulations. For the first and second scenarios, the base-
line CO2 concentration was replaced with 590 and 850 ppm,
respectively. The upper value of 850 ppm was used because
GCMs used for temperature and precipitation sensitivity sce-
narios were forced with the assumption of CO2 concentration
of 850 ppm (Najjar et al., 2009). The lower value of 590 ppm
(the average of 330 and 850 ppm) was considered to be the
level of CO2 concentration around the middle of the 21st cen-
tury.

2.5.2 GCM scenario

A GCM-based scenario is the most commonly used method
for assessing future climate change impacts (Mearns, 2001).
We downloaded projected climate data (e.g., daily pre-
cipitation and maximum and minimum temperature) from
the World Climate Research Program’s (WCRP’s) Coupled
Model Intercomparison Project5 (CMIP5) archive (Brekke et
al., 2013). Five GCM data under the Representative Concen-
tration Pathway (RCP) 8.5 scenario were downloaded (Ta-
ble A2), because the RCP 8.5 indicates the highest value
of CO2 concentration in the CMIP5. To be consistent with
the period of the baseline data (1999–2014), 16-year future
data (2083–2098) were used in this study. We further refined
GCM data using the delta change method because spatially
downscaled data are consistent with historical observations
at the global scale, but could be significantly inconsistent at

fine spatial scales, such as a watershed (Wang et al., 2014).
The delta change method was calculated as follows:

Pdelta = GCMP -future, monthly/GCMP -baseline, monthly, (7)
Tdelta = GCMT -future, monthly−GCMT -baseline, monthly, (8)
DGCMP -future, daily = OBSP -baseline, daily×Pdelta, (9)
DGCMT -future, daily = OBST -baseline, daily+ Tdelta, (10)

where Pdelta and Tdelta indicate precipitation (P ) and temper-
ature (T ) biases in GCM data, respectively, GCMfuture,monthly
and GCMbaseline,monthly indicate the monthly average of
GCM data for the future (2083–2098) and baseline (1999–
2014) periods, respectively, OBSbaseline,daily indicates ob-
served daily climate, and DGCMfuture,daily indicates unbi-
ased future climate data. We calculated the ensemble mean
of delta-change values from the five GCMs, because substan-
tial variations existed among the GCM projections (Shrestha
et al., 2012; Van Liew et al., 2012). Then, the SWAT model
was simulated using the ensemble mean to predict hydrolog-
ical processes under future climate conditions. Similar to the
baseline scenario, humidity, wind speed, and solar radiation
values were generated using the SWAT built-in weather gen-
erator owing to data unavailability. We assumed the CO2 con-
centration for the GCM scenario to be 936 ppm, as the spec-
ified CO2 concentration under the RCP8.5 scenario (Mein-
shausen et al., 2011).

2.6 Analyses of simulation outputs

Simulated outputs were summarized at multiple temporal
scales (e.g., monthly, seasonal, and annual). Annual averages
of streamflow, ET, and nitrate loads were calculated to inves-
tigate changes in water and nitrate budgets in response to cli-
mate sensitivity and GCM scenarios. The response of crop
growth to climate variability and change was also analyzed
to show the effects of modified crop biomass on hydrology
and the N cycle. For comparative analyses between two wa-
tersheds, water and nitrate yields were summarized season-
ally for climate sensitivity scenarios (i.e., summer (April–
September) and winter (October–March)) and monthly for
the GCM scenario. Note that water and nitrate yields indicate
the summations of water and nitrate fluxes transported from
lands to streams by surface runoff, lateral flow, and ground-
water flow. All simulation outputs were normalized by total
watershed size.

We conducted a statistical analysis to test whether the sim-
ulation results under climate sensitivity and GCM scenar-
ios were statistically different from those under the baseline
scenario using parametric (paired t-test) and nonparametric
(Wilcoxon signed rank) methods. Note that we used monthly
outputs (168 samples over 14 years) for this analysis. The
statistical significance for the difference was indicated by the
p-value.
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Figure 3. Simulated and observed monthly streamflow and nitrate loads for the (a, b) TCW and (c, d) GW during calibration and validation
periods. Note: 95 PPU stands for 95 % prediction uncertainty.

3 Results and discussions

3.1 Model calibration and validation

Monthly simulations for streamflow and nitrate loads were
compared with corresponding observations (Fig. 3). Results
show that simulated values for monthly streamflow were
in good agreement with observations, but simulated peak
streamflows were underestimated relative to observations.
This underestimation was attributed to the inherent limita-
tions of the SWAT model and limited climate data to capture
local storm effects as it does not account for the intensity and
duration of the precipitation (Qiu et al., 2012). Previous stud-
ies conducted in this region showed similar results, though
the overall simulation results accurately replicated the obser-
vations (Yeo et al., 2014; Lee et al., 2016a). Simulated nitrate
loads were also well matched with actual observations and
the uncertainty band (shown as green in Fig. 3) captured most
observations in the two watersheds. Overall, model perfor-

mance measures fulfilled “good” (e.g., 0.65 < NSE≤ 0.75)
or “very good” (0.75 < NSE) criteria for streamflow and at
least “satisfactory” (0.5 < NSE≤ 0.65) for nitrate loads (Ta-
ble 5). The model performance measures for low flows (NSE
for the natural logarithm of streamflow) also indicated “sat-
isfactory” to “very good” (Table 5). These results demon-
strated that the calibrated model replicated actual conditions
reasonably well (Moriasi et al., 2007; Arnold et al., 2012).

3.2 Responses to climate sensitivity scenarios

3.2.1 Water and nitrate budgets

The 14-year averages of annual hydrologic variables under
the baseline and climate sensitivity scenarios are presented
in Fig. 4. Elevated CO2 concentrations (590 and 850 ppm)
and precipitation increases (11 and 21 %) led to significant
increases in annual streamflow and nitrate loads by 50 and
52 % for the TCW and 43 and 33 % for the GW, respectively,
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Figure 4. The 14-year average of annual hydrologic variables under the baseline and climate sensitivity scenarios at the watershed scale:
(a) streamflow and evapotranspiration (ET), and (b) nitrate loads. Note: the red and black numerical values above the bar and dot graphs,
respectively, indicate the relative changes (%) in hydrologic variables for climate sensitivity scenarios relative to the baseline scenario (relative
change (%)= (sensitivity scenarios− baseline) / baseline× 100). PCP and TMP stand for precipitation and temperature, respectively.

Table 5. Model performance measures for monthly streamflow and
nitrate loads.

Period Variable Streamflow Nitrate loads

TCW GW TCW GW

Calibration NSE 0.723b 0.686b 0.623a 0.702b

(0.828c) (0.719b)
RSR 0.523b 0.556b 0.610a 0.542b

P -bias (%) −5.8c
−3.2c

−9.8c
−4.1c

Validation NSE 0.674b 0.790c 0.604a 0.567a

(0.556a) (0.727b)
RSR 0.566b 0.454c 0.624a 0.652a

P -bias (%) 17.8b 13c
−5.6c

−12.1c

Model performances were rated based on the criteria of Moriasi et al. (2007): a satisfactory,
b good, and c very Good.
a Satisfactory (0.5 < NSE≤ 0.65, 0.6 < RSR≤ 0.7, and ±15≤P -bias <±25),
b Good (0.65 < NSE≤ 0.75, 0.5 < RSR≤ 0.6, and ±10≤P -bias <±15), and
c Very Good (0.75 < NSE≤ 1.0, 0.0 < RSR≤ 0.5, P -bias <±10). A value in parentheses
indicates the NSE for the natural logarithm of streamflow.

relative to the baseline scenario (p-value < 0.01) (Fig. 4). El-
evated CO2 concentrations lowered plant stomatal conduc-
tance, resulting in a decrease in ET of 30 % and thereby

increased streamflow and corresponding increases in nitrate
loads (Fig. 4). The reduced rate of ET (driven by CO2 con-
centrations of 850 ppm) demonstrated in this study is sup-
ported by previous studies using SWAT, such as Ficklin et
al. (2009, −40 %; 970 ppm) and Pervez et al. (2015, −12 %;
660 ppm). Precipitation increase resulted in a direct increase
in streamflow, leading to increased nitrate loads. Compared
to the baseline scenario, a temperature increase of 5 ◦C sig-
nificantly reduced annual streamflow and nitrate loads by 12
and 13 % for the TCW and 11 and 13 % for the GW (p-
value < 0.01), respectively, due to intensified ET (Fig. 4).

It should be noted that the standard version of SWAT tends
to overestimate the impact of CO2 on reduction of ET (Eck-
hardt and Ulbrich, 2003). Maximum leaf area index (LAI) is
assumed to be constant regardless of variation in CO2 con-
centration in SWAT. However, maximum LAI is known to in-
crease with increasing CO2 concentration (Eckhardt and Ul-
brich, 2003). In addition, the degree of reduction in stomatal
conductance varies by plant species, which also is not taken
into account in the SWAT model. Another model simplifi-
cation, which increases uncertainty, is the application of the
same reduction rate to all plants. For example, C3 crops (soy-
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Figure 5. The responses of crop biomass growth to the climate sensitivity scenario: (a–c) corn and (d–f) soybean. Note: PCP and TMP in
the legend stand for precipitation and temperature, respectively.

bean and wheat) are known to have less reduction in stom-
atal conductance with rising CO2 concentration compared to
C4 crops (corn) (Ainsworth and Rogers, 2007). Both factors
could contribute to overestimating reduction of ET and resul-
tant increase in streamflow and nitrate loads (Eckhardt and
Ulbrich, 2003).

Changes in crop growth under climate sensitivity sce-
narios had great impacts on water and nitrate budgets. Al-
though precipitation increase resulted in the greatest increase
in annual streamflow, annual nitrate loads were greater un-
der elevated CO2 concentrations (Fig. 4), due to increased
crop biomass and high N availability from mineralization
of crop residues (Fig. 5a, b). Elevated CO2 concentrations
stimulated crop growth by decreasing water demand and in-
creasing radiation-use efficiency (Abler and Shortle, 2000;
Parry et al., 2004). For example, simulated corn and soybean
biomass increased from 1.5 and 0.9 Mg ha−1 (baseline con-
centration of 330 ppm) to 1.6 and 1.3 (CO2 concentration of
850 ppm) Mg ha−1, respectively (Fig. 5a, b). Increased crop
biomass left greater amounts of crop residue following crop
harvest (winter seasons: October–March), which contributed
to increasing nitrate in soils through mineralization (Lee et
al., 2016a). Our simulation results indicated that mineral-
ized nitrate under elevated CO2 concentrations increased by
27 % for the TCW and 23 % for the GW during winter sea-
sons, compared to the baseline values (Fig. A1). Increased
crop residue resulted in greater nitrate loads under elevated
CO2 concentrations than under conditions of increased pre-
cipitation. In contrast, temperature increase led to lower crop

biomass than the baseline value, due to increased heat stress
(Fig. 5c, f). Lower biomass reduced remaining crop residue
and subsequently reduced mineralized nitrate by 22 % dur-
ing winter seasons, compared to the baseline value (Fig. A1).
Reduction of mineralized nitrate contributed to decreased ni-
trate loads in conjunction with intensified ET. Precipitation
increase slightly decreased corn biomass because increased
precipitation reduced the availability of nutrients for crops
(Fig. 5b), leading to increased nutrient stress. However, soy-
bean biomass did not change in response to precipitation in-
crease (Fig. 5e) since soybean crops can generate N through
fixation as needed.

3.2.2 Comparative analyses

For the purpose of comparing the two watersheds in response
to climate sensitivity scenarios, 14-year averages of seasonal
water and nitrate yields were calculated (Fig. 6). Both ele-
vated CO2 concentrations and precipitation increase led to
greater water and nitrate yields for the two watersheds dur-
ing winter and summer seasons, compared to the baseline
scenario. However, the seasonal pattern of nitrate yield dif-
fered between the two watersheds. Wintertime water yield
was greater than summertime water yield for both water-
sheds, which was consistent with the seasonal pattern of ni-
trate yield for the GW. However, summertime nitrate yield in-
creases were greater than wintertime increases for the TCW,
apparently due to the difference in percent agricultural lands
between the TCW (54.0 %) and GW (36.1 %). Increased wa-
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Figure 6. The 14-year average of seasonal hydrologic variables under the baseline and climate sensitivity scenarios at the watershed scale:
(a) water and (b) nitrate yields. Note: the number on the bar graph indicates the relative changes (%) in hydrologic variables for climate
sensitivity scenarios relative to the baseline scenario. Water and nitrate yields indicate the summations of water and nitrate fluxes trans-
ported from lands to streams by surface runoff, lateral flow, and groundwater flow. PCP and TMP stand for precipitation and temperature,
respectively. SURQ, LATQ, and GWQ indicate water fluxes transported by surface runoff, lateral flow, and groundwater flow, respectively.
NSURQ, NLATQ, and NGWQ indicate nitrate fluxes transported by surface runoff, lateral flow, and groundwater flow, respectively.

ter yield could accelerate the export of nitrate added to the
watersheds through fertilizer activities, which mainly occurs
during summer seasons. Accordingly, increased water yield
caused by elevated CO2 concentrations and precipitation in-
crease induced considerable increase in summertime nitrate
yield by ∼ 62.5 % for the TCW, while only moderately in-
creasing yield by ∼ 35.6 % for the GW, which is dominated
by forest instead of croplands.

Temperature increase reduced summertime water and ni-
trate yields by 18.5 and 27 % for the TCW and 13.9 and
20.2 % for the GW, respectively, mainly due to increased
water loss by ET (Table A3). Wintertime water yield also
decreased for the two watersheds, but changes in winter-
time nitrate yield differed between the two watersheds. A
decrease of 9.5 % in wintertime nitrate yield was found for
GW, but wintertime nitrate yield increased by 1.6 % for the
TCW (Fig. 6b), due to modified crop growth patterns and
contrasting soil characteristics between the two watersheds.
Temperature increase can drive crops to reach maturity ear-
lier while exerting increased heat stress on crops, leading to
lower biomass compared to the baseline (Fig. 5c, f). These
two factors collectively reduced soil water and nitrate con-

sumption by crops at the end of the growth stage under tem-
perature increase scenarios, subsequently increasing soil wa-
ter content and nitrate leaching compared to the baseline
(Fig. A2). Nitrate leached into groundwater was discharged
to streams through groundwater flow during winter seasons.
The TCW showed increased nitrate leaching of 1.0 kg N ha−1

compared to the GW, due to a larger percentage of well-
drained soils with a high infiltration rate. Different leaching
rates between the TCW and GW soils led to a greater in-
crease in wintertime nitrate flux transported by groundwa-
ter flow (NGWQ) for the TCW (0.21 kg N ha−1) compared
to the GW (0.16 kg N ha−1) (Fig. 6b). However, intensified
ET reduced wintertime water and nitrate fluxes transported
by surface runoff (SURQ and NSURQ, respectively) for the
two watersheds (Table A3), while water fluxes transported
by lateral and groundwater flow (LATQ and GWQ, respec-
tively) were rarely changed. Because the majority of water
flux was transported by groundwater flow for the TCW and
surface runoff for the GW (Fig. 6a), a decrease in SURQ
led to a substantial reduction of wintertime NSURQ for
GW (0.45 kg N ha−1) with less reduction shown in the TCW
(0.12 kg N ha−1), compared to the baseline (Fig. 6b). There-
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Figure 7. Monthly average of (a) mean temperature and (b) cumu-
lative precipitation for the baseline (2001–2014) and future (2085–
2098) periods. Note: “Projection” stands for the ensemble mean of
five GCM data, and the range stands for the interval between the
maximum and minimum values of five GCM data.

fore, both increased NGWQ and decreased NSURQ during
winter seasons collectively led to an increasing pattern of
wintertime nitrate yield for the TCW and a decreasing pat-
tern for the GW, compared to the baseline scenario. Note that
denitrification was rarely affected by temperature increase
because reduced soil water content resulting from increased
ET at higher temperatures decreased denitrification.

3.3 Responses to the GCM scenario

3.3.1 Comparison of climate data

The monthly averages of mean temperature and cumulative
precipitation under the baseline scenario were compared with
the ensemble means of five GCMs (Fig. 7). Projected temper-
ature was constantly higher than the baseline value through-
out the year by 3.8–6.2 ◦C (Fig. 7a). Compared to the base-
line, projected precipitation was greater except for May and
October (Fig. 7b). Monthly cumulative precipitation was up
to 19 mm greater in August and up to 11 mm lower in Oc-
tober, in comparison to the baseline values. Note that the
annual average of mean temperature increased from 13.9 ◦C
(baseline) to 18.6 ◦C (projection), and the annual average of
cumulative precipitation also increased from 1221 mm (base-
line) to 1322 mm (projection).

3.3.2 Water and nitrate budgets

Baseline hydrologic variables (e.g., streamflow, ET, and ni-
trate loads) are compared with the simulated outputs in Ta-
ble 6. Relative to the baseline scenario, annual streamflow
and nitrate loads significantly increased by 70 and 66 % for
the TCW and 50 and 56 % for the GW, respectively (p-
value < 0.01). These increasing patterns were mainly caused
by two factors: (1) increased precipitation and (2) de-
creased ET resulting from an elevated CO2 concentration of
936 ppm. Annual precipitation increased by 8 % and elevated
CO2 concentrations reduced ET by 32 % for the TCW and
26 % for the GW (Table 6).

3.3.3 Comparative analyses

Responses of the two watersheds to the GCM scenario were
compared using the monthly averages of water and nitrate
yields as shown in Fig. 8. Relative to the baseline, projected
water and nitrate yield was greater over the year. The greatest
increase in water yield was observed in August and Septem-
ber when the increased rate of precipitation was greatest.
However, the increased rate of nitrate yield was higher in
April than other months, due to a significant export of nitrate
from fertilizer applications.

The increased rate of nitrate yield (under the GCM sce-
nario relative to the baseline scenario) was 5.2 kg N ha−1

greater overall in the TCW compared to the GW, mainly
due to the difference in watershed characteristics (Fig. 8b, d).
First, a larger percentage of croplands in TCW led to greater
nitrate export from fertilizer application compared to GW
with a smaller percent of croplands. This was because in-
creased water yield resulting from an elevated CO2 concen-
trations and increased precipitation promoted the export of
nitrate in the soil profile (Suddick et al., 2013). For exam-
ple, nitrate yield increased by 1.4 kg N ha−1 for the TCW
and 0.9 kg N ha−1 for the GW in April, when fertilizer appli-
cation occurred, compared to the baseline. Second, a larger
percentage of poorly drained soils in the GW contributed to
reducing nitrate yield via greater potential of denitrification,
compared to the TCW dominated by well-drained soils, un-
der the GCM scenario. Increased soil water content result-
ing from an elevated CO2 concentration of 936 ppm pro-
vided anaerobic conditions for denitrification. Compared to
the baseline, the GW and TCW showed increased nitrate
removal by denitrification of 3.9 and 0.5 kg N ha−1 under
the GCM scenario, respectively. Eventually, the GW lost
8.7 kg N ha−1 more nitrate via denitrification than the TCW,
which likely led to a lower nitrate yield for the GW.

4 Implications and limitations

The key results of this study suggest important future re-
search for improving our understanding of climate change
impacts on nutrient loads into the CBW. Analysis of cli-

Hydrol. Earth Syst. Sci., 22, 689–708, 2018 www.hydrol-earth-syst-sci.net/22/689/2018/



S. Lee et al.: Comparative analyses of hydrological responses 701

Table 6. The 14-year average of hydrologic variables under the baseline and GCM scenarios.

Variables TCW GW

Baseline GCM Relative Baseline GCM Relative
scenario change (%) scenario change (%)

Streamflow 1.5 2.5 70 1.7 2.5 50
(m3 s−1 ha−1 104) (2.3–2.8) (2.3–2.8)

ET 2.7 1.8 −32 2.3 1.7 −26
(mm ha−1)

Nitrate loads 12.5 20.8 66 5.3 8.2 56
(kg N ha−1) (19.8–22.0) (7.8–8.9)

Note: the numbers within parentheses indicate the maximum and minimum values of simulations with five GCM data. Relative
change indicates the percent changes in the ensemble mean relative to the baseline value.

Figure 8. The 14-year average of monthly water and nitrate yields under the baseline and GCM scenarios. Note: the descriptions of abbrevi-
ations are available in the caption of Fig. 6.

mate variability and change impacts on watershed hydro-
logical processes illustrate the close relationship between
agricultural activities and future nitrate export in the wa-
tershed dominated by croplands, due to excessive export
of nitrate from springtime fertilizer application. Changes in
crop growth resulting from climate change are likely to al-
ter agricultural activities and associated nitrate loads. Fer-
tilizer application might increase in the future because in-
creased extreme climate conditions (e.g., high-intensity rain-
fall and flooding) might lead to increased risk of nutrient
loss to leaching and runoff, reducing the fertilizer use ef-
ficiency of field crops (Suddick et al., 2013). Our simula-
tion indicated considerable increases in nitrate transported
by surface runoff (NSURQ) due to increased precipitation
in April, when the vast majority of fertilizers were applied
(Fig. 8b, d). As a result, projected corn biomass appeared

to be 0.03 Mg ha−1 lower than the baseline value, likely due
to increased nutrient stress (Fig. 9a). Conversely, soybean
biomass increased under the GCM scenario because soybean
could accumulate N through biological fixation and elevated
CO2 concentrations contributed to biomass growth (Fig. 9b).
To adapt to warmer temperatures, early planting of sum-
mer crops could be suggested to increase crop production
while reducing heat stress (Woznicki et al., 2015). For exam-
ple, when planting dates were shifted 10 days earlier, soy-
bean yield increased on average by 0.03 Mg ha−1 (Fig. 9b).
Contrary to our expectation, corn yield decreased under the
earlier planting date, due to increased nutrient stress result-
ing from intensified precipitation. Lastly, irrigation patterns
could be changed due to decreased ET resulting from ele-
vated CO2 concentrations. However, there are limited studies
investigating projected future agricultural practices. There-
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Figure 9. Crop biomass growth under the baseline and GCM scenarios: (a) corn and (b) soybean. Note: “Projection” stands for the simulated
biomass planted on the original planting dates under the GCM scenario. Earlier planting indicates the simulated biomass planted 10 days
earlier than the original planting dates under the GCM scenario.

fore, it is crucial to investigate potential agricultural activities
under climate change scenarios and their projected effects on
nitrate loads.

Climate change-driven modifications indicated a potential
overall increase in nitrate export. Therefore, the importance
of conservation practices aimed at N mitigation would be
even more critical in the future. Comparative analyses of two
watersheds can provide a practical guideline and have im-
plications for agricultural watersheds in coastal areas in the
CBW because our analyses considered climate change im-
pacts on croplands (crop growth, water and nutrient cycling)
and nutrient transport mechanisms in the context of detailed
agricultural management practices. In addition, the two wa-
tersheds showed the typical site characteristics in the coastal
watershed, in terms of topographic and soil characteristics,
and the agricultural practices commonly used in the southern
CBW. Hence, the findings from this study can be applicable
to other catchments in the CBW region in preparing climate
change adaptation strategies. For example, the effective man-
agement of nutrients applied in manure or fertilizer would
be even more critical for reducing nitrate export from a wa-
tershed dominated by croplands. Winter cover crops, which
are widely implemented in this region, would likely show
increased value in mitigating agricultural nitrate loss during
winter seasons, considering increased N availability and in-
creased wintertime precipitation. In a watershed dominated
by poorly drained soils, wetland restoration would be well
positioned to enhance denitrification (McCarty et al., 2014),
as would be the use of drainage control structures on ditches
and tiles draining prior converted croplands (poorly drained
areas of the farm landscape).

Note that although forest litterfall can have a significant
impact on nutrient cycles (Zhang et al., 2014), the current
version of the SWAT model is limited in representing for-
est impacts (Yang et al., 2016). In our simulation, growth of
deciduous trees was simulated for forest areas with the de-

fault setting. This setting allowed tree growth to affect wa-
ter and nutrient cycling via ET and uptake, but simulated
tree growth was considerably underestimated compared to
actual growth and litterfall was rarely considered (Yang et al.,
2016). Hence, our simulation might poorly represent the eco-
logical responses of forests to climate change. Future work
should accurately consider forest ecosystems through model
improvement.

5 Summary and conclusion

Water quality degradation by human activities on agricul-
tural lands is a great concern on the Coastal Plain of the
CBW. This degradation is expected to increase in the future
due to changes in climate variability and conditions. Cur-
rently, there is limited information about how climate change
will influence hydrology and nutrient cycles. This study used
the SWAT model to simulate the impacts of potential cli-
mate variability and change on two adjacent watersheds in
the Coastal Plain of the CBW. The climate sensitivity and
GCM scenarios were prepared to assess the individual and
combined impact of three climate factors (e.g., increases in
CO2 concentration, precipitation, and temperature). We per-
formed comparative analyses between the two watersheds to
demonstrate how key landscape characteristics influence the
watershed level response to climate variability and change.

Our simulation results showed that water and nitrate bud-
gets in two watersheds on the Coastal Plain of the CBW
were significantly sensitive to climate variability and change.
Compared to the baseline scenario, a precipitation increase of
21 % and elevated CO2 concentration of 850 ppm resulted in
increases in streamflow and nitrate loads of 50 and 52 %, re-
spectively. A temperature increase of 5.0 ◦C reduced stream-
flow and nitrate loads by 12 and 13 %, respectively. Under
the GCM scenario, annual streamflow and nitrate loads in-
creased by 70 and 66 %, respectively, compared to the base-
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line scenario. Contrasting land use and soil characteristics led
to different patterns of nitrate yield between two watersheds.
The watershed with a larger percent of cropland showed a
5.2 kg N ha−1 greater increase in the rate of nitrate yield (un-
der the GCM scenario relative to the baseline scenario) com-
pared to the watershed with a lower percent of cropland un-
der the GCM scenario, due to increased export of nitrate de-
rived from fertilizer. Increased nitrate loss by denitrification
also contributed to smaller increases in nitrate yield in the
watershed dominated by poorly drained soils compared to
the watershed dominated by well-drained soils. Based on our
results, we suggest that increased implementation of conser-
vation practices, such as nutrient management planning, win-
ter cover crops, and wetland restoration and enhancement, is
necessary to mitigate increased nitrate loads facilitated by
climate change. These findings may help watershed man-
agers and decision makers establish climate change adap-
tation strategies for mitigating water quality degradation in
areas impaired by excessive agricultural nutrient loadings.

Data availability. The data used to support the findings presented
in this paper are available in Lee et al. (2017).
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Appendix A

Table A1. Management schedules for the baseline scenario (adapted from Lee et al., 2016a).

Baseline scenario (no winter cover crop)

Crop Planting Fertilizer Harvest

Corn (after corn) 30 April 157 kg N ha−1 of poultry manure on 20 April 3 October
(no-till) 45 kg N ha−1 of sidedress 30 % UAN on 7 June

Corn (after soybean 30 April 124 kg N ha−1 of poultry manure on 20 April 3 October
and double-crop soybean) (no-till) 34 kg N ha−1 of sidedress 30 % UAN on 7 June

Soybean 20 May 15 October
(no-till)

Double-crop winter 10 October 34 kg N ha−1 of sidedress 30 % UAN on 8 October 27 June
wheat (Dbl WW) 45 kg N ha−1 of sidedress 30 % UAN on 1 March

67 kg N ha−1 of sidedress 30 % UAN on 5 April

Double-crop soybean 29 June 1 November
(Dbl Soyb)

Note: UAN stands for urea-ammonium nitrate. The typical nitrogen content for poultry manure is assumed to be 2.8 % (Glancey et al., 2012).

Table A2. Five general circulation models (GCMs) used to construct the GCM scenario.

No. Model Full name Modeling group

1 BCC-CSM1-1.1 Beijing Climate Center (BCC) – Climate Sys-
tem Model (CSM)

Beijing Climate Center, China Meteorological
Administration

2 CCSM4.1 Community Climate System Model (CCSM)
4.1

National Center for Atmospheric Research

3 GFDL-ESM2G.1 Geophysical Fluid Dynamics Laboratory
(GFDL) – Earth System Model (ESM)

NOAA Geophysical Fluid Dynamics Labora-
tory

4 IPSL-CM5A-LR.1 Institut Pierre-Simon Laplace (IPSL) – Climate
Model(CM)5A-Low Resolution

Institut Pierre-Simon Laplace

5 MIROC-ESM-
CHEM.1

An atmospheric chemistry coupled version of
Model for Interdisciplinary Research on Cli-
mate (MIROC) – Earth System Model (ESM)

Japan Agency for Marine-Earth Science and
Technology, Atmosphere and Ocean Research
Institute (The University of Tokyo), and Na-
tional Institute for Environmental Studies

Table A3. Seasonal evapotranspiration (ET, mm ha−1 102) under climate sensitivity scenarios (CO2: carbon dioxide concentration; PCP:
precipitation; and TMP: temperature).

Scenario Corn Soybean

Winter Summer Winter Summer

Baseline 0.74 2.00 0.68 1.64
CO2 (590 ppm) 0.65 1.77 0.59 1.49
CO2 (850 ppm) 0.50 1.40 0.46 1.22
PCP (11 %) 0.75 2.03 0.68 1.68
PCP (21 %) 0.75 2.05 0.69 1.71
TMP (2.6 ◦C) 0.81 2.03 0.77 1.67
TMP (5.0 ◦C) 0.87 2.05 0.83 1.70
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Figure A1. The 14-year average of annual mineralized nitrate during winter seasons (October–March) under the baseline and cli-
mate sensitivity scenarios at the watershed scale. Note: the black numerical values above the bar graph indicate the relative changes
(%) in hydrologic variables for climate sensitivity scenarios relative to the baseline scenario (relative change (%)= (sensitivity scenar-
ios− baseline) / baseline× 100). PCP and TMP stand for precipitation and temperature, respectively.

Figure A2. Changes in (a, b) soil water content and (c, d) nitrate leaching under temperature increase for the Tuckahoe Creek Watershed
(TCW) and the Greensboro Watershed (GW). Note: TMP stands for temperature.
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