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Abstract. This study analyzes the quality of the raw and
post-processed seasonal forecasts of the European Centre for
Medium-Range Weather Forecasts (ECMWF) System 4. The
focus is given to Denmark, located in a region where sea-
sonal forecasting is of special difficulty. The extent to which
there are improvements after post-processing is investigated.
We make use of two techniques, namely linear scaling or
delta change (LS) and quantile mapping (QM), to daily bias
correct seasonal ensemble predictions of hydrologically rel-
evant variables such as precipitation, temperature and ref-
erence evapotranspiration (ET0). Qualities of importance in
this study are the reduction of bias and the improvement in
accuracy and sharpness over ensemble climatology. Statisti-
cal consistency and its improvement is also examined. Raw
forecasts exhibit biases in the mean that have a spatiotempo-
ral variability more pronounced for precipitation and temper-
ature. This variability is more stable for ET0 with a consistent
positive bias. Accuracy is higher than ensemble climatology
for some months at the first month lead time only and, in
general, ECMWF System 4 forecasts tend to be sharper. ET0
also exhibits an underdispersion issue, i.e., forecasts are nar-
rower than their true uncertainty level. After correction, re-
ductions in the mean are seen. This, however, is not enough
to ensure an overall higher level of skill in terms of accu-
racy, although modest improvements are seen for tempera-
ture and ET0, mainly at the first month lead time. QM is bet-
ter suited to improve statistical consistency of forecasts that
exhibit dispersion issues, i.e., when forecasts are consistently
overconfident. Furthermore, it also enhances the accuracy of
the monthly number of dry days to a higher extent than LS.

Caution is advised when applying a multiplicative factor to
bias correct variables such as precipitation. It may overesti-
mate the ability that LS has in improving sharpness when a
positive bias in the mean exists.

1 Introduction

Seasonal forecasting has gained increasing attention during
the last three decades due to high societal impacts of ex-
treme meteorological events that affect a plethora of weather-
related sectors such as agriculture, environment, health,
transport and energy, and tourism (Dessai and Soares, 2013).
Information on weather-related hazards months ahead is im-
portant for protection against extremes for these sectors.

General circulation models (GCMs) have become the
state-of-the-art technology for issuing meteorological fore-
casts at different timescales. GCM-based seasonal forecast-
ing is possible due to signals, which can be extracted from
slowly changing systems such as the ocean and, to a lesser
extent, land, which then translate into a signal in the at-
mospheric patterns (Weisheimer and Palmer, 2014; Doblas-
Reyes et al., 2013). El Niño–Southern Oscillation, ENSO,
is the strongest of these signals, and its influence on sea-
sonal forecasting is higher near the tropics (Weisheimer and
Palmer, 2014).

Seasonal ensemble forecasts have been operational in Eu-
rope since the late 1990s, provided by the European Cen-
tre for Medium-Range Weather Forecast (ECMWF) (Molteni
et al., 2011), and in the US since August 2004, provided
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by the National Center of Environmental Prediction (Saha
et al., 2013). Other examples of operational seasonal fore-
casts include the ones generated by the Met Office in the UK
(Maclachlan et al., 2015), the Australian Bureau of Meteo-
rology (Hudson et al., 2013), the Beijing Climate Center (Liu
et al., 2015) and the Hydrometeorological Center of Russia
(Tolstykh et al., 2014).

ECMWF is a leading center for weather and climate pre-
dictions and its seasonal forecasting system is often regarded
as the best (Weisheimer and Palmer, 2014). Research on the
quality of the seasonal GCM forecasts has been done for
different system versions (Molteni et al., 2011; Weisheimer
et al., 2011). The system has also been compared to other
GCMs (Kim et al., 2012a, b; Doblas-Reyes et al., 2013) or
statistical (van Oldenborgh et al., 2005) seasonal forecasting
systems.

Despite the efforts mentioned above and the documented
improvements on forecasting skill of meteorological param-
eters, specially over the tropics (Molteni et al., 2011), several
issues remain. The main one, and specific to forecasting in
Europe and North America, is that the signal of the main
driver of seasonal predictability, the ENSO, has been found
to be weak or nonexistent (Molteni et al., 2011; Saha et al.,
2013) in these regions, leading to poor skill of atmospheric
variables such as precipitation. For example, Weisheimer and
Palmer (2014) studied the reliability (consistency between
the forecasted probabilities and their observed frequencies)
and ranked forecasts using five categories from “danger-
ous” (1) to “perfect” (5) for two regimes of precipitation (wet
or dry) and temperature (cold or warm). For the northern Eu-
ropean region, they found dry (wet) forecasts during summer
(started in May) to be “dangerous” (“marginally useful”) and
dry (wet) forecasts during winter (started in November) to be
“not useful” (“marginally useful”). For temperature, results
were less variable among the different categories with win-
ter cold or warm and summer warm forecasts found to be
marginally useful and summer cold temperatures forecasts
found to be in category (5) for perfect. Moreover, Molteni et
al. (2011) found weak anomaly correlations of precipitation
and temperature during the summer for most of the regions
located in northern Europe.

Due to the issues stated above, the need for post-
processing the raw forecasts in the hope of improvements
has gained importance in the scientific literature. A plethora
of methods for statistical post-processing exist for a range
of temporal scales. These methods consist of transfer func-
tions, computed on the basis of reforecasts, or past records of
forecast–observation pairs (Hamill et al., 2004) whose goal
is to match forecast values with observed ones. The choice of
a post-processing method is determined by the availability of
reforecast data and the application at hand. Although in prin-
ciple any method could be used for seasonal forecasts, this
temporal scale represents a special difficulty due to the fact
that initial condition skill is mostly gone and there is little
detectable signal behind a large amount of chaotic error.

In particular, for the post-processing of ECMWF System
4 seasonal forecasts, a number of studies have been carried
out: Crochemore et al. (2016), Peng et al. (2014), Trambauer
et al. (2015) and Wetterhall et al. (2015). The most used
methods are linear scaling (LS) and quantile mapping (QM),
although Peng et al. (2014) used a Bayesian merging tech-
nique. In general, the studies are successful in improving the
values of the forecast qualities the authors considered impor-
tant. For example, Wetterhall et al. (2015) reported higher
skill of forecasts of the frequency and duration of dry spells
once an empirical quantile mapping has been applied to daily
values of precipitation. Crochemore et al. (2016) analyzed
the effect different implementations of the linear scaling and
quantile mapping methods had on streamflow forecasting,
concluding that the empirical quantile mapping improves the
statistical consistency of the precipitation forecasts for dif-
ferent catchments throughout France.

The aforementioned studies have been made only for pre-
cipitation and/or mainly large areas. For hydrological ap-
plications seasonal forecasting skill of instantaneous values
of precipitation, temperature and reference evapotranspira-
tion (ET0) at the catchment scale (100–1000 km2) are, how-
ever, more important. Therefore, we analyze the bias, skill
and statistical consistency of the ECMWF System 4 for
Denmark focusing on precipitation, temperature and ET0 of
relevance for seasonal streamflow forecasting at the catch-
ment scale. We make use of the two most used methods for
post-processing, namely linear scaling and quantile mapping
(Zhao et al. 2017), applied to daily values. We focus on the
skill of monthly aggregated values of gridded data through-
out Denmark for both the raw and the corrected forecasts. We
investigate the following questions:

1. What is the longest lead time for which an acceptable
forecast is achieved?

2. Is it possible to extend the acceptable forecast lead time
with different post-processing techniques?

In this study we argue that an acceptable forecast needs to
have consistency between the observed probability distribu-
tion and the predictive one. This is what we call statistical
consistency throughout the paper. A statistically consistent
forecast system has low (or nonexistent) bias in both mean
and variance. Secondly, we argue that the forecast to be used
must be better than climatology, having a higher skill both
in terms of accuracy and sharpness and giving priority to
the former. These characteristics for an “acceptable forecast”
follow the principle that the purpose of post-processing is to
maximize sharpness subject to statistical consistency as dis-
cussed by Gneiting et al. (2007).
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2 Data and methods

2.1 Ensemble prediction system and observational grid

Seasonal reforecasts of the ECMWF System 4 for the years
1990–2013 are used in the present study. The system is com-
prised of 15 members (for January, March, April, June, July,
September, October and December) and 51 members (for
February, May, August and November) with a spatial reso-
lution of 0.7◦ and are run for 7 months with daily output.
The increase in ensemble size for February, May, August and
November attempts to aid in improving forecasts for the sea-
sons with a higher predictability. Precipitation, temperature
and ET0 are the variables under study. For the computation of
ET0, we make use of the Makkink equation (Hendriks, 2010),
which takes as inputs temperature and incoming shortwave
solar radiation from ECMWF System 4.

Observed daily values for precipitation, temperature and
ET0 from the Danish Meteorological Institute (DMI) are
used (Scharling and Kern-Hansen, 2012). The spatial scale
for precipitation and temperature, ET0, is 10 and 20 km, re-
spectively. However, we assume temperature and ET0 to be
equally distributed within the 20 km and set the same val-
ues of the 20 km to the 10 km grid. Then, in total there are
662 (for precipitation) and 724 (for temperature and ET0)
grid points, which cover the 43 000 km2 area of Denmark.
Moreover, precipitation is corrected for under-catch errors
as explained in Stisen et al. (2011) and (2012). The time
and spatial variations of the variables can be seen in Fig. 1.
Values are monthly accumulations for precipitation and ET0
and monthly averages for temperature, averaged over the ob-
served record (1990–2013). Danish weather is mainly driven
by its proximity to the sea. There is a modest spatial precipi-
tation gradient from west to east, which is more pronounced
during autumn and winter. The driest month in terms of pre-
cipitation is April and the wettest is October. ET0 also shows
a modest spatial variability during spring and summer, with
larger values in eastern Denmark.

2.2 Post-processing strategy

Given the fact that the spatial resolution of the ensemble data
differs from the resolution of the observed data, first the en-
semble forecasts were interpolated to match the 10 km grid of
observed values using an inverse distance weighting (Shep-
ard, 1968), where the values at a given point on the higher-
resolution grid (10 km) are computed using a weighted av-
erage of the four surrounding nodes of the lower-resolution
forecast grid (70 km). The weights are computed as the
inverse of the Euclidean distances between the observed
grid node and the forecast nodes. Forecasts are then post-
processed for each grid point, time of forecast (month) and
lead time (month) for each variable separately. Moreover,
the computation is done in a leave-one-out cross-validation
mode (Wilks, 2011, and Mason and Baddour, 2008) such that

the year being corrected is withdrawn from the sample. This
is to ensure independence between training and validation
data. Then, for example, for precipitation, 662×12×7×24
(no. of grid points, no. of months, no. of lead times and no.
of years in the sample, respectively) correction models are
computed.

2.3 Post-processing methods

2.3.1 Delta method – linear scaling (LS)

The linear scaling approach operates under the assumption
that forecast values and observations will agree in their
monthly mean once a scale or shift factor has been applied
(Teutschbein and Seibert, 2012). LS is the simplest possible
post-processing method as it only corrects for biases in the
mean. The factor is commonly computed differently for pre-
cipitation, ET0 and temperature due to the different nature of
the variables, as precipitation and ET0 cannot be negative.

For precipitation and ET0,

f ∗k,i =

N−1∑
j=1

yj

N−1∑
j=1

f j

fk,i for i 6= j. (1)

For temperature,

f ∗k,i = fk,i −
1

N − 1

[
N−1∑
j=1

f j −

N−1∑
j=1

yj

]
for i 6= j, (2)

where fk,idenotes ensemble member k for k = 1, . . . , M

of forecast–observation pair i = 1, . . . , N ; M denotes the
number of members (15 or 51) and N is the number of
forecast–observation pairs; f j denotes the ensemble mean;
and yj denotes the verifying observation. Note that, as stated
in Sect. 2.3, both the means of f j and yj are computed
with the sample that withdraws forecast and observation pair
i. Finally, f ∗k,i represents the corrected ensemble member.
Note that for precipitation, before applying the correction
factor, we set all values of daily precipitation below a specific
threshold to zero to remove the “drizzle effect” (Wetterhall
et al., 2015). The threshold was chosen so that the number
of dry days on a given forecast month matches the number
of observed dry days. This threshold varies according to the
month and the year and spatially, with an average value of
1.5 mm day−1 over Denmark.

2.3.2 Quantile mapping (QM)

QM relies on the idea of Panofsky and Brier (1968). This
method matches the quantiles of the predictive and observed
distribution functions in the following way:

f ∗k,i =G−1
i

(
Fi

(
fk,i

))
, (3)
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Figure 1. Spatiotemporal variability of precipitation (mm month−1), temperature (◦C) and reference evapotranspiration (mm m−1) of
monthly aggregated values (P , ET0) and monthly averages (T ) of the observation period (1990–2013).

where Fi represents the predictive cumulative distribution
function (CDF) for forecast–observation pair i, and Gi rep-
resents the observed CDF. Again, note that, as stated in
Sect. 2.3, both Fi and Gi are computed with a sample that
withdraws forecast and observation pair i.

Fi is calculated as an empirical distribution function fitted
with all ensemble members of daily values of a given month
for a given lead time and grid point. For example, for a fore-
cast of target month June initialized in May, Fi is fitted using
a sample comprising 30 (days) × 23 (number of years in the
reforecast minus the year to be corrected) × 51 (number of
ensemble members). The same is done for Gi , except that
the fitting sample is comprised of 30×23 values only. F and
G are computed as an empirical CDF. Linear interpolation is
needed to approximate the values between the bins of F and
G. Extrapolation is then needed to map ensemble values and
percentiles that are outside the fitting range. Note that other
approaches to deal with values outside the sample range ex-
ist that are more suitable when the focus of the study is the
extreme values. For example, Wood et al. (2002) fitted an ex-

treme value distribution to extend the empirical distributions
of the variables of interest. However, analyzing the effects of
different fitting strategies is out of the scope of the present
paper.

2.4 Verification metrics

In order to evaluate the raw forecasts and their improvement
after post-processing, we analyzed four attributes of forecast
quality: bias, skill in regards to accuracy and sharpness, and
statistical consistency.

2.4.1 Bias

Bias is a measure of under- or overestimation of the mean of
the ensemble in comparison with the observed mean:

% Bias=


N∑

i=1
f i

N∑
i=1

yi

− 1

× 100 (4)
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for precipitation and ET0 and

Bias=
1
N

[
N∑

i=1
f i −

N∑
i=1

yi

]
(5)

for temperature. fi and yi are the same as in Eq. (1).
If the bias is negative, the forecasting system exhibits a

systematic underprediction. Conversely, if the amount is pos-
itive the system shows an average overprediction. Values
closer to 0 are desirable.

2.4.2 Skill

The skill of a forecasting system is the improvement the
system has, on average, with respect to a reference system,
which could be used instead. For example, climatology for
seasonal forecasts or persistence for short-range forecasts.
The skill score is computed in the following manner:

Skill=
Scoresys−Scoreref

Scoreper−Scoreref
, (6)

where Scoresys, Scoreref and Scoreper are the score value of
the system to be evaluated, the reference system and the value
of a perfect system, respectively. The range of the skill is
from −∞ to 1 and values closer to 1 are preferred. In this
paper we calculate the skill with respect to accuracy and
sharpness. We compute the continuous rank probability score
(CRPS) (Hersbach, 2000), as a general measure of the accu-
racy of the forecast as it contains information on both fore-
cast biases in the mean and spread. The computation of the
score is as follows:

CRPS=
1
N

N∑
i=1

∞∫
−∞

[
Pi (x)−H (x− yi)

]2dx, (7)

where Pi(x) is the CDF of the ensemble forecast for pair i

and H (x− yi) is the Heaviside function that takes the value
1 when x > yi and 0 otherwise; and yi and N are, as in
Eq. (1), the verifying observation for forecast–observation
pair i and the number of forecast–observation pairs, respec-
tively. We made use of the EnsCrps function of the R package
SpecsVerification (Siegert, 2015) developed in R version 0.4-
1. For the skill with respect to sharpness we use the average
along i = 1, . . . , N of the differences between the 25th and
the 75th percentiles of each of the ensemble CDFs, Pi .

In Eq. (6), our reference is ensemble climatology (1990–
2013), where the year to be evaluated is withdrawn from the
sample. Both the accuracy and sharpness score for a perfect
system (see Eq. 6, Scoreper) is equal to 0 so the skill score
can be then simplified as

Skill= 1−
Scoresys

Scoreref
, (8)

which, once multiplied by 100, is the percentage of improve-
ment (if positive) or worsening (if negative) over the refer-

ence forecast. Throughout the paper, the skill related to ac-
curacy will be denoted as CRPSS whereas the skill due to
sharpness will be denoted as SS.

Furthermore, to define the statistical significance of the
differences between the skill of ensemble climatology and
ECMWF System 4 forecasts, as well as the post-processed
predictions, a Wilcoxon–Mann–Whitney test (WMW test;
see Hollander et al., 2014) was carried out. The WMW test,
unlike the most common t test, makes no assumptions about
the underlying distributions of the samples. We applied the
test for each grid point, target month and lead time.

2.4.3 Statistical consistency

We use the probability integral transform (PIT) diagram for a
depiction of the statistical consistency of the system. The PIT
diagram is the CDF of the zi’s defined as zi = Pi(X ≤ yi).
Therefore, zi is the value that the verifying observation yi at-
tains within the ensemble CDF, Pi . The diagram represents
an easy check of the biases in the mean and dispersion of the
forecasting system. For a forecasting system to be consistent,
meaning that the observations can be seen as a draw of the
forecast CDF, the CDF of zi should be close to the CDF of
a uniform distribution on the [0, 1] range. Deviations from
the 1 : 1 diagonal represent bias issues in the ensemble mean
and spread. The reader is referred to Laio and Tamea (2007)
and Thyer et al. (2009) for an interpretation of the diagram.
Similar to Laio and Tamea (2007), we make use of the Kol-
mogorov bands to have a proper graphical statistical test for
uniformity. Finally, we make use of the Anderson–Darling
test (Anderson and Darling, 1952) for a numerical test of the
uniformity of the PIT diagrams. We carry out the test using
the ADGofTest (Gil, 2011) R package (R Core Team, 2017).
Here, the null hypothesis is that the PIT diagram follows a
uniform distribution on the [0–1] range.

2.5 Accuracy of maximum monthly daily precipitation
and number of dry days

For applications such as flooding and forecasting of low
flows and droughts, water managers might be interested not
only in the skill of monthly accumulated precipitation but
also in the skill of other precipitation quantities. We will
use a rather simple approach to check for deficiencies of the
raw forecasts and whether the post-processing methods im-
prove these deficiencies. We will analyze the improvement in
the prediction of monthly maximum daily precipitation and
number of dry days in each month. For this study, a dry day
is defined as the day with observed zero-precipitation, and
the comparison with the ensembles is made daily.
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Figure 2. Example of a monthly forecast, valid for August and a lead time of 1 month for a grid point located in west-central Denmark.
Blue box plots are the ensemble climatological forecasts. Black box plots are ECMWF System 4 raw or post-processed forecasts. Red dots
represent observed values. Bias as in Eqs. (4) and (5) and skill scores for accuracy and sharpness (CRPSS and SS) as in Eq. (8). The first
column corresponds to the raw forecast; the second and third columns correspond to the corrected forecasts with the linear scaling or delta
change (LS) and quantile mapping (QM) methods, respectively.
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Figure 3. Percentage bias and absolute bias of monthly values of raw forecasts. The y axis represents the target month and the x axis
represents the different lead times at which target months are forecasted. Values in blue range represent a positive bias and values in red
represent a negative bias.

3 Results

3.1 Analysis of raw forecasts

The first row in Fig. 2 depicts the ECMWF System 4 fore-
cast and the ensemble climatological forecast for August ac-
cumulated precipitation and ET0 as well as averaged temper-
ature for one grid located in west-central Denmark for the
first month lead time. The values for different forecast qual-
ities for that grid point are also included. For a forecasting
system to be useful, it has to be at least better than a clima-
tological forecast. For the given example here, the reference
forecast is wider than the ECMWF System 4 forecast. This
is an example of a month where we have a slightly better
skill than the ensemble climatological forecast for the three
variables in question. For example, raw temperature predic-
tions from ECMWF System 4 improve, on average, on the
reference forecast by 22 % in terms of accuracy. This level
of skill is attained due to the sharper forecasts that exhibit
a low bias (−0.23 ◦C). On the other hand, sharpness is only
a desirable property when biases are low. This is illustrated
for precipitation forecasts attaining a high skill due to sharp-
ness (0.43) but at the expense of a low skill due to accuracy
(0.01). This is caused by the high negative bias (−14.12 %)
where, for example for 1992 and 2010, the verifying observa-
tion lies outside the ensemble range contributing negatively
to the CRPS in Eq. (7).

3.1.1 Bias

In an effort to summarize the results, a spatial average of the
bias throughout Denmark was computed. Figure 3 shows the
spatial average bias of precipitation, temperature and ET0 of
the raw forecasts. The y axis represents the target month, for
example April, and the x axis represents the forecast lead
time – lead time 5 is the forecast for April initiated in De-

cember. As we can see from Fig. 3, bias depends on the target
month and, to a lesser degree, on lead time. For precipitation,
the lowest bias can be found throughout autumn to the begin-
ning of winter, followed by a general underestimation of pre-
cipitation that is at its highest for June. April shows an over-
estimation which might be due to the drizzle effect in a month
where dry days are slightly more common, in comparison to
March and May (the percentage of dry days within the month
is 50 %, 57 % and 56 % in March, April and May, respec-
tively). The drizzle effect issue is a very well-known prob-
lem of GCMs and is related to the generation of small pre-
cipitation amounts, usually around 1.0–1.5 mm day−1, where
observed precipitation is not present (Wetterhall et al., 2015).

Temperature bias averaged over Denmark has a range that
lies within [−2, 2] ◦C. The bias switches from positive to
negative when temperatures start to increase in March and
from negative to positive bias when temperatures start de-
creasing in August. This indicates that the forecast of temper-
ature has a smaller annual amplitude than observed. Lowest
biases are encountered during January and February with a
bias of 0.5 ◦C, and it is higher during late spring and summer,
with a negative bias of almost 2 ◦C. Finally, the bias range
for ET0 is smaller than precipitation, taking values within
[0 %–25 %] on average over Denmark. In general, there is a
positive bias, which is at its highest during February.

However, averaging does not tell the whole story. We are
also interested in the spatial variation of biases over Den-
mark. Figure 4 shows the spatial distribution of bias for
the first month lead time and its evolution during summer
(JJA). In general, there is an underestimation of precipitation
throughout Denmark, which much more pronounced during
June. Nevertheless, there also exists a positive bias in central
Jutland (mid-west Denmark) and on the urban area of Copen-
hagen (mid-east Denmark) reaching a value around 10 %–
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20 %. The positive bias area grows in July, occupying most
of Jutland and North Zealand (mid-east Denmark).

Other seasons were also mapped and shown in the Sup-
plement as Figs. S1 to S3. During autumn and winter there
is also a general negative bias, which is more pronounced
in central Jutland, reaching values of −30 %. Nevertheless,
an overestimation exists in eastern Denmark for those sea-
sons. For winter, this overestimation is present in the sea grid
points. Finally, during spring the spatial variability changes.
For example, most grid points exhibit a positive bias during
April, except for the southeast region of Denmark that has a
small negative bias between 0.0 % and 5.0 %. During May, a
tendency of over-forecasting is present in central Jutland.

The spatial distribution of temperature bias during autumn
and winter (Figs. S2 and S3, respectively) follows a simi-
lar pattern with a general positive bias reaching its highest
values in the southeast region (from 1.5 to 2.0 ◦C). A neg-
ative bias is seen during spring (Fig. S1) and late summer
across Denmark (Fig. 4). In June, a positive bias of [0–2 ◦C]
is present in a large area of the Jutland peninsula (Fig. 4).
Finally, the spatial variation of the bias of ET0 is less pro-
nounced and, in general, positive. Nonetheless, exceptions
exist. There is a negative bias in small regions located in the
coastal areas or sea grid points, which ranges from −10 % to
0 %.

The results presented above are specifically for lead time
1, i.e., forecasts of accumulated precipitation and ET0 and
average temperature for August initialized on 1 August. The
spatial variation of the bias for other lead times was also
mapped (not shown) and analyzed. In general, similar spatial
patterns were found for all three variables, being the same
along the target months and regardless of lead time.

3.1.2 Skill

Figure 5 summarizes the results for skill in the following
manner. First, the values presented are, like in Fig. 3, the spa-
tial average of skill for all of Denmark. Secondly, we evaluate
the skill in terms of accuracy (CRPSS, first row) and sharp-
ness (SS, second row). As seen in the evaluation of bias, skill
appears to be dependent on the target month and, to a lesser
degree, on lead time.

For precipitation, and looking at the first month lead time,
ECMWF System 4 skill in accuracy is mildly better than
that of climatology for February, March, April, July, August,
November and December, with a CRPSS of 0.15 at most.
In general, skill in accuracy decreases for lead time 2 on-
wards. April stands out for having a slightly positive skill
in accuracy for almost all lead times, but comes at the ex-
pense of having a wider spread than ensemble climatology.
For temperature, for the first month lead time, a positive skill
exists in terms of accuracy for almost all months, except for
late spring. Skill in terms of accuracy also decreases with
lead time, but February stands out for having a mild skill for
almost all lead times. Forecasts are also in general sharper

than ensemble climatology, except for January and March
at longer lead times. ET0 appears to have skill only for late
summer and the beginning of autumn in terms of accuracy.
This may be explained by the fact that forecasts are sharper
than climatology, indicating that there could be an underdis-
persion issue.

Note that the computation of the skill score for accuracy
was done using a CRPSsys of 15 or 51 ensemble members,
while the CRPSref is comprised of 23 members. The disparity
in the number of ensemble members can cause forecasts to be
at a disadvantage (advantage) compared to a reference fore-
cast with larger (smaller) ensemble size. Ferro et al. (2008)
provided estimates of unbiased skill scores that consider the
differences in ensemble size. To remove this effect, we calcu-
lated the CRPSS using the unbiased estimator for CRPSref in
Eq. (22) in Ferro et al. (2008). In general, there was a mild in-
crease in the CRPSS value for the months with 15 members,
as expected (not shown). The opposite holds for the months
with 51 members (February, May, August and November),
where a mild decrease in the CRPSS values (not shown) was
obtained. Because the changes in CRPSS are moderate, in the
rest of the document we will report the results of the CRPSS
using the original ensemble sizes (CRPSsys with 15 or 51 en-
semble members, CRPSref with 23 members).

Figure 6 shows the skill in accuracy for monthly values
and for a lead time of 1 month mapped across Denmark and
its monthly evolution during the summer (JJA). The other
seasons are also mapped and analyzed and are included in
the Supplement (Figs. S4 to S6). Higher skill is observed
for temperature, for which ECMWF System 4 improves the
ensemble climatological forecast with up to 50 %. Precipi-
tation and ET0 have lower skill in comparison to temper-
ature, reaching a value of 0.3 for specific months and re-
gions in Denmark. The spatial variation of skill for precipi-
tation seems scattered across Denmark and through the year.
Some notable exceptions are the higher skill in accuracy that
ECMWF System 4 has in western Jutland during November
and December and the low skill attained in October across
Denmark (Figs. S5 and S6). The spatial variation of skill in
accuracy of monthly averaged temperature seems more pro-
nounced during autumn and spring, with northern Denmark
attaining the highest values of skill for these seasons. For the
remaining seasons, skill over climatology is present across
the country, except for late spring where eastern Denmark
has the largest negative skill. Finally, the spatial variation
of skill of ET0 is more pronounced for the months April to
November with both positive and negative skill. In general, in
this period, eastern Denmark attains positive, although mild
for some months, values of skill, except for November.

In general, the areas with highest biases shown in Fig. 4
are associated with the lowest skill scores. For instance, for
precipitation in October in southern central Jutland, the neg-
ative bias reaches values around 30 %–40 % (Fig. S2). This
leads to values of CRPS almost 60 % smaller than that of
ensemble climatology (Fig. S5). The opposite also holds –
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Figure 4. Percentage bias and absolute bias of monthly values of raw forecasts for the summer (JJA). Forecast lead time of 1 month.

areas where biases are lower tend to have the highest ben-
efits over ensemble climatology, i.e., precipitation in March
across Denmark or in November in western Jutland.

Skill related to accuracy was also mapped for lead times of
2–7 months (not shown). In general, the geographical regions

having a statistically significant positive skill score for a lead
time of 1 month disappear, except for some smaller regions
where a slight positive skill between 0.0 and 0.1 is found, i.e.,
precipitation in the April forecast initiated in February (lead
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Figure 5. Skill in terms of accuracy (a) and sharpness (b) of monthly values of raw forecasts. The y axis represents the target month and the
x axis represents the different lead times at which target month is forecasted.

time of 3 months), which contributes to the mild positive skill
at longer lead times as seen in Fig. 5.

The skill related to sharpness was also mapped for all
target months and lead times (not shown). In general, fore-
casts are sharper than ensemble climatology as seen in Fig. 5
across Denmark for all three variables under study. This sit-
uation persists, in general, along all lead times, except for
precipitation in April and October, in addition to temperature
in January, March and November (Fig. 5). For these months,
the lack of sharpness is present throughout Denmark. Never-
theless, for precipitation in April, the region with the lack of
sharpness is in southern Denmark, along all lead times.

3.1.3 Statistical consistency of monthly aggregated P ,
T and ET0

The first row in Fig. 7 shows the PIT diagram for raw
ECMWF System 4 summer forecasts for a lead time of
1 month. The observations and forecast of the diagram come
from a grid point located in western Denmark (squared shape
in Fig. 8). The remaining seasons can be seen in Figs. S7
to S9. Raw precipitation forecasts, for this grid point, exhibit
an underprediction of the mean for winter and autumn and
mixed results for the remaining seasons. For example, the
underprediction bias is reduced for spring, except for April,
where the system exhibits a positive bias. Raw temperature

predictions of winter, October and November, in addition to
June, exhibit an overprediction, which is lowest for January
and February. Spring and summer temperatures exhibit an
underprediction, which is highest for July (Figs. S7 and 7).
Finally, raw forecasts of ET0 during all seasons exhibit an
overprediction of the mean, in accordance with the results in
Sect. 3.1.1. The statistical consistency at longer lead times
for all variables (2–7 months, not shown) depends, similarly
to bias, on the target month and, to a much lesser degree,
on lead time. Temperature in March and, to a lesser degree,
precipitation in July exhibit underdispersion issues; i.e., too
often the observations lie outside the ensemble range.

3.2 Analysis of post-processed forecasts

The second and third rows in Fig. 2 show the corrected fore-
casts and the bias and skill scores after post-processing using
the LS and the QM method, respectively. The results repre-
sent a particular grid point and forecast of August initialized
on 1 August. After post-processing, the reduction of bias is
evident for the three variables under study. Nevertheless, and
contrary to what one should expect, this reduction of bias
does not necessarily translate into an increase in skill in ac-
curacy, at least for precipitation and temperature and for this
month and grid point. The quantification of the reduction of
bias and increase in accuracy after post-processing for the
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Figure 6. Spatial variability of skill in accuracy for summer (JJA) raw forecasts for a lead time of 1 month. The grids marked with “∗”
are points where the distribution of the accuracy for ensemble climatology differs from the accuracy distribution of the ECMWF System 4
forecasts at a 5 % significance using the WMW test.

whole of Denmark, through the year and for different lead
times, is discussed in the Sect. 3.2.2 below.

3.2.1 Bias

Any post-processing technique used should be able to at least
remove biases in the mean. This is accomplished using both
techniques. Figure 8 shows the bias of precipitation, temper-
ature and ET0 and its evolution through the year for a lead

time of 1 month. Bias is shown for four locations scattered
around Denmark. Figure 8 shows that the yearly variability
of the bias is collapsed to almost 0 %, although for precip-
itation and winter ET0, the LS method seems to be doing
slightly better at removing the bias in comparison to QM.
This comes as no surprise, as the LS method forces this bias
to be zero.
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Figure 7. PIT diagrams of summer P , T and ET0 for the raw and post-processed forecasts for a lead time of 1 month for one grid point
located in western Denmark.
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Figure 8. Biases of raw and post-processed precipitation, temperature and ET0 at four locations in Denmark. Biases are for the different
target months and for a lead time of 1 month. Different locations are represented with different symbol shapes according to the map on the
left, whereas the raw and the different post-processing techniques are represented with different colors.
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Figure 9. Percentage of grid points with statistically significant positive CRPSS (see Eq. 8).

3.2.2 Skill

In order to quantify the improvement over the raw forecast,
we compared the number of grid points for which the skill
score was positive and negative. Furthermore, the scores are
only considered positive or negative if the differences in the
distribution of the skill between ensemble climatology and
ECMWF System 4 forecasts are statistically significant at the
0.05 level using the WMW test. Consequently, we introduced
a third category for which there is no statistically significant
difference in skill between climatology and ECMWF Sys-
tem 4 forecasts.

Figure 9 shows the percentage of grid cells with a statis-
tically significant positive skill due to accuracy, Eq. (8), for
the raw forecasts (first raw) and the post-processed forecasts
(LS, second row; QM, third row). All target months and lead
times are included. If a post-processing method is successful
in increasing the regions with positive skill scores, then the
box for that target month and lead time is bluer in compari-
son to the raw forecasts. For precipitation, there is no obvious
increase in skill due to accuracy, except, perhaps, February
and July forecasts for the first month lead time. There are,
however, instances for which the percentage of positive skill
grid points decreases. The most obvious cases are March and
November (first month lead time) with a reduction of almost
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Figure 10. Spatial variability of skill in terms of accuracy for P , T and ET0 for the raw and post-processed forecasts of February as a target
month at different lead times. Box plots represent the values of CRPSS, see Eq. (8) with climatology as reference, of all the 662 or 724 grid
points covering Denmark.

half, i.e., from 13.6 % (raw) to 5.7 % (LS) for March. On
the contrary, temperature and ET0 exhibit a greater improve-
ment, at least on the first month lead time. For instance, the
percentage of grid points with positive skill increases from
4.5 % to 50 % for temperature in April (LS) and from 30 %
to 100 % (LS) for temperature in July. The biggest improve-
ment for ET0 appears in June (first month lead time), reach-
ing 90 % of positive grid cells after post-processing (LS).

In addition, the negative and equal categories were also
plotted and included in the Supplement as Figs. S10 and
S11. After post-processing, there are instances where a con-
siderable amount of grid cells change from a statistically
significant negative skill score to the third category (no
significant differences between ensemble climatology and
ECMWF System 4 score distributions, Fig. S11). This is true
for temperature and ET0 at longer lead times. One of the ob-
vious examples is February ET0 at lead time 6 (forecast ini-
tiated in September); the percentage of grid points with neg-
ative skill scores decreases from 80.5 % to 4.3 % after post-
processing (Fig. S10). On the other hand, the percentage of
grid points with no significant differences in skill increases
from 20 % to 95.7 % after post-processing (Fig. S11) for this
example.

To further illustrate the above situation, Fig. 10 shows the
variability of the CRPSS when considering all grid points
(662 or 724 grid points across Denmark). Figure 10 shows
the CRPSS for the target month of February at all lead times
and the raw and post-processed skill. The figure shows a re-
duction of the spatial variability of skill in accuracy and for
this month, this reduction is more pronounced for ET0. How-
ever, and as mentioned above, the reduction of spatial vari-
ability of accuracy is not enough to ensure statistically sig-
nificant positive differences in skill.

Results for sharpness (Figs. S12 to S14), similar to Fig. 9,
show that a loss of sharpness occurs after post-processing in
comparison to raw forecasts for LS and QM applied to pre-

cipitation and QM applied to temperature and ET0. Sharp-
ness seems to be maintained for temperature and ET0 when
we use the LS method. This can be explained by the fact that
the correction factor applied to temperature forecasts is addi-
tive, which in turn changes the level of the ensemble mem-
bers and has no effect in the spread of the forecasts, leaving
the sharpness score equal to that of the raw forecasts. On the
other hand, when the correction factor is multiplicative, as in
Eq. (1) for precipitation and ET0, not only the level but also
the spread is affected. It will increase the spread when the
correction factor is above 1 (which indicates an underpre-
diction issue) and, conversely, reduce the spread when the
correction factor is below 1 (indicating an overprediction is-
sue). The larger the correction factor is, the larger effect it
will have in the ensemble spread. For ET0, where biases are
in general lower than biases in precipitation, sharpness seems
not to be affected. This effect is somewhat artificial and may
lead to misleading evaluations of the power LS has in cor-
recting for biases in spread.

3.2.3 Statistical consistency of post-processed monthly
aggregated forecasts

The second and third rows in Figs. 7 and S7–S9 show the
PIT diagrams of corrected forecasts for one grid point lo-
cated in western Denmark. In general, the statistical consis-
tency seems to be improved (points closer to the 1 : 1 diag-
onal in Fig. 7) to the same degree for both post-processing
methods. Although, for ET0, this consistency is better en-
hanced by QM. This fact may be explained by the more ev-
ident sharpness loss after correcting forecasts with the QM
method (Figs. S11 to S13).

Figure 11. depicts the results of the AD test in the fol-
lowing manner. First, the first, second and third rows repre-
sent the results of the raw and post-processed forecasts with
LS and QM methods, respectively. Secondly, as for Fig. 9,
the x axis represents the lead time and the y axis the tar-
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Figure 11. Percentage of grid points for which we fail to reject the null hypothesis of uniformity using the Anderson–Darling test at the 5 %
significance level.

get month. Finally, the percentage shows the proportion of
grid points for which the null hypothesis of uniformity at the
5 % significance level is accepted. A variety of results are
found by the inspection of Fig. 11. First, the percentage of
grid points for which the uniformity hypothesis is accepted
is very low for raw forecasts. This conclusion holds except
for temperature in January and February, with forecasts ini-
tialized in months with 51 ensemble members. Secondly,
the percentage increases after post-processing for selected
months and lead times, usually involving target months with
51 ensemble members. This increase is more visible in post-
processed forecasts using the QM method. Finally, the sta-

tistical consistency of ET0 appears to remain low even after
post-processing.

3.2.4 Accuracy of extreme precipitation and number of
dry days

Figure 12 shows the skill in terms of accuracy for both
monthly maximum precipitation and the monthly number of
dry days. Box plots represent the range of the skill score of
all 662 grid cells. Skill scores are for January forecasts for all
seven lead times. Two features are highlighted. First, spatial
variability of skill gets reduced after post-processing. Sec-
ondly, for the skill of the number of dry days, results show
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Figure 12. Skill of daily monthly maximum P and number of dry days for target month January for all 7-month lead times for the raw and
post-processed forecasts. Box plots represent the values of CRPSS, of Eq. (8) with climatology as reference, of all the 662 or 724 grid points
covering Denmark.

that QM performs significantly better than LS. This is not
surprising as QM adjusts for biases in the whole range of
percentiles of the distributions, whereas LS only focuses on
the mean. Note that the apparent increase in skill after LS
post-processing is a consequence of the drizzle effect re-
moval before bias correction. Despite the reduction of the
spatial variability and an increase, on average, in the skill of
post-processed monthly maximum precipitation and number
of dry days, results still fail to show an improvement over
climatology, as the CRPSS is still negative, even after bias
corrections are implemented.

4 Summary and conclusions

The present study had two objectives. The first was to an-
alyze the bias and skill of the ECMWF System 4 in com-
parison to a climatological ensemble forecast, i.e., a forecast
based on observed climatology over a period of 24 years. The
second was to compare the statistical consistency between
the predictive distribution and the distribution of its verify-
ing observations. This analysis was done for hydrologically
relevant variables: precipitation, temperature and ET0. The
conclusions of the first objective of the study and which an-
swer the first question posed in Sect. 1 can be summarized as
follows:

– Raw seasonal forecasts of precipitation, temperature
and ET0 from ECMWF System 4 exhibit biases which
depend on the target month and, to a lesser extent, on
lead time. This result is also in accordance to what was
found in Crochemore et al. (2016). There is a persistent
over-forecasting issue for ET0, which can be the result
of a combination of biases originating in of both tem-
perature and incoming shortwave solar radiation.

– In general, skill in terms of accuracy is only present dur-
ing the first month lead time, which is basically the skill
of the medium-range forecast. Crochemore et al. (2016)
found a similar degree of skill of the raw ECMWF Sys-
tem 4 forecasts for mean areal precipitation in France.

– One seeming advantage ECMWF System 4 has over en-
semble climatology is that forecasts are sharper. How-
ever, this overconfidence, combined with the biases in
the mean, leads to lower levels of accuracy in compari-
son to the accuracy of the ensemble climatological fore-
casts. Using the PIT diagrams, we could confirm the re-
sults for the bias on the mean of precipitation, tempera-
ture and ET0.

The second objective was to improve the forecasts using two
relatively simple methods of post-processing: LS and QM.
This was done having in mind the biases GCMs have in the
mean and dispersion. Modest improvements were found and
can be summarized as follows:

– Both methods perform equally well in removing biases
in the mean.

– In terms of accuracy, mild improvements are seen on
the first month lead time, especially for temperature and
ET0, where a higher portion of grid points over Den-
mark can reach a positive skill. Precipitation and longer
lead times are still difficult to improve. This may be ex-
plained by the same situation as discussed in Zhao et
al. (2017). QM performs better when there exists a lin-
ear relationship between ensemble mean and observa-
tions. This linear relationship may be absent at longer
lead times reducing the effectiveness of these methods.

– Looking at the spatial distribution of skill in sharpness
we see that for precipitation, both methods tend to de-
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crease it, with a slight increase in QM over LS. For tem-
perature and ET0, LS seems to be able to keep the sharp-
ness of the raw forecasts. This is not the case for QM, as
it manages to make the areas where a slight positive skill
is present disappear. Note, however, that sharpness us-
ing the LS method is improved when the correction fac-
tor is multiplicative and less than 1 (positive bias; i.e.,
ET0). The opposite holds: sharpness is inflated when the
multiplicative correction factor is greater than 1 (nega-
tive bias; i.e., precipitation). This has implications for
the computation of the CRPS, as its value increases (de-
creases) for wider (narrower) ensemble forecasts, on top
of the penalization for biased predictions. This situa-
tion may also explain why in Crochemore et al. (2016)
LS has a better improvement in terms of sharpness than
QM, at least for precipitation in spring.

– Statistical consistency is improved using QM. More-
over, QM also performs better in correcting biases of
low values of precipitation. This is not a surprising re-
sult, as QM corrects for biases for the entire percentile
range.

We are aware that our research has limitations. The first is
that methods applied here were implemented on a grid-to-
grid basis. This may fail to maintain spatiotemporal and in-
tervariable dependencies. Spatial correction methods have
been suggested such as the ones used by Feddersen and An-
dersen (2005) and Di Giuseppe et al. (2013). Another sug-
gestion has been to recover these dependencies by adding a
final post-processing step such as the methods proposed in
Clark et al. (2004) or Schefzik et al. (2013). The second lim-
itation is the exclusion of post-processing methods tailored
to ensemble forecasts, which consider the joint distribution
of forecasts and observations (Raftery et al., 2005; Zhao et
al., 2017). Their inclusion would gain a deeper insight to
the comparison presented here by increasing the complexity
of the correction methods and the evaluation of their added
value in comparison to simpler approaches.

Post-processing for seasonal forecasting is still a subject
at its infancy and, although one could argue that advances
in seasonal forecasting will make post-processing unneces-
sary in the future, there are still opportunities for enhance-
ment. GCMs suffer from several issues as discussed here;
however, we still encourage their use. They are physically
based, sharper than climatological forecasts. We believe that
once bias issues are fixed by means of a more realistic rep-
resentation of coupled and subgrid processes and/or a bet-
ter integration of observational data using data assimilation
(Weisheimer and Palmer, 2014; Doblas-Reyes et al., 2013),
GCMs will be able to provide valuable information at longer
lead times for sector applications such as water management.

Data availability. ECMWF seasonal reforecasts are available un-
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ecmwf.int (last access: 16 December 2018). The observed data
(temperature, precipitation and reference evapotranspiration) are
from the Danish Meteorological Institute (https://www.dmi.dk/vejr/
arkiver/vejrarkiv/; Scharling and Kern-Hansen, 2012).

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/hess-22-6591-2018-supplement.

Author contributions. DL conceived, designed and conducted the
study and co-wrote the manuscript; HM, JCR, JK and KHJ con-
ceived and designed the study and contributed to the manuscript.

Competing interests. The authors declare that they have no conflict
of interest.

Special issue statement. This article is part of the special issue
“Sub-seasonal to seasonal hydrological forecasting”. It is not as-
sociated with a conference.

Acknowledgements. This study was supported by the project
HydroCast – Hydrological Forecasting and Data Assimilation,
contract no. 0603-00466B (http://hydrocast.dhigroup.com/, last
access: 16 December 2018), funded by the Innovation Fund
Denmark. Special thanks to Florian Pappenberger for providing the
ECMWF System 4 reforecast, to Andy Wood and Pablo Mendoza
for hosting the first author at NCAR, and to Louise Crochemore
(SMHI) for aiding in the implementation of the unbiased CRPSS.
Finally, the authors would like to thank three anonymous reviewers
for providing feedback that certainly increased the quality of the
work.

Edited by: Maria-Helena Ramos
Reviewed by: three anonymous referee

References

Anderson, T. W. and Darling, D. A.: Asymptotic theory of certain
“goodness of fit” criteria based on stochastic processes, The an-
nals of mathematical statistics, 23, 193–212, 1952.

Clark, M., Gangopadhyay, S., Hay, L., Rajagopalan,
B., and Wilby, R.: The Schaake Shuffle: A Method
for Reconstructing Space–Time Variability in Fore-
casted Precipitation and Temperature Fields, J. Hy-
drometeorol., 5, 243–262, https://doi.org/10.1175/1525-
7541(2004)005<0243:TSSAMF>2.0.CO;2, 2004.

Crochemore, L., Ramos, M.-H., and Pappenberger, F.: Bias cor-
recting precipitation forecasts to improve the skill of seasonal
streamflow forecasts, Hydrol. Earth Syst. Sci., 20, 3601–3618,
https://doi.org/10.5194/hess-20-3601-2016, 2016.

Dessai, S. and Soares, M. B.: European Provision Of Regional Im-
pact Assessment on a Seasonal-to-decadal timescale. Deliver-
able 12.1 Systematic literature review on the use of seasonal to

www.hydrol-earth-syst-sci.net/22/6591/2018/ Hydrol. Earth Syst. Sci., 22, 6591–6609, 2018

http://www.ecmwf.int
http://www.ecmwf.int
https://www.dmi.dk/vejr/arkiver/vejrarkiv/
https://www.dmi.dk/vejr/arkiver/vejrarkiv/
https://doi.org/10.5194/hess-22-6591-2018-supplement
http://hydrocast.dhigroup.com/
https://doi.org/10.1175/1525-7541(2004)005<0243:TSSAMF>2.0.CO;2
https://doi.org/10.1175/1525-7541(2004)005<0243:TSSAMF>2.0.CO;2
https://doi.org/10.5194/hess-20-3601-2016


6608 D. Lucatero et al.: On the skill of raw and post-processed ensemble seasonal meteorological forecasts

decadal climate and climate impacts predictions across European
sectors, Euporias, 12, 1–26, available at: http://www.euporias.eu/
system/files/D12.1_Final.pdf (last access: 1 June 2017), 2013.

Di Giuseppe, F., Molteni, F., and Tompkins, A. M.: A rain-
fall calibration methodology for impacts modelling based on
spatial mapping, Q. J. Roy. Meteor. Soc., 139, 1389–1401,
https://doi.org/10.1002/qj.2019, 2013.

Doblas-Reyes, F. J., García-Serrano, J., Lienert, F., Biescas, A. P.,
and Rodrigues, L. R. L.: Seasonal climate predictability and
forecasting: Status and prospects, Wiley Interdiscip. Rev. Clim.
Chang., 4, 245–268, https://doi.org/10.1002/wcc.217, 2013.

Feddersen, H. and Andersen, U.: A method for statistical down-
scaling of seasonal ensemble predictions, Tellus A, 57, 398–408,
https://doi.org/10.1111/j.1600-0870.2005.00102.x, 2005.

Ferro, C. A. T., Richardson, D. S., and Weigel, A. P.: On
the effect of ensemble size on the discrete and continu-
ous ranked probability scores, Meteorol. Appl., 15, 19–24,
https://doi.org/10.1002/met.45, 2008.

Gil, C.: ADGofTest, Anderson-Darling GoF test, R package
version 0.3, available at: https://CRAN.R-project.org/package=
ADGofTest (last access: 31 July 2018), 2011.

Gneiting, T., Balabdaoui, F., and Raftery, A. E.: Probabilistic Fore-
casts, Calibration and Sharpness, J. R. Stat. Soc. B, 69, 243–268,
2007.

Hamill, T. M., Whitaker, J. S., and Wei, X.: Ensem-
ble re-forecasting: Improving medium-range fore-
cast skill using retrospective forecasts, B. Am. Me-
teorol. Soc., 3825–3830, https://doi.org/10.1175/1520-
0493(2004)132<1434:ERIMFS>2.0.CO;2, 2004.

Hendriks, M.: Introduction to Physical Hydrology, Oxford Univer-
sity Press, 2010.

Hersbach, H.: Decomposition of the Continuous Ranked Prob-
ability Score for Ensemble Prediction Systems, Weather
Forecast., 15, 559–570, https://doi.org/10.1175/1520-
0434(2000)015<0559:DOTCRP>2.0.CO;2, 2000.

Hollander, M., Wolfe, D. A., and Chicken, E.: Nonparametric statis-
tical methods, 3rd edn., Wiley Series in Probability and Statistics,
2014.

Hudson, D., Marshall, A. G., Yin, Y., Alves, O., and Hendon,
H. H.: Improving Intraseasonal Prediction with a New Ensem-
ble Generation Strategy, Mon. Weather Rev., 141, 4429–4449,
https://doi.org/10.1175/MWR-D-13-00059.1, 2013.

Kim, H. M., Webster, P. J., Curry, J. A., and Toma, V. E.: Asian
summer monsoon prediction in ECMWF System 4 and NCEP
CFSv2 retrospective seasonal forecast, Clim. Dynam., 39, 2957–
2991, https://doi.org/10.1007/s00382-012-1470-5, 2012a.

Kim, H. M., Webster, P. J., and Curry, J. A.: Seasonal prediction
skill of ECMWF System 4 and NCEP CFSv2 retrospective fore-
cast for the Northern Hemisphere Winter, Clim. Dynam., 39,
2957–2973, https://doi.org/10.1007/s00382-012-1364-6, 2012b.

Laio, F. and Tamea, S.: Verification tools for probabilistic fore-
casts of continuous hydrological variables, Hydrol. Earth Syst.
Sci., 11, 1267–1277, https://doi.org/10.5194/hess-11-1267-2007,
2007.

Liu, X., Wu, T., Yang, S., Jie, W., Nie, S., Li, Q., Cheng, Y., and
Liang, X.: Performance of the seasonal forecasting of the Asian
summer monsoon by BCC_CSM1.1(m), Adv. Atmos. Sci., 32,
1156–1172, https://doi.org/10.1007/s00376-015-4194-8, 2015.

Maclachlan, C., Arribas, A., Peterson, K. A., Maidens, A., Fere-
day, D., Scaife, A. A., Gordon, M., Vellinga, M., Williams, A.,
Comer, R. E., Camp, J., Xavier, P., and Madec, G.: Global Sea-
sonal forecast system version 5 (GloSea5): A high-resolution
seasonal forecast system, Q. J. Roy. Meteor. Soc., 141, 1072–
1084, https://doi.org/10.1002/qj.2396, 2015.

Mason, S. J. and Baddour, O.: Statistical Modelling, in: Seasonal
Climate: Forecasting and Managing Risk, Springer, 82, 167–206,
2008.

Molteni, F., Stockdale, T., Balmaseda, M., Balsamo, G., Buizza,
R., Ferranti, L., Magnusson, L., Mogensen, K., Palmer, T.,
and Vitart, F.: The new ECMWF seasonal forecast sys-
tem (System 4), ECMWF Tech. Memo., 656, 49 pp., avail-
able at: https://www.ecmwf.int/sites/default/files/elibrary/2011/
11209-new-ecmwf-seasonal-forecast-system-system-4.pdf (last
access: 1 June 2017), 2011.

Panofsky, H. W. and Brier, G.W.: Some Applications of Statistics to
Meteorology, The Pennsylvania State University Press, Philadel-
phia, US, 1968.

Peng, Z., Wang, Q. J., Bennett, J. C., Schepen, A., Pappenberger,
F., Pokhrel, P., and Wang, Z.:Statistical Calibration and Bridg-
ing of ECMWF System4 outputs for forecasting seasonal precip-
itation over China, J. Geophys. Res.-Atmos., 119, 7116–7135,
https://doi.org/10.1002/2013JD021162, 2014.

Raftery, A. E., Gneiting, T., Balabdaoui, F., and Polakowski,
M.: Using Bayesian Model Averaging to Calibrate Fore-
cast Ensembles, Mon. Weather Rev., 133, 1155–1174,
https://doi.org/10.1175/MWR2906.1, 2005.

R Core Team R: A language and environment for statistical
computing. R Foundation for Statistical Computing, Vienna,
Austria, available at: https://www.R-project.org/ (last access:
31 July 2018), 2017.

Saha, S., Moorthi, S., Wu, X., Wang, J., Nadiga, S., Tripp, P.,
Behringer, D., Hou, Y.-T., Chuang, H., Iredell, M., Ek, M.,
Meng, J., Yang, R., Mendez, M. P., van den Dool, H., Zhang,
Q., Wang, W., Chen, M., and Becker, E.: The NCEP Cli-
mate Forecast System Version 2, J. Climate, 27, 2185–2208,
https://doi.org/10.1175/JCLI-D-12-00823.1, 2013.

Scharling, M. and Kern-Hansen, C.: Climate Grid Denmark - Date-
set for use in research and education, DMI Tech. Rep., 10, 1–12,
available at: https://www.dmi.dk/vejr/arkiver/vejrarkiv/ (last ac-
cess: 16 December 2018), 2012.

Schefzik, R., Thorarinsdottir, T. L., and Gneiting, T.: Un-
certainty Quantification in Complex Simulation Models Us-
ing Ensemble Copula Coupling, Stat. Sci., 28, 616–640,
https://doi.org/10.1214/13-STS443, 2013.

Shepard, D. S.: A two dimensional interpolation function for ir-
regularity spaced data. Proceedings of the 23rd Associations for
Computing Machinery Conference, ACM, 517–524, 1968.

Siegert, S.: SpecsVerification: Forecast verification routines for the
SPECS FP7 project, R package version 0.4-1, available at: https:
//cran.r-project.org/web/packages/SpecsVerification/index.html,
(last access: 12 June 2017), 2015.

Stisen, S., Sonnenborg, T. O., Højberg, A. L., Troldborg, L., and
Refsgaard, J. C.: Evaluation of Climate Input Biases and Water
Balance Issues Using a Coupled Surface–Subsurface Model, Va-
dose Zone J., 10, 37–53, https://doi.org/10.2136/vzj2010.0001,
2011.

Hydrol. Earth Syst. Sci., 22, 6591–6609, 2018 www.hydrol-earth-syst-sci.net/22/6591/2018/

http://www.euporias.eu/system/files/D12.1_Final.pdf
http://www.euporias.eu/system/files/D12.1_Final.pdf
https://doi.org/10.1002/qj.2019
https://doi.org/10.1002/wcc.217
https://doi.org/10.1111/j.1600-0870.2005.00102.x
https://doi.org/10.1002/met.45
https://CRAN.R-project.org/package=ADGofTest
https://CRAN.R-project.org/package=ADGofTest
https://doi.org/10.1175/1520-0493(2004)132<1434:ERIMFS>2.0.CO;2
https://doi.org/10.1175/1520-0493(2004)132<1434:ERIMFS>2.0.CO;2
https://doi.org/10.1175/1520-0434(2000)015<0559:DOTCRP>2.0.CO;2
https://doi.org/10.1175/1520-0434(2000)015<0559:DOTCRP>2.0.CO;2
https://doi.org/10.1175/MWR-D-13-00059.1
https://doi.org/10.1007/s00382-012-1470-5
https://doi.org/10.1007/s00382-012-1364-6
https://doi.org/10.5194/hess-11-1267-2007
https://doi.org/10.1007/s00376-015-4194-8
https://doi.org/10.1002/qj.2396
https://www.ecmwf.int/sites/default/files/elibrary/2011/11209-new-ecmwf-seasonal-forecast-system-system-4.pdf
https://www.ecmwf.int/sites/default/files/elibrary/2011/11209-new-ecmwf-seasonal-forecast-system-system-4.pdf
https://doi.org/10.1002/2013JD021162
https://doi.org/10.1175/MWR2906.1
https://www.R-project.org/
https://doi.org/10.1175/JCLI-D-12-00823.1
https://www.dmi.dk/vejr/arkiver/vejrarkiv/
https://doi.org/10.1214/13-STS443
https://cran.r-project.org/web/packages/SpecsVerification/index.html
https://cran.r-project.org/web/packages/SpecsVerification/index.html
https://doi.org/10.2136/vzj2010.0001


D. Lucatero et al.: On the skill of raw and post-processed ensemble seasonal meteorological forecasts 6609

Stisen, S., Højberg, A. L., Troldborg, L., Refsgaard, J. C., Chris-
tensen, B. S. B., Olsen, M., and Henriksen, H. J.: On the impor-
tance of appropriate precipitation gauge catch correction for hy-
drological modelling at mid to high latitudes, Hydrol. Earth Syst.
Sci., 16, 4157–4176, https://doi.org/10.5194/hess-16-4157-2012,
2012.

Teutschbein, C. and Seibert, J.: Bias correction of regional climate
model simulations for hydrological climate-change impact stud-
ies: Review and evaluation of different methods, J. Hydrol., 456–
457, 12–29, https://doi.org/10.1016/j.jhydrol.2012.05.052, 2012.

Thyer, M., Renard, B., Kavetski, D., Kuczera, G., Franks, S. W.,
and Srikanthan, S.: Critical evaluation of parameter consistency
and predictive uncertainty in hydrological modeling: A case
study using Bayesian total error analysis, Water Resour. Res.,
45, W00B14, https://doi.org/10.1029/2008WR006825, 2009.

Tolstykh, M. A., Diansky, N. A., Gusev, A. V., and Kik-
tev, D. B.: Simulation of Seasonal Anomalies of At-
mospheric Circulation Using Coupled Atmosphere–
Ocean Model, Izv, Atmos. Ocean. Phys., 50, 131–142,
https://doi.org/10.7868/S0002351514020126, 2014.

Trambauer, P., Werner, M., Winsemius, H. C., Maskey, S.,
Dutra, E., and Uhlenbrook, S.: Hydrological drought fore-
casting and skill assessment for the Limpopo River basin,
southern Africa, Hydrol. Earth Syst. Sci., 19, 1695–1711,
https://doi.org/10.5194/hess-19-1695-2015, 2015.

van Oldenborgh, G. J., Balmaseda, M. A., Ferranti, L., Stockdale, T.
N., and Anderson, D. L. T.: Evaluation of atmospheric fields from
the ECMWF seasonal forecasts over a 15-year period, J. Climate,
18, 3250–3269, https://doi.org/10.1175/JCLI3421.1, 2005.

Weisheimer, A. and Palmer, T. N.: On the reliability of sea-
sonal climate forecasts, J. R. Soc. Interface, 11, 20131162,
https://doi.org/10.1098/rsif.2013.1162, 2014.

Weisheimer, A., Doblas-Reyes, F. J., Jung, T., and Palmer,
T. N.: On the predictability of the extreme sum-
mer 2003 over Europe, Geophys. Res. Lett., 38, 1–5,
https://doi.org/10.1029/2010GL046455, 2011.

Wetterhall, F., Winsemius, H. C., Dutra, E., Werner, M., and
Pappenberger, E.: Seasonal predictions of agro-meteorological
drought indicators for the Limpopo basin, Hydrol. Earth Syst.
Sci., 19, 2577–2586, https://doi.org/10.5194/hess-19-2577-2015,
2015.

Wilks, D. S.: Statistical methods in the atmospheric sciences, 3rd
edn., Elsevier, 2011.

Wood, A. W., Maurer, E. P., Kumar, A., and Lettenmaier,
D.: Long-range experimental hydrologic forecasting for
the eastern United States, J. Geophys. Res., 107, 4429,
https://doi.org/10.1029/2001JD000659, 2002.

Zhao, T., Bennett, J., Wang, Q. J., Schepen, A., Wood, A., Robert-
son, D., and Ramos, M.-H.: How suitable is quantile mapping
for post-processing GCM precipitation forecasts?, J. Climate, 30,
3185–3196, https://doi.org/10.1175/JCLI-D-16-0652.1, 2017.

www.hydrol-earth-syst-sci.net/22/6591/2018/ Hydrol. Earth Syst. Sci., 22, 6591–6609, 2018

https://doi.org/10.5194/hess-16-4157-2012
https://doi.org/10.1016/j.jhydrol.2012.05.052
https://doi.org/10.1029/2008WR006825
https://doi.org/10.7868/S0002351514020126
https://doi.org/10.5194/hess-19-1695-2015
https://doi.org/10.1175/JCLI3421.1
https://doi.org/10.1098/rsif.2013.1162
https://doi.org/10.1029/2010GL046455
https://doi.org/10.5194/hess-19-2577-2015
https://doi.org/10.1029/2001JD000659
https://doi.org/10.1175/JCLI-D-16-0652.1

	Abstract
	Introduction
	Data and methods
	Ensemble prediction system and observational grid
	Post-processing strategy
	Post-processing methods
	Delta method -- linear scaling (LS)
	Quantile mapping (QM)

	Verification metrics
	Bias
	Skill
	Statistical consistency

	Accuracy of maximum monthly daily precipitation and number of dry days

	Results
	Analysis of raw forecasts
	Bias
	Skill
	Statistical consistency of monthly aggregated P, T and ET0

	Analysis of post-processed forecasts
	Bias
	Skill
	Statistical consistency of post-processed monthly aggregated forecasts
	Accuracy of extreme precipitation and number of dry days


	Summary and conclusions
	Data availability
	Supplement
	Author contributions
	Competing interests
	Special issue statement
	Acknowledgements
	References

