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Abstract. Multiple-point statistics (MPS) has shown
promise in representing complicated subsurface structures.
For a practical three-dimensional (3-D) application, how-
ever, one of the critical issues is the difficulty in obtaining a
credible 3-D training image. However, bidimensional (2-D)
training images are often available because established work-
flows exist to derive 2-D sections from scattered boreholes
and/or other samples. In this work, we propose a locality-
based MPS approach to reconstruct 3-D geological models
on the basis of such 2-D cross sections (3DRCS), making
3-D training images unnecessary. Only several local training
subsections closer to the central uninformed node are used in
the MPS simulation. The main advantages of this partitioned
search strategy are the high computational efficiency and
a relaxation of the stationarity assumption. We embed this
strategy into a standard MPS framework. Two probability ag-
gregation formulas and their combinations are used to assem-
ble the probability density functions (PDFs) from different
subsections. Moreover, a novel strategy is adopted to capture
more stable PDFs, where the distances between patterns and
flexible neighborhoods are integrated on multiple grids. A
series of sensitivity analyses demonstrate the stability of the
proposed approach. Several hydrogeological 3-D application
examples illustrate the applicability of the 3DRCS approach
in reproducing complex geological features. The results, in
comparison with previous MPS methods, show better perfor-
mance in portraying anisotropy characteristics and in CPU
cost.

1 Introduction

3-D characterization of geological architectures plays a cru-
cial role in the quantification of subsurface water, oil and
ore resources (Chen et al., 2017, 2018; Foged et al., 2014;
Hoffman and Caers, 2007; Jackson et al., 2015; Kessler
et al., 2013; Raiber et al., 2012; Wambeke and Benndorf,
2016). Heterogeneity and connectivity of sedimentary reser-
voirs exert controls on underground fluid transport (Gaud
et al., 2004; Renard and Allard, 2013; Weissmann et al.,
1999) which is vital to quantify and forecast the forma-
tion and distribution of subsurface resources. For a prac-
tical 3-D application, however, these attributes are notori-
ously difficult to characterize and model since the informed
data we can acquire are very sparse. Two-point geostatis-
tics (Pyrcz and Deutsch, 2014; Ritzi, 2000) and object-based
methods (Deutsch and Tran, 2002; Maharaja, 2008; Pyrcz et
al., 2009) are not effective at reproducing anisotropic features
and connectivity patterns properly (Heinz et al., 2003; Klise
et al., 2009; Knudby and Carrera, 2005; Vassena et al., 2010)
due to the lack of high-order statistics and the difficulty in
parameterization. To overcome the abovementioned limita-
tions, multiple-point statistics (MPS) was developed over re-
cent years and has shown prospects in modeling subsurface
anisotropic structures, such as porous media, hydrofacies,
reservoirs and other sedimentary structures (Dell Arciprete et
al., 2012; Hajizadeh et al., 2011; Hu and Chugunova, 2008;
Oriani et al., 2014; Pirot et al., 2015; Wu et al., 2006).
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The first MPS approach was suggested by Guardiano and
Srivastava (1993) and is designed to reproduce heteroge-
neous geometries by extracting spatial patterns from train-
ing images directly rather than through variograms. A train-
ing image is a conceptual model derived from observations,
and it bears a crucial role in MPS-based stochastic simula-
tion. The first efficient implementation of MPS was devel-
oped by Strebelle (2002) on the basis of a tree structure. Sev-
eral attempts have thereafter focused on improving MPS al-
gorithms (Arpat and Caers, 2007; Caers, 2001; Mariethoz et
al., 2010; Straubhaar et al., 2011; Tahmasebi et al., 2012; Wu
et al., 2008; Yang et al., 2016; Zhang et al., 2006). With these
methods, training images are scanned with a fixed search
template and the MPS patterns are stored in a tree or a list
data structure. An important difficulty lies in choosing the
size of data template to best reproduce large-scale structures
(Strebelle, 2002). The larger the size of the data event, the
fewer replicates of this data event will be found over the
training images for inferring the corresponding conditional
probability density function (CPDF). However, when the size
of data template is too small, large-scale structures of the
training image cannot be reproduced (Mariethoz et al., 2010).
In addition, a search template including too many nodes can
lead to storing a large number of patterns, increasing CPU
cost and memory consumption. The multiple grids concept
(Tran, 1994; Strebelle, 2002) mitigates the abovementioned
limitations, but they still present due to the rigidity of data
templates and multiple grids. A more straightforward MPS
method, direct sampling (DS), was proposed in a study by
Mariethoz et al. (2010), in which the high order statistics are
sampled directly from the training image without storing pat-
terns and without the need for multiple-point grids. One of
the main advantages of this approach is that several types of
distances between patterns can be considered, making it pos-
sible to simulate continuous variables, or even multivariate
simulation. As an approximation, pattern distance was used
to express the matching degree between the neighborhood of
a node and a data event in the training image (Chugunova
and Hu, 2008; Mariethoz et al., 2010, 2015).

No matter which MPS algorithm is used, a suitable train-
ing image is the fundamental requirement. Although such
algorithms are gaining popularity in hydrogeological appli-
cations (Hermans et al., 2015; He et al., 2014; Høyer et al.,
2017; Hu and Chugunova, 2008; Huysmans et al., 2014; Jha
et al., 2014; Mahmud et al., 2015), they still suffer from one
vital limitation: the lack of training images, especially for 3-
D situations. Object-based or process-based techniques are
one possibility to build 3-D training images (de Marsily et
al., 2005; de Vries et al., 2009; Feyen and Caers, 2004; Ma-
haraja, 2008; Pyrcz et al., 2009). Besides inherent limitations
in the parameterization of these algorithms, it is also chal-
lenging to reproduce the various aspects of geological ge-
ometries from a high-resolution outcrop map, or even from
insufficient borehole data (Comunian et al., 2014; Pirot et al.,
2015). To overcome this difficulty of obtaining 3-D training

images, scholars have attempted to use low-dimensional data
(e.g., boreholes, cross sections, outcrops and remote sensing
and geophysical images) to reconstruct 3-D models directly
instead of a training image in the entire 3-D domain (Bayer et
al., 2011; Comunian et al., 2011; Hu et al., 2011; Weissmann
et al., 2015). In particular, a reconstruction method of par-
tial datasets was proposed by Mariethoz and Renard (2010)
by using and adapting the DS algorithm. However, large-
scale 3-D models contain millions of nodes, and thus a very
large number of scan attempts will be carried out for each
simulated node by using this method, especially in the early
stages of a simulation due to the sparse known data. There-
fore, this method still suffers from a severe computational
burden for fine 3-D applications. Moreover, it assumes sta-
tionarity of the modeled domain, which is not often the case
in practice. Comunian et al. (2012) proposed an approach to
tackle the lack of a full 3-D training image using sequential
2-D simulations with conditioning data (s2Dcd): a 3-D do-
main is filled by preserving an overall coherence due to a
series of 2-D simulations performed using 2-D training im-
ages along orthogonal directions. However, this strategy is
not effective at characterizing the connectivity of structures
in all directions of a 3-D domain, because each 2-D simula-
tion only considers the high-order statistics in this direction.
Moreover, it also suffers from the limitation of nonstation-
arity of geological phenomena due to the global search in
a 2-D plane. To integrate the benefits of both approaches,
Gueting et al. (2017) proposed a new combination of the two
existing approaches. The combination is achieved by starting
with the sequential two-dimensional approach (Comunian et
al., 2012), and then switching to the three-dimensional recon-
struction approach (Mariethoz and Renard, 2010). However,
the abovementioned limitations of the two approaches still
remain because this combination is an optimization of the
workflow and does not substantially improve the methods. To
combine the CPDFs from different directions, several proba-
bility aggregation methods were tested and discussed (Allard
et al., 2012; Bordley, 1982; Genest and Zidek, 1986; Journel,
2002; Krishnan, 2008; Mariethoz et al., 2009; Stone, 1961).
Other 3-D applications to represent geological structures us-
ing MPS and partial data include filling in the shadow zone
of a 3-D seismic cube (Wu et al., 2008), generating small-
scale 3-D models of porous media (Okabe and Blunt, 2007)
and building a 3-D training image with digital outcrop data
(Pickel et al., 2015).

From another perspective, using very common workflows,
geologists can obtain 2-D geological maps or sections from
scattered boreholes and/or other samples by studying analogs
(Caumon et al., 2009). With increasingly sophisticated data
acquisition methods, 2-D high-resolution images can be ac-
quired. For example, large-scale outcrop maps can be cap-
tured by using terrestrial lidar (Dai et al., 2005; Heinz et al.,
2003; Nichols et al., 2011; Pickel et al., 2015; Zappa et al.,
2006), and fine-scale pore images can be derived from pro-
gressive imaging techniques (Zhang et al., 2010). Therefore,
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there are many ways to acquire low-dimensional data for re-
constructing a full 3-D model. In practice, however, these
methods using real geological analogs or sections as training
images still face significant nonstationarity due to the hetero-
geneity of geological phenomena and processes (Comunian
et al., 2011; de Vries et al., 2009).

To address the insufficient access to a 3-D training image
and the challenge of nonstationarity, we present a new strat-
egy to reconstruct 3-D geological heterogeneities using 2-D
cross sections (3DRCS) instead of an entire training image.
Compared to previous MPS implementations relying on par-
tial data, our proposal is to use only several local subsections
closer to the simulated node as training images, rather than
full planes perpendicular to the x, y and z directions (Comu-
nian et al., 2012) or searching in the entire 3-D domain (Ma-
riethoz and Renard, 2010). Compared with the filling by a
series of 2-D simulations in s2Dcd (Comunian et al., 2012), a
random simulation path containing all uninformed locations
is used so that multiple-point (MP) statistics in a 3-D domain
are captured. The local subsections are able to offer more co-
herent and reliable statistics since they are spatially closer to
the simulated node which is going to be simulated. Moreover,
the original cross sections are divided into many subsections
according to their spatial relationships, and thus nonstation-
arity is reduced since it is restricted into a local cube con-
sisting of six or fewer subsections. In principle, our proposal
can be applied into any multiple-point stochastic simulation
method. In this work, we embed this strategy into a standard
MPS framework called ENESIM (Guardiano and Srivastava,
1993). The blocking strategy proposed in this work can sig-
nificantly reduce the search space of training images, which
makes it possible to get a 3-D reconstruction using ENESIM
for a reasonable CPU cost. As with DS, in our approach MP
statistics are not stored and the neighborhood is flexible. To
integrate the patterns from different subsections, two proba-
bility aggregation formulas and their combinations are used.
As an approximation of the matching degree between neigh-
borhoods and data events, pattern distances are used to en-
hance the stability of CPDFs. Furthermore, we adapt multi-
ple grids into the 3DRCS approach, where the geometries of
data templates are not fixed for grids of different scales. Be-
sides cross sections, any other scattered samples can also be
involved into the proposal as conditional data (hard data).

The remainder of this paper is organized as follows. Sec-
tion 2 gives background information used in the following
sections. Section 3 presents the main concepts of the locality-
based 3-D MPS reconstruction using 2-D cross sections and
the detailed steps of the proposed approach. Section 4 shows
a parameter sensitivity analysis and the performance com-
parison with other MPS algorithms. Section 5 gives a syn-
thetic example in hydrogeology to illustrate the effectiveness
of the 3DRCS approach when facing the real geological field
data. The final section contains some concluding remarks and
ideas for future work.

2 Background information

2.1 Pattern distance

A pattern distance d{NX, NY } is an approximation of the
dissimilarity between patterns, which is used to compare the
neighborhood of a node currently simulated with a data event
in the training image (Mariethoz et al., 2010). Approximate
matches are accepted by using a distance threshold t . Namely
for a data event NX from the simulation grid, when the con-
dition d{NX, NY } ≤ t (t ≥ 0) is met, the pattern NY from the
training image will be used to update the current CPDF. For
a categorical variable, the distance can be formulated as fol-
lows:

d {NX,NY } =
1
n

n∑
i=1

ai ∈ [0,1], where

ai =

{
0 if Z(xi)= Z(yi) ,

1 if Z(xi) 6= Z(yi) .
. (1)

For a nonstationary training image from an actual geological
phenomenon, repeatability of spatial patterns could be weak
so that it is hard to acquire a stable CPDF. Therefore, we
adopt a pattern distance with a threshold as an approximation
to sample more patterns and get a more stable CPDF.

2.2 Probability aggregation

Allard et al. (2012) presented a comprehensive literature re-
view for aggregating probability distributions. These can be
divided into additive methods and multiplicative methods ac-
cording to their mathematical properties. The linear pooling
formula (Stone, 1961) is a widely used method (for example,
it was used by Okabe and Blunt, 2007) based on the addition
of probabilities. It is appealing because of its flexibility and
simplicity. Multiplicative methods include Bordley and Tau
models and log-linear pooling (based on odd ratios) (Bord-
ley, 1982; Journel, 2002; Genest and Zidek, 1986).

2.2.1 Linear pooling formula

The linear pooling formula, proposed by Stone (1961), is
probably the most intuitive way of aggregating the proba-
bilities P1, . . . ,Pn of an event A.

PG(A)=

n∑
i=1

wiPi(A) with w1, . . ., wn ∈ R
+ (2)

In this formula, wi are positive weights and their sum must
equal 1 to obtain a global probability PG ∈ [0, 1].

2.2.2 Log-linear pooling formula

The log-linear pooling formula is a linear operator of the log-
arithms of the probabilities (Genest and Zidek, 1986). If a
prior probability P0(A) must be included, it is written as:
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Figure 1. Local subsections divided by their spatial relationships and the corresponding training images. (a) Six cross sections in a 3-D
domain: two sections along each direction; (b) two local domains: a central cube and a corner cube; (c) corresponding subsections (training
images).

PG(A)∝ P0(A)
1−
∑n
i=1wi

n∏
i=1
Pi(A)

wi . (3)

n∑
i=0
wi = 1 is needed to verify external Bayesianity. There

are no other constraints whatsoever on the weights wi , i =

0, . . . ,n. The sum S =
n∑
i=1
wi plays an important role in this

formula. If S = 1, the prior probability P0 is filtered out be-
cause w0 = 0. Otherwise, if S > 1, the prior probability has
a negative weight and PG is further away from P0 than other
probabilities. Conversely, if S < 1, PG is always closer to P0.
Therefore, we can adjust the influence of the prior probabil-
ity P0 on the aggregated result PG by changing the value
of S.

2.3 Multidimensional scaling and kernel smoothing

Tan et al. (2014) proposed a distance-based approach to eval-
uate the quality of multiple-point simulation outcomes where
the Jensen–Shannon (JS) divergence is used to depict the dis-
similarity of MP histograms as a quantitative metric. The in-
formation in the dissimilarity of MP histograms can be visu-
alized using multidimensional scaling (MDS) (Caers, 2011).
MDS approximates these distances by a lower-dimensional
Euclidean distance in Cartesian space, which facilitates the
visualization of the dissimilarity of MP histograms.

Hermans et al. (2015) used an adaptive kernel smoothing
(see Park et al., 2013) to estimate the probability density of
the data variable for each kind of realizations f (Ref · |Ri) in
the d-dimension space inferred from MDS. This allows the
probability density distribution of the realizations around the
reference to be estimated. For each kind of realization, its
probability relative to the reference P(Ri |Ref) can be calcu-

lated by using Bayes’ rule:

P (Ri |Ref)≈ P
(
Ri |Ref∗

)
=

f
(
Ref∗|Ri

)
P (Ri)

N∑
i=1
f
(
Ref∗|Ri

)
P (Ri)

. (4)

3 Methodology

3.1 Local search strategy of 3-D MPS reconstruction

In the abovementioned MPS methods, when using partial
data, whether searching an entire 3-D domain or complete
sections, any locations of the training images are scanned
even if they are far away from the simulated node, so that one
spatial pattern will be carried to a distant position. Therefore,
the use of these methods is restricted to stationary training
images, which are in practice seldom available. In this work,
we propose a local search strategy that allows this problem to
be palliated, by taking into account the spatial relationships
of the real geological cross sections in a given 3-D domain.

As illustrated in Fig. 1, a 3-D domain is segmented into
nine small blocks by six cross sections from three orthog-
onal directions where there are two sections in each direc-
tion. Every local block is surrounded by n local subsections
(1≤ n≤ 6). It should be noted that, sometimes, local blocks
are not closed (i.e., the surrounding subsections are less than
six) (Fig. 1b), and it is also possible that sections along some
planes are missing; however, at least one section should be
provided. For each unknown node in the local block (e.g., the
gray cubes in Fig. 1c), the MP statistics are captured from
the surrounding subsections rather than from the entire sec-
tions. Namely, there are n corresponding training images for
each simulated node. These local subsections are the parts of
the global cross sections which are closer to the uninformed
nodes in the local block; thus, they are more likely to be re-
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garded as statistically representative. Data events are selected
from the informed nodes (hard data) on three planes parallel
to the subsections and through the current simulated node in
three orthogonal directions by using a flexible neighborhood.

Another important point is related to handling of the
search window when scanning a subsection. Here, we allow
all locations of a subsection to be visited by the central node
of a data event. The neighbor nodes of the data event can
be placed in other adjacent subsections when matching with
the training images. As shown in Fig. 2, the area inside the
blue line is the search window. If only the nodes of the data
event are from the subsection itself (case 1 on the figure), the
training patterns are seriously reduced. We adopt a search
strategy where neighbor nodes can be searched in the neigh-
boring subsections (case 2 on the figure). Its main advantages
are the coherence of the spatial patterns in a realization and
the larger number of training patterns available. In addition,
the size of the data events is constrained by the boundary of
the global section, as illustrated in Mariethoz et al. (2010).

If more cross sections are available, a finer spatial sub-
division can be used. In this case, the size of each subsec-
tion is smaller and the computational cost is reduced signifi-
cantly. However, extremely small training images cannot of-
fer enough spatial patterns, thus a minimal subsection size
has to be considered. In practice, if there are many sections
in each direction, a feasible solution is to select several ones
as the references and use others as conditioning data only.

3.2 Strategy for aggregating the PDFs from local
subsections

As an additive aggregation method, the linear pooling for-
mula corresponds to a mixture model, which is related to the
union of events and to the logical operator OR (Allard et al.,
2012). This method is thus used to unite several independent
probabilities into a global term PG. The log-linear pooling
formula, based on the multiplication of probabilities, is re-
lated to the intersection of events and to the logical operator
AND. Therefore, we usually use such a method to aggregate
the probabilities with significant correlation to acquire a con-
junction probability.

In this study, n PDFs (1≤ n≤ 6) are computed from the
surrounding local subsections (Fig. 1). For the illustrative
case proposed here, a local 3-D domain is surrounded by
six subsections, and six PDFs are being aggregated. There
are two parallel subsections (training images) in each di-
rection. An additive aggregation operator is more appropri-
ate to combine the two probability distributions from par-
allel subsections, since we just expect a larger number of
samples and thus more robust PDF by uniting both. Then,
three orthogonal PDFs are obtained. We then join these PDFs
containing the statistics from different directions with obvi-
ous anisotropic features. This scenario needs a multiplicative
method to combine the orthogonal PDFs so as to retain the
features in all directions. In summary, an optimal probability

Figure 2. Search window in subsections.

aggregation strategy is proposed by the procedure described
below:

1. Aggregate the PDFs collected along the same direction
for parallel subsections using the linear pooling formula
described in Sect. 2.2.1.

2. Aggregate the orthogonal PDFs from the above step
by using the log-linear pooling formula described in
Sect. 2.2.2.

Of course, the probability aggregation step is not required
when for step 1 there is only one subsection along a given
plane, and for step 2 the PDFs that are missing along some
direction are simply not included in the aggregation process.
For the step 1, the weights w1 and w2 are related to the dis-
tances between the current location and the two parallel sub-
sections d1 and d2 and are computed as follows:

w1 =
1/d1

1/d1+ 1/d2
, w2 =

1/d2

1/d1+ 1d2
. (5)

Such parameterization ensures that within-block trends are
accounted for.

For step 2, an influence of the prior probability is desired
to tune the other orthogonal PDFs. Thus, we usually use 0<
w0 < 1, and set wi(i = 1, . . . , n) to be equal, i.e. wi = (1−
w0)/n, where n is the number of PDFs to be aggregated.
However, the weights wi(i = 1, . . . , n) can also change; for
example, they can vary at each simulation step, as described
in Comunian et al. (2012), according to the contributions of
the different training images, while the sum still respects the

condition
n∑
i=0
wi = 1.
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Figure 3. An example of multiple grids and the corresponding neighborhoods, search radius R and distance threshold t .

3.3 Flexible search template on multiple grids

When large neighborhoods are considered, it is more diffi-
cult to find matching data events in the training image and
thus a larger distance threshold t is required to obtain a suf-
ficient number of samples for an acceptable CPDF. This can
lead to degrading small-scale features or the removal of cat-
egories that have a low proportion. To address this issue, we
propose a novel implementation of multiple grids where the
search template is flexible and the distance threshold t varies
according to the radius of the neighborhood.

As illustrated in Fig. 3, an example of multiple grids with
three levels is used to show the relationship between neigh-
borhoods, search radius R and distance threshold t on dif-
ferent grids. A neighborhood is identified by the informed
and/or simulated nodes located in the circle with a radius R
on the current grid and the current node (the gray nodes in
Fig. 3) as a central. The initial radius R0 and distance thresh-
old t0 for the first grid are assigned as the input parame-
ters. The radius R linearly reduces to 1 from the first to the
last grid, and the threshold t similarly varies from 1 to 0.
The neighboring nodes (hard data and previously simulated
nodes) around the central node on the current grid are se-
lected to build a data event according to the radius R and the
maximum number of points in the neighborhood. Therefore,
a large data event is divided into several small parts placed on
the different grids, which results in smaller neighborhoods on
each grid. An acceptable threshold t is thus assigned to each
neighborhood. For the last grid, the radius is reduced to 1 and
at most there are eight nodes in a neighborhood. This strat-
egy considers that small data events located on the last grid

are much more repetitive (thus easier to find) than the large
data events of the first grid. Figure 3 shows the flexible use
of multiple grids on one plan through the current node. In
the local search strategy proposed in this work, three planes
through the current simulated node in three orthogonal direc-
tions are considered to obtain the neighborhoods. Thus the
same strategy will be applied on other two planes.

3.4 Step-by-step algorithm using the local search
strategy

Based on the strategies proposed in the above sections, the
detailed steps of our simulation algorithm proceed as illus-
trated in Algorithm 1.

As mentioned above, we capture the MP statistics from
several subsections of a local domain. Thus, the correspond-
ing prior proportion should also be computed on the basis of
these surrounding subsections (step 2). Comparing to s2Dcd,
we use a fully random path on each multiple grid in the 3-
D space and not within a specific section. For the current
node, however, the MP statistics are only captured from sev-
eral subsections in three orthogonal directions, because we
only have 2-D cross sections to scan and not a 3-D train-
ing image. Obviously, step 8 is the most important procedure
in our simulation algorithm, and the idea is inspired by EN-
ESIM (Guardiano and Srivastava, 1993) and DS (Mariethoz
et al., 2010). The main procedure is demonstrated in Algo-
rithm 2.

The fraction of the scanned training image f and the dis-
tance threshold t are borrowed from DS and they play the
same roles. χ0, χ1, γ0 and γ1 are the indexes of the clos-
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est training images in the other two directions and they are
used to determine the current subsection (training image). A
new parameter, the maximum number of matched patterns
from the training image Nmax is adopted to avoid unneces-
sary searches. For some small neighborhoods, especially in
the last multiple grid, the CPDF will rapidly stabilize with
the increasing number of matched patterns.

4 Parameterization and performance analysis

In this section, we apply 3DRCS on several synthetic cases
where the cross sections are extracted from existing 3-D ref-
erences. Using these examples, we perform a parameter sen-
sitivity analysis and compare it with two widely used meth-

ods, DS-based 3-D reconstruction (Mariethoz and Renard,
2010) and s2Dcd (Comunian et al., 2012). The workflows
and algorithms proposed in this work are developed in the
C++ programming language. All experiments presented in
this paper are implemented on a laptop computer with Intel
4-Core i5-62000U Quad-core CPU, 8 GB RAM and 64 bit
Windows 10.

4.1 Parameter sensitivity

The majority of parameters of 3DRCS are similar to DS.
Therefore, only the sensitivity of three parameters specific to
3DRCS are tested against the 3-D reference shown in Fig. 4,
considering CPU cost and statistical and geometrical features

www.hydrol-earth-syst-sci.net/22/6547/2018/ Hydrol. Earth Syst. Sci., 22, 6547–6566, 2018
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Figure 4. A sample of Berea sandstone from Okabe and
Blunt (2007) is used as a 3-D reference (100× 100× 100 voxels).
The crimson color represents pores and the yellow color represents
a matrix. The porosity of this model is 20.33 %.

of the realizations obtained. All cross sections used in the fol-
lowing tests in Sect. 4.1 are extracted from this 3-D model.

4.1.1 Number of cross sections

The number of cross sections Ncs is a new parameter in the
3DRCS approach. They are not only regarded as the train-
ing images and conditioning data, but also control the com-
puting speed and the quality of the reconstructions. Figure 5
and Table 1 show different reconstructions and their statisti-
cal properties by increasing the sections in every direction.
In this test, the number of cross sections Ncs in each di-
rection increases from one to six, and other parameters are
fixed: maximum search radius= 50, maximum number of
points in a neighborhood= 35, distance threshold t0 = 0.2,
fraction of training image to scan f = 0.8, maximum of
matched patterns from each training image= 100, number
of multiple grids= 3, weights of the probability aggrega-
tion w0 = w1 = w2 = w3 = 0.25. We obtain 20 realizations
for each set of cross sections. The main difference between
the different settings is the improvement of computational
efficiency with the increase in cross sections. The propor-
tion of pores (porosity) is reproduced at a similar level for
each group. Also, when increasing the number of cross sec-
tions Ncs, the number of geobodies gets closer to the refer-
ence and the variability is decreased and the connectivity be-
comes stable, which is caused by the increase of condition-
ing data (i.e., informed cross sections). On the other hand,
using too many cross sections will lead to a number of ar-
tifacts since the training subsections for each subblock are
very small, resulting in an insufficient number of samples
(see the sections extracted from the reconstructions in Fig. 5).
As a consequence, we recommend that several sections can
be chosen if there are abundant candidates in one direction,
which must ensure that the features of selected ones are di-
verse and contain enough spatial patterns, but not incurring
artifacts. In this test, 3 or 4 sections in each direction are rec-
ommended, but it is related to the size of simulation grid in
other 3-D application. In general, one informed section for

Table 1. Comparison of the performance of the tests in Fig. 5. All
the statistics are the averages of 20 realizations.

Test Ncs Sub- Porosity (%) No. of Time

blocks Training Results geobodies (s)
sections

1× 1× 1 3 8 19.07 16.36 1781 1382
2× 2× 2 6 27 21.35 19.95 908 718
3× 3× 3 9 64 18.70 16.22 572 396
4× 4× 4 12 125 19.62 16.21 471 271
5× 5× 5 15 216 19.81 16.80 340 183
6× 6× 6 18 343 19.74 17.32 326 127

3-D Ref. 20.33 144

Table 2. Comparison of the performance for 20 realizations with
three sections in each direction, varying the maximum of matched
patterns from each training imageNmax. Other parameters are fixed
and are the same as those in the test in Fig. 5. All the statistical
values are the mean of 20 realizations.∞ represents no constraint
for Nmax.

Nmax Porosity Variance No. of Time
(%) geobodies (s)

5 18.39 0.150 365 132
10 17.22 0.143 440 161
20 16.69 0.139 486 200
40 16.47 0.138 505 251
80 16.48 0.138 510 417
160 16.38 0.137 519 495
320 16.50 0.138 503 549
640 16.66 0.139 508 587
∞ 16.89 0.138 497 589

Ref. 18.70 0.152 144

every 50 grid cells in one direction in the simulation grid is
recommended. When there are very few or no sections in a
direction, a feasible solution has been suggested in a study
by Gueting et al. (2017) in which sequential 2-D simulations
are performed to obtained some sections first, and then both
the original informed data and the obtained sections are used
to reconstruct the model of the entire 3-D domain.

4.1.2 Maximum number of matched patterns from
each training image

Table 2 shows the statistics of 20 realizations obtained by
varying the maximum of matched patterns from each training
imageNmax, which is a novel parameter adopted in this work
to avoid the unnecessary searches while obtaining a CPDF
from training images. Other parameters are the same as in the
former test presented in Fig. 5, except for the sections in each
direction which are fixed to 3. We find that the computational
cost increases sharply when Nmax > 160 and then stabilizes.
Concerning the compared statistical properties, low values
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Figure 5. Reconstructions and their statistical properties when increasing the number of sections in each direction. The first section along
x direction of a reconstruction for each case is presented here. We only present the connectivity functions computed along the coordinate y
since their features are similar in three directions. The black lines represent the corresponding features of the reference models, and the gray
lines represent the features of the reconstructions.

of Nmax result in variabilities because it is almost like sam-
pling the result directly from training images, and the role of
CPDFs is lost. For the remaining cases, the statistics are sim-
ilar except for a decrease in variances with increasing Nmax
(Table 2). In order to better grasp the effect of Nmax, three
cases are selected (Nmax = 5, 40, 320) and the corresponding
realizations are shown in Fig. 6a–c. The connectivity func-
tions vary in a large range for smallNmax values. Conversely,
they become more stable when increasing Nmax (Fig. 6d).
The variance of variables bears the same tendency when in-
creasing Nmax (Fig. 6e). Consequently, Nmax = 40 to 160 is
recommended, resulting in a balance between a stable CPDF
and computational cost.

4.1.3 Weights of the probability aggregation formulas

In this work, the strategy for aggregating the PDFs from local
subsections includes two steps. In the first step the weights
of the linear pooling formula for two parallel subsections are
selected depending on the distances between the current lo-
cation and the two subsections in the first step. Therefore, the
weights are automatically set and do not need to be set. In the
second step, the appropriate weights for the prior probability
distribution and three orthogonal CPDFs are to be selected
by the user. Figure 7 shows different realizations obtained by
varying the four weights w0, w1, w2 and w3. Here we in-
crease the weight of the prior probability distribution w0 and
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Figure 6. Reconstructions and their statistical properties with Nmax = 5, 40, 320 selected from Table 2.

Figure 7. Three realizations obtained by varying the weights of the probability aggregation formulas. Three sections in each direction are
used and other parameters are same with the test of Fig. 5.

let the other three weights equal, since the CPDFs from three
orthogonal directions have the same contribution. Of course,
if users think the CPDF of one direction is more important
than others, they can be changed, under the constraint that

3∑
i=0
wi = 1. It can be observed that when w0 = 0, the spa-

tial structures are well reproduced, but with larger variance
(Fig. 7a) since all spatial patterns are inferred from the MP
statistics of the surrounding subsections rather than using
prior information. When increasing w0, the connectivity of
the spatial structures is degraded, but the facies proportions
are closer to the reference (Fig. 7b). Finally, in the extreme
case shown in Fig. 7c the connectivity of spatial structures
is lost. Therefore, 0≤ w0 ≤ 0.25 is a recommended range
and the other three weights can be determined by the impor-

tance (e.g., complexity or variety of patterns) of the sections
in each direction.

For the other parameters involved in our algorithm, most
of them are similar to the parameterization of DS, which have
been tested thoroughly in Meerschman et al. (2013). How-
ever, 3DRCS allows larger initial values for the neighbor-
hood size and the distance threshold because multiple grids
are used so that these initial values are decreased when in-
creasing the level of multiple grids.

4.1.4 Interaction between t , f , Ncs and Nmax

In this section, we compare the interaction between two im-
portant parameters of DS (distance threshold t and fraction
of training image to scan f ) and two new parameters pre-
sented in 3DRCS (number of cross sections Ncs and maxi-
mum number of matched patterns from each training image
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Figure 8. Interaction between t , f , Ncs and Nmax. These first sections in three directions of each realization are presented. The porosity,
CPU time and the number of geobodies are the average of 10 realizations.

Nmax). Figure 8 shows the interaction between t , f , Ncs and
Nmax. Running our algorithm with f = 0.2 and t = 0.4 re-
sults in noisy realizations. This is not surprising since any
patterns can be accepted even if they bear a large pattern dis-
tance d{NX, NY }. Of course, the algorithm will be very fast
under these parameters because the scan for training images
will be stopped at the beginning. Meerschman et al. (2013)
tested thoroughly for the parameterization of DS. In their
test, when f = 0.5 and t = 0.2, the realizations are accept-
able. However, here the results still contain a lot of noise
since the local search strategy reduces the size of the actu-
ally scanned training images. As the increase of t , f , Ncs
andNmax, the results become satisfactory. The recommended
ranges of Ncs and Nmax have been given in the above sec-
tions. In 3DRCS, it is advised to use f ≥ 0.8 and t ≤ 0.1.
Compared to DS, more strict restrictions for t and f are
adopted due to the local search strategy. Same as the effect
of t and f , Ncs and Nmax also control the computational ef-

ficiency and the quality of simulations. Therefore, when set-
ting the parameters, we should consider finding a balance be-
tween the quality of results and the computational cost.

4.2 Comparison of reproducing heterogeneities with
existing methods

To verify the validity of the 3DRCS approach for reproduc-
ing heterogeneous structures, we compare it with two MPS
implementations that use partial data: DS (Mariethoz and Re-
nard, 2010) and s2Dcd (Comunian et al., 2012). As shown in
Fig. 9, six cross sections extracted from a 3-D model of folds
(180×150×120 voxels) (Mariethoz and Kelly, 2011) are uti-
lized in this test. s2Dcd is a wrapper library that requires an
external MPS engine. In order to ensure comparability, here
DS is employed as the engine of s2Dcd. The detailed param-
eters are as follows: maximum search radius= 40, maximum
number of points in a neighborhood= 40, distance threshold
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Figure 9. Realizations of three different MPS reconstruction methods.

Figure 10. Proportions of the facies for 20 reconstructions by using
three MPS methods. The black and red horizontal lines represent
the proportions of facies in the 3-D reference and the cross sections
used as training images respectively.

t0 = 0.2, fraction of training image to scan f = 0.8, maxi-
mum of matched patterns from each training image= 100,
level of multiple grids= 3, weights of the probability aggre-
gation w0 = w1 = w2 = w3 = 0.25. In the other two meth-
ods, a smaller distance threshold t = 0.05 is considered and
other essential parameters are the same as those in 3DRCS.
Because the implementation of DS is parallel, we use four
processors to carry out this test in DS and s2Dcd. Only one
processor is used in 3DRCS because our implementation
is not parallel. In Fig. 9, one selected realization for each
method is presented. From their visual appearance, it looks
like s2Dcd and 3DRCS have the similar performance for re-
producing the patterns shown in 3-D reference and informed
cross sections. Therefore, histograms, variograms and con-
nectivity functions are used to further analyze the perfor-
mance. Figure 10 shows the comparison of proportions of the
facies for the realizations by using three MPS methods. A to-
tal of 20 realizations are performed for each method. It can be

Figure 11. Comparison of the variograms between DS, s2Dcd and
3DRCS.

seen that the facies proportions with 3DRCS are closer to the
proportions of the reference model and the informed cross
sections. The variograms and the connectivity functions on
three directions for the 3-D reference and the generated 20 re-
alizations of each method are shown in Figs. 11 and 12, indi-
cating that all three methods are able to reproduce the basic
statistics of the 3-D reference, but the lines of the proposed
method are generally closer to the reference.

To further compare the models obtained using the three
different MPS approaches, MDS plots are constructed by cal-
culating the distance of MP histograms between all the real-
izations of the three approaches and a 3-D reference. The re-
sulting MDS map is shown in Fig. 13 and it can be observed
that the realizations of 3DRCS are closer to the reference in
the MDS map than the results obtained by the other two ap-
proaches. In addition, kernel smoothing is used to estimate
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Figure 12. Comparison of the connectivity functions in three directions with three MPS methods.

Figure 13. MDS representation for 20 realizations of each MPS
method.

the density distribution of the realizations of three different
MPS approaches around the reference. The probabilities of
the realizations are calculated from kernel density estimation
by using Eq. (4) described in Sect. 2.3. According to the ref-
erence model, the three different approaches have quite simi-
lar probabilities with 29 %, 33 %, and 38 % for DS, s2Dcd
and 3DRCS, respectively. However, the 3DRCS approach
still gains the highest probability.

In practice, there is no fully informed 3-D reference and
we only have several informed cross sections. Thus, the sta-
tistical features of the reconstructions (e.g., variograms, con-
nectivity functions and MDS plots) are close to the reference
but no one can surpass it in the above test. However, these
comparisons are still able to validate the reproduction of spa-
tial patterns for the different MPS approaches.

4.3 Computational performance

Section 4.1.1 and 4.1.2 have already analyzed the influ-
ence of the number of cross sections Ncs and the maximum
of matched patterns from each training image Nmax. Sec-

tion 4.1.4 tested the interaction between t , f , Ncs and Nmax.
The results indicated that the effect of t and f on the com-
putational efficiency in 3DRCS is the same as in DS. The
computational performance of other parameters has been as-
sessed clearly by Meerschman et al. (2013). The weights of
the probability aggregation formulas do not affect CPU time.

A comparison of computational performance between DS,
s2Dcd and 3DRCS is presented in Fig. 14. Because 3DRCS
is sensitive to the number of input cross sections, we offer
two and four sections in each direction respectively, and the
computational efficiencies when increasing the total num-
ber of grid cells are shown in Fig. 14a and b. Other pa-
rameters are the same as the test in Sect. 3.2. Note that a
different time axis is used for DS-based reconstruction be-
cause it uses much more CPU time than the other two meth-
ods, even though four processors are used for DS-based re-
construction. As shown in Fig. 14a, the 3DRCS approach
presents better computational performance than DS-based 3-
D reconstruction since the MP statistics are captured from a
smaller domain composed of several 2-D sections in s2Dcd
and 3DRCS. Because four processors are used in DS and
s2Dcd, 3DRCS presents a speedup of about 4 compared to
s2Dcd and about 120 compared to DS in this test (Fig. 14a).
When increasing the number of cross sections, the search
space is divided into more subdomains in 3DRCS so as to
achieve a much better performance than s2Dcd and DS (see
Fig. 14b).

5 Synthetic example: 3-D reconstruction of hydrofacies

To further demonstrate the applicability of our algorithm,
an example from a real geological application is presented
in this section. The Descalvado aquifer analog dataset
(Fig. 15) depicts the complex hydrofacies of a small area
(28 m× 7 m× 5.8 m) in Brazil (Bayer et al., 2015). In the
original dataset, there are five cross sections derived from
outcrops, which are marked by black lines in Fig. 15a. They
are referenced in a 3-D domain consisting of 280× 70×
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Figure 14. Comparison of computational performance between DS, s2Dcd and 3DRCS when increasing the size of output grid: (a) two cross
sections and (b) four cross sections in each direction. Note that different time axes are used in the two subplots, and four processors are used
for DS-based reconstruction and s2Dcd but only one for 3DRCS.

Figure 15. Descalvado aquifer analog dataset (Bayer et al., 2015).
(a) 3-D presentation of the informed cross sections: three sections
in xz direction, and five sections in yz direction; (b) 2-D presentation
of these informed sections.

58 voxels. These sections allow only two parts of subdo-
mains to be created, which is insufficient for an application
of 3DRCS. Therefore, we borrow the strategy of Gueting et
al. (2017) to insert three additional sections into the yz di-
rection using a sequential 2-D multiple-point simulation ap-
proach (s2Dcd). These sections are marked by blue lines in
Fig. 15a. Then, all the tests are implemented on the basis of

eight cross sections (three in the xz direction and five in the
yz direction), which are shown in Fig. 15b.

Figure 16 shows realizations obtained by using three dif-
ferent MPS approaches on the basis of the abovementioned
dataset. The white lines indicate the locations of informed
sections in each realization. Note that an auxiliary variable
along the z coordinate is used in s2Dcd and 3DRCS. It is a
continuous variable to control the changing trend of the hy-
drofacies along the z coordinate and a detailed description is
given by Comunian et al. (2012). To further reveal the per-
formance of the different approaches, we use MDS maps to
visualize the dissimilarity of MP histograms (Fig. 17), sim-
ilarly to in Sect. 4.2. However, here we use it to reveal the
dissimilarity between all the reconstructed sections exacted
from the realizations and the eight informed sections along
the two directions, rather than different 3-D realizations.
Thus, for each realization, 70 sections (67 reconstructed sec-
tions and 3 informed sections) from the xz direction and
280 sections (275 reconstructed sections and 5 informed sec-
tions) from the yz direction are used to draw the MDS maps
along the two directions respectively. MDS is very appropri-
ate to present the dissimilarity for this kind of application
because we only have partial cross sections instead of an en-
tire 3-D training image. Therefore, it is necessary to assess
the dissimilarity between the reconstructed sections and in-
formed sections. As shown in Fig. 15, the sections from the
xz and yz directions are very different, such as the correla-
tion lengths and the complexity of structures. Thus, we draw
different MDS maps respectively for the xz and yz directions
(Fig. 17a and b). Individual sections from the realizations are
compared in Fig. 17c and d. Overall, it can be observed both
visually and in the MDS maps that the sections obtained from
3DRCS are closest to the informed sections.
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Figure 16. Three realizations using three different MPS approaches: (a) DS, (b) s2Dcd with the coordinate z as auxiliary variable and
(c) 3DRCS with the coordinate z as auxiliary variable.

Figure 17. MDS maps of sections extracted from realizations using three different MPS approach. (a) MDS map of 70 sections for each
realization along the xz direction; (b) MDS map of 280 sections for each realization along the yz direction; (c) selected sections for each
method according to the JS divergence in the xz direction; (d) selected sections in the yz direction.

3DRCS is able to reduce the nonstationarity effect of real
geological data to a certain extent due to the local search
strategy. As shown in the above analysis, the patterns in the
informed cross sections are very complicated and the distri-
bution of hydrofacies is anisotropic and nonstationary, espe-

cially for the facies with a lower proportion. As illustrated in
Fig. 18a, a local domain is surrounded by four segments from
the informed cross sections. It should be noted that there is no
facies 2 in any of the four segments. We extract the local parts
from three realizations by using different MPS approaches.
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Figure 18. Comparison of reproduction of nonstationary patterns. (a) A local domain and the four corresponding segments; (b) three selected
segments from the realizations obtained using different approaches in the local area; (c) histograms of the four informed segments and the
local models of 10 realizations for each MPS method.

Then we check all the segments of the three local models,
and we find that facies 2 is reproduced in this local area in the
realizations of DS and s2Dcd. Three segments are randomly
selected from the three local models, and they are shown in
Fig. 18b where the boundaries of facies 2 are marked by red
lines. Figure 18c shows the histograms of the four informed
segments and the local models of 10 realizations for each
MPS method. It can be observed that, although there is no fa-
cies 2 in the closest four segments, it is reproduced in this lo-
cal area by DS and s2Dcd. Conversely, 3DRCS can maintain
the distribution of facies well since all the MP statistics are
captured from the surrounded subsections. If the surrounding
subsections of a local area do not contain an attribute but it
exists in other locations, the patterns with this attribute will
not be moved to this local area in the 3DRCS approach. This

indicates that 3DRCS allows the involvement of the nonsta-
tionary geological analogs in the 3-D real applications, and
spatial patterns are restricted to a local domain so that they
are not carried to faraway locations.

In the real-world applications, the geological sections or
other analogs are not always straight or orthogonal. There-
fore we need to project them in orthogonal directions. Fig-
ure 19 illustrates the process of projecting the tortuous sec-
tions to the parallel planes along a given direction. The same
strategy can be used to address the issues in other directions.
After that the original sections will be used as hard data and
the projected sections will only be used as training images.
Thus other scattered samples (e.g., boreholes, outcrops) also
can be involved as hard data.
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Figure 19. Process of projecting real-world sections to parallel planes along a given direction: the process in (a) 3-D space and (b) the
xy plane.

6 Discussion and conclusion

In this paper, we presented a novel method (3DRCS) for re-
constructing 3-D complex heterogeneous structures by us-
ing partial lower dimensional data. Indeed, this is a very
general issue since inferring high-dimensional patterns from
low-dimensional data (e.g., boreholes, outcrops and other
analogs) is a very common workflow for geologists. In prac-
tice, reliable 3-D models of complex geological structures
are still difficult to construct due to the heterogeneity of ge-
ological phenomena and processes, even though there are
many real geological analogs or sections that can be used.
3DRCS makes it possible to reconstruct 3-D structures with
MPS when no 3-D training image is available. The synthetic
experiments and practical applications presented in this pa-
per demonstrate the capacity to reconstruct such heteroge-
neous structures.

As compared to the previous MPS implementations that
use partial data, the proposed method requires several lo-
cal training subsections surrounding a simulated node, rather
than a full section (Comunian et al., 2012) or points in a 3-
D domain (Mariethoz and Renard, 2010). The local search
strategy proposed in this paper allows more reliable MPS
to be computed because it avoids spatial patterns from far-
away locations being considered in the simulation of the cur-
rent node. In this strategy, the original cross sections are di-
vided into many subsections according to their spatial rela-
tionships. Therefore, the nonstationarity of real geological
analogs is reduced to a certain extent because the training
patterns cannot be borrowed from further than a local subdo-
main. Of course, besides cross sections, other scattered sam-
ples also can be included as hard data.

Moreover, 3DRCS increases the computational efficiency
compared with existing MPS methods. The local search strat-
egy allows MP statistics from the local subsections to be ac-
quired so that the searches are significantly reduced. Its good
computational performance makes it potentially applicable to
real 3-D modeling problems such as porous media, hydrofa-

cies, reservoirs and other complex sedimentary structures. In
addition, a new parameter, the maximum of matched patterns
from each training image, is adopted to avoid the unneces-
sary searches. The experimental results demonstrated that a
reasonable choice for this parameter can not only ensure to
capture a stable CPDF, but also gain a further performance
speed-up.

The method presented here retains many advantages of DS
(Mariethoz et al., 2010), such as unnecessary storing for MP
statistics, pattern distances and a flexible neighborhood. Nev-
ertheless, we propose an adaptive and flexible implementa-
tion of the search template on multiple grids where the ra-
dius of the neighborhood, the distance threshold and the size
of data events decrease linearly with the rising of levels of
multiple grids. As a result, a big data event is divided into
several small parts placed on the different grids, which re-
sults in a smaller neighborhood on each grid. An acceptable
distance threshold is assigned to the first grid to make it eas-
ier to obtain a stable CPDF and to capture the large-scale
features from the original sparse samples. For the last grid,
the radius of neighborhood is reduced to one and the highest
criterion is carried out for the threshold (i.e., t = 0), which
avoids the small-scale features or lower proportion facies are
filtered out. Hence, the simulation of each multiple grid is
simulated with different parameters, allowing for flexibility
in simulating different structures at different scales.

Another important advantage of 3DRCS is the probability
aggregation strategy in which the combinations of two dif-
ferent formulas are used to combine the CPDFs from differ-
ent subsections. First, an additive aggregation method (linear
pooling formula) is used to combine two disjunctive proba-
bility distributions from each pair of parallel subsections to
obtain a more stable PDF. The weights of this step are related
to the distances between the current location and the two par-
allel subsections. Such parameterization is able to ensure the
pattern trend changing from one subsection to another one.
And then, we aggregate the orthogonal PDFs and prior prob-
ability distribution by using a multiplicative method, the log-
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linear pooling formula. This step can enhance the capability
for reconstructing connectivity of spatial patterns in compar-
ison with the method using a series of 2-D MPS simulations
to fill a 3-D domain along given orthogonal directions (Co-
munian et al., 2012).

The limitations of the 3DRCS method come from the fact
that it is not always possible to obtain abundant sections in
each direction, and extremely small local blocks cannot offer
enough spatial patterns; thus, a minimal subsection size has
to be considered. In addition, 3DRCS is not able to perform
the simulation of continuous variables. The proposed method
can be further improved to overcome these limitations. An-
other possible direction is to parallelize the proposed MPS
implementation and further enhance its computational per-
formance.
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