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Abstract. The use of ground-based precipitation measure-
ments in radar precipitation estimation is well known in radar
hydrology. However, the approach of using gauged precipi-
tation and near-surface air temperature observations to im-
prove radar precipitation estimates in cold climates is much
less common. In cold climates, precipitation is in the form of
snow, rain or a mixture of the two phases. Air temperature is
intrinsic to the phase of the precipitation and could therefore
be a possible covariate in the models used to ascertain radar
precipitation estimates. In the present study, we investigate
the use of air temperature within a non-parametric predictive
framework to improve radar precipitation estimation for cold
climates. A non-parametric predictive model is constructed
with radar precipitation rate and air temperature as predic-
tor variables and gauge precipitation as an observed response
using a k nearest neighbour (k-nn) regression estimator. The
relative importance of the two predictors is ascertained using
an information theory-based weighting. Four years (2011–
2015) of hourly radar precipitation rates from the Norwegian
national radar network over the Oslo region, hourly gauged
precipitation from 68 gauges and gridded observational air
temperatures were used to formulate the predictive model,
hence making our investigation possible. Gauged precipita-
tion data were corrected for wind-induced under-catch be-
fore using them as true observed response. The predictive
model with air temperature as an added covariate reduces
root-mean-square error (RMSE) by up to 15 % compared to
the model that uses radar precipitation rate as the sole pre-
dictor. More than 80 % of gauge locations in the study area
showed improvement with the new method. Further, the as-
sociated impact of air temperature became insignificant at

more than 85 % of gauge locations when the near-surface air
temperature was warmer than 10 ◦C, which indicates that the
partial dependence of precipitation on air temperature is most
useful for colder temperatures.

1 Introduction

Hydrological applications require accurate precipitation esti-
mates at the catchment scale (Beven, 2012; Kirchner, 2009).
Weather radars provide quantitative precipitation estimates
over a large area with high spatial and temporal resolution.
However, weather radars measure the precipitation rate indi-
rectly, using the energy backscattered by hydrometeors in the
volume illuminated by a transmitted electromagnetic beam
(Villarini and Krajewski, 2010a). The backscattered energy
is measured as reflectivity which is used to estimate precipi-
tation (Hong and Gourley, 2015).

The nature of radar precipitation measurements is sub-
ject to many sources of error. Some of the known errors in
the reflectivity measurement are ground clutter, beam block-
ing, anomalous propagation, bright band, hail and attenuation
(Berne and Krajewski, 2013; Chumchean et al., 2003). Dur-
ing the conversion, the use of an inappropriate Z–R relation-
ship leads to Z−R conversion error. Due to the presence of
such significant errors (both random and systematic), radar
data are still not widely used in hydrological applications
(Berne and Krajewski, 2013; Chumchean et al., 2003). Many
studies (e.g. Abdella, 2016; Villarini et al., 2008; Ciach et al.,
2007; Chumchean et al., 2006) have focused on estimating
these errors in order to improve quantitative radar precipi-
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tation estimates; however, some of the underlying physical
processes are still not understood well enough to allow sig-
nificant advances (Villarini and Krajewski, 2010b).

In the standard approach, radar measurements of reflec-
tivity (Z) are converted into precipitation rate (R) using the
parametricZ–R relationship derived by Marshall and Palmer
(1948) in the form of a power law, Z = aRb. The variability
of the power law parameters (a and b) is related to a num-
ber of factors including the drop-size distribution (DSD) of
hydrometeors. DSD varies in time and space as well as for
the type and the phase of precipitation (Chumchean et al.,
2008; Joss et al., 1990; Uijlenhoet, 2001; Wilson and Bran-
des, 1979).

In cold climates, precipitation occurs in the form of snow,
rain, or a mixture of snow and rain. Several studies (e.g.
Battan, 1973; Sekhon and Srivastava, 1970; Marshall and
Gunn, 1952) have investigated the Z–R relationship regard-
ing the precipitation phase and proposed different parame-
ter sets. Most radar operations in cold-climate countries (e.g.
Canada and Finland) use two sets of Z–R relations, one
for rain and one for snow, often calibrated in situ to mea-
sure a water-equivalent radar reflectivity factor (Koistinen
et al., 2004; Crozier et al., 1991; Smith, 1984). However, the
Norwegian radars and European radar project OPERA have
used a single Z–R (Marshall and Palmer, 1948 relation for
rain (Z = 200R1.6) throughout the year. The use of the sin-
gle reflectivity–precipitation relationship can result in phase-
dependent bias in radar precipitation estimation.

The Finnish Meteorological Institute devised two equa-
tions for rain (Z = 316R1.5) and snow (Ze = 100S2) for op-
erational use (Saltikoff et al., 2015). Here Ze represents the
equivalent radar reflectivity factor of snow. For the use of
the phase-dependent reflectivity–precipitation (Z–R) rela-
tionship, the precipitation phase of the radar pixel must be
estimated. Air temperature has traditionally been used to de-
termine the phase of the precipitation (Al-Sakka et al., 2013).
The Finnish Meteorological Institute uses temperature and
humidity observations from synoptic stations to estimate the
precipitation phase and uses that information to apply a dif-
ferent parameter set for rain or snow (Koistinen et al., 2004;
Saltikoff et al., 2015). However, Saltikoff et al. (2000) re-
ported that the real-time phase-dependent adjustment of two
different parameter sets does not improve the snowfall es-
timates significantly. To account for varying precipitation
phases (multiple snow types and mixture of snow and rain),
many parameter sets could be required. Moreover, the pre-
cipitation phase changes rapidly even within the single win-
ter storm; hence operationally switching between different
parameter sets can be a challenging task (Koistinen et al.,
2004; Saltikoff et al., 2015).

Fassnacht et al. (2001, 1999) demonstrate the use of sur-
face air temperature to estimate the fraction of snow con-
tent in mixed precipitation and use it to adjust the radar esti-
mates for mixed precipitation. It was reported that this adjust-
ment improved the accumulated snow estimates in Ontario,

Canada. Further Fassnacht et al. (1999) showed that the ad-
justed radar data provided more realistic precipitation esti-
mates for precipitation–runoff models than corrected gauge
precipitation data.

Starting from its origin and throughout its entire journey,
the rain drop or snow crystal is shaped by temperature. Dur-
ing the formation and growth of cloud droplets, different
temperatures and the degree of supersaturation cause differ-
ent shapes of crystals to form, and then the crystals start to
fall. The falling crystals are then characterised by the tem-
perature of the air through which they fall. As a result, the
air temperature determines the final properties and the phase
of the hydrometeor that reaches the ground surface (Fass-
nacht et al., 2001). Further, studies showed that there are
multiple snow types with different shapes and densities, and
they vary in time, based partially on temperature (Saltikoff
et al., 2015). Many studies (Auer Jr., 1974; Kienzle, 2008;
Killingtveit, 1976; Rohrer, 1989) examined the relationship
between the precipitation phases (snow, rain, and mixture of
snow and rain) and temperature. The probability of occur-
rence of snowfall versus temperature generally shows an ap-
proximately s-shaped structure and, in some cases, a linear
relation (Fassnacht et al., 2013) in these studies. Further, the
dielectric property of solid particles (ice) is not the same as
liquid particles (water); moreover, it varies with temperature
(Joss et al., 1990). These imply that temperature is intrinsic
to both the phase of precipitation and the ensuing conversion
of reflectivity into the incident ground precipitation.

Parametric (or regression type) and non-parametric ap-
proaches (nearest neighbour and kernel density estimation)
have been used to build predictive models for a range of ap-
plications. A key advantage of non-parametric approaches is
that less rigid assumptions about the distribution of the ob-
served data are needed (Silverman, 1986); hence no major
assumptions about the process being modelled are required
to construct the complete predictive system (Mehrotra and
Sharma, 2006; Sharma and Mehrotra, 2014).

Ciach et al. (2007) used a non-parametric kernel regression
to model radar-rainfall uncertainty. They described the rela-
tion between true rainfall and radar rainfall as the product of
a systematic distortion function along with a random com-
ponent and presented procedures to identify the two com-
ponents. The distortion function could account for system-
atic biases which can be mathematically defined as a condi-
tional expectation function, while the random component ac-
counts for random errors in radar-rainfall estimation. Villar-
ini et al. (2008) estimated the conditional expectation func-
tion (distortion function) using both non-parametric (similar
to Ciach et al., 2007) and copula-based methods and com-
pared the difference in performance between the two ap-
proaches using different quality metrics. It was found that
performance of the non-parametric method was comparable
with the copula-regression estimate and even outperformed
when Nash–Sutcliffe efficiency (NSE) was used as a qual-
ity metric. The strength of non-parametric approaches is
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the ability to adapt to the data locally, and the weakness is
that the method results in “local” biases as a result of out-
liers (Villarini et al., 2008). Hasan et al. (2016a) presented
a kernel-based non-parametric approach to estimate ground
rainfall using radar reflectivity as a univariate predictor vari-
able in a tropical setting. Past observed radar reflectivity and
gauged rainfall were used in formulating the non-parametric
model.

In this study, the hypothesis is that near-surface air temper-
ature observations can help improve radar precipitation esti-
mates in cold climates. Here, the non-parametric approach
of Hasan et al. (2016a) can be extended to allow use of a bi-
variate predictor vector with air temperature as an additional
predictor variable to precipitation. This forms the basis for
the investigation reported in this study.

This study set out to investigate the use of air tempera-
ture as an additional predictor in the radar precipitation es-
timation, with the objective of improving quantitative radar
precipitation estimation for cold climates. Compared to tradi-
tional radar-gauge adjustment, the proposed method is based
on non-parametric approach using gauge precipitation and
air temperature observations to adjust the radar precipitation.
The precipitation estimates using a non-parametric model
with temperature as a covariate are compared to a model
without temperature as a covariate and to the original pre-
cipitation rates using a constant Z–R relationship. In addi-
tion, precipitation rates using separate rain (Z−R) or snow
(Ze− S) relationships are back-calculated from the original
precipitation rates and are compared to the non-parametric
estimates. Further, we investigate if improvements in pre-
cipitation estimates vary with temperature ranges and if the
method is dependent on the precipitation intensities.

2 Materials and methods

2.1 Study area

The proposed non-parametric predictive model using the
radar precipitation rate and air temperature as covariates
was tested on radar data over the Oslo region in Norway.
The radar data used in the current research are an hourly
radar precipitation rate product generated from the national
weather radar network of Norway. The present study area is
limited to the radar range from Hurum radar station with a
50 km radius, as shown in Fig. 1. The Hurum radar is located
at 59.63◦ N latitude and 10.56◦ E longitude, and it is about
30 km from Oslo, the capital city of Norway. It has been in
operation since November 2010. Data for the period from
January 2011 to May 2015 were used for this study.

2.2 Data

The Norwegian Meteorological Institute (met.no) operates
nine C-band Doppler weather radar installations which cover
the entire land surface of Norway. The sensitive C-band in-

Figure 1. Precipitation gauge locations (blue circles), length of the
observations at each precipitation gauge location (size of the circles)
and radar station (purple star mark) overlaid on topography of the
study area, in the Oslo region of Norway. Hypsometric distribution
(cumulative percentage of gauges below the specified elevation) of
the gauges is on the top left corner.

stallations with smaller wavelengths (4–8 cm) are placed in
the Nordic region to detect snowfall and clear air echoes
(Koistinen et al., 2004). The wave length of the Hurum radar
is 5.319 cm. The Norwegian radar network scans the atmo-
sphere with a 7.5 min temporal resolution; however, the tem-
poral resolution was 15 min until June 2013. The met.no pro-
cesses the raw radar volume scan from the radar stations. The
data go through extensive quality control and data transfor-
mations before the radar products are distributed to end users
(Elo, 2012). First the met.no performs a routine that removes
clutter and other noise (non-meteorological echo) from the
radar scan. Then it reconstructs the gap in the data caused
by clutter. The processing algorithm segments the volumet-
ric radar reflectivity data as convective or stratiform precip-
itation type, and it computes the vertical profile of reflectiv-
ity (VPR) depending on precipitation types. VPRs of con-
vective and stratiform precipitation types are distinctly dif-
ferent (Abdella, 2016; Chumchean et al., 2008). The bright
band effect and non-uniform vertical profile of reflectivity are
major sources of uncertainties in the radar precipitation esti-
mation in high-latitude regions (Abdella, 2016; Joss et al.,
1990; Koistinen et al., 2004; Koistinen and Pohjola, 2014).
The radar data are corrected for bright band effects that ap-
pear in the VPR.

After the processing, the met.no generates and distributes
various radar products. One of the radar precipitation rate
products available for the public to use in hydrological appli-
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Table 1. Different datasets used in the study and their source and spatial distribution.

Description Gauge precipitation Radar precipitation Air temperature Wind speed Relative humidity

Spatial distribution Gauge locations Gridded (1 km× 1 km) Gridded (1 km× 1 km) Gridded (1 km× 1 km) Gauge locations
Data source Gauge Radar Gauge (interpolated) NORA10 and AROME Gauge

cations is the surface rainfall intensity (SRI). The SRI prod-
uct uses the lowest plan position indicator (PPI) and projects
the reflectivity data aloft down to a reference height (1 km)
near to the ground. The projection method is known as a
VPR correction that takes the vertical variability of reflec-
tivity and bright band effect into account (Elo, 2012). The
VPR-corrected reflectivity is transformed from the polar to
Cartesian coordinate system with 1 km× 1 km spatial res-
olution, and the mosaic of nine weather radar imageries is
merged to a single SRI product covering the entire Norway.
Finally, the reflectivity is converted to the precipitation rate
by using the parametric Z–R relationship (Z = 200R1.6) de-
rived by Marshall and Palmer (1948), and the precipitation
rate is accumulated to the temporal resolution desired (hourly
in this case). The accumulated hourly SRI product was used
in this study. It can be noted that the met.no uses the single
Z–R relationship (Marshall–Palmer for rain) for all seasons
throughout the year.

Within the study area, there are 68 precipitation gauges
with available hourly precipitation data for the study. The
gauges in the study site consist of Geonor weighing gauges
and tipping bucket gauges. Both types are with an Alter
windshield. The met.no manages the calibration of gauges
and takes necessary measures to reduce the uncertainty that
arises when solid precipitation has to be measured. Further,
data from the gauges have gone through routine quality con-
trol before being released to the public. However, the met.no
does not perform wind-induced under-catch correction for
the precipitation data.

The precipitation gauges’ locations used in the study
are shown in Fig. 1, overlaid on the topography of the
study area. As shown in Fig. 1, precipitation gauges are
not evenly distributed. The urban areas are densely gauged
(nearly 0.25 gauges km−2 near Oslo and approximately
0.1 gauges km−2 near other major cities), and the rest of the
area is sparsely gauged, with hourly observation. Further,
the precipitation data from precipitation gauges come with
varying length, because some gauges have been in operation
since 2013 or later, and some gauges have a number of miss-
ing values during their operation. Some of the gauging sta-
tions are equipped with hourly temperature and other mete-
orological measurements (including wind speed and relative
humidity).

In addition to precipitation and air temperature data, wind
speed and relative humidity data were also required for this
study. The wind speed was used for under-catch correction
of precipitation gauges, and relative humidity was used in

the precipitation-phase computation. Table 1 describes the
datasets used in the study and the source and the spatial dis-
tribution of each dataset.

The hourly gridded (1 km× 1 km) air temperature and
wind speed datasets were generated by met.no. Lussana et al.
(2016) spatially interpolated the past observed air temper-
ature records from meteorological stations to develop the
hourly gridded temperature dataset for Norway using opti-
mal interpolation. In this three-dimensional spatial interpo-
lation, the elevation of each grid point was obtained from
a high-resolution digital elevation model, and the real ele-
vations of stations were used. The resulting interpolated air
temperature is on the regular grid, which is 2 m above the
ground terrain elevation. For further details of the interpola-
tion method, readers are referred to met.no’s report by Lus-
sana et al. (2016).

The met.no derived an hourly gridded wind speed dataset
by statistical downscaling from the 10 km numerical dataset,
“NORA10” (Reistad et al., 2011), combined with data from
the “AROMA” 2.5 km numerical dataset (Müller et al., 2017)
using a local quantile regression (Cristian Lussana, personal
communication, 2018). The 1 km× 1 km grid of the wind
speed data is the same as for temperature. Even though radar
precipitation rates and air temperature data are available from
January 2011 to date, the unavailability of wind speed data
for under-catch correction after 2015 limited the study pe-
riod to 4 years (January 2011–May 2015).

Hourly measured relative humidity data are available at 25
gauge locations within the study area. Spatial variation of rel-
ative humidity is relatively small within 50–100 km distances
(Beek, 1991). It can be noted that the nearest gauge with a
relative humidity measurement is less than 50 km away for
most gauges in this study, and data from the nearest gauge
were used for gauge locations without humidity measure-
ments.

The datasets were downloaded and prepared for the study
as follows. A spatial subset of hourly radar precipitation
rate, air temperature and wind speed data with 1 km× 1 km
spatial resolution for the study area were downloaded from
met.no’s “thredds” server (http://thredds.met.no/, last access:
20 June 2018). The data are in netCDF file format in the
UTM33N projection. The hourly precipitation measurements
from 68 precipitation gauges and relative humidity measure-
ments of 25 gauges were downloaded from met.no’s web por-
tal for accessing meteorological data for Norway, “eKlima”
(http://eklima.met.no, last access: 20 June 2018).
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As precipitation gauge locations and radar precipitation
rate grids are in the same UTM33N coordinate system, they
were simply overlaid, and the radar pixel of 1 km2 overlap-
ping each precipitation gauge was located. One location near
Oslo has three precipitation gauges within a 1 km× 1 km
pixel. Except for that, all pixels consist of a single gauge.
The pixel value (radar precipitation rate) for each hour was
extracted, and continuous hourly time series of radar precip-
itation rates for all gauges were generated. Similarly, time
series of air temperature and wind speed at gauge locations
were derived from the gridded temperature and wind speed
data, respectively.

The precipitation intensities in the study area are relatively
low. An analysis of statistical properties of precipitation rates
in the middle of Norway showed that intensities less than
1.76 mm h−1 contributes to 50 % of the total precipitation
volume, while intensities less than 6 mm h−1 contribute to
88 % (Engeland et al., 2014). Further, the same study found
that precipitation intensities below 0.1 mm h−1 contribute lit-
tle to the total precipitation and might be treated as zero pre-
cipitation. In addition, an analysis of the data used in this
study showed that intensities between 0.05 and 0.1 mm h−1

are nearly 10 % of the total data above 0.05 mm h−1. Time
steps with gauge precipitation or radar precipitation rates less
than 0.1 mm h−1 were therefore removed in this study. Fi-
nally, an observed dataset of hourly gauge precipitation and
corresponding radar precipitation rate and air temperature
for those hourly timesteps were prepared for all precipitation
gauge locations. The length of the dataset (number of gauge
hours) at each gauge location used in this study is shown with
the size of the circles in Fig. 1. It can be noted that nearly
103 000 total gauge hours were used for the study.

Solid precipitation exhibits significant under-catch in
windy conditions. Consideration of under-catch is more im-
portant in high-latitude and mountainous regions due to high
wind conditions. A field study in Norway showed that pre-
cipitation gauges, even with wind shield, catch 80 % of true
precipitation at wind speeds of 2 m s−1, 40 % at 5 m s−1, and
only 20 % at 7 m s−1 for solid precipitation at temperatures
equal or below −2 ◦C (Wolff et al., 2015). As this study
uses gauge observation as a ground observed truth, corrected
gauge observation is required for a reliable outcome from the
investigation.

We corrected gauge precipitation for wind-induced under-
catch by using the Nordic precipitation correction model
(Førland et al., 1996). The Nordic model classifies the precip-
itation phase using air temperature and uses different equa-
tions for solid and liquid precipitation. An average value of
the two equations is used for mixed precipitation. The cor-
rection equations use wind speed and air temperature at each
gauge location. To verify whether the gridded wind speed
data used in this study would provide a realistic correction,
we compared them with the corrected precipitation using
measured wind speed at 15 gauge locations. It was found
that correlations between the corrected precipitation by using

measured wind speed data (15 gauge locations) and gridded
data are over 0.97 for all 15 gauge locations. Based on the
under-catch computations in this study, the mean correction
factor of hourly precipitation (ratio of corrected precipitation
to observed precipitation) is 1.61 for solid and 1.14 for liquid
precipitation, while medians are 1.53 and 1.11 for solid and
liquid precipitation, respectively.

2.3 Methodology

2.3.1 Radar precipitation estimation

The proposed radar precipitation estimation algorithm con-
sists of two steps. The first step quantifies the partial depen-
dence of precipitation on the radar precipitation rate and inci-
dent air temperature. The second step then uses the identified
predictors in a non-parametric setting to estimate the precip-
itation response. Gauge precipitation is used as a true ground
reference in this study.

The conditional estimation of precipitation using the two
covariates can be described as follows:

Rest(t)| [R(t),T (t)] . (1)

Here, (Rest(t)) is the estimated ground precipitation from a
given pair of the radar precipitation rate (R(t)) and incident
air temperature (T (t)) values at a given geographical location
in the two-dimensional space (x, y) and time, t .

The conditional estimation in Eq. (1) uses two covari-
ates, in contrast to Hasan et al. (2016a, b), where a non-
parametric kernel regression estimator using a single covari-
ate (R(t)) was adopted. Readers are referred to Mehrotra and
Sharma (2006), Sharma and Mehrotra (2014) and Sharma
et al. (2016) for further details on the non-parametric mod-
elling framework used in this work. This study uses the k
nearest neighbour (k-nn) regression estimator as the non-
parametric predictive model. This model can be expressed
as

E(Rest(t)| [R(t),T (t)])=
K∑
k=1

gk
k

K∑
j=1

1
j

, (2)

where k denotes the number of observed pairs of radar pre-
cipitation rate and air temperature considered “similar” to the
current conditioning vector [R, T ]. Similarity here is defined
on the basis of a weighted Euclidean distance that is further
explained below.E(.) denotes the expectation operator, in the
absence of which the uncertainty about the expected value
can be computed. The term gk represents the observed gauge
precipitation corresponding to kth neighbour of the condi-
tioning vector. K is a maximum number of neighbours per-
missible, and it is an important parameter in the k nearest
neighbour method. In the present study, K is taken as being
equal to the square root of the sample size, as suggested by
Lall and Sharma (1996).
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The order of each neighbour is ascertained based on a
weighted Euclidean distance metric, written as

ξ2
i =

(
βR (R− ri)

sR

)2

+

(
βT (T − ti)

sT

)2

. (3)

Here, ξi is the distance of the conditioning vector [R, T ] to
the ith data point (ri , ti) in a two-dimensional space. sR and
sT are sample standard deviations of the radar precipitation
rate and temperature, and βR and βT are partial weights de-
noting the relative importance each conditioning variable has
on the ensuing response, respectively (Sharma and Mehrotra,
2014). The sample standard deviations are used to standard-
ise the predictor variables to make them independent of their
measurement scale, while the partial weights allow the elim-
ination of a predictor variable if not relevant to the predic-
tion being made. Readers are referred to Sharma and Mehro-
tra (2014) for the informational theory rationale and partial
informational correlation (PIC) that allows for the estima-
tion of these partial weights as well as the Nonparametric
Prediction (NPRED) R package (Sharma et al., 2016, down-
loadable from http://www.hydrology.unsw.edu.au/download/
software/npred, last access: 5 June 2018) that enables their
estimation for any sample dataset.

2.3.2 Model evaluation criteria

A number of metrics have been used in literature to evaluate
and compare the performance of models (Hasan et al., 2016a;
Villarini et al., 2008). The root-mean-square error (RMSE)
is commonly used as a performance measure, and it provides
the overall skill measure of a predictive model (Hasan et al.,
2016a). We used primarily RMSE as a quality metric to eval-
uate the performance of the proposed model. Mean absolute
error (MAE) and mean error (ME) were used as additional
quality metrics. Definitions of RMSE, MAE and ME can
be found in the literature (e.g. Hasan et al., 2016a; Villarini
et al., 2008).

2.3.3 Determination of phase

In order to assess the usefulness of the proposed approach, it
was compared against an alternate approach where the pre-
cipitation phase was first ascertained, followed by the appli-
cation of different Z–R relationships for snow and rain. For
the classification of precipitation phase at gauge level, we
adopted the method from the Finnish Meteorological Insti-
tute, which is used operationally in Finland for phase clas-
sification (Koistinen et al., 2004; Saltikoff et al., 2015). It is
expressed as follows:

Plp =
1

1+ e22−2.7T−0.2H . (4)

Here, Plp represents the probability of liquid precipitation,
T (◦C) represents the air temperature, and H (%) represents

Figure 2. The percentage of precipitation gauge locations against
estimated partial weight of the radar precipitation rate (βR) at those
gauge locations and the mean partial weight (red dash line) for
gauge locations (68 gauges) in the study area. Partial weights pro-
vide a measure of relative importance of predictor variables on the
response (refer to Eq. 3), and the summation of partial weights
(βR +βT ) is equal to 1.

the relative humidity at a height of 2 m. If Plp < 0.2, precipi-
tation is considered as solid, and if Plp > 0.8, precipitation is
considered as liquid. For the case of 0.2≤ Plp ≤ 0.8, precipi-
tation is considered as mixed (Koistinen et al., 2004; Saltikoff
et al., 2015).

3 Results

3.1 Partial weight of predictors

For each precipitation gauge location, we estimated the par-
tial weights associated with radar precipitation rate and inci-
dent air temperature using the observed hourly radar precip-
itation rate and air temperature and the corresponding gauge
precipitation data.

Figure 2 shows the histogram of the partial weight of the
radar precipitation rate (βR) computed for the 68 precipita-
tion gauge locations in the study area. It is noted that the sum-
mation of partial weights of radar precipitation rate (βR) and
air temperature (βT ) is scaled to 1. Hence, the partial weight
associated with air temperature (βT ) is equal to 1−βR . Look-
ing at Fig. 2, almost 87 % of the gauge locations resulted in
non-zero partial weight for air temperature (βT > 0). In these
locations, radar precipitation estimation partially depends on
air temperature. It can be seen that partial weight of the radar
precipitation rate (βR) is equal to 1 for nearly 13 % of the
gauge locations, and the partial weight associated with air
temperature (βT ) is therefore zero. There, the bivariate prob-
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Table 2. Summary statistics of computed partial weights for radar precipitation rate and air temperature in the study area.

Partial weight Mean 1st 3rd 15th 85th
quartile quartile percentile percentile

Radar precipitation rate (βR) 0.68 0.60 0.73 0.57 0.79
Air temperature (βT ) 0.32 0.40 0.27 0.43 0.21

lem collapses into a univariate problem with radar precipita-
tion rate as a single predictor.

Table 2 shows the summary statistics of computed partial
weights among the precipitation gauge locations in the study
area. It can be seen that the partial weight associated with
air temperature is in the range of mean ±0.1 for more than
70 % of gauge locations. The gauge locations which resulted
in associated partial weight for air temperature (βT > 0) are
spread throughout the study area. However, we have not
found a clear pattern of spatial variation in the estimated par-
tial weights.

3.2 Performance of k-nn prediction model

The k nearest-neighbour-regression-based estimator was
used to estimate precipitation at each gauge location. The
observed dataset and the computed partial weights of predic-
tors were used with the NPRED k-nn regression tool to spec-
ify the proposed model with the radar precipitation rate and
air temperature as two predictors (knn-RT). For comparison,
a reference model using the k-nn regression estimator with
radar precipitation rate as a single predictor variable (knn-R)
was also developed.

We calculated the k-nn regression estimate of ex-
pected response by using the leave-one-out cross-
validation (LOOCV) procedure, which involves leaving
out one observed response value (gauge precipitation) from
the regression and estimating the expected response value
for that observed response. This ensures that the modelled
outcomes represent the results that will be obtained using
a new or independent dataset. The improvement in radar
precipitation estimation with the use of air temperature as an
additional covariate is measured as a percentage reduction in
RMSE compared to the reference model.

All the gauge locations with an associated partial weight
of air temperature (βT > 0) show an improvement in radar
precipitation estimation. The mean improvement in RMSE
is 9 %, and the improvement is more than 5 % for 80 % of
the gauge locations where βT is greater than zero. It can be
noted that partial weight for each gauge location was calcu-
lated independently using the data from that specific location,
and then the RMSE was estimated by the LOOCV procedure,
using the entire data at that gauge location. However, a split
sample test was done to verify the results, where two-thirds
of the data were used to estimate partial weight, and one-

third of the data were used to estimate RMSE for each gauge
location. The split sample test gave similar results.

We also examined the spatial cross-validation of computed
partial weights. First, a single average partial weight was cal-
culated by taking the arithmetic mean of the partial weights
for all gauge locations presented in Fig. 2 and Table 2. This
single average value of partial weight (0.68, 0.32) was used
with the predictive models to estimate radar precipitation,
and the improvement in RMSE was estimated. Then, for
each gauge location, an average partial weight was calcu-
lated by leaving that gauge out and adopting the mean par-
tial weight from the five nearest gauges. The k-nn predic-
tion model was again re-specified for each gauge location
using the computed average partial weight of the five nearest
gauges. The percentage improvement in RMSE obtained by
this method showed a strong resemblance to the results with
a single mean value of partial weight. It is possible, there-
fore, that a regional or nearest-neighbour average value of
partial weight can be used for ungauged locations. As with
the partial weight, the improvement in RMSE at gauge loca-
tions does not show any pattern of spatial variation.

Based on the above examinations, the spatial variation of
station-specific partial weights can be discarded and a single
average value adopted. Hence, in the results that follow, we
use a single average partial weight computed for the study
area. As shown in Table 2, the mean value of partial weight
for the radar precipitation rate is 0.68 and 0.32 for air temper-
ature. The proposed k-nn regression prediction model with
radar precipitation rate and air temperature as two predictors
at each gauge location was specified with this single average
partial weight.

Figure 3 shows the percentage improvement in RMSE for
the proposed model with the single average partial weight
of (0.68, 0.32) compared to the reference model. The precip-
itation gauge locations are shown by circles, and a filled dis-
crete colour scale is used to show percentage improvement in
RMSE. All the gauge locations show improvement in RMSE
with the use of temperature as an additional covariate com-
pared to the reference model. Looking at Fig. 3, the majority
of gauge locations have a green colour, and the improvement
is between 5 % and 10 % at those locations. The mean value
of improvement is 8.5 %. Over 80 % of the gauge locations in
the study area show more than 5 % improvement in RMSE,
while nearly 15 % show more than 15.0 % improvement. As
discussed earlier and as seen in Fig. 3, this study did not
find any pattern of spatial variation in the results. However,
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Figure 3. The percentage of improvement in RMSE at each gauge
location (colour scale) for the predictive model with radar precipi-
tation rate and air temperature as two predictors, with the single av-
erage partial weight (βR = 0.68 and βT = 0.32), compared to radar
precipitation rate as a single predictor, overlaid on the coastline of
the study area.

the spatial plot shows that the improvement in RMSE with
the use of temperature as an additional predictor is spread
throughout the study area.

In addition to RMSE, we computed MAE and ME for the
proposed model and the reference model at gauge locations.
The above quality metrics were also computed for the origi-
nal data of radar precipitation rates for comparison.

Figure 4 shows the summary of computed quality metrics
for the two predictive models (k-nn-R and k-nn-RT) and the
original data of radar precipitation rates (MP). A bar plot rep-
resenting these three quality metrics at each individual gauge
location is available in the Supplement (Fig. S1). Looking at
Fig. 4, the mean error of the original data (MP) was nega-
tive for almost all gauge locations. This shows the underesti-
mation of radar precipitation compared to precipitation mea-
sured by the gauges. Both non-parametric predictive mod-
els reduce the mean error considerably and bring it to near
zero, while they reduce the RMSE and MAE significantly
for almost all gauge locations. It can be seen from Fig. 4a
and b that the predictive model with radar precipitation as
a single predictor (k-nn-R) reduces the RMSE and MAE.
The proposed predictive model with radar precipitation and
air temperature as two predictors (k-nn-RT) further reduces
both RMSE and MAE and improves the radar precipitation
estimation for most of the gauge locations.

Figure 4. Box plot representing three quality metrics (RMSE, MAE
and ME) estimated at gauge locations for the original data (MP)
and for the two non-parametric models (k-nn-R and k-nn-RT). Here,
k-nn-R denotes the non-parametric model with radar precipitation
rate as a single predictor, while k-nn-RT denotes the non-parametric
model with radar precipitation rate and air temperature as two pre-
dictors with a fixed partial weight (0.68 and 0.32). The values out-
side 1.5× IQR are represented by the whiskers.

3.3 Performance for different threshold intensities

The study used the precipitation intensities of radar precip-
itation and gauge precipitation equal or above 0.1 mm h−1.
As described in Sect. 2.2, precipitation intensities are rela-
tively low in this region, consistent with intensities in cold
climates. An analysis of the data used in this study showed
that intensities are lower than 0.5 mm h−1 for around 60 % of
the observations and only 5 % of the data have either gauge
or radar precipitation rates above 2.0 mm h−1.

To investigate whether very low intensities dominate the
results presented earlier, we tested our proposed model for
a range of intensities for both gauge and radar precipita-
tion. Figure 5 shows the box plot of RMSE values esti-
mated at gauge locations for threshold intensities 0.1, 0.5 and
2.0 mm h−1. Looking at Fig. 5, the improvement with the use
of air temperature as an additional covariate is still seen over
the intensity threshold. The results are statistically signifi-
cant, as the RMSE was estimated using the LOOCV pro-
cedure and is not impacted by the complexity of the model
used.
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Figure 5. Box plot of RMSE (mm h−1) values estimated at gauge
locations for the original data (MP) and the two non-parametric
models (k-nn-R and k-nn-RT) using data with intensities of radar
precipitation rate and gauge precipitation greater than or equal 0.1,
0.5 and 2.0 mm h−1. The mean value of RMSE for each model is
denoted by red diamond point. Here, k-nn-R is the non-parametric
model with radar precipitation rate as single predictor. k-nn-RT, the
non-parametric model with radar precipitation rate and air temper-
ature as two predictors, has the partial weight of 0.68, 0.32. The
values outside 1.5× IQR are represented by the whiskers.

3.4 Variation with temperature classes

For each gauge location, we also estimated partial weights
for different temperature classes. The PIC, and hence the par-
tial weight, was found to vary with temperature classes. For
temperatures warmer than 10 ◦C, most of the gauge locations
were estimated as having zero partial weight for air tempera-
ture, while those locations resulted in non-zero partial weight
(βT > 0) for temperatures colder than 10 ◦C. It is therefore
likely that radar precipitation estimation depends on air tem-
perature, mainly in colder temperatures.

Further, we estimated RMSE for the datasets with tem-
peratures colder and warmer than 10 ◦C for each gauge
location using the proposed model with the average par-
tial weight (0.68, 0.32) and the reference model. The pro-
posed model reduces the RMSE significantly for tempera-
tures colder than 10 ◦C; however, the performance is nearly
as same as the reference model for temperatures warmer than
10 ◦C (Fig. S2). This shows that the use of air temperature as
an additional covariate is most useful for the temperatures
colder than 10 ◦C.

3.5 Separate parametric equations for snow and rain
as a benchmark

As discussed earlier, the switch between a snow and rain Z–
R relation is quickly becoming a standard for weather radar
operations in cold climates. We compared the proposed non-
parametric radar precipitation estimation model with radar
precipitation estimation by using two different parametricZ–
R relationships, one for snow and the other for rain. In this
study, we used the radar snow equation of the Finish Meteo-
rological Institute (Ze = 100S2) while keeping the Marshall–
Palmer equation (Z = 200R1.6) for rain.

The analysis reported so far in the paper is based on the
accumulated hourly radar precipitation rate product available
from met.no. The evaluation using separate parametric equa-
tions for snow and rain as a benchmark requires radar re-
flectivity data to recompute the radar precipitation rate using
separate Z–R relationships for snow and rain. The reflectiv-
ity data used to produce the accumulated hourly radar pre-
cipitation rate (SRI product) used in the study are not stored
in the production process and are therefore not available at
met.no. As mentioned previously, the hourly product is based
on corrected reflectivities with a time resolution of 15 min
(before 2013) and 7.5 min (after 2013). These are then ac-
cumulated to the final hourly product. However, the PPI of
the lowest elevation beam from the Hurum radar is available
from met.no.

To back-calculate reflectivities with the original short time
resolution based on the available hourly radar precipitation
rate, it was assumed that the precipitation intensity distribu-
tion in each hour is the same for both the SRI and the PPI
product and that the hourly precipitation rates (SRI) could
therefore be distributed within the hour using the intensity
distribution of the PPI data. This procedure then gives us a
series of precipitation rates with a time resolution of either
15 or 7.5 min depending on the year. The estimated precipi-
tation rates were then converted to reflectivities using an in-
verse of the Marshall–Palmer equation (R = (Z/200)1/1.6).

We estimated the probability of liquid precipitation (Plp)
using Eq. (4) and applied two different Z–R relationships
to compute the precipitation rate according to the precipita-
tion phase. Hourly air temperature and relative humidity at
each gauge location were used to estimate the probability of
liquid precipitation (Plp). Data were classified as solid, liq-
uid or mixed precipitation using the computed hourly value
of the probability of liquid precipitation (Plp). The back-
calculated reflectivity was converted to precipitation rates us-
ing the snow equation (Ze = 100S2) for solid phase and the
rain equation (Z = 200R1.6) for liquid phase. A weighted
combination of solid and liquid was used for mixed precipi-
tation by using the value of Plp as recommended by Koisti-
nen et al. (2004) and Saltikoff et al. (2015). The precipita-
tion rates were then accumulated to hourly time resolution.
The precipitation rates estimated by the two equations as de-
scribed above is denoted as FMIMP for the further analysis.
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Figure 6. Box plot of comparison of RMSE (mm h−1) estimated
at gauge locations for the original precipitation rates by Marshall–
Palmer equation (MP) and precipitation rates estimated by different
equations for snow and rain (FMIMP) and for the non-parametric
model (k-nn-RT). RMSE values are shown for entire data and sep-
arately for solid-, mixed- and liquid-phase classes. Mean value of
RMSE for each model is denoted by red diamond point. Here, k-nn-
RT, the non-parametric model with radar precipitation rate and air
temperature as two predictors, has the partial weight of 0.68, 0.32.
The values outside 1.5× IQR are represented by the whiskers.

For each gauge location, RMSE was calculated for the es-
timated radar precipitation rates by two equations (FMIMP).
Here, under-catch-corrected gauge precipitation was used as
a true observed value. RMSE of FMIMP is compared with
the RMSE of original radar precipitation rates (MP) and
the proposed non-parametric predictive model (k-nn-RT).
Figure 6 shows the box plot comparison of RMSE values
in mm h−1, estimated at gauge locations for entire data and
phase classes separately.

Looking at Fig. 6, the use of two equations (FMIMP) with
the snow equation for the solid phase and part of the snow
equation for the mixed phase reduces the RMSE for solid and
mixed-precipitation-phase classes and hence the RMSE of
the entire dataset compared to the original precipitation rates
estimated by the Marshall–Palmer equation (MP). The ap-
plication of a different equation for snow reduces the phase-
dependent bias in the Norwegian radar precipitation estima-
tion. The average reduction in RMSE at gauge locations is
6 % of the RMSE value of the original radar precipitation
rates. However, it can be seen in Fig. 6 that the use of differ-
ent equations for snow and rain does not reduce the RMSE to
the level of the non-parametric approach (k-nn-RT). Compar-

ing FMIMP to k-nn-RT, there is a further reduction of nearly
10 % in RMSE.

4 Discussion

In colder climates, the phase-dependent uncertainties in the
radar precipitation estimation have hampered the extensive
use of radar precipitation in hydrological applications (Berne
and Krajewski, 2013; Saltikoff et al., 2015). To improve the
quantitative radar precipitation estimates for hydrological ap-
plications, the study assessed the relevance of air temperature
as an additional factor in the computation of radar precipita-
tion in cold climates. In this paper, we show that using near-
surface air temperature as a second predictor variable in a
non-parametric k nearest neighbour (k-nn) method reduces
the RMSE significantly compared to a k-nn model with the
radar precipitation rate as a single predictor and compared to
the original hourly radar precipitation rates.

Despite phase-dependent bias, accumulated radar precip-
itation rate products (e.g. met.no and OPERA) derived us-
ing a single Z–R relationship have been distributed to end
users (Elo, 2012; Michelson et al., 2012). A key objective of
the current study is to improve the hourly radar precipitation
rates available to the public as a finished product (SRI prod-
uct) from met.no that covers the entirety of Norway. How-
ever, the findings from this study can be helpful not only in
Norway but also in a number of places where an accumulated
hourly product using a single Z–R relationship is applied. It
can be noted that reflectivity data (dBZ) could be used in-
stead of the radar precipitation rate in the methodology pre-
sented in the paper if such data are available as shown by
Hasan et al. (2016a).

A non-parametric framework was used for the investiga-
tion posed in the paper. Earlier studies (Hasan et al., 2016a,
b) reported that, given the availability of a large amount of
radar data, non-parametric approaches produce more reliable
radar-rainfall estimates compared to a traditional paramet-
ric Z–R relationship. In these studies, the non-parametric
model used the radar reflectivity as a single predictor. This is
the first study to our knowledge that considered the air tem-
perature as an additional covariate in the radar precipitation
estimation, and the approach provided a clear improvement
in the estimation. However, the improvement was significant
for temperatures colder than 10 ◦C. This appears mostly due
to the different phase of precipitation in colder temperatures
(including the presence of hail).

PIC-based partial weights were used first to assess the
partial dependence of radar precipitation estimation on air
temperature, and then the weights were used with the k-nn
model. A simple k-nn approach is to use an equal weight
for predictor variables or weights estimated using a simple
linear partial correlation. Mehrotra and Sharma (2006) ar-
gue that the approach of assuming both predictor variables
to be equally important can result in increased bias and pre-
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dictive uncertainty. Moreover, earlier studies (Mehrotra and
Sharma, 2006; Sharma and Mehrotra, 2014; Sharma et al.,
2016) have shown that the estimated PIC and weights col-
lapse into what would be estimated using a linear regression
model if the system is linear. As the system here is nonlinear,
the use of the PIC to estimate partial weights seems to be the
best approach. The study used a single average partial weight
for the study area. If needed, it can be possible to use gridded
partial weight with the k-nn model. However, we found that
the gain in RMSE is not significant for the effort of added
complexity of gridding the partial weights.

Although the main focus of this paper is to investigate
the benefit of using air temperature as an additional covari-
ate in radar precipitation estimation, the results of the non-
parametric method of radar precipitation estimation found
are comparable with the results of Hasan et al. (2016a). They
tested their kernel-based non-parametric method of radar-
rainfall estimation (radar reflectivity as a single predictor)
in Sydney, Australia, and reported a 10 % improvement in
RMSE compared to the traditional parametric Z–R relation-
ship. In this study, the k nearest neighbour non-parametric
method with radar precipitation rate as a single predictor re-
sulted in a mean reduction in RMSE of 6 %. The proposed bi-
variate k-nn model with air temperature as an additional pre-
dictor resulted in a mean reduction in RMSE of 14 % com-
pared to the original radar precipitation rate data.

The near-surface air temperature, also together with rela-
tive humidity or wet-bulb temperature, has been used to es-
timate the dominant phase of precipitation in the selection
of Z–R relationships (Koistinen et al., 2004; Saltikoff et al.,
2015, 2000). Fassnacht et al. (1999, 2001) reported the use
of the near-surface air temperature to adjust the radar pre-
cipitation estimation and the benefit of the adjustment for
hydrological applications. However, their approach was to
use the temperature to estimate the probability of snow and
use that information for the adjustment of radar precipitation.
Further, the method was limited to mixed precipitation only,
while the work presented here adjusts precipitation rate (it
could be rain, snow or a mixture thereof) by using the k near-
est neighbour approach with near-surface air temperature as
a covariate.

The performance of the proposed k-nn method with tem-
perature as a covariate was assessed primarily using a k-
nn model without temperature and original radar precipita-
tion rates derived by a single Z–R relationship as bench-
marks. As most cold-climate radar operations use two sepa-
rate equations for snow and rain, the study compared the non-
parametric estimates with the precipitation rates estimated
by two equations. First, reflectivities were back-calculated
in order to apply two equations. For this, we used PPI pre-
cipitation rates to distribute the VPR-corrected SRI pre-
cipitation rates by assuming that both have same intensity
distribution within each hour. While there is uncertainty
in how accurately the redistributed intensity distribution of
SRI represents the original distribution, this exercise at least

used a possible realistic distribution. Secondly, it should be
noted that the phase classification used in this evaluation
is a model-based classification, even though it is used op-
erationally. The estimated phase can differ from actual ob-
served phase at gauge level. Observations from disdrometers
can provide more accurate phase information at gauge level.
Even if a few disdrometers were located within the study re-
gion, their representativeness in space and time would be lim-
ited (Saltikoff et al., 2015). Further, our phase classification
is at the gauge level and represents near-surface conditions.
The phase of the precipitation can be different at the eleva-
tion where the radar measures the reflectivity.

Air temperature can be lapsed to the radar measurement
height to estimate the phase of precipitation. Fassnacht et al.
(1999, 2001) assumed the temperature lapse rate to be zero
in their studies, since winter lapse rates are often zero in
mid-latitude areas. For the Nordic region, Tveito and Førland
(1999) showed that the vertical lapse rate varies with sea-
son and location. Further, Tveito and Førland (1999) found
that local terrain conditions have greater influence in the
local temperature gradient during winter. Due to the oc-
currence of inversions, the lapse rate can deviate substan-
tially from the standard (−6.5 ◦C km−1) during the winter
months, and it can be as low as −1.2 ◦C km−1 (Tveito et al.,
2000; Tveito and Førland, 1999). The estimated tempera-
ture at radar measurement height and hence the probability
of the liquid phase (Plp) are therefore highly uncertain (Al-
Sakka et al., 2013; Tveito et al., 2000). We, therefore, use
the Finnish Meteorological Institute’s operational method of
near-surface-phase estimation to classify the precipitation as
the method of choice for the evaluation, as this method is
both in operational use in the Nordic region and is developed
for this area (Koistinen and Saltikoff, 1998; Gjertsen and
Ødegaard, 2005; Saltikoff et al., 2015). The measurements of
phase information at radar measurement height with the use
of dual polarised radars can be a useful data source (Ryzhkov
and Zrnic, 1998; Chandrasekar et al., 2013; Al-Sakka et al.,
2013) for further investigation. However, many radars use a
single polarity; moreover, even from dual polarised radars,
data on phase information are not readily available to end
users to help refine their estimation algorithms.

The study used the under-catch-corrected gauged precipi-
tation as a ground truth. We did a test on uncorrected gauge
precipitation data (not corrected for wind-induced under-
catch) during an early phase of the study and found that air
temperature as a covariate led to improved RMSE in radar
precipitation estimates, also with uncorrected precipitation.
It is often challenging to get reliable wind speed measure-
ments for an operational real-time radar precipitation esti-
mation, and this finding implies that the method can also be
used with uncorrected gauge precipitation to adjust the radar
precipitation rates.

The improved precipitation rates obtained through the
non-parametric estimation of radar precipitation can be a
data source for hydrological applications. The spatial detail

www.hydrol-earth-syst-sci.net/22/6533/2018/ Hydrol. Earth Syst. Sci., 22, 6533–6546, 2018



6544 K. Sivasubramaniam et al.: Estimating radar precipitation in cold climates

of the radar precipitation could solve issues related to pre-
cipitation representativity for hydrological modelling (Smith
et al., 2004; Kirchner, 2009; Hailegeorgis et al., 2016). For
many hydrological applications, short-duration precipitation
is needed, and extending the study to sub-hourly time reso-
lution and multiple radar bands (e.g. X band, S band) would
be an interesting continuation of this work.

5 Conclusions

While parametric phase-dependent Z–R relationships ad-
justed with gauged precipitation have been discussed exten-
sively in the literature, this study extends current work with
air temperature as a covariate in the radar precipitation ad-
justment and further presents a procedure whereby precipita-
tion can be estimated in colder climates.

An improvement of 15 % in the RMSE was obtained us-
ing a simple non-parametric method with air temperature
as an additional covariate. More than 80 % of the locations
showed improvement when temperature was used in the non-
parametric model. The improvement was independent of pre-
cipitation intensities. However, the temperature effect be-
came insignificant when air temperature was warmer than
10 ◦C.

Given the importance of weather radars as a means of pre-
cipitation measurement, and given their ability to observe
in remote regions in a continuous setting, the above finding
could be important for using radar precipitation data for hy-
drological applications, especially in cold climates.

Code and data availability. Radar precipitation rate data used in
the study are available in the Norwegian Meteorological Institute’s
(met.no) thredds server (http://thredds.met.no/thredds/catalog/
remotesensingradaraccr/catalog.html; Norwegian Meteorological
Institute, 2017c). Precipitation observations from precipitation
gauges, other meteorological measurements (wind speed and
relative humidity) and meta-information for the gauges can be
obtained form met.no’s web portal “eKlima” (http://eklima.met.no;
Norwegian Meteorological Institute, 2017b). Access to the web
portal is available upon request. Gridded observational hourly air
temperature data and gridded wind speed data are available in
the met.no’s thredds server (http://thredds.met.no/thredds/catalog/
metusers/senorge2/seNorge2/archive/TEMP1h/catalog.html,
http://thredds.met.no/thredds/catalog/metusers/klinogrid/
KliNoGrid_16.12/FF-Nor/catalog.html; Norwegian Meteoro-
logical Institute, 2016, 2017a). The NPRED programming tool,
which is used for computation in the study, is available as an
R package, and it is downloadable from the following link:
http://www.hydrology.unsw.edu.au/download/software/npred
(UNSW, 2016).
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