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Abstract. River discharge measurements have proven in-
valuable to monitor the global water cycle, assess flood risk,
and guide water resource management. However, there is a
delay, and ongoing decline, in the availability of gauging data
and stations are highly unevenly distributed globally. While
not a substitute for river discharge measurement, remote
sensing is a cost-effective technology to acquire information
on river dynamics in situations where ground-based measure-
ments are unavailable. The general approach has been to re-
late satellite observation to discharge measured in situ, which
prevents its use for ungauged rivers. Alternatively, hydrolog-
ical models are now available that can be used to estimate
river discharge globally. While subject to greater errors and
biases than measurements, model estimates of river discharge
do expand the options for applying satellite-based discharge
monitoring in ungauged rivers. Our aim was to test whether
satellite gauging reaches (SGRs), similar to virtual stations
in satellite altimetry, can be constructed based on Moderate
Resolution Imaging Spectroradiometer (MODIS) optical or
Global Flood Detection System (GFDS) passive microwave-
derived surface water extent fraction and simulated discharge
from the World-Wide Water (W3) model version 2. We de-
signed and tested two methods to develop SGRs across the
Amazon Basin and found that the optimal grid cell selec-
tion method performed best for relating MODIS and GFDS
water extent to simulated discharge. The number of poten-
tial river reaches to develop SGRs increases from upstream
to downstream reaches as rivers widen. MODIS SGRs are
feasible for more river reaches than GFDS SGRs due to its
higher spatial resolution. However, where they could be con-
structed, GFDS SGRs predicted discharge more accurately as
observations were less affected by cloud and vegetation. We

conclude that SGRs are suitable for automated large-scale
application and offer a possibility to predict river discharge
variations from satellite observations alone, for both gauged
and ungauged rivers.

1 Introduction

River discharge data are used to monitor the global water cy-
cle, assess flood risk, and guide water resource management
(Brakenridge et al., 2012). Example applications also include
the assessment of the contribution of river flow to oceans and
the distribution of river runoff on continents; the training of
models to predict how water resources will be affected un-
der climate change; the identification of where flood intensity
and frequency is likely to increase; the provision of informa-
tion for flood forecasting, monitoring, and warning systems;
and the better formulation of water allocation plans for do-
mestic, agricultural, and industrial uses (Van Dijk, 2015).

Over the past century, many ground-based gauging sta-
tions have been built to monitor river discharge across the
world (Dai et al., 2009). However, the number of accessible
gauging station records has decreased over the years due to
the reluctance of contributors to share data, or the lack of
financial and technical support to maintain gauging stations
(Vörösmarty, 2001; Biancamaria et al., 2011; Brakenridge et
al., 2012; Fekete et al., 2012). In addition, gauging station
networks are sparse and unevenly distributed. For instance,
there are few gauging stations on rivers with braided chan-
nels or wide floodplains, and on rivers located in remote areas
(Smith et al., 1996; Alsdorf et al., 2003; LeFavour and Als-
dorf, 2005; Calmant and Seyler, 2006). Finally, gauging sta-
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tions are only representative for a single point along a river,
which can make it difficult to obtain insight into hydrologi-
cal conditions throughout river networks (Hunger and Döll,
2008; Stahl et al., 2012).

Remote sensing is a cost-effective way to acquire infor-
mation on river dynamics both at regional and global scales
(Alsdorf et al., 2007). Satellite observations can cover a river
in the lateral dimension where there are wide channels or
broad floodplains and in the longitudinal dimension in long
and complex river systems (Smith, 1997; Bjerklie et al.,
2003). Whereas gauging stations measure water level, re-
mote sensing typically measures river extent or width with
the exception of river altimetry (Birkett et al., 2002; Coe and
Birkett, 2004; Kouraev et al., 2004; Zakharova et al., 2006;
Papa et al., 2010). Such satellite-based measurements can be
related to measured river discharges. The general approach
has been to develop rating curves relating satellite observa-
tion where they coincide with in situ river discharge measure-
ment, and to use the fitted rating curves to estimate river dis-
charges with satellite observations only (e.g. Revilla-Romero
et al., 2014).

Optical and microwave satellite imaging can provide con-
tinuous spatial observations of surface water extent along the
entire river channel. Both inundation–discharge and width–
discharge relationships can be developed using ground mea-
surements of river discharge and satellite optical or syn-
thetic aperture radar (SAR) imagery (Smith et al., 1995,
1996; Papa et al., 2008; Smith and Pavelsky, 2008; Pavel-
sky, 2014). In addition, Brakenridge et al. (2007), Tarpanelli
et al. (2013), and Van Dijk et al. (2016) demonstrated that the
ratio of a calibration and measurement pixel remote sensing
signal for Moderate Resolution Imaging Spectroradiometer
(MODIS) near-infrared reflectance or AMSR-E passive mi-
crowave brightness temperature can be an indicator of vari-
ations of river discharge, which provides opportunities to
monitor river discharge at a global scale with medium spa-
tial resolution and high temporal resolution. However, optical
remote sensing requires a clear view of the water surface, un-
obscured by cloud or a dense vegetation canopy. While radar
and passive microwave remote sensing are not affected by
these factors to the same extent, radar is susceptible to wind-
induced waves and vegetation above surface water, whereas
the resolution of passive microwave imagery is too coarse for
many rivers. As an alternative to the rating curve approach,
open-channel hydraulic equations such as the Manning equa-
tion can be used to estimate river discharge from remotely
sensed data. However, in addition to remotely sensed data,
additional field data including river depth and roughness co-
efficient are needed to apply this method and can introduce
large uncertainties, which limits its predictive performance
(Te Chow, 1959; LeFavour and Alsdorf, 2005; Jung et al.,
2010; Woldemichael et al., 2010; Michailovsky et al., 2012).

The main disadvantage of all methods described above is
that in situ measurements are still necessary, which makes it
impossible to apply them at ungauged sites and unsuitable for

automated large-scale applications. An alternative is to use
hydrological models to estimate river discharge throughout
river networks and to relate these estimates to satellite im-
agery. In this paper we investigate whether satellite gauging
reaches (SGRs) can be established at both gauged and un-
gauged rivers and applied to provide continuous, consistent,
and up-to-date river discharge monitoring over a large area. A
SGR, analogous to an in situ gauging station, is constructed
based on an automated statistical method which relates hy-
drological model simulated river discharge to optical or pas-
sive microwave-derived surface water extent fraction for a
region that includes the river reach. The concept of a SGR is
similar to that of a “virtual station” used in satellite altimetry
(Calmant and Seyler, 2006), but acknowledges that river sur-
face water extent is measured along a river reach rather than
at a single cross section. In the first part of this paper, we de-
sign and compare two methods to construct SGRs, and then
choose the best method and evaluate its performance. In the
second part, we construct SGRs based on optical or passive
microwave observations and simulated river discharges, then
compare river discharge estimates from optical and passive
microwave observations and from the hydrological model to
in situ river discharge measurements. We hypothesize that
SGRs may perform better than the hydrological model if the
model has poor timing, or worse if the model is already quite
good. In the latter case, however, SGRs may still be useful
for monitoring river discharge in the absence of a real-time
hydrological model or gauging stations.

2 Data and methods

The fundamental assumption in our methodology is that there
exist strong, monotonic relationships between remote sens-
ing signal, surface water extent, river channel storage, and
river discharge. Surface water extent fraction (hereafter, wa-
ter extent) was previously derived from Global Flood Detec-
tion System (GFDS) passive microwave and MODIS optical
remote sensing signal by Van Dijk et al. (2016). River stor-
age and discharge were estimated by the World-Wide Water
(W3) model version 2 (Van Dijk et al., 2018). First, we de-
signed two alternative methods to develop SGRs with the aid
of hydrological model estimates and compared performance
of these methods on rivers of different sizes. We then applied
the method that performed best across the Amazon Basin.
Second, SGRs were constructed across the Amazon Basin
based on MODIS and GFDS water extent. The derived river
discharge estimates from the SGRs and from the W3 model
were evaluated against in situ river discharge measurements
at 31 stations. The overall methodology is shown in Fig. 1.

2.1 Study region

We chose the Amazon Basin as a case study in this re-
search. The Amazon Basin serves as a suitable test bed for
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Figure 1. Workflow of the overall methodology (rectangle: data;
diamond: method; parallelogram: validation).

our method in that it contains numerous inaccessible river
reaches surrounded by dense tropical rainforests, frequently
flooded areas, extremely wide river floodplains, and braided
river channels. Moreover, it has unregulated rivers of widely
varying size, which provides an opportunity to assess the sen-
sitivity of spatial resolution in remote sensing to river size. In
addition, because rainfall estimates across the Amazon Basin
are generally poor, it is meaningful to test whether modelled
discharge can be improved through remote sensing. A chal-
lenge is that MODIS observations are often affected by cloud
cover. Van Dijk et al. (2016) found strong correlations be-
tween optical and passive microwave-derived water extent
estimates and station discharge observations in the Amazon
Basin, from which we infer that there may be further oppor-
tunities to develop satellite-based river gauging using mod-
elled discharge at ungauged sites.

2.2 Data

2.2.1 Remote sensing

The Global Flood Detection System (GFDS) was developed
to monitor floods and is operated by the Joint Research Cen-
tre of the European Commission, in collaboration with the
Dartmouth Flood Observatory. De Groeve et al. (2015) pro-
posed a discharge signal, s, as the ratio of brightness temper-
atures between a targeted wet pixel (measurement pixel) and

a nearby dry pixel (calibration pixel), which allows track-
ing of relative changes in surface water extent within a river
reach. The discharge signal s was calculated from bright-
ness temperature recorded at 36.5 GHz in the H polarization
by the Japanese Space Agency’s AMSR2 and TRMM TMI
sensors and NASA’s AMSR-E and GPM instruments. The
GFDS raster data product used here, named “merged 4-day
average datasets”, provides daily s as an average value of the
signal for the current day and the signal from the last 3 days,
with a spatial resolution of 0.09◦

× 0.1◦ over the period of
2000–2014.

MODIS is an optical sensor aboard the NASA’s Terra and
Aqua satellites, which provide two images per day for almost
every point on the planet. The surface observing capability
of MODIS is limited by cloud cover, but this can be miti-
gated by using MODIS 8-day or 16-day composites which
reduce the influence of cloud contamination. The MODIS
data used here are the shortwave infrared (SWIR) spec-
tral band 7 (2105–2155 nm) data from the MCD43C4.005
product which contains 8-day nadir BRDF (bidirectional re-
flectance distribution function) adjusted reflectance (NBAR)
composites of imagery over the period of 2000–2014. The
optical data were aggregated to a spatial resolution of 0.05◦

×

0.05◦. The method to calculate surface water extent fraction
from GFDS and MODIS data was described by Van Dijk et
al. (2016). We calculated both 8-day and monthly GFDS-
and MODIS-derived surface water extent fraction across the
Amazon Basin.

2.2.2 Hydrological model

The World-Wide Water (W3) model version 2 (Van Dijk
et al., 2018) is a global implementation of the Australian
AWRA-L model, a grid-based, one-dimensional water bal-
ance model with semi-distributed representation simulating
soil, groundwater, and surface water stores (Van Dijk, 2010).
AWRA-L is used operationally by the Australian Bureau of
Meteorology to estimate the daily water balance component
across Australia at a spatial resolution of 0.05◦

×0.05◦ (Frost
et al., 2016). Each grid cell has three soil layers (top, shallow,
and deep soil layers) and one unconfined groundwater layer,
and hydrological processes considered in the model include
(1) net precipitation and interception losses; (2) saturation
excess overland flow, infiltration excess surface runoff, and
infiltration; (3) soil water evaporation, drainage, and inter-
flow; (4) groundwater evaporation and base flow; (5) vege-
tation transpiration and cover adjustment; (6) surface water
evaporation, inflows from runoff and discharge, and catch-
ment water yield. Details about the W3 model including in-
put data, parameterization, calibration, and validation can be
found in Van Dijk et al. (2018). The model was not calibrated
against gauging data used in this study. Daily simulated river
channel storage and discharge in 0.05◦

×0.05◦ grid cells were
used in this research and averaged to 8 days to relate them to
remote sensing data. The W3 model estimates of river chan-
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nel storage, rather than discharge, are compared with optical
and passive microwave-derived water extents because con-
ceptually they are more closely related. However, river chan-
nel storage has a linear relationship with discharge within the
W3 model structure.

2.2.3 In situ river discharge measurement

Monthly in situ river discharge measurements were collected
from two datasets developed by Beck et al. (2015) and
Dai (2016) respectively. The former dataset was established
to combine global unregulated river discharge data from the
Global Runoff Data Centre (GRDC) and the USGS GAGES
II (Geospatial Attributes of Gauges for Evaluating Stream-
flow) databases. The same data were used in a precursor to
this study (Van Dijk et al., 2016). The latter dataset was de-
veloped to compile river flow data from the farthest down-
stream gauging stations of the world’s largest 925 rivers.
Among these two datasets there are 31 gauging stations lo-
cated inside the Amazon Basin with records that were fully
or partially overlapping with the remote sensing and model
simulation records.

2.3 Method

2.3.1 Satellite gauging reach designs and performance
evaluations

In developing SGRs, we tested two alternative methods to
correlate remotely sensed water extent with modelled river
channel storage. Method A finds the most strongly correlated
water extent over a search window, which we refer to here
as optimal grid cell selection. Method B calculates the spa-
tial average water extent within a search window, referred to
here as the window mean. We experimented with different
window sizes: 0.15◦

× 0.15◦, 0.35◦
× 0.35◦, 0.55◦

× 0.55◦,
0.75◦

× 0.75◦, and 0.95◦
× 0.95◦ (Table 1). These 10 exper-

iments (two methods for each of the five search windows)
were applied for each grid cell of the W3 model along a river
channel across the Amazon Basin, using 8-day MODIS- and
GFDS-derived water extent estimates, respectively. For each
grid cell, the steps are as follows: a search window centres on
a target grid cell of the W3 model, and simulated storage time
series for the target cell and all water extent time series lo-
cated within the search window are selected. Next, in method
A, the storage time series is compared with each water extent
time series, and the one with the strongest correlation is cho-
sen to develop the SGR. In method B, spatial average water
extent time series across the window is calculated and used
to develop the SGR.

To test which of the two methods best estimates storage
for different river sizes, we divided river reaches into four
categories based on their mean simulated discharge over the
period 2000–2014. The four categories of river were de-
fined as small (102–103 m3 s−1), medium (103–104 m3 s−1),

Table 1. Experiment design (window size) for two methods to de-
velop SGRs.

Experiments I II III IV V

Optimal selection 0.15◦ 0.35◦ 0.55◦ 0.75◦ 0.95◦

Window mean 0.15◦ 0.35◦ 0.55◦ 0.75◦ 0.95◦

large (104–105 m3 s−1), and very large (> 105 m3 s−1) rivers
(Fig. 2). We did not consider rivers where discharge is less
than 102 m3 s−1 as we assume that they would have chan-
nel widths that could not be resolved using our sensing and
modelling methods. The most suitable window overall and
the SGR selection method were subsequently decided upon
based on performance statistics.

The superior method was applied to construct SGRs across
the Amazon Basin, using 8-day MODIS and GFDS water ex-
tent, respectively. For method A, the time series was split into
training and validation periods to ensure independent valida-
tion. Data for the training period were used to select the best
correlating pixel for each model grid cell, while data from the
validation period were used to evaluate SGRs’ performance.
We evaluated the results from three experiments: (I) train-
ing: 2005–2014, validation: 2000–2004; (II) training: 2000–
2004 and 2010–2014, validation: 2005–2009; and (III) train-
ing: 2000–2009, validation: 2010–2014 (Table 2). The mean
result was adapted as the overall evaluation statistic. For
method B, spatial average water extent for the whole period
of 2000–2014 was compared to storage directly, as this pro-
duces the same results as using the cross-validation method.
The performance of SGRs was assessed using Spearman’s
rank correlation (ρ), since the relationship between water ex-
tent and storage is often non-linear.

2.3.2 Evaluations of satellite gauging reaches
and the W3 model

A Spearman correlation ρ > 0.6 in a grid cell (0.05◦
×0.05◦)

was used to identify a potential river reach for developing a
SGR. We constructed a SGR for this river reach based on wa-
ter extent and modelled discharge. The developed SGR was
used to estimate river discharges using satellite observations
only. We used the same training and validation periods de-
scribed in Sect. 2.3.1 (Table 2). In the training period, both
model and remote sensing data were used to establish a rela-
tionship between water extent and discharge. Remote sensing
data for the validation period were used to estimate river dis-
charge from SGRs using the developed relationship. To en-
sure the relationship can be transferred from the model sim-
ulation to the SGR, it was necessary to eliminate systematic
differences between the two time series. Because the distri-
bution of discharge is non-Gaussian, a simple transform by
the first two statistical moments produced poor results. Better
results were achieved through cumulative distribution func-
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Figure 2. The W3 model simulated mean river discharges (> 100 m3 s−1) in the Amazon Basin (grey line: basin boundary; brown dot:
gauging station).

Table 2. Training and validation periods for the cross-validation method.

Periods I II III

Training period 2005–2014 2000–2004 & 2010–2014 2000–2009
Validation period 2000–2004 2005–2009 2010–2014

tion (CDF) matching. Following the approach of Van Dijk
et al. (2016), we used a rank-based look-up-table approach
to estimate river discharge from mapped water extent. Esti-
mates of water extent in the validation period are ranked rel-
ative to the estimate water extents in the training period, and
CDF matching is then used to provide corresponding river
discharge estimates over the validation period. The combi-
nation of river discharge estimates from the three validation
periods was lumped to represent performance over the whole
study period of 2000–2014. Overall, we obtained three river
discharge estimates from MODIS, GFDS, and the model.
All were then validated and evaluated against monthly in
situ river discharge measurement (daily in situ data were not
available for most stations).

3 Results

3.1 Evaluations of satellite gauging reach designs

The 10 experiments described in Sect. 2.3.1 for relating re-
motely sensed water extent to simulated river channel storage
were compared, using MODIS and GFDS water extent, re-
spectively. For MODIS, irrespective of window size or SGR

selection method, the mean ρ between water extent and stor-
age increases and the range of ρ narrows as discharge be-
comes larger (Fig. 3). For the small rivers (102–103 m3 s−1),
the optimal selection method (method A) achieved mean
ρ < 0.6, while the window mean method (method B) resulted
in mean ρ < 0.3. In contrast, in the main Amazon River
channel, method A produced mean ρ > 0.7, while method B
resulted in mean ρ > 0.5. Across all categories of discharge
(Fig. 3a–d), method A produced ρ that increases as the win-
dow size increases, and method B produced inconsistent re-
sults. In the same way, the mean ρ in GFDS cases also in-
creases as discharge rises (Fig. 4). Both methods showed
similar results as the mean ρ grows as the window size be-
comes larger (Fig. 4a–d). For small rivers, both methods
produced mean ρ < 0.5, while they achieved mean ρ > 0.4
in the main Amazon River channel. Overall, MODIS per-
formed better than GFDS, and method A performed better
than method B. Although the 0.95◦

×0.95◦ window size pro-
duced better results, larger windows increased the risk of se-
lecting pixels over nearby rivers rather than the target river.
We found that using method A with a search window of
0.55◦

× 0.55◦ was the best overall approach for developing
satellite-based river gauging.

www.hydrol-earth-syst-sci.net/22/6435/2018/ Hydrol. Earth Syst. Sci., 22, 6435–6448, 2018



6440 J. Hou et al.: Using modelled discharge to develop satellite-based river gauging

Figure 3. Distributions of Spearman’s rank correlation between MODIS water extent and simulated storage using different window sizes
(0.15◦

× 0.15◦, 0.35◦
× 0.35◦, 0.55◦

× 0.55◦, 0.75◦
× 0.75◦, and 0.95◦

× 0.95◦) and two approaches (light grey: optimal grid cell selection
(method A); dark grey: window mean (method B)) in four categories of river flow across the Amazon Basin. Outliers are data beyond the
distance larger than 1.5 times the interquartile range from the first and third quartiles.

This approach was applied across the Amazon Basin us-
ing MODIS and GFDS water extent respectively (Fig. 5a–b).
For MODIS SGRs, there were strong relationships (ρ > 0.6)
between water extent and storage in most reaches of the
main river channel and its large tributaries, particularly in the
larger channels (ρ > 0.8), while there were weak correlations
(ρ < 0.4) in upstream tributaries. The overall performance
of the MODIS SGRs was superior to the GFDS SGRs. For
GFDS SGRs, there were more river reaches with low correla-
tions (ρ < 0.4) in upstream tributaries, and the lower reach of
the Amazon River did not show continuous high correlations
(ρ > 0.8).

3.2 Performance of satellite gauging reaches and the
W3 model

We defined river reaches where ρ between water extent and
storage is greater than 0.6 as potential locations for devel-
oping useful SGRs (Fig. 5). While there were 31 gaug-
ing stations in the Amazon Basin, only 10 gauging sta-
tions coincided with MODIS potential SGR sites and 5 with
GFDS sites. Thus, we only assessed river discharge estimates
for these 15 cases. Monthly river discharge estimates from
MODIS, GFDS, and the model for the period of 2000–2014
were compared against monthly in situ river discharge mea-
surements (Fig. 6). We focused on flow pattern comparisons
between predicted and observed discharges, so different ver-
tical axes were chosen to bring them close to each other (ob-
servations from gauging stations are shown on the right axis
and river discharge estimates derived using remote sensing
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Figure 4. Distributions of Spearman’s rank correlation between GFDS water extent and simulated storage using different window sizes
(0.15◦

× 0.15◦, 0.35◦
× 0.35◦, 0.55◦

× 0.55◦, 0.75◦
× 0.75◦, and 0.95◦

× 0.95◦) and two approaches (light grey: optimal grid cell selection
(method A); dark grey: window mean (method B)) in four categories of river flow across the Amazon Basin. Box plots are defined as in
Fig. 3.

and model on the left axis). The W3 model yielded good es-
timates, with Pearson correlation (R) generally greater than
0.8 across most sites. A total of 7 of the 10 MODIS SGRs
estimated river discharge with R above 0.7, and the SGR for
gauging stations G12 and G31 performed best, with R close
to 0.9. Overall, MODIS SGRs estimates were not as skilful
as the model, with the exception of the one for gauging sta-
tion G12. While there were fewer potential sites for GFDS
SGRs, they were similarly or more skilful than the MODIS
SGRs. For gauging stations G12 and G19, GFDS produced
better river discharge estimates than either MODIS or the W3
model. Overall, estimated river discharges from the SGRs
and the model showed similar flow fluctuations to in situ river
discharge observations. The performance of daily, 8-day, and
monthly MODIS and GFDS SGRs are compared and dis-
cussed in the Supplement (Fig. S1).

4 Discussion

The relationship between remote sensing signal, water ex-
tent, river channel storage, and discharge enabled the esti-
mation of river discharge from optical or passive microwave
remote sensing. We showed that satellite gauging reaches
(SGRs) can be developed without gauging station records,
based on MODIS or GFDS water extents and W3 model esti-
mated discharges. The optimal selection method (method A)
with a search window of 0.55◦

× 0.55◦ produced the best re-
sults. In total, we calculated Spearman correlations between
modelled river channel storage and MODIS and GFDS wa-
ter extent for 11 752 grid cells across the Amazon Basin
(Figs. 3–5). The results suggest there are 3427 potential grid
cells (ca. 17 135 km river reaches) to construct MODIS SGRs
and 1447 grid cells (ca. 7235 km river reaches) to develop
GFDS SGRs. The original MODIS data used in this research
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Figure 5. Spearman correlation (ρ) between modelled river channel storage and MODIS (a) and GFDS (b) water extent using the optimal
grid cell selection method (method A) with a search window of 0.55◦

× 0.55◦ (circle: gauging station; circle with label: potential SGR sites
where gauging data are available).

have a spatial resolution of 0.05◦
× 0.05◦, which is higher

than the GFDS data (0.09◦
× 0.1◦). As such, MODIS should

have better detection ability for river reaches with relatively
small surface water extent. The performance of the method
appears to be particularly related to the size of river reach.
From upstream to downstream reaches in the Amazon Basin,
ρ between water extent and storage increases as river width
increases, because MODIS and GFDS remote sensing are
more sensitive to river reaches with larger surface water ex-
tent. Thus, the best locations for developing SGRs at the
coarse resolution considered here are the lower reaches of
the Amazon system.

The performance of SGRs over the Amazon Basin is gen-
erally good, as most river reaches have unregulated flows,
and these river reaches normally have wider river channels
and large floodplains, as also remarked upon by Revilla-
Romero et al. (2014). However, the performance of SGRs
varies, even for rivers of similar size. The relationship be-
tween water extent and storage or discharge also depends
on local river characteristics and floodplain channel geom-
etry (Moffitt et al., 2011; Brakenridge et al., 2012; Khan
et al., 2012). Even though GFDS is suited for fewer river
reaches than MODIS, the results showed that GFDS some-
times yielded better estimates of river discharge. A likely rea-
son for this is that MODIS optical remote sensing is limited
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Figure 6.
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Figure 6. Comparisons between observations (right axis) from gauging stations (black x) and river discharge estimates (left axis) derived
using MODIS SGRs (blue line), GFDS SGRs (green line), and the W3 model (brown dash).

to clear-sky conditions, whereas GFDS passive microwave
remote sensing is much less affected by this. River flood-
plains in the Amazon Basin are often covered with dense
vegetation, and flood waters may spread below vegetation.
Such flooding may be difficult to detect with optical imagery,
but is still readily discernible with passive microwave remote
sensing (Van Dijk et al., 2016). This is consistent with the
results presented in Figs. 3 and 4. The window mean method
(method B) produced similar results to the optimal selec-
tion method (method A) for GFDS, but worse results for
MODIS. We suspect that this is because more MODIS grid
cells within the search window are influenced by cloud or
vegetation cover.

Gauging stations are usually located in single, narrow, and
stable river reaches, while SGRs can be constructed in mul-
tiple, broad, and unstable river reaches provided variations
can be detected by remote sensing. With that caveat, there
were less than one-third of gauged river reaches that were
feasible to develop MODIS SGRs and one-sixth to construct
GFDS SGRs. Limited validation reaches with gauging sta-
tions do imply an underestimate of the percentage of suc-
cessful SGRs. We focused on qualitative analysis rather than
quantitative analysis for the performance of SGRs and the
model. Qualitative metrics, such as Pearson correlation and
Spearman’s rank correlation, indicate the degree to which the
estimates and observations show the same relative patterns,
while quantitative metrics, such as RMSE, reflect the differ-
ences between estimates and observations. The SGRs were
based on the model, so we would expect that the developed
SGRs should have the ability to reflect flow patterns better
than absolute flow values due to model biases. Tolerable er-
rors and bias are contingent on the application for the data.
For instance, for near-real-time drought and flood monitor-
ing, it may be sufficient to know relative flows, whereas water
resource assessments require estimates that are bias-free as
much as possible. For the 10 gauging stations analysed here,
the model showed a bias between −53 % and 57 % compared

to the gauge records, with a median of −35 %. This model
bias propagates into the SGR estimates but could be removed
easily where in situ data are available.

Based on comparison between gauging station records and
river discharge estimates from MODIS, GFDS, and the W3
model for period of 2000–2014, we conclude that if the W3
model performs quite well in terms of river discharge estima-
tion, then SGRs can perform with a similar level of accuracy.
In certain cases, the SGRs were able to perform better than
the W3 model in reproducing the timing of peak flows. For
instance, at gauging station G19, the satellite-derived peak
flows from both MODIS and GFDS over the period 2000–
2005 were closer to gauged peak river discharges than those
estimated by the W3 model (Fig. 6). However, there are also
instances where the SGR estimates of discharge are inferior
to those produced by the W3 model, e.g. for gauging stations
G21 and G24. It is possible that in these instances MODIS
has failed to measure water extent in small rivers or was af-
fected by cloud cover. In other cases we suspect that poor
results are attributable to data errors. For instance, the dis-
charge observations at gauging station G27 were extremely
low from late 2008 to 2009, suggesting a gauge measurement
error or other artefact. Other performance problems may be
attributable to the calibration processes and period, which
were necessarily short. If SGRs were calibrated during a dry
period, they may fail to estimate river discharge well during
a wet period (and vice versa). For example, at gauging sta-
tion G27, the SGR was not able to estimate peak flows accu-
rately for the wet years from 2005–2009, and subsequently
estimated much larger river discharges than the model dur-
ing the dry years 2010–2014. This would be avoided if the
full period had been used for SGR construction, which would
be a pragmatic approach for operational implementation but
would prevent independent evaluation in the context of the
present study.

Previous research demonstrated that both gauging data
and hydrological modelling can be used to calibrate the re-
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Table 3. Performance comparisons between gauge-based SGRs, model-based SGRs, and the W3 model (Pearson correlations between
predicted and observed discharges).

G1 G5 G6 G12 G14 G19 G21 G24 G31 Mean

MODIS SGRs Gauge-based 0.75 0.77 0.74 0.86 0.77 0.88 0.48 0.6 0.92 0.75

Model-based 0.76 0.75 0.71 0.86 0.78 0.75 0.68 0.58 0.86 0.75

GFDS SGRs Gauge-based 0.88 0.85 0.96 0.95 0.85 0.9

Model-based 0.9 0.77 0.92 0.93 0.85 0.87

Model 0.98 0.93 0.84 0.85 0.83 0.86 0.92 0.94 0.94 0.9

mote sensing signal for estimating river discharge (Braken-
ridge et al., 2012; Revilla-Romero et al., 2014). Van Dijk et
al. (2016) developed gauge-based SGRs using optical and
passive microwave-derived water extent observations, which
is valuable to gap-fill and extend gauging discharge records.
In addition to that, we demonstrated that SGRs can be also
developed using hydrological modelling. We compared our
model-based SGRs to gauge-based SGRs from previous re-
search (Van Dijk et al., 2016) for all gauging reaches, except
gauging station G27 due to its seemingly unreliable record
(Table 3). Both gauge-based and model-based GFDS SGRs
at gauging station G12 and G19 have higher Pearson corre-
lations than the model, which suggests opportunities for data
assimilation to improve the model. At gauging station G1,
G5, G21, and G24, the model performs much better than both
gauge-based and model-based SGRs, which suggests that un-
certainties in SGRs at these locations mainly arise from re-
mote sensing, e.g. due to cloud and vegetation obstruction.
Errors and uncertainties in the model, such as from input
data, routing, and conceptual structure, can also affect the
performance of SGRs. For instance, for GFDS at gauging
station G6 and MODIS at gauging station G31, gauge-based
SGRs produced higher Pearson correlations than model-
based SGRs. Compared to gauge-based SGRs, the main ad-
vantage of our method is the practical applicability in both
gauged and ungauged rivers. Our results show that the model
outperforms SGRs in most cases. Nonetheless, we consider
SGRs as an alternative, simple and automated approach for
river discharge prediction using satellite observation only.
SGRs would be useful as an alternative if the model was
unable to provide real-time estimates, e.g. due to delayed
rainfall gauge observations. As we used a model to train
SGRs, poor model simulations might reduce the performance
of SGRs. If more accurate and reliable hydrological mod-
els are available, SGRs can be redeveloped to estimate river
discharge with greater accuracy. Overall, SGRs performed
well in this case study in the Amazon Basin. The W3 model,
MODIS and GFDS remote sensing all provide information
with global coverage. Therefore, there is further potential to
develop satellite-based river gauging elsewhere.

The further development of the SGR methodologies could
benefit from combining optical and passive microwave re-
mote sensing. With higher spatial resolution, optical remote
sensing is more suitable for measuring surface water extent
in reaches without dense vegetation and when clear-sky con-
ditions prevail. Passive microwave remote sensing compen-
sates for the limitations of optical remote sensing, but suffers
from having lower spatial resolution. The main constraint in
developing SGRs in this study was that the spatial resolutions
of both MODIS and GFDS data were not high enough to de-
tect changes in river dynamics in small rivers. New satellite
imagery emerging from Sentinel-1 and Sentinel-2 provides
further opportunities to develop satellite-based river gaug-
ing at a global scale. The spatial resolution of Sentinel-1
reaches 5 m with C-band synthetic aperture radar working
in all weather and both day-time and night-time conditions.
The Sentinel-2 A and B multispectral instruments have 13
spectral bands at 10–60 m spatial resolution and, combined
with Landsat observations, this means that revisit times in
the order of days are now achievable. These developments
offer great promise for the future development of SGRs.

5 Conclusions

We proposed and tested two methods for relating MODIS-
and GFDS-derived water extent to modelled river channel
storage. For the Amazon Basin, river reaches with Spear-
man’s rank correlation (ρ) between water extent and storage
exceeding 0.6 were identified as suitable sites for developing
SGRs. SGRs were then constructed across the Amazon Basin
based on MODIS and GFDS water extent and modelled dis-
charge, and river discharge estimates were evaluated using in
situ river discharge measurements at 10 stations. Our main
conclusions are as follows:

1. The optimal grid cell selection method performed bet-
ter than the window mean method to relate W3-model-
simulated river storage and discharge to MODIS- and
GFDS-derived surface water extent fraction, and a win-
dow size of 0.55◦

× 0.55◦ was considered a reasonable
window size for identifying the best remote sensing pix-
els for each model grid cell.
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2. There were strong correlations between modelled stor-
age and both MODIS and GFDS water extent across the
Amazon Basin. The optimal selection method is mainly
limited by the size of river reach, as correlation gener-
ally increased from upstream to downstream reaches as
river width increased.

3. In total, 17 135 km of river reaches in the Amazon Basin
was assessed as suitable for constructing MODIS SGRs,
and 7235 km of river reaches was deemed suitable for
developing GFDS SGRs. The best locations for devel-
oping SGRs were mostly situated in the lower channels
of the Amazon River and its main tributaries.

4. There were more potential SGRs derived using MODIS
than GFDS, most likely because MODIS has higher
spatial resolution than GFDS. However, GFDS SGRs
predicted river discharges with more accuracy as GFDS
was much less affected by cloud and dense vegetation
than MODIS.

5. Although the W3 model performed very well in terms of
river discharge estimates in the Amazon Basin, MODIS
and GFDS SGRs can still be useful for estimating river
discharge in the absence of a real-time hydrological
model or gauging stations.

6. SGRs are suitable for automated development at a
global scale. Remote sensing with higher spatial reso-
lution can help improve river discharge estimation ca-
pabilities of SGRs. This also creates potential opportu-
nities to assimilate remote sensing observations, or de-
rived discharge estimates, into hydrological models to
improve river discharge estimation, and based on these,
streamflow forecasts.
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