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Abstract. Streamflow forecasting is prone to substantial
uncertainty due to errors in meteorological forecasts, hy-
drological model structure, and parameterization, as well
as in the observed rainfall and streamflow data used to
calibrate the models. Statistical streamflow post-processing
is an important technique available to improve the prob-
abilistic properties of the forecasts. This study evaluates
post-processing approaches based on three transformations –
logarithmic (Log), log-sinh (Log-Sinh), and Box–Cox with
λ= 0.2 (BC0.2) – and identifies the best-performing scheme
for post-processing monthly and seasonal (3-months-ahead)
streamflow forecasts, such as those produced by the
Australian Bureau of Meteorology. Using the Bureau’s op-
erational dynamic streamflow forecasting system, we carry
out comprehensive analysis of the three post-processing
schemes across 300 Australian catchments with a wide
range of hydro-climatic conditions. Forecast verification is
assessed using reliability and sharpness metrics, as well as
the Continuous Ranked Probability Skill Score (CRPSS).
Results show that the uncorrected forecasts (i.e. without
post-processing) are unreliable at half of the catchments.
Post-processing of forecasts substantially improves reliabil-
ity, with more than 90 % of forecasts classified as reliable. In
terms of sharpness, the BC0.2 scheme substantially outper-
forms the Log and Log-Sinh schemes. Overall, the BC0.2
scheme achieves reliable and sharper-than-climatology
forecasts at a larger number of catchments than the Log and
Log-Sinh schemes. The improvements in forecast reliability
and sharpness achieved using the BC0.2 post-processing

scheme will help water managers and users of the forecast-
ing service make better-informed decisions in planning and
management of water resources.

Highlights. Uncorrected and post-processed stream-
flow forecasts (using three transformations, namely Log,
Log-Sinh, and BC0.2) are evaluated over 300 diverse Aus-
tralian catchments. Post-processing enhances streamflow
forecast reliability, increasing the percentage of catchments
with reliable predictions from 50 % to over 90 %. The
BC0.2 transformation achieves substantially better forecast
sharpness than the Log-Sinh and Log transformations,
particularly in dry catchments.

1 Introduction

Hydrological forecasts provide crucial supporting infor-
mation on a range of water resource management deci-
sions, including (depending on the forecast lead time) flood
emergency response, water allocation for various uses, and
drought risk management (Li et al., 2016; Turner et al.,
2017). The forecasts, however, should be thoroughly verified
and proved to be of sufficient quality to support decision-
making and to meaningfully benefit the economy, environ-
ment, and society.

Sub-seasonal and seasonal streamflow forecasting sys-
tems can be broadly classified as dynamic or statistical
(Crochemore et al., 2016). In dynamic modelling systems,
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a hydrological model is usually developed at a daily time
step and calibrated against observed streamflow using his-
torical rainfall and potential evaporation data. Rainfall fore-
casts from a numerical climate model are then used as an
input to produce daily streamflow forecasts, which are then
aggregated to the timescale of interest and post-processed us-
ing statistical models (e.g. Bennett et al., 2017; Schick et al.,
2018). In statistical modelling systems, a statistical model
based on relevant predictors, such as antecedent rainfall and
streamflow, is developed and applied directly at the timescale
of interest (Robertson and Wang, 2009, 2011; Lü et al., 2016;
Zhao et al., 2016). Hybrid systems that combine aspects of
dynamic and statistical approaches have also been investi-
gated (Humphrey et al., 2016; Robertson et al., 2013a).

Examples of operational services based on the dynamic
approach include the Australian Bureau of Meteorology’s
dynamic modelling system (Laugesen et al., 2011; Tuteja
et al., 2011; Lerat et al., 2015); the Hydrological Ensemble
Forecast Service (HEFS) of the US National Weather Service
(NWS) (Brown et al., 2014; Demargne et al., 2014); the Hy-
drological Outlook UK (HOUK) (Prudhomme et al., 2017);
and the short-term forecasting European Flood Alert System
(EFAS) (Cloke et al., 2013). Examples of operational ser-
vices based on a statistical approach include the Bureau of
Meteorology’s Bayesian Joint Probability (BJP) forecasting
system (Senlin et al., 2017).

Dynamic and statistical approaches have distinct advan-
tages and limitations. Dynamic systems can potentially pro-
vide more realistic responses in unfamiliar climate situations,
as it is possible to impose physical constraints in such situ-
ations (Wood and Schaake, 2008). In comparison, statistical
models have the flexibility to include features that may lead
to more reliable predictions. For example, the BJP model
uses climate indices (e.g. NINO3.4), which are typically not
used in dynamic approaches. That said, the suitability of sta-
tistical models for the analysis of non-stationary catchment
and climate conditions is questionable (Wood and Schaake,
2008).

Streamflow forecasts obtained using hydrological mod-
els are affected by uncertainties in rainfall forecasts, ob-
served rainfall and streamflow data, as well as by uncertain-
ties in the model structure and parameters. Progress has been
made towards reducing biases and characterizing the sources
of uncertainty in streamflow forecasts. These advances in-
clude improving rainfall forecasts through post-processing
(Robertson et al., 2013b; Crochemore et al., 2016), ac-
counting for input, parametric, and/or structural uncertainty
(Kavetski et al., 2006; Kuczera et al., 2006; Renard et al.,
2011; Tyralla and Schumann, 2016), and using data assimila-
tion techniques (Dechant and Moradkhani, 2011). Although
these steps may improve some aspects of the forecasting sys-
tem, a predictive bias may nonetheless remain. Such bias can
only be reduced via post-processing, which, if successful,
will improve forecast accuracy and reliability (Madadgar et
al., 2014; Lerat et al., 2015).

This study focuses on improving streamflow forecast-
ing at monthly and seasonal timescales using dynamic ap-
proaches, more specifically, by evaluating several forecast
post-processing approaches. Post-processing of streamflow
forecasts is intended to remove systemic biases in the mean,
variability, and persistence of uncorrected forecasts, which
arise due to inaccuracies in the downscaled rainfall forecasts
(e.g. errors in downscaling forecast rainfall from a grid with
≈ 250 km resolution to the catchment scale) and in the hy-
drological model (e.g. due to the effects of data errors in the
model calibration and due to structural errors in the model
itself).

A number of post-processing approaches have been inves-
tigated in the literature, including quantile mapping (Hashino
et al., 2007) and Bayesian frameworks (Pokhrel et al., 2013;
Robertson et al., 2013a), as well as methods based on
state-space models and wavelet transformations (Bogner and
Kalas, 2008). Wood and Schaake (2008) used the correlation
between forecast ensemble means and observations to gener-
ate a conditional forecast. Compared with the traditional ap-
proach of correcting individual forecast ensembles, the corre-
lation approach improved forecast skill and reliability. In an-
other study, Pokhrel et al. (2013) implemented a BJP method
to correct biases, update predictions, and quantify uncer-
tainty in monthly hydrological model predictions in 18 Aus-
tralian catchments. The study found that the accuracy and
reliability of forecasts improved. More recently, Mendoza et
al. (2017) evaluated a number of seasonal streamflow fore-
casting approaches, including purely statistical, purely dy-
namical, and hybrid approaches. Based on analysis of catch-
ments contributing to five reservoirs, the study concluded
that incorporating catchment and climate information into
post-processing improves forecast skill. While the above re-
view mainly focused on post-processing of sub-seasonal and
seasonal forecasts (as it is the main focus of the current
study), post-processing is also commonly applied to short-
range forecasts (e.g. Li et al., 2016) and to long-range fore-
casts up to 12 months ahead (Bennett et al., 2016).

In most streamflow post-processing approaches, a resid-
ual error model is applied to quantify forecast uncertainty.
Most residual error models are based on least squares tech-
niques with weights and/or data transformations (e.g. Car-
penter and Georgakakos, 2001; Li et al., 2016). In order to
produce post-processed streamflow forecasts, a daily scale
residual error model is used in the calibration of hydrologi-
cal model parameters, and a monthly/seasonal-scale residual
error model is used as part of streamflow post-processing to
quantify the forecast uncertainty. In a recent study, McIner-
ney et al. (2017) concluded that residual error models based
on Box–Cox transformations with fixed parameter values are
particularly effective for daily scale streamflow predictions
using observed rainfall, yielding substantial improvements in
dry catchments. This study investigates whether these find-
ings generalize to monthly and seasonal forecasts using fore-
cast rainfall.
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An important aspect of this work is its focus on general
findings applicable over diverse hydro-climatological con-
ditions. Most of the studies in the published literature use
a limited number of catchments and case studies to test
prospective methods. Dry catchments, characterized by in-
termittent flows and frequent low flows, pose the greatest
challenge to hydrological models (Ye et al., 1997; Knoche et
al., 2014). Yet the provision of good-quality forecasts across
a large number of catchments is an essential attribute of
national-scale operational forecasting services, especially in
large countries with diverse climatic and catchment condi-
tions, such as Australia.

This paper develops streamflow post-processing ap-
proaches suitable for use in an operational streamflow fore-
casting service. We pose the following aims.

– Aim 1: evaluate the value of streamflow forecast
post-processing by comparing forecasts with no post-
processing (hereafter called “uncorrected” forecasts)
against post-processed forecasts.

– Aim 2: evaluate three post-processing schemes based on
residual error models with data transformations recom-
mended in recent publications, namely the Log, Box–
Cox (McInerney et al., 2017), and Log-Sinh (Wang et
al., 2012) schemes, for monthly and seasonal stream-
flow post-processing.

– Aim 3: evaluate the generality of results over a diverse
range of hydro-climatic conditions, in order to ensure
the recommendations are robust in the context of an op-
erational streamflow forecasting service.

To achieve these aims, we use the operational monthly and
seasonal (3-months-ahead) dynamic streamflow forecasting
system of the Australian Bureau of Meteorology (Lerat et al.,
2015). We evaluate the post-processing approaches for 300
catchments across Australia, with detailed analysis of dry
and wet catchments. Forecast verification is carried out us-
ing the Continuous Ranked Probability Skill Score (CRPSS)
as well as metrics measuring reliability and sharpness, which
are important aspects of a probabilistic forecast (Wilks,
2011). These metrics are used by the Bureau of Meteorol-
ogy to describe the streamflow forecast performance of the
operational service.

The rest of the paper is organized as follows. The forecast-
ing methodology is described in Sect. 2 and application stud-
ies are described in Sect. 3. Results are presented in Sect. 4,
followed by discussions and conclusions in Sects. 5 and 6
respectively.

2 Seasonal streamflow forecasting methodology

2.1 Overview

The streamflow forecasting system adopted in this study is
based on the Bureau of Meteorology’s dynamic modelling

system (Fig. 1). Daily rainfall forecasts are input into a
daily rainfall–runoff model to produce “uncorrected” daily
streamflow forecasts. These streamflow forecasts are then
aggregated in time and post-processed to produce monthly
and seasonal streamflow forecasts, which are issued each
month. Two steps are involved: calibration and forecasting,
discussed below.

2.2 Uncorrected streamflow forecast procedure

2.2.1 Rainfall–runoff model

The GR4J rainfall–runoff model (Perrin et al., 2003) is used
as it has been proven to provide (on average) good perfor-
mance across a large number of catchments ranging from
semi-arid to temperate and tropical humid (Perrin et al.,
2003; Tuteja et al., 2011). GR4J is a lumped conceptual
model with four calibration parameters: maximum capac-
ity of the production store x1 (mm); ground water exchange
coefficient x2 (mm); 1-day-ahead maximum capacity of the
routing store x3 (mm); and time base of unit hydrograph x4
(days).

2.2.2 Rainfall–runoff model calibration

In the calibration step, the daily rainfall–runoff model is cal-
ibrated to observed daily streamflow using observed rainfall
(Jeffrey et al., 2001) as forcing. The calibration of the param-
eters is based on the weighted least squares likelihood func-
tion, similar to that outlined in Evin et al. (2014). Markov
chain Monte Carlo (MCMC) analysis is used to estimate pos-
terior parametric uncertainty (Tuteja et al., 2011). Following
MCMC analysis, 40 random sets of GR4J parameters are re-
tained and used in the forecast step. A cross-validation pro-
cedure is implemented to verify the forecasts, as described
in Sect. 3.4. The calibration and cross-validation are compu-
tationally intensive; therefore, we use the High Performance
Computing (HPC) facility at the National Computing Infras-
tructure (NCI) in Australia.

2.2.3 Producing uncorrected streamflow forecasts

Prior to the forecast period, observed rainfall is used to force
the rainfall–runoff model. During the forecast period, 166
replicates of daily downscaled rainfall forecasts from the Bu-
reau of Meteorology’s global climate model, namely the Pre-
dictive Ocean Atmosphere Model for Australia, POAMA-
2, are used (see Sect. 3.2 for details on POAMA-2). These
rainfall forecasts are inputted into GR4J and propagated us-
ing the 40 GR4J parameter sets to obtain 6640 (166× 40)
daily streamflow forecasts. The daily streamflow forecasts
generated using GR4J are then aggregated to monthly and
seasonal timescales to produce ensembles of 6640 uncor-
rected monthly and seasonal forecasts. The computational
time required to generate 6640 streamflow forecast ensem-
bles through this process is small compared with the time re-
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Figure 1. Schematic of the dynamic streamflow forecasting system used in this study. A similar approach is used by the Australian Bureau
of Meteorology for its monthly and seasonal streamflow forecasting service.

quired to calibrate and cross-validate the hydrological model,
and is easily achieved in an operational setting using HPC.
Note that in this study the forecasting system does not use
a data assimilation technique to update the GR4J state vari-
ables. This choice is based on the limited effect of initial con-
ditions after a number of days, which generally reduces the
benefit of state updating in the context of seasonal stream-
flow forecasting.

2.3 Streamflow post-processing procedure

2.3.1 Post-processing model

The streamflow post-processing method used in this work
consists of fitting a statistical model to the streamflow fore-
cast residual errors, defined by the differences between the
observed and forecast streamflow time series over a cal-
ibration period. Typically these errors are heteroscedastic,
skewed, and persistent. Heteroscedasticity and skew are han-
dled using data transformations (e.g. the Box–Cox trans-
formation), whereas persistence is represented using au-
toregressive models (e.g. the lag-one autoregressive model,
AR(1); Wang et al., 2012; McInerney et al., 2017). We begin
by describing the two major steps of the streamflow post-
processing procedure (Sect. 2.3.2 and 2.3.3), and then de-
scribe the transformations under consideration (Sect. 2.4).

2.3.2 Post-processing model calibration

The parameters of the streamflow post-processing model are
calibrated as follows.

– Step 1: compute the transformed forecast residuals for
month or season t of the calibration period:

ηt = Z
(
Q̃t

)
−Z

(
QF
t

)
, (1)

where ηt is the normalized residual, Q̃t is the ob-
served streamflow,QF

t is the median of the uncorrected
streamflow forecast ensemble, and Z is a transforma-
tion function. The transformation functions considered
in this work are detailed in Sect. 2.4.

– Step 2: compute the standardized residuals:

νt =
(
ηt −µ

m(t)
η

)/
σm(t)
η , (2)

where µm(t)
η and σm(t)

η are the monthly mean and stan-
dard deviation of the residuals in the calibration period
for the month m(t).

The standardization process in Eq. (2) aims to account
for seasonal variations in the distribution of residu-
als. The quantities µm(t)

η and σm(t)
η are calculated in-

dependently as the sample mean and standard devia-
tion of residuals for each monthly period (for a monthly
forecast) or 3-monthly period (for seasonal forecasts).
Based on Eq. (2), the standardized residuals vt are as-
sumed to have a zero mean and unit standard deviation.

– Step 3: assume the standardized residuals are described
by a first-order autoregressive (AR(1)) model with
Gaussian innovations:

νt+1 = ρνt + yt+1, (3)

where ρ is the AR(1) coefficient and yt+1 ∼N(0,σy) is
the innovation.

The parameters ρ and σy are estimated using the method
of moments (Hazelton, 2011): ρ is estimated as the
sample auto-correlation of the standardized residuals ν,
and σy is estimated as the sample standard deviation
of the observed innovations y, which in turn are calcu-
lated from the standardized residuals ν by re-arranging
Eq. (3).

2.3.3 Producing post-processed streamflow forecasts

Once the streamflow post-processing scheme is calibrated,
the post-processed streamflow forecasts for a given period
are computed. For a given ensemble member j , the following
steps are applied.

– Step 1: sample the innovation yt+1,j ←N(0,σy).
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– Step 2: generate the standardized residuals vt+1,j using
Eq. (3). Here νt,j is computed using Eq. (2) and ηt,j is
computed using Eq. (1), using the streamflow forecasts
and observations from the previous time step t .

– Step 3: compute the normalized residuals ηt+1,j by “de-
standardizing” vt+1,j :

ηt+1,j = σ
m(t)
η vt+1,j +µ

m(t)
η . (4)

– Step 4: back-transform each normalized residual ηt+1,j
to obtain the post-processed streamflow forecast:

QPP
t+1,j = Z

−1
[
Z
(
QF
t+1

)
+ ηt+1,j

]
. (5)

Steps 1–4 are repeated for all ensemble members (6640 in
our case).

Note that the above algorithm may occasionally generate
negative streamflow predictions, which we reset to zero. In
addition, the algorithm can generate predictions that exceed
historical maxima; such predictions could in principle also
be “adjusted” a posteriori, though we do not attempt such an
adjustment in this study. These aspects are discussed further
in Sect. 5.6.

2.4 Transformations used in the post-processing model

The observed streamflow and median streamflow forecasts
are transformed in Step 1 of streamflow post-processing
(Sect. 2.3.2), to account for the heteroscedasticity and skew-
ness of the forecast residuals. We consider three transforma-
tions, namely the logarithmic, Log-Sinh, and Box–Cox trans-
formations.

2.4.1 Logarithmic (Log) transformation

The logarithmic (Log) transformation is

Z(Q)= log(Q+ c). (6)

The offset c ensures the transformed flows are defined when
Q= 0. Here we set c = 0.01× (Q̃)ave, where (Q̃)ave is the
average observed streamflow over the calibration period. The
use of a small fixed value for c is common in the literature
for coping with zero flow events (Wang et al., 2012).

2.4.2 Log-Sinh transformation

The Log-Sinh transformation (Wang et al., 2012) is

Z(Q)=
1
b

log[sinh(a+ bQ)] . (7)

The parameters a and b are calibrated for each month by
maximizing the p-value of the Shapiro–Wilk test (Shapiro
and Wilk, 1965) for normality of the residuals, v. This prag-
matic approach is part of the existing Bureau’s operational
dynamic streamflow forecasting system (Lerat et al., 2015).

2.4.3 Box–Cox transformation

The Box–Cox (BC) transformation (Box and Cox, 1964) is

Z(Q;λ,c)=
(Q+ c)λ− 1

λ
, (8)

where λ is a power parameter and c = 0.01 × (Q̃)ave. Fol-
lowing the recommendations of McInerney et al. (2017), the
parameter λ is fixed to 0.2.

2.4.4 Rationale for selecting transformational
approaches

The Log transformation is a simple and widely used transfor-
mation; McInerney et al. (2017) reported that in daily scale
modelling it produced the best reliability in perennial catch-
ments (from a set of eight residual error schemes, including
standard least squares, weighted least squares, BC, Log-Sinh,
and reciprocal transformations). However, the Log transfor-
mation performed poorly in ephemeral catchments, where its
precision was far worse than in perennial ones.

The Log-Sinh transformation is an alternative to the Log
and BC transformations, and was proposed by Wang et
al. (2012) to improve precision at higher flows. The Log-
Sinh approach has been extensively applied to water fore-
casting problems (see for example, Del Giudice et al., 2013;
Robertson et al., 2013b, Bennett et al., 2016). However, in
daily scale streamflow modelling of perennial catchments us-
ing observed rainfall, the Log-Sinh scheme did not improve
on the Log transformation: its parameters tend to calibrate
to values for which the Log-Sinh transformation effectively
reduces to the Log transformation (McInerney et al., 2017).

Finally, the BC transformation with fixed λ= 0.2 is rec-
ommended by McInerney et al. (2017) as one of only two
schemes (from the set of eight schemes listed earlier in this
section) that achieve Pareto-optimal performance in terms
of reliability, precision and bias, across both perennial and
ephemeral catchments. McInerney et al. (2017) also found
that calibrating λ did not generally improve predictive per-
formance, due to the inferred value being dominated by the
fit to the low flows at the expense of the high flows.

2.5 Summary of key terms

In the remainder of the paper, the term “uncorrected fore-
casts” refers to streamflow forecasts obtained using the steps
in Sect. 2.2.3, and the term “post-processed forecasts” refers
to forecasts based on a streamflow post-processing model,
which includes the standardization and AR(1) model from
Sect. 2.3 as well as a transformation (Log, Log-Sinh, or
BC0.2) from Sect. 2.4. As the post-processing schemes con-
sidered in this work differ solely in the transformation used,
they will be referred to as the Log, Log-Sinh, and BC0.2
schemes.
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Figure 2. Locations of the 300 catchments used in this study. The catchments are classified as dry or wet based on the aridity index.
The Köppen climate classifications for Australia are shown. The Dieckmans Bridge catchment (site id: 145010A), used as a representative
catchment in Fig. 8, is indicated by the red circle.

3 Application

3.1 Study catchments

The empirical case study is carried out over a comprehensive
set of 300 catchments with locations shown in Fig. 2. The fig-
ure also shows the Köppen climate zones. These catchments
are selected as representative of the diverse hydro-climatic
conditions across Australia. The catchment areas range from
as small as 6 km2 to as large as 230 000 km2, with 90 % of
the catchments having areas below 6000 km2. The seasonal
streamflow forecasting service of the Bureau of Meteorology
is currently evaluating these 300 catchments as part of an ex-
pansion of their dynamic modelling system.

3.2 Catchment data

In each catchment, data from 1980 to 2008 are used. Ob-
served daily rainfall data were obtained from the Australian
Water Availability Project (AWAP) (Jeffrey et al., 2001). Po-
tential evaporation and observed streamflow data were ob-
tained from the Bureau of Meteorology.

Catchment-scale rainfall forecasts are estimated from
daily downscaled rainfall forecasts produced by the Bu-
reau of Meteorology’s global climate model, namely
the Predictive Ocean Atmosphere Model for Australia

(POAMA-2) (Hudson et al., 2013). The atmospheric com-
ponent of POAMA-2 uses a spatial scale of approximately
250× 250 km (Charles et al., 2013). To estimate catchment-
scale rainfall, a statistical downscaling model based on an
analogue approach (which could also be considered as rain-
fall forecast post-processing) was applied (Timbal and McA-
vaney, 2001). In the analogue approach, local climate infor-
mation is obtained by matching analogous previous situa-
tions to the predicted climate. To this end, an ensemble of
166 rainfall forecast time series (33 POAMA ensembles ×5
replicates from downscaling +1 ensemble mean) were gen-
erated. In operation, POAMA-2 forecasts are generated ev-
ery week by running 33 member ensembles out to 270 days.
In this study we use rainfall forecasts up to 3 months ahead
and produce 166 rainfall forecast ensembles through the ana-
logue downscaling procedure described above.

3.3 Catchment classification

The performance of the post-processing schemes is evaluated
separately in dry versus wet catchments. In this work, the
classification of catchments into dry and wet is based on the
aridity index (AI) according to the following equation:

AI=
P

PET
, (9)
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Figure 3. Schematic of the cross-validation framework used for
forecast verification, applied with the 1-year validation period cor-
responding to the year 1990 (following Tuteja et al., 2016).

where P is the total rainfall volume and PET is the total po-
tential evapotranspiration volume. The aridity index has been
used extensively to identify and classify drought and wetness
conditions of hydrological regimes (Zhang et al., 2009; Car-
rillo et al., 2011; Sawicz et al., 2014).

Catchments with AI< 0.5 are categorized as “dry”, which
corresponds to hyper-arid, arid, and semi-arid classifica-
tions suggested by the United Nations Environment Pro-
gramme (Middleton et al., 1997). Conversely, catchments
with AI≥ 0.5 are classified as “wet”. Overall, about 28 % of
catchments used in this work are classified as dry.

3.4 Cross-validation procedure

The forecast verification is carried out using a moving-
window cross-validation framework, as shown in Fig. 3. We
use 5 years of data (1975–1979) to warm up the model and
apply data from 1980 to 2008 for calibration in a cross-
validation framework based on a 5-year moving window.
Suppose we are validating the streamflow forecasts in year
j (e.g. j = 1990 in Fig. 3). In this case the calibration is car-
ried out using all years except years j , j+1, j+2, j+3, and
j + 4. The 4-year period after year j is excluded to prevent
the memory of the hydrological model from affecting model
performance in the validation window period. The process
is then repeated for each year during 1980–2008. Once the
validation has been carried out for each year, the results are
concatenated to produce a single “validation” time series, for
which the performance metrics are calculated.

3.5 Forecast performance (verification) metrics

The performance of uncorrected and post-processed stream-
flow forecasts is evaluated using reliability and sharpness
metrics, as well as the CRPSS (see Sect. 3.5.3). Note that
the Bureau of Meteorology uses Root Mean Squared Er-
ror (RMSE) and Root Mean Squared Error in Probability
(RMSEP) scores in the operational service in addition to
CRPSS; however, these metrics have not been considered in
this study.

Forecast performance (verification) metrics are computed
separately for each forecast month. To facilitate the compar-
ison and evaluation of streamflow forecast performance in
different streamflow regimes, the high- and low-flow months
are defined using long-term average streamflow data calcu-
lated for each month. The 6 months with the highest av-
erage streamflow are classified as “high-flow” months, and

the remaining 6 months are classified as “low-flow” months.
The performance metrics listed below are computed for each
month separately; the indices denoting the month are ex-
cluded from Eqs. (10), (11), and (12) below to avoid clut-
tering the notation.

3.5.1 Reliability

The reliability of forecasts is evaluated using the probabil-
ity integral transform (PIT) (Dawid, 1984; Laio and Tamea,
2007). To evaluate and compare reliability across 300 catch-
ments, the p-value of the Kolmogorov–Smirnov (KS) test
applied to the PIT is used. In this study, forecasts with PIT
plots where the KS test yields a p-value ≥ 5 % are classified
as “reliable”.

3.5.2 Sharpness

The sharpness of forecasts is evaluated using the ratio of
inter-quantile ranges (IQRs) of streamflow forecasts and a
historical reference (Tuteja et al., 2016). The following defi-
nition is used:

IQRq =
1
N

N∑
i=1

Fi (100− q)−Fi (q)
Ci (100− q)−Ci (q)

× 100%, (10)

where IQRq is the IQR value corresponding to percentile q,
and Fi (q) and Ci (q) are respectively the qth percentiles of
forecast and the historical reference for year i.

An IQRq of 100 % indicates a forecast with the same
sharpness as the reference, an IQRq below 100 % indicates
forecasts that are sharper (tighter predictive limits) than the
reference, and an IQRq above 100 % indicates forecasts that
are less sharp (wider predictive limits) than the reference. We
report IQR99, i.e. the IQR at the 99th percentile, in order to
detect forecasts with unreasonably long tails in their predic-
tive distributions.

3.5.3 CRPS skill score (CRPSS)

The CRPS metric quantifies the difference between a forecast
distribution and observations, as follows (Hersbach, 2000):

CRPS=
1
N
×

N∑
i=1

∞∫
−∞

[
Fi(y)−Hi {y ≥ yo}

]2dy, (11)

where Fi is the cumulative distribution function (cdf) of
the forecast for year i, y is the forecast variable (here
streamflow) and yo is the corresponding observed value.
Hi {y ≥ yo} is the Heaviside step function, which equals 1
when the forecast values are greater than the observed value
and equals 0 otherwise.

The CRPS summarizes the reliability, sharpness, and bias
attributes of the forecast (Hersbach, 2000). A “perfect” fore-
cast – namely a point prediction that matches the actual value
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of the predicted quantity – has CRPSP = 0. In this work, we
use the CRPS skill score, CRPSS, defined by

CRPSS=
CRPSF −CRPSC

CRPSP −CRPSC
× 100%, (12)

where CRPSF , CRPSC and CRPSP represent the CRPS
value for model forecast, climatology and “perfect” forecast
respectively. A higher CRPSS indicates better performance,
with a value of 0 representing the same performance as cli-
matology.

3.5.4 Historical reference

The IQR and CRPSS metrics are defined as skill scores rela-
tive to a reference forecast. In this work, we use the climatol-
ogy as the reference forecast, as it represents the long-term
climate condition. To construct these “climatological fore-
casts”, we used the same historical reference as the opera-
tional seasonal streamflow forecasting service of the Bureau
of Meteorology. This reference is resampled from a Gaus-
sian probability distribution fitted to the observed streamflow
transformed using the Log-Sinh transformation (Eq. 7). This
approach leads to more stable and continuous historical ref-
erence estimates than sampling directly from the empirical
distribution of historical streamflow, and can be computed
at any percentile (which facilitates comparison with forecast
percentiles). Although the choice of a particular reference af-
fects the computation of skill scores, it does not affect the
ranking of post-processing models when the same reference
is used, which is the main aim of this paper.

3.5.5 Summary skill: summarizing forecast
performance using multiple metrics

When evaluating forecast performance, a focus on any single
individual metric can lead to misleading interpretations. For
example, two forecasts might have a similar sharpness, yet
if one of these forecasts is unreliable it can lead to an over-
or under- estimation of the risk of an event of interest, which
in turn can lead to a sub-optimal decision by forecast users
(e.g. a water resources manager).

Given inevitable trade-offs between individual metrics
(McInerney et al., 2017), it is important to consider multi-
ple metrics jointly rather than individually. Following the ap-
proach suggested by Gneiting et al. (2007), we consider a
forecast to have “high skill” when it is reliable and sharper
than climatology. To determine the “summary skill” of the
forecasts in each catchment, we evaluate the total number of
months (out of 12) in which forecasts are reliable (i.e. with a
p-value greater than 5 %) and sharper than the climatology
(i.e. IQR99< 100 %). A catchment is classified as having
high summary skill if “high-skill” forecasts are obtained 10–
12 months per year (on average), and is classified as having
low summary skill otherwise. Note that the CRPSS is not in-
cluded in the summary skill, because it does not represent an

independent measure of a forecast attribute (see Sect. 3.5.3
for more details).

A table providing the percentage of catchments with high
and low summary skills is used to summarize the forecast
performance of a given post-processing scheme. To identify
any geographic trends in the forecast performance, the sum-
mary skills are plotted on a map. The summary skills together
with individual skill score values are used to evaluate the
overall forecast performance, and are presented separately
for wet and dry catchments, as well as separately for high-
and low-flow months.

4 Results

Results for monthly and seasonal streamflow forecasts are
now presented. Section 4.1 compares the uncorrected and
post-processed streamflow forecast performance. Section 4.2
evaluates the performance of post-processed streamflow
forecasts obtained using the Log, Log-Sinh, and BC0.2
schemes. The CRPSS, reliability, and sharpness metrics are
presented in Figs. 4 and 5 for monthly and seasonal forecasts
respectively.

Initial inspection of results found considerable overlap in
the performance metrics achieved by the error models. To
determine whether the differences in metrics are consistent
over multiple catchments, the Log and Log-Sinh schemes
are compared to the BC0.2 scheme. This comparison is pre-
sented in Figs. 6 and 7 for monthly and seasonal forecasts
respectively. The BC0.2 scheme is taken as the baseline be-
cause inspection of Figs. 4 and 5 suggests that the BC0.2
scheme has better median sharpness than the Log and Log-
Sinh schemes, over all the catchments and for both high- and
low-flow months individually.

The streamflow forecast time series and correspond-
ing skill for a single representative catchment, Dieckmans
Bridge, are presented in Figs. 8 and 9 respectively.

The summary skills of the monthly and seasonal forecasts
are presented in Figs. 10 and 11. The figures include a his-
togram of summary skills across all catchments to enable
comparison between the uncorrected and post-processing ap-
proaches.

4.1 Comparison of uncorrected and post-processed
streamflow forecasts: individual metrics

In terms of CRPSS, the largest improvement as a result of
post-processing (using any of the transformations consid-
ered here) occurs in dry catchments. This finding holds for
both monthly (Fig. 4c) and seasonal forecasts (Fig. 5c). For
example, when post-processing is implemented, the median
CRPSS of monthly forecasts in dry catchments increases
from approximately 7 % (high-flow months) and −15 %
(low-flow months) to more than 10 % (Fig. 4c) for both high
and low flows. Visible improvement is also observed in dry
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Figure 4. Performance of monthly forecasts in terms of CRPSS, reliability (PIT p-value), and sharpness (IQR99 ratio).

catchments for seasonal forecasts; however, the improvement
is not as pronounced as for monthly forecasts (Fig. 5c).

In terms of reliability, the performance of uncorrected
streamflow forecasts is poor, with about 50 % of the catch-
ments being characterized by unreliable forecasts at both the
monthly and seasonal timescales (Figs. 4 and 5, middle row).
In comparison, post-processing using the three transforma-
tion approaches produces much better reliability, achieving
reliable forecasts in more than 90 % of the catchments.

In terms of sharpness, the uncorrected forecasts and the
BC0.2 post-processed forecasts are generally sharper than
forecasts generated using the other transformations (Figs. 4g
and 5g). The use of post-processing achieves much better
sharpness than uncorrected forecasts for low-flow months,

particularly in dry catchments. For example, for low-flow
months in dry catchments (Fig. 4i), the median IQR99 is
greater than 200 %, while similar values range between 40 %
and 100 % for post-processed forecasts. Similarly, for sea-
sonal forecasts, post-processing approaches improve the me-
dian sharpness from 150 % (uncorrected forecasts) to 50 %–
110 % (Fig. 5i).

4.2 Comparison of post-processing schemes: individual
metrics

In terms of CRPSS, Figs. 4a–c and 5a–c show consid-
erable overlap in the boxplots corresponding to all three
post-processing schemes, in both wet and dry catchments.
This finding suggests little difference in the performance of
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Figure 5. Performance of seasonal forecasts in terms of CRPSS, reliability (PIT p-value), and sharpness (IQR99 ratio).

the post-processing schemes, and is further confirmed by
Figs. 6a–c and 7a–c, which show boxplots of the differences
between the CRPSS of the Log and Log-Sinh schemes versus
the CRPSS of the BC0.2 scheme. Across all catchments, the
distribution of these differences is approximately symmetric
with a mean close to 0. In dry catchments, the BC0.2 slightly
outperforms the Log scheme for high-flow months and the
Log-Sinh scheme slightly outperforms the Log scheme for
low-flow months. Overall, these results suggest that none of
the Log, Log-Sinh, or BC0.2 schemes is consistently better
in terms of CRPSS values.

In terms of reliability, post-processing using any of the
three post-processing schemes produces reliable forecasts at
both monthly and seasonal scales, and in the majority of the

catchments (Figs. 4 and 5, middle row). The median p-value
is approximately 60 % for monthly forecasts compared with
45 % for seasonal forecasts. This indicates that better fore-
cast reliability is achieved at shorter lead times. Median re-
liability is somewhat reduced when using the BC0.2 scheme
compared to the Log and Log-Sinh schemes in wet catch-
ments (Fig. 6e), but not so much in dry catchments (Fig. 6f).
Nevertheless, the monthly and seasonal forecasts are reliable
in 96 % and 91 % of the catchments respectively. The corre-
sponding percentages for the Log scheme are 97 % and 94 %,
and for Log-Sinh they are 95 % and 90 %.

In terms of sharpness, the BC0.2 scheme outperforms the
Log and Log-Sinh schemes. This finding holds in all cases
(i.e. high-/low-flow months and wet/dry catchments), both
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Figure 6. Distributions of differences in the monthly forecast performance metrics of the Log and Log-Sinh schemes compared to the BC0.2
scheme.

for monthly and seasonal forecasts (Figs. 4 and 5, bottom
row). The plot of differences in the sharpness metric (Figs. 6
and 7, bottom row) highlights this improvement. In half of
the catchments, during both high- and low-flow months, the
BC0.2 scheme improves the IQR99 by 30 % (or more) com-
pared to the Log and Log-Sinh schemes. In dry catchments,
the improvements are larger than in wet catchments. For
example, in dry catchments during high-flow months, the
BC0.2 scheme improves on the IQR99 of Log and Log-Sinh
by 40 %–60 % in over a half of the catchments, and by as
much as 170 %–190 % in a quarter of the catchments.

To illustrate these results, a streamflow forecast time se-
ries at Dieckmans Bridge catchment (site id: 145010A) is
shown in Fig. 8 and performance metrics calculated over 6

high-flow months and 6 low-flow months are shown in Fig. 9.
This catchment is selected as it is broadly representative of
typical results obtained across the wide range of case study
catchments. The period in Fig. 8 (2003–2007) is chosen be-
cause it highlights the difference in forecast interval between
the uncorrected and post-processing approaches. The figure
indicates that in terms of reliability, the uncorrected forecast
has a number of observed data points outside the 99 % pre-
dictive range (Fig. 8a). This is an indication that the forecast
is unreliable. This finding can be confirmed from the corre-
sponding p-value in Fig. 9, which shows that the forecast is
below the reliability threshold during most of the high-flow
months and during some low-flow months. In terms of sharp-
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Figure 7. Distributions of differences in the seasonal forecast performance metrics of the Log and Log-Sinh schemes compared to the BC0.2
scheme.

ness, the Log and Log-Sinh schemes produce a wider 99 %
predictive range than the BC0.2 scheme (Figs. 8 and 9).

4.3 Comparison of summary skill between uncorrected
and post-processing approaches

Figures 10 and 11 show the geographic distribution of the
summary skill of the uncorrected and post-processing ap-
proaches for monthly and seasonal forecasts respectively.
Recall that the summary skill represents the number of
months with streamflow forecasts that are both reliable and
sharper than climatology. Table 1 provides a summary of
the percentage of catchments with high and low summary

skill for the uncorrected and post-processing approaches for
monthly and seasonal forecasts (see Sect. 3.5.5).

The findings for forecasts at the monthly scale are as fol-
lows (Fig. 10 and Table 1).

– Uncorrected forecasts perform worse than post-
processing techniques in the sense that they have low
summary skill in the largest percentage of catchments
(16 %). The percentage of catchments where high sum-
mary skill is achieved by uncorrected forecasts is 40 %.

– Post-processing forecasts with the Log and Log-Sinh
schemes reduce the percentage of catchments with low
summary skills from 16 % to 2 % and 7 % respectively.
However, the percentage of catchments with high sum-
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Figure 8. Seasonal streamflow forecast time series (blue line) and observations (red dots) at Dieckmans Bridge catchment (site id: 145010A).
The shaded area shows the 99 % prediction limits.

mary skill also decreases (in comparison to uncorrected
forecasts), from 40 % to 33 % for both the Log and Log-
Sinh schemes.

Post-processing with the BC0.2 scheme provides the best
performance, with the smallest percentage of catchments
with low summary skills (< 1 %) and the largest percentage
of catchments with high summary skills (84 %), as seen in
Fig. 10.

– Figure 10: the improvement achieved by the BC0.2
scheme (compared to the Log/Log-Sinh schemes) is
most pronounced in New South Wales (NSW) and in
the tropical catchments in Queensland (QLD) and the

Northern Territory (NT). The few catchments where the
BC0.2 scheme does not achieve a high summary skill
are located in the north and north-west of Australia.

The findings for forecasts at the seasonal scale are as follows
(Fig. 11 and Table 1).

– Log scheme has the largest percentage (19 %) of catch-
ments with low summary skill and a relatively small per-
centage (9 %) of catchments with high summary skill.

Post-processing forecasts with the Log and Log-Sinh
schemes reduce the percentage of catchments with low
summary skill from 19 % to 18 % and 17 % respectively.
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Figure 9. Seasonal streamflow forecast skill scores at Dieckmans Bridge catchment, computed from the time series shown in Fig. 8 for 6
high-flow months and 6 low-flow months.

Table 1. Performance of post-processing schemes, expressed as the percentage of catchments with high and low summary skill. Results
shown for monthly and seasonal forecasts. A catchment with “high summary skill” is defined as a catchment where “high-skill” forecasts are
achieved in 10–12 months out of the year; “high-skill” forecasts are defined as forecasts that are reliable and sharper than climatology.

Post-processing scheme

Uncorrected forecasts Log Log-Sinh BC0.2

Monthly forecasts

High summary skill 40 % 33 % 33 % 84 %
Low summary skill 16 % 2 % 7 % < 1 %

Seasonal forecasts

High summary skill 46 % 9 % 20 % 54 %
Low summary skill 14 % 19 % 17 % 2 %
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Figure 10. Summary skill of monthly forecasts obtained using the Log, Log-Sinh, and BC0.2 schemes across 300 Australian catchments.
The performance of uncorrected forecasts is also shown. The summary skill is defined as the number of months where high-skill forecasts
(i.e. forecasts that are reliable and sharper than climatology) are obtained. The inset histogram shows the percentage of catchments in each
performance category and also serves as the colour legend.

The percentage of catchments with high summary skill
increases from 9 % to 12 % and 22 % respectively.

– Post-processing with the BC0.2 scheme once again pro-
vides the best performance: it produces forecasts with
low summary skill in only 2 % of the catchments, and
achieves high summary skill in 54 % of the catchments.
As seen in Fig. 11, similar to the case of monthly fore-
casts, the biggest improvements for seasonal forecasts
occur in the NSW and Queensland regions of Australia.

– Overall, Table 1 shows that, across all schemes, BC0.2
results in a larger percentage of catchments with low
summary skill and a larger percentage of catchments
with high summary skill. It can also be seen that the
summary skills of post-processing approaches are lower
for seasonal forecasts than for monthly forecasts.

4.4 Summary of empirical findings

Section 4.1–4.3 show that post-processing achieves ma-
jor improvements in reliability, as well as in CRPSS and
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Figure 11. Summary skill of seasonal forecasts obtained using the Log, Log-Sinh, and BC0.2 schemes across 300 Australian catchments.
See Fig. 10’s caption for details.

sharpness, particularly in dry catchments. Although all three
post-processing schemes under consideration provide im-
provements in some of the performance metrics, the BC0.2
scheme consistently produces better sharpness than the Log
and Log-Sinh schemes, while maintaining similar reliabil-
ity and CRPSS. This finding holds for both monthly and,
to a lower degree, seasonal forecasts. Of the three post-
processing schemes, the BC0.2 scheme improves by the
largest margin the percentage of catchments and the number
of months where the post-processed forecasts are reliable and
sharper than climatology.

5 Discussion

5.1 Benefits of forecast post-processing

A comparison of uncorrected and post-processed stream-
flow forecasts was provided in Sect. 4.1. Uncorrected fore-
casts have reasonable sharpness (except in dry catchments),
but suffer from low reliability: uncorrected forecasts are un-
reliable at approximately 50 % of the catchments. In wet
catchments, poor reliability is due to overconfident fore-
casts, which appears a common concern in dynamic fore-
casting approaches (Wood and Schaake, 2008). In dry catch-
ments, uncorrected forecasts are both unreliable and exhibit
poor sharpness. Post-processing is thus particularly impor-
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tant to correct for these shortcomings and improve fore-
cast skill. In this study, all post-processing models provide
a clear improvement in reliability and sharpness, especially
in dry catchments. The value of post-processing is more pro-
nounced in dry catchments than in wet catchments (Figs. 4
and 5). This finding can be attributed to the challenge of cap-
turing key physical processes in dry and ephemeral catch-
ments (Ye et al., 1997), as well as the challenge of achiev-
ing accurate rainfall forecasts in arid areas. In addition, the
simplifications inherent in any hydrological model, includ-
ing the conceptual model GR4J used in this work, might also
be responsible for the forecast skill being relatively lower in
dry catchments than in wet catchments. Whilst using a single
conceptual model is attractive for practical operational sys-
tem, there may be gains in exploring alternative structures
for ephemeral catchments (e.g. Clark et al., 2008; Fenicia et
al., 2011). We intend to explore such alternative model struc-
tures for difficult ephemeral catchments. In such dry catch-
ments, the hydrological model forecasts are particularly poor
and leave a lot of room for improvement: post-processing can
hence make a big difference on the quality of results.

5.2 Interpretation of differences between
post-processing schemes

We now discuss the large differences in sharpness between
the BC0.2 scheme versus the Log and Log-Sinh schemes.
The Log-Sinh transformation was designed by Wang et
al. (2012) to improve the reliability and sharpness of predic-
tions, particularly for high flows, and has worked well as part
of the statistical modelling system for operational streamflow
forecasts by the Bureau of Meteorology. The Log-Sinh trans-
formation has a variance stabilizing function that (for certain
parameter values) tapers off for high flows. In theory, this
feature can prevent the explosive growth of predictions for
high flows that can occur with the Log and Box–Cox trans-
formations (especially when λ < 0).

McInerney et al. (2017) found that, when modelling peren-
nial catchments at the daily scale, the Log-Sinh scheme did
not achieve better sharpness than the Log scheme. Instead,
the parameters for the Log scheme tended to converge to
values for which the tapering off of the Log-Sinh trans-
formation function occurs well outside the range of sim-
ulated flows, effectively reducing the Log-Sinh scheme to
the Log scheme. In contrast, the Box–Cox transformation
function with a fixed λ > 0 gradually flattens as stream-
flow increases, and exhibits the “desired” tapering-off be-
haviour within the range of simulated flows. This behaviour
leads to the Box–Cox scheme achieving, on average, more
favourable variance-stabilizing characteristics than the Log-
Sinh scheme.

Our findings in this study confirm the insights of McIn-
erney et al. (2017) – namely that the Log-Sinh scheme pro-
duces comparable sharpness to the Log scheme – across a
wider range of catchments. This finding indicates that in-

sights from modelling residual errors at the daily scale apply
at least to some extent to streamflow forecast post-processing
at the monthly and seasonal scales. Note the minor difference
in the treatment of the offset parameter c in Eq. (6): in the
Log scheme used in McInerney et al. (2017) this parameter is
inferred, whereas in this study it is fixed a priori. This minor
difference does not impact on the qualitative behaviour of the
error models described earlier in this section. Overall, when
used for post-processing seasonal and monthly forecasts in
a dynamic modelling system, the BC0.2 scheme provides an
opportunity to improve forecast performance further than is
possible using the Log and Log-Sinh schemes.

5.3 Importance of using multiple metrics to assess
forecast performance

The goal of the forecasting exercise is to maximize sharp-
ness without sacrificing reliability (Gneiting et al., 2005;
Wilks, 2011; Bourdin et al., 2014). The study results show
that relying on a single metric for evaluating forecast perfor-
mance can lead to sub-optimal conclusions. For example, if
one considers the CRPSS metric alone, all post-processing
schemes yield comparable performance and there is no basis
for favouring any single one of them. However, once sharp-
ness is taken into consideration explicitly, the BC0.2 scheme
can be recommended due to substantially better sharpness
than the Log and Log-Sinh schemes.

Similarly, comparisons based solely on CRPSS might sug-
gest reasonable performance of the uncorrected forecasts:
55 %–80 % of months have CRPSS> 0 (with some variabil-
ity across high-/low-flow months and monthly/seasonal fore-
casts). Yet once reliability is considered explicitly, it is found
that uncorrected forecasts are unreliable at approximately
50 % of the catchments. Note that performance metrics based
on the CRPSS reflect an implicitly weighted combination of
reliability, sharpness, and bias characteristics of the forecasts
(Hersbach, 2000). In contrast, the reliability and sharpness
metrics are specifically designed to quantify reliability and
sharpness attributes individually. These findings highlight the
value of multiple independent performance metrics and diag-
nostics that evaluate specific (targeted) attributes of the fore-
casts, and highlight important limitations of aggregate mea-
sures of performance (Clark et al., 2011).

A number of challenges and questions remain in regards
to selecting the performance verification metrics for specific
forecasting systems and applications. An important question
is how to include user needs into a forecast verification pro-
tocol. This could be accomplished by tailoring the evalua-
tion metrics to the requirements of users. Another key ques-
tion is to what extent do measures of forecast skill corre-
late to the economic and/or social value of the forecast? This
challenging question was investigated by Murphy and Ehren-
dorfer (1987) and Wandishin and Brooks (2002), who found
the relationship between quality and value of a forecast to
be essentially nonlinear: an increase in forecast quality may
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not necessarily lead to a proportional increase in its value.
This question requires further multi-disciplinary research, in-
cluding human psychology, economic theory, communica-
tion and social studies (e.g. Matte et al., 2017; Morss et al.,
2010).

5.4 Importance of performance evaluation over large
numbers of catchments

When designing an operational forecast service for loca-
tions with streamflow regimes as diverse and variable as in
Australia (Taschetto and England, 2009), it is essential to
thoroughly evaluate multiple modelling methods over mul-
tiple locations to ensure the findings are sufficiently robust
and general. This was the major reason for considering the
large set of 300 catchments in our study. This set-up also
yields valuable insights into spatial patterns in forecast per-
formance. For example, the Log and Log-Sinh schemes per-
form relatively well in catchments in south-eastern Australia,
and relatively worse in catchments in northern and north-
eastern Australia (Figs. 10 and 11). In contrast, the BC0.2
scheme performs well across the majority of the catchments
in all regions included in the evaluation. The evaluation over
a large number of catchments in different hydro-climatic re-
gions is clearly beneficial to establish the robustness of post-
processing methods. Restricting the analysis to a smaller
number of catchments would have led to less conclusive find-
ings.

5.4.1 Implication of results for water resource
management

The empirical results clearly show that the BC0.2 post-
processing scheme improves forecast sharpness (precision)
while maintaining forecast accuracy and reliability. As dis-
cussed below, this improvement in forecast quality offers an
opportunity to improve operational planning and manage-
ment of water resources.

The management of water resources, for example, decid-
ing which water source to use for a particular purpose or al-
locating environmental flows, requires an understanding of
the current and future availability of water. For water re-
sources systems with long hydrological records, water man-
agers have devised techniques to evaluate current water avail-
ability, water demand, and losses. However, one of the main
unknowns is the volume of future system inflows. Stream-
flow forecasts provide crucial information to water managers
and users regarding the future availability of water, thus help-
ing reduce uncertainty in decision making. This informa-
tion is particularly valuable for supporting decisions during
drought events. In this study, forecast performance is eval-
uated separately for high- and low-flow months – provid-
ing a clearer indication of predictive ability for flows that
are above and below average respectively. A detailed evalu-
ation of forecasts for more extreme drought events is chal-

lenging as these events are correspondingly rarer. Limited
sample size makes it difficult to make conclusive statements:
e.g. if we focus on the lowest 5 % of historical data with
a 30-year record, we may only have roughly 1.5 samples
for each month/season. The uncertainty arising from limited
sample size requires further development of forecast verifica-
tion techniques, potentially adapting some of the approaches
used by Hodgkins et al. (2017).

5.5 Opportunities for further improvement in forecast
performance

There are several opportunities to further improve the sea-
sonal streamflow forecasting system. This section describes
avenues related to specialized treatment of zero flows and
high-flow forecasts, uncertainty analysis of post-processing
model parameters, and the use of data assimilation (state up-
dating).

The post-processing approaches used in this work do not
make special provision for zero flows in the observed data.
Robust handling of zero flows in statistical models, espe-
cially in arid and semi-arid catchments, is an active research
area (Wang and Robertson, 2011; Smith et al., 2015), and ad-
vances in this area are certainly relevant to seasonal stream-
flow forecasting.

A similar challenge is associated with the forecasting of
high flows, as the post-processing approaches used in this
work can produce streamflow predictions that exceed histor-
ical maxima. The IQR ratio used to assess forecast sharp-
ness will detect unreasonably long tails (i.e. extremes) in the
predictive distributions and hence can indirectly identify in-
stances of unreasonably high-flow forecasts. Further research
is needed to develop techniques to evaluate the realism of
forecasts that exceed historical maxima.

Another area for further investigation is the identifiability
of parametersµm(t)

η and σm(t)
η of the monthly post-processing

model. These parameters are estimated using monthly data
(see Sect. 2.3.2), and hence could be subject to substantial
uncertainty and/or overfitting to the calibration period. In
this study, 29 years of data were employed in the calibra-
tion, making these problems unlikely. Importantly, the use of
a cross-validation procedure (Sect. 3.4) is expected to detect
potential overfitting. That said, as many sites of potential ap-
plication may lack the data length available in this work, the
sensitivity of forecast performance to the length of calibra-
tion period warrants further investigation.

Finally, the forecasting system used in this study does not
employ data assimilation to update the states of the GR4J
hydrological model. Gibbs et al. (2018) showed that monthly
streamflow forecasting benefits from state updating in catch-
ments that exhibit non-stationarity in their rainfall–runoff dy-
namics. Note that data assimilation of ocean observations has
been implemented in the climate model (POAMA2) used for
the rainfall forecast (Yin et al., 2011) (see Sect. 3.2 for addi-
tional details).
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6 Conclusions

This study focused on developing robust streamflow forecast
post-processing schemes for an operational forecasting ser-
vice at the monthly and seasonal timescales. For such fore-
casts to be useful to water managers and decision-makers,
they should be reliable and exhibit sharpness that is better
than climatology.

We investigated streamflow forecast post-processing
schemes based on residual error models employing three
data transformations, namely the logarithmic (Log), log-sinh
(Log-Sinh), and Box–Cox with λ= 0.2 (BC0.2). The Aus-
tralian Bureau of Meteorology’s dynamic modelling system
was used as the platform for the empirical analysis, which
was carried out over 300 Australian catchments with diverse
hydro-climatic conditions.

The following empirical findings are obtained.

1. Uncorrected forecasts (no post-processing) perform
poorly in terms of reliability, resulting in a mischarac-
terization of forecast uncertainties.

2. All three post-processing schemes substantially im-
prove the reliability of streamflow forecasts, both in
terms of the dedicated reliability metric and in terms of
the summary skill given by the CRPSS.

3. From the post-processing schemes considered in this
work, the BC0.2 scheme is found to be best suited for
operational application. The BC0.2 scheme provides the
sharpest forecasts without sacrificing reliability, as mea-
sured by the reliability and CRPSS metrics. In particu-
lar, the BC0.2 scheme produces forecasts that are both
reliable and sharper than climatology at substantially
more catchments than the alternative Log and Log-Sinh
schemes.

A major practical outcome of this study is the development
of a robust streamflow forecast post-processing scheme that
achieves forecasts that are consistently reliable and sharper
than climatology. This scheme is well suited for opera-
tional application, and offers the opportunity to improve de-
cision support, especially in catchments where climatology
is presently used to guide operational decisions.

Data availability. The data underlying this research can be ac-
cessed from the following links: observed rainfall data (http://
www.bom.gov.au/climate, last access: 7 November 2018), POAMA
rainfall forecast generated by the Australian Bureau of Meteo-
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served streamflow data (http://www.bom.gov.au/waterdata, last ac-
cess: 7 November 2018).
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